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Abstract 

Higher Order Spectral Analysis (HOSA) is a very useful technique for analyzing the statistical 

relationships between several spectral components. HOSA can be defined  in terms of Bispectrum 

as a third-order spectrum. This technique is useful for studying the statistical distribution of the 

signal when the additive noise sources are Gaussian in nature and also for studying the presence of 

nonlinearities in the signals. In some cases, the deviations from  the Gaussian shape of the Doppler 

power spectrum can be considerable during severe weather conditions (due to the presence of 

strong wind shear and turbulence patterns), which exhibits skewed, sharp and bimodal signatures. 

The presence of turbulence in the atmosphere makes the process into nonlinear due to the 

wavenumber  interactions between the eddies in a turbulent flow. Earlier studies used Bispectrum 

measurements to experimentally study the spectral energy transfer due to wavenumber interactions 

in a turbulent flow. Wavenumber triad interactions result from the quadratic nonlinearity of the 

Navier–Stokes equations. They are the fundamental energy transfer mechanism in fluid flows and 

manifest in Fourier space as triplets of three wavenumber vectors. To determine the strength of 

such interactions, one must measure the third-order spectra, commonly called Bispectra. One of the 

main reasons to consider HOSA on weather and atmospheric signals is to characterize the Doppler 

spectrum obtained through the backscattered echoes, which are generally skewed and have multiple 

peaks. The analysis also identifies deviations from Gaussianity and performs well in noisy 

environments. This technique will identify and detect the signals and better estimate moments for 

further processing. Also, it is useful to study the Bispectrum in turbulence measurements to 

investigate certain nonlinear properties, such as spectral energy transfer. Therefore, atmospheric 

signals have been considered to investigate the nonlinearities in the backscattered signals. 

The main objective of this thesis is to analyze the weather and atmospheric signals to know their 

statistical distribution and find out any deviation occurring from the normality. It is also to 

investigate how the Bispectrum performs well under noisy conditions. This thesis also aims to 

study the nonlinearities present in the backscattered signals obtained from the MST radar. 

The bispectrum technique has been applied to the complex time series data derived from a 

Polarimetric X-band Doppler Weather Radar (DWR) to understand the statistical distribution of the 

signals and the deviations from the Gaussian shape of the Doppler spectrum. The results of this 

analysis are compared with conventional techniques like the Fourier method and pulse pair 

technique. It is observed that through the bispectrum approach, the Gaussian  noise components are 
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significantly removed from  the backscattered signals and improves the detectability of  the weather 

signals under noisy condition. 

The backscattered signals from MST radar arise from the turbulence induced irregularities in the 

refractive index gradients. To study the presence of nonlinearities in the atmospheric signals, a 

novel approach has been proposed for the measurement of turbulent energy dissipation  rate (ε) 

from Nonlinear Index (NLI) based measurements using the Higher Order Spectral Estimation 

(HOSE) technique. The Bicoherence obtained by this method  has been  applied to the 

backscattered signals received from the Mesosphere, Stratosphere and Troposphere (MST) radar, 

Gadanki. Here we considered both convective and clear air atmospheric observation for the analysis 

and calculated the Nonlinear Index (which represents the amount of nonlinearity in signals) for 

each range bin and observed that the index of nonlinearity indirectly provides information about 

turbulent intensity. An empirical relationship between the nonlinear index and turbulent energy 

dissipation rate has been established through regression models. The results of the turbulence 

energy dissipation rate (ε) calculated from the nonlinear index have been compared with the 

turbulence energy dissipation rate (ε) calculated from the spectrum width based method. 

This thesis also developed an algorithmic approach  to remove the  noise and the ground clutter for 

weather signals to obtain the best quality of radar products such as Reflectivity, Velocity, and 

Spectrum width. Proper detection and estimation of signal and noise power measurements are 

important to generate the best quality of meteorological data products. Noise will be generated 

when the antenna intercepts the thermal radiation from various sources, including the sky, sun, 

ground, precipitation and man-made radiators, and  it is constructively added  to the receiver 

internal noise. In order to obtain the best quality of radar products, it is desirable to compute 

meteorological parameters by estimating noise power and removal of ground clutter. In this paper, 

an attempt has been made to study the Empirical Mode Decomposition (EMD) denoising 

techniques on weather radar signals in the presence of noise and ground clutter. EMD method is a 

time domain technique; it decomposes the signals into Intrinsic Mode Functions (IMF). Three 

different methods of EMD based denoising techniques have been considered and applied to the 

weather signals to check the best performance of the denoising technique and remove clutter. 

Limitations and advantages of these methods are brought out. In order to overcome the limitations 

of these approaches, we modified the techniques by adapting correlation based measurements. 

Moments have been estimated from these techniques and compared with the conventional methods 

like Pulse pair and Fourier based spectral moments.  
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Chapter 1 

Introduction 

Various weather and atmospheric phenomena occur in the atmosphere of the Earth, which 

changes with time. The Doppler Weather Radar (DWR) is one of the remote sensing 

instruments that can be used to study the various weather and atmospheric phenomena, such 

as precipitation, clouds and other dynamics of the atmosphere, and it can also detect the 

radial velocities, wind speed, and direction, in heavy rainfall and clear air areas. 

The backscattered signals received from the radar undergo various processing and filtering 

before estimating radar parameters. Sometimes, the existing methods will produce biased 

estimates in the case of ground clutter and noise. The returns from the non-moving ground 

targets generate the ground clutter echoes. Another problem is extracting the radar return 

signals in the low SNR environment where the receiver system is configured for a very large 

dynamic range of observation, and also, the estimates will produce severe bias, especially in 

the case of deviations occurring from the observed Doppler power spectrum. For example, 

autocovariance (pulse pair) processing is an extensively used technique in DWRs for the 

estimation of Doppler moments; even though it is considered as the most efficient estimator, 

this technique is valid under the assumption of a symmetric weather spectrum. But this 

assumption may not be valid in severe turbulent conditions associated with wind shear. Some 

studies showed that as the skewness increases, the Pulse pair method produces biased 

estimation in both velocity and spectrum width measurements (Doviak, 1984).  

The complexities of the physical processes within the atmospheric system make it difficult to 

understand whether the process actually is a Gaussian/non-Gaussian and Linear/Nonlinear 

during severe weather events like strong wind shear and turbulence. Generally, it is assumed 

that the atmospheric and weather signals have Gaussian characteristics. But this assumption 

may not be valid during severe weather conditions (such as strong wind shear and irregular 

turbulence patterns). In some conditions, the Doppler power spectra exhibit deviations from 

the Gaussian shape and also exhibit nonlinear behaviour observed from the backscattered 

signals. Nonlinearity identification in the system is generally based on input and output data. 

Such datasets can be generated for an ideally controlled system, but the control of the input is  
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not possible for some natural processes to measure directly. Therefore, measurements are 

derived indirectly. Even though, the man-made systems are linear, the system will exhibit 

nonlinear behaviour at certain conditions (Huang,1998). For example, the atmosphere is 

governed by generalized equations such as the dynamics of fluids and thermodynamics. The 

generation of turbulence in the atmosphere will create nonlinearity in the processes (Pope, 

2000). The quadratic nonlinearity of the Navier–Stokes equations results wavenumber traid 

interactions between eddies and this is the main mechanism of energy transfer in fluid flows. 

In Fourier space, as triplets of three wavenumber vectors. To better understand the process 

associated with the weather and atmospheric system, we need to develop sophisticated 

algorithms and approaches to extract the weather information from these radars using proper 

filtering and processing. In atmospheric radars (wind profilers), most of the signals received 

from the vertical beam have non-Gaussian characteristics. This study has been clearly 

explained by Anandan et al. (2001). 

Nowadays, many meteorological products are generated from the base products of Doppler 

Weather Radar (DWR) observations. In India, recently, a number of Polarimetric DWRs are 

being developed and installed. Already, many studies are carried out in the field of weather 

signals from the observations of Polarimetric DWR. Whereas, in India, the study related to 

DWR observations are in a nascent stage and the algorithm used for extracting the signals 

follows the moments extraction technique followed in statistical theory. There is a need for 

efficient algorithms to be developed and tuned specifically to the Indian meteorological 

conditions influenced by very different terrain topography compared to the algorithms 

already existing and developed outside India. In addition to this, there is a need to understand 

the statistical properties of the signal and the process associated with it, using novel 

approaches and algorithms. It is planned to have a study in this direction to develop more 

efficient algorithms for estimating weather and atmospheric parameters. It opens up looking 

into weather and atmospheric signal properties in different ways by applying various signal 

processing techniques, thereby enhancing the capability of signal extraction techniques 

leading to better estimation and parametrization. 

1.1 Statistical distribution of the received signals 

It is assumed that the statistical distribution of I (in-phase) and Q (quadrature-phase) parts of 

the backscattered signals obtained from the pulsed radar follows the Gaussian distribution 
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(Papoulis 1965). The  received echoes in the resolution volume results from the sum of the 

distinct scattered echoes from all scatterers. With respect to the Central Limit Theorem, the 

sum of independent random variables likely to have a Gaussian density function, which is 

absolutely true for hydrometeor echoes. Therefore, I and Q components have a Gaussian 

distribution. The received signals have features similar to the Gaussian noise with 

narrowband seen in communication theory (Middleton, 1960). The absolute value of the 

complex weather signal follows a Rayleigh distribution (Bringi, 2001). The Rayleigh 

distribution fits the signal amplitude measurement well. The echo intensity is distributed as 

an exponential density function. These distributions can be used to determine the 

characteristics of estimators obtained from received signals. But, in real-time applications, 

this assumption is not fully valid. Sometimes, we may observe the deviations from the above 

distribution having the presence of Gaussian distribution and its changes along with 

nonlinearities in the received signals from both weather and atmospheric radars during severe 

weather events.  

1.2. Literature Review 

1.2.1 Non-Gaussian Doppler spectra observations 

The power spectrum of the radar backscattered echoes gives the power-weighted radial 

velocity distribution inside the radar resolution volume. Power, mean radial velocity and 

spectrum width (zero, first and second moments) are the important parameters of the radar, 

that can be estimated by spectral methods (frequency domain) or the auto covariance method 

(time domain). The first three moments are sufficient for Gaussian-shaped Doppler spectra to 

characterize the power spectrum fully. However, there are only limited studies are available 

to systematically investigate and verify the Gaussian assumption using current Doppler 

weather radar. It has been observed that, the Doppler spectral shape is not exactly Gaussian in 

many weather events, The mean radial velocity and spectrumwidth can be obtained using the  

auto covariance method, and this method will be biased (Sirmans and Bumgarner, 1975) for 

non-Gaussian or asymmetric spectra.  

The pulse pair processing method, often used for its robustness and computation efficiency, 

can obtain the radar parameters based on the Gaussian assumption, like reflectivity, mean 

radial velocity and spectrum width. However, size of the resolution volume of the radar 

increases with the detection range, resulting in the volume filling non-uniformly with 

different hydrometeors distributions. As a result, the spectrum may deviate from a Gaussian 
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form. Many literatures have been reported already that, in some cases, deviation from 

Gaussian shape can be considerable during strong convective events: the main reason for this 

isthe presence of strong wind shear and irregular patterns of turbulence (Janssen, 1985; Yu et 

al., 2009) which shows skewed or sharp and, bimodal signatures (Dong, 2022). Janssen 

(1985) observed the deviation from the Gaussian shape from the precipitation spectra. To 

quantify this, they estimated spectral variability to know its deviation by fitting a parabola to 

an observed Doppler power spectrum. On a logarithmic scale, the Gaussian shape can be 

regarded as a parabola. Applying the least square criterion fits these spectrum estimates to a 

linear curve at degree 2. All readings will be performed at levels below the noise threshold 

except for spectral data exceeding a noise limit of 5dB. Such a constraint avoids troublesome 

transitions from the noise level to the power spectrum and vice versa. For deviations from 

Gaussian shape, it is appropriate to assume a squared mean difference between the fitted 

parabola and computed spectrum. There's a term for that, spectral variability. He discovered 

that there may be significant deviations from Gaussianity in about a fourth of the spectra.  

Some studies examined deviations from the Doppler power spectra of a tornadic supercell 

thunderstorm. They observed that, the spectra exhibiting non-Gaussian, skewed, flat top 

behaviour during severe weather events. Yu et al. (2009) observed spectral deviations during 

a tornadic supercell event, which exhibits features like dual peak spectra. To study this 

feature, he modelled dual Gaussian (mixture of two Gaussian components) spectra for better 

observation of the spectra. Additionally, he measured the asymmetry and tailedness of a 

distribution using skewness and kurtosis. For the estimate of six spectral moments, he applied 

a nonlinear fitting algorithm to compare them with those obtained by an autocovariance 

method. Furthermore, he produced theoretical bias values of the mean radial velocity and the 

spectrum width acquired by the auto covariance approach in accordance with the six spectral 

moments. 

Dong (2022) proposed a new generalized PPP (GPPP) technique to detect the non-Gaussian 

spectral signals using higher-order spectral moments (HOSM). This method calculates the 

higher-order spectral moments using the autocorrelation function and includes other two 

parameters, such as skewness and kurtosis, which describe the power spectral density (PSD) 

shape. They employed theoretical skewness and kurtosis values of 0 and 3, respectively, in 

their analysis. The Gaussian mixture model (GMM) was utilized to represent the weather 

signal, and the elbow approach was employed to determine the number of Gaussian spectra in 
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GMM. The parameters of the GMM are obtained by using the Expectation Maximization 

(EM) algorithm, which is similar to iterative optimization algorithm for estimating the 

parameters of probability models. In this case, they obtained initial values using the K-means 

clustering algorithm.    

Williams (2018) estimated skewness and kurtosis for different Doppler spectra shapes 

observed from the Ka-band (35GHz) radars operating in the vertical directions. Thus, it is 

important to detect the non-Gaussian Doppler power spectrum, also required to develope the 

appropriate suitable algorithm for estimating spectral moments. For weather radars, 

reflectivity, velocity, and spectrum width can be calculated using autocovariance processing 

based on the assumption of the Gaussian spectrum model, and it will produce a biased 

estimation of moments in case of Doppler spectrum deviates from Gaussianity. 

Many works have been reported for the estimation of spectral moments in spectral domain 

processing. Warde et al. (2014) proposed  Autocorrelation Spectral Density (ASD) estimator 

for weather signals analysis, which is a generalization of the conventional Power spectral 

density (PSD). The Prony method was suggested by Lee (2010) for the detection of 

hazardous weather conditions. But this method has some computationally more complicated 

limitations, and additional processing is required for spectrum width calculations. 

A new nonparametric approach has been developed for the estimation of spectral moments by 

Dias (2000). He assumed that the power spectral density function is band-limited in this 

approach. Lagha (2006, 2013) used the Ramanujan Fourier Transform technique and 

wavelets method for estimating the spectral moments of weather radar echoes. A new method 

Minimum mean square estimator was proposed for the estimation of the Doppler power 

spectrum by Yoshikawa (2021). Based on the features extracted from the Bicoherence, a new 

turbulence hazard detection technique has been established by Naumenko (2016). 

During strong convective weather events, especially inthe case of Doppler power spectra 

deviation from the Gaussian shape,which shows the bimodal, skewed signatures, we should 

not consider the pulse pair technique for moment estimation because it produces a biased 

estimation of moments. Zhang et al. (2014) used a vast number of precipitation signals to 

obtain the Doppler power spectra, and they observed that the spectral shape is related to the 

width of the spectrum. As a result, a signal with a broad spectral width can considerably 

generate a non-Gaussian spectrum shape. 
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To verify this Gaussian assumption, we have analyzed the backscattered signals received 

from the polarimetric Doppler weather radar during severe convective events. We 

investigated the shape of the Doppler spectra using higher-order spectral analysis. Assuming 

that the noise generated signal has Gaussian distribution. For Gaussian signals, the cumulants 

spectra of order more than two are approximately zero. If a non-Gaussian signal is received 

with the additive Gaussian noise, transforming it to a higher-order cumulants domain will 

eliminate the noise. Hence, there is a specific advantage in applying bispectrum analysis to 

signals of non-Gaussian characteristics for their detection and parameter estimation, 

particularly in dealing with the signals from the region of poor signal-to-noise ratio (Nikias 

and Mendel, 1993; Giannakis et al., 1990). 

1.2.2 Nonlinear identification  

This thesis not only discussing about identifying the non-Gaussianity but also discussing 

about identifying the presence of nonlinearities in the backscattered signals. The main 

motivation to study the nonlinearities in the signals is the presence of atmospheric turbulence. 

Atmospheric turbulence causes spectral width enhancement in radar observations, making the 

process into nonlinear. 

Many studies have developed statistical tests to check the linearity and Gaussianity of the 

signals. Initially, Rao and Gabr (1980) developed a statistical test for whether the process is 

Gaussian or linear using Bispectrum approach. Afterwards, Hinich (1982) presented a simple 

approach to check the Gaussianity and linearity of a data. He showed that, for Gaussian 

signals, the skewness function is a central chi-square (χ
2
) distribution with two degrees of 

freedom. By using this information, he created a statistical hypothesis test to identify the 

linearity in the signals by examining the Bicoherence value at each frequency in the principal 

domain. When applied to each of the bifrequencies in the principal domain of the squared 

bicoherence plot, the likelihood of false detection is enhanced by a significant number of 

bifrequencies in the principal domain. As a result, the number of bifrequencies with 

significant bicoherence magnitude is underestimated. Finally, Choudhury et al. (2004) 

created two new indices to identify nonlinearity and non-Gaussianity in signals: the non-

Gaussianity Index (NGI) and the nonlinearity index (NLI). 

Fourier representation of the turbulence fields provides information on the dissipation rate of 

homogeneous isotropic turbulence (Pope, 2000). Navier-Stokes (NS) equation (second order 
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partial differential equation, which is useful to describe the flow of viscous fluids) contains 

one nonlinear term, called the convective term. After applying a Fourier transform, this term 

becomes nonlinear and nonlocal as it involves interactions of wavenumber triads. Pope 

(2000) gave a complete description of the transport equation of turbulence in the spectral 

space. Triad interactions refer to the elementary momentum exchanges between Fourier 

components of the velocity field in wave vector space (Domaradzki, 1990). Discussions on 

nonlinear triad interactions of homogeneous turbulence in spectral space and detailed 

behaviour of the energy transfer function are reported by Orszag (1970), Domaradzki (1990), 

and Waleffe (1992). Several writers have pointed out the need of addressing local versus 

nonlocal triad interactions in isotropic turbulence models (Yeung, 1995; Moffatt, 2014; 

Praskovsky et al., 1993; Domaradzki, 1990; Zhou, 1993a and b; Waleffe, 1992). 

1.3 Bispectral Measurements in Turbulence Analysis 

Turbulence generation in the atmosphere is considered as a chaotic phenomenon in 

meteorology. Atmospheric turbulence can be generated by static and dynamic instability, 

which is related to buoyancy and shear mechanisms. Clear air turbulence (CAT) is normally 

associated with shearing, and convective turbulence is associated with buoyancy. CAT is the 

erratic air currents that occur in cloudless regions that cause violent aircraft buffeting. This 

turbulence is associated with wind shear commonly occurring at higher altitudes. Convective 

turbulence is commonly caused by thunderstorms which havestrong updrafts and downdrafts. 

If  the atmosphere is more turbulent, nonlinear interactions between eddies results in coupled 

spectral frequency components in the backscattered signals received, which can be identified 

by the higher-order spectral analysis. The detailed discussion of Higher order spectral 

analysis and Bispectrum has given in Chapter 3. 

Bispectral measurement studies have been done (Lii et al., 1976; Van Atta, 1979) 

experimentally to investigate the spectral energy transfer due to wavenumber interactions in a 

turbulent flow. Various works of literature are available on applications of Bispectrum in 

turbulence measurements (Yamada, 2010; Hasselman, 1963; Helland, 1978; Yeh, 1973; 

Herring, 1980). The quadratic nonlinearity of the Navier-Stokes equations determines the 

interactions between wave number triads. They make up the fundamental mechanism for 

energy transfer in fluids, manifesting as triples of three wavenumber vectors in Fourier space. 

The third-order spectra, usually known as bispectra, must be measured in order to establish 

the strength of these interactions. Investigating certain nonlinear properties, such as the 
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transfer of spectral energy, is a major motivation for the characterisation of the Bispectrum in 

turbulence measurements (Lii et al., 1976).  

Similar kinds of observations have been made experimentally by Yeh and Van Atta (1973), 

Lii et al. (1976), and Helland et al. (1978). Van Atta (1979) has done the derivations of the 

spectrum corresponding to the net transfer of energy from one wavenumber to another 

wavenumber. He showed three types of interactions among triads of wavenumbers related to 

the Bispectrum.   

Therefore motivated by these observations, in this thesis, we aim to study the presence of 

nonlinearities in the backscattered signals using Higher order spectral analysis; for this, here, 

we considered data collected from the MST radar, located at Gadanki. 

1.4 Parameter Estimation  

 
Two approaches are mainly adapted for estimating radar parameters (such as power, velocity 

and spectrum width). 1. Autocovariance or Autocorrelation (Pulse pair processing) and 2. 

Fast Fourier Transform methods. The autocovariance method calculates the first two 

moments of the Doppler spectrum from estimates of the autocovariance function at lag Ts. 

The second method uses the Fourier transform for the estimation of spectral moments. The 

technique was first used in 1968 by Woodman and Hagfors (1969) for estimating the 

electromagnetic drift of ionosphere plasma at Jicamarca andfor stratospheric and mesospheric 

applications. The autocovariance method performs nearly the same as the spectral moments 

estimation method. Still, it is limited in discriminating against fading ground clutter or any 

other kind of interference, and itis very sensitive to the pre-filtering of the time series by 

matched filter (Woodman, 1985). The spectral moments estimation has become simple using 

the Fast Fourier Transform algorithm developed by Blackman and Tukey (1958). Now most 

of modem radars use the power spectrum approach for real-time implementation. However, 

in practice, the problem is complex because the signal is contaminated with noise and ground 

clutter.  

 

The radar antenna receives most of the noise contributions from the surroundings (Bringi, 

2001). The main source of noise is external (such as galactic noise, cosmic background noise, 

solar noise, Earth noise, noise due to precipitation, and noise from nearby structures such as 

buildings and radome, etc.) and internal (such as thermal noise and shot noise) contributions 

to the receiver system. This noise should be calculated properly for estimating base products, 
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such as Reflectivity, Velocity and Spectrum width. There are different ways of measuring 

noise on weather radars, where after each volume scan, a calibration is performed as part of 

the online system. This measurement is performed at a high antenna elevation angle, and 

results will be adjusted by the use of predefined correction factors for additional antenna 

elevations. Radar systems cannot perform calibrations in online, therefore, the noise power 

should be measured in offline (Ivic, 2010, 2013). The noise power has angular dependence in 

both azimuth and elevation. Several methods have been proposed in the past for noise level 

calculations. Hildebrand and Sekhon (1974) proposed a method of estimating noise level in 

the spectral domain, where Fourier coefficients are discarded recursively until statistical 

conditions are satisfied. Urkowitz (1992) applied the Kolmogorov Smirnov test to the 

periodogram by successively discarding the Fourier spectral lines until the noise hypothesis 

was met. To determine the level of noise in a dynamic way, Siggia (2004) used ranked order 

statistics on power spectral density estimates. There are some limitations in the previous 

methods, which are discarding the excess spectral coefficients until the remaining ones 

satisfy the statistical conditions for the noise. To overcome these limitations, Ivic et al.(2010) 

suggested a technique that dynamically estimates the system noise power from in-phase and 

quadrature (I and Q) components in a radial direction. This method uses the radar range 

resolution volumes, which do not contain weather signals and uses those volumes to estimate 

the noise power.  

For the identification of noise levels and removal of undesirable spectrum lines, different 

methods have been used for atmospheric radars. Donaldson (1967) set a noise limit of 10dB 

below the spectral peak that can lead to considerable error in estimating the spectrum 

variance and vertical air velocity by using modified Batten method. (Atlas, 1973). An 

objective approach to noise threshold determination has been employed by Hildebrand and 

Sekhon (1974). The method does not rely on knowledge of the noise levels in a radar 

instrument system; observed Doppler spectrum and physical characteristics of white noise are 

used. Nowadays, this method is widely used in atmospheric radar for noise level calculation 

and removal. A source of additional problems is the presence of ground clutter in the received 

signals. Sometimes ground clutter contaminates the weather signals and introduces bias in the 

meteorological variables. Under strong clutter contamination conditions, reflectivity 

estimates are falsely over estimated, and Doppler velocities and spectrum widths are shifted 

toward zero (Li, 2013). If we ignore the clutter contaminations, these biases could transmit 

into the algorithms and models that depend on weather radars. 
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It has been treated with a variety of techniques to reduce or eliminate its effects. The signal 

from the ground clutter consists of a spectral signature, which is essentially a single spectral 

line at the origin, with a strength dependent on the ground shielding of the radar. It is at least 

comparable to the signal and often many orders of magnitude higher, for atmospheric radars 

at tropospheric or stratospheric heights. To be exact, getting rid of those signals is very 

difficult. One way to eliminate its biasing effect is to ignore thefrequencies around zero (dc) 

frequency. This is possible only when the spectral offset is larger than its width. 

Although conventional filtering is frequently used to remove ground clutter from weather 

signals, this filter may suppress the weather signal components that present near-zero 

frequency and produce a biased estimation of moments. Even though Gaussian Model 

Adaptive Processing (GMAP) works well to remove the ground clutter, applying GMAP at 

every gate consumes more time. Many clutter detection and removal algorithms have been 

developed (Groginsky, 1980; Sachidananda, 2000; Siggia, 2004; Hubbert, 2009 I and II; Ice, 

2009; Yinguang, 2011; Li, 2013;Zhang,2014; Williams, 2018) and used in the weather radar 

community.  

To significantly remove noise fluctuations and presence of ground clutter, we have applied 

Higher order spectral analysis on weather signals and implemented Empirical Mode 

Decomposition (EMD) based denoising and clutter removal algorithm for weather signals. 

The description of EMD and its denoising techniques has been given in Chapter 5. 

1.5 Motivations and Objectives of the Thesis 

Therefore, motivated by these observations, higher order spectral analysis has been 

performed on both weather signals and atmospheric signals to clearly understand the 

deviation from Gaussianity happening from the precipitation echo and suppress the noise 

components which has Gaussian distribution and study the presence of nonlinearities with the 

help of Bicoherence obtained from the Bispectrum. We observed that the actual Doppler 

profile observed from X-band Doppler Weather Radar during the convective event shows the 

skewed and dual peak signatures in the Doppler spectra. It has been observed that noise 

components are suppressed significantly.The same can also be expected in weather signals; if 

it is purely Gaussian, it will become zero, but we observed slight deviations observed from 

the precipitation spectra, which can be expected in severe weather events. Therefore, peak 

detection has been improved. It can be clearly seen from the results presented in Chapter 3. 
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The higher-order spectral analysis, also known as Bispectrum, is useful for identifying 

nonlinearities present in the signals. Previous studies have used bispectral measurements for 

experimental purposes to study spectral energy exchanges due to interactions of wavenumber 

in a turbulent flow, which is briefly discussed in the manuscript, and this is one of the main 

motivations for considering HOSE on Atmospheric signals.This kind of nonlinear interaction 

among eddies can be studied using HOSE (Lii. et al., 1976; Van Atta, 1979). 

1.5.1 Objective 

The main objective of this thesis is to understand the process associated with backscattered 

signals observed from the weather and atmospheric radars. Therefore, it is planned to develop 

an efficient algorithm to study the statistical properties of weather signals under varying noise 

conditions and to find deviations from the Gaussian shape of the precipitation spectra during 

severe weather events (strong convective events). Thereby improving the spectral 

estimations, mainly first and second-order moments, by removing noise and clutter present in 

the Doppler power spectrum. The pulse pair estimator will be biased for meteorological 

targets with high spectrum widths. Therefore, using higher-order spectral analysis provides 

an improved estimation of the velocity and spectrum width. Also, this thesis focused on 

studying atmospheric turbulence analysis using Higher order spectral analysis and developing 

algorithms for the turbulence eddy dissipation rate based on nonlinear index-based 

measurements, which is the first of its kind. 

A sequence of three specific objectives, listed below, is proposed to develop efficient 

algorithms for weather signals and atmospheric signals. 

1. Development of an efficient algorithm to understand statistical properties of weather 

signals under noise-varying conditions and to find out the deviations occurring from 

the Gaussian shape of the precipitation spectra during severe weather events (strong 

convective events). 

2. Development of a novel approach for estimating turbulent kinetic energy dissipation 

rate (which measures the turbulence intensity) from nonlinear index-based 

measurements, which gives an indirect measurement of turbulence intensity without 

any system-dependent corrections. 

3. Development of a new EMD correlation-based algorithm for denoising and clutter 

removal in weather signals. 
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4. Study of Temperature sheets using Higher Order Spectral Analysis observed from the 

MST (VHF) radar based on the above observations and new estimation approaches. 

 

1.6 Structure of the thesis 

The thesis has been organized as follows. 

Chapter 2 discusses the system description and processing of time series data. This chapter 

also discusses the extensive survey of the literature work on various noise and clutter removal 

techniques for weather radar signals. 

 Chapter 3 presents a study of the statistical distribution of weather signals (any deviations 

occurringfrom normality during severe weather events) under varying noise conditions. 

Skewed or sharp and bimodal signatures were observed from the precipitation spectra. This 

chapter provides a general background of the bispectral analysis reported in the literature that 

is the basis of the research. This chapter also discusses the data being used and the analysis 

carried out and gives details of the results obtained through this analysis and its impact on the 

weather signal estimation and parameterization, and provides the conclusion derived from the 

research work. 

Chapter 4 provides an overview of atmospheric turbulence and methods using both radar and 

radiosonde based measurements. This chapter describes the novel approach proposed for 

atmospheric turbulence. This chapter also briefly discusses data analysis and describes the 

results obtained. This chapter also compares the results obtained through both approaches 

with the proposed method and gives the conclusion. 

Chapter 5 provides a study of Empirical Mode Decomposition based denoising techniques 

and clutter removal algorithms for weather signals. 

Chapter 6 providesa study of temperature sheets observed from the VHF radar using Higher 

order spectral analysis. 

Chapter 7 provides a summary and overall conclusions of the previous chapters and presents 

some ideas for future works. 
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Chapter 2 

Radar system description and Data Processing 

Techniques 

 

2.1  RADAR Introduction and its basic principles  

RADAR (RAdio Detection And Ranging) is an electromagnetic sensor that can detect, locate, 

and identify a target. S.M. Taylor of the U.S. Navy and F.R. Furth in November 1940, 

established that term. The acronym is the result of an agreement between the Allied powers in 

World War II, which had been adopted in 1943 and subsequently was generally accepted 

around the world. RADAR is considered as the first modern remote sensing technique used in 

meteorology. Radars operate on the echo sounding concept. When an electromagnetic wave 

is transmitted, some of the energy in the radiation is scattered in all directions, some part is 

transmitted, some part is reflected, and the object’s material observes some part. The radar 

will measure the distance and  movement of the target by analyzing the received signal. The 

time delay between the transmitted pulse and received pulses gives information about the 

target's range and radar cross-section. When the target is moving, the signal returned comes 

from a Doppler shift in the transmitted frequency. The velocity of the line of sight to the 

target is determined by this Doppler shift. 

Assume the target moves with a radial component of velocity v, and the range (r) and phase 

shift (Ф) vary constantly. A frequency is defined as a change in Ф with regard to time. This is 

known as Doppler angular frequency, and it is denoted by, 

ω= 2πF=dФ/dt=(4π/λ)*(dr/dt)=4πv/λ (2.1) 

where F is the Doppler frequency shift 

F=2v/λ=2vf/c ,         (2.2) 

v=Fλ/2           (2.3) 
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Nowadays, two types of radars are available. Continuous Wave (CW) radar, for example, 

emits a continuous sine wave. As a result of the phase shift, the transmitted radiation can 

identify the received echo. The second one is pulsed radars which use a pulsed carrier 

frequency instead of CW carrier frequency. These radars are developed to mitigate the 

problems that exist in CW radars. Unacceptably wide range ambiguity, for most applications, 

is a significant limitation of CW radar operations at microwave frequencies. Radar normally 

consists of a transmitter, receiver, duplexer and antenna. Radar systems can be monostatic or 

bistatic; with monostatic radar, the transmitter and receiver are in the same location, but in 

bistatic radar, the transmitter and receiver are at different locations.  

Several types of pulsed radars have been developed and used in various applications, such as 

Doppler weather radar, Atmospheric radar, Synthetic Aperture Radar and Imaging radar etc. 

2.1.1 Frequency Bands in Radar Applications 

Transmission frequencies ranging from few MHz to 100 GHz are employed to identify 

atmospheric scatterers. Electromagnetic waves scattering characteristics are highly dependent 

on their wavelength. Therefore, in the context of remote sensing applications, the best 

combination of all scattering mechanisms is with a certain band of wavelength. Usually the 

objective particles size is between several micrometres to several mm. Therefore, 

electromagnetic waves with wavelengths ranging from mm to a few cm have been considered 

for these targets so that the particles can be identified. In atmospheric applications, The major 

source of scatterers is caused by the refractivity index fluctuations created by turbulence in 

the atmosphere and waves. The refractive index is subject to changes over a large range of 

spatial scales. In atmospheric radar measurements only scattered from a certain spatial scale 

corresponding to half of the radar wavelength is detected. Therefore, the backscatter from 

refractive index perturbations can be easily observable by utilizing radar wavelengths at twice 

the largest scales of perturbations. Therefore, weather radars are useful for observing 

precipitation, which operates at wavelengths between 3 and 10 cm. The targets of these radars 

are clouds and hydrometeors. Fig.2.1 shows the operating frequency band of the individual 

radars and their adjoining bands. 
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Fig.2.1: The operating frequency band of the individual radars and their adjoining bands 

(Fukao, 2014) 

2.2 Types of Weather and Atmospheric Scattering Mechanisms 

The scattering mechanism in radars will depend on the size and material property of the 

target. Objects like aircraft, ships, raindrops, hail, clouds and refractive index fluctuations 

scatter the EM waves emitted by the antenna. The power received from the radar will vary 

depending on the wavelength of the target. Therefore, the selection of radar wavelength will 

depend on the applications.  

The scattering/reflection of electromagnetic energy from the atmosphere results from many 

physical scattering mechanisms. There are mainly four types of scattering mechanisms: 

Rayleigh scattering, Mie scattering, Bragg scattering and Fresnel reflection scattering. 

2.2.1 Rayleigh Scattering 

Weather radars are designed to get backscattering signals from precipitation. This scattering 

mechanism is mainly due to Rayleigh scattering from the falling drop in the radar pulse 

volume. This type of scattering is preferred because of the linear relationship between power 

return and the target size. The drag force caused due to the interaction of rain droplets will 

cause the liquid water droplet to breakup. This causes the wide distribution of drop size in the 
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radar pulse volume. The scattering of electromagnetic energy depends on the 6
th

 power of 

drop diameter. 

The scattering regime can be determined by the size of the weather target compared to the 

wavelength of the radar. Rayleigh scattering occurs when the intercepting target is small 

compared to the wavelength of the radar. This type of scattering is fairly uniform in all 

directions, and the amount of power reflected increases linearly with increasing size. 

Therefore, Rayleigh scattering is a very good assumption for all weather targets smaller than 

7mm, which includes practically all rain but does not include hail. 

2.2.2 Mie scattering 

Mie scattering occurs when the intercepting targets become roughly similar in size to the 

wavelength of the radar beam. This scattering mechanism createsan oscillating relationship 

between power return and target size (example: Hail). 

2.2.3 Bragg Scattering 

Refractive index Irregularities will cause electromagnetic waves scattering (Booker and 

Gordon, 1950). The principal source of the VHF/UHF radar's clear air returns is Bragg or 

turbulence scattering. Backscattering signals are created by a spatial Fourier component 

whose wavelength is comparable to one-half of radar wavelengths, according to the theory of 

radio waves scattering owing to turbulent fluctuations in the refractive index. Hence, the 

condition for coherent backscatter should satisfy the λmin<λ/2<λmax, where λmin and λmax are 

belong to the turbulence inner (l0) and outer scale (L0) sizes. If the systems are sufficiently 

sensitive, then highest altitude from which backscattered echoes of a particular wavelength 

may be detected is determined by the l0 height distribution. 

2.2.4 Fresnel Reflection Scattering 

The discontinuities in the refractive index in the vertical direction cause this kind of 

scattering mechanism. Fresnel scattering/ reflection is a process that includes fluctuations of 

spatial coherence orthogonal to the radar beam. This kind of mechanism is caused mostly by 

horizontally stratified refractive index variations in the troposphere and stratosphere. Fresnel 

reflection is a single-layer notion caused by a noticeable discontinuity in the index of 

refractivity in the vertical beam direction. Fresnel scattering is a multilayer concept that 

generates specular echoes from volume scattering as a result of a random distribution of 

refractive index discontinuities in the vertical direction. 
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2.3 Introduction to Weather Radars 

Doppler weather radar (DWR) is important for observations and research in the atmospheric 

and meteorological sciences for forecasting weather phenomena. ISRO developed radars are 

operating in various parts of India like SHAR-Sriharkota, NARL-Gadanki, Kochi, Gopalpur, 

VSSC-Trivandrum, Chennai and Mumbai, which are operated in S, C, and X bands in 

addition to operational DWRs in Indian Meteorological Department (IMD). 

Weather radar plays a key role in observing, analyzing and predicting severe weather events 

and other meteorological phenomena. The Weather Radar estimates the three base products 1. 

reflectivity (Z), 2. mean velocity (V) and 3. spectrum width (σ). The Doppler Weather Radars 

deployed worldwide operate in 'S','C', and 'X' band frequencies.Weather Radars are pulsed 

radars that provide information about the intensity and internal velocity of hydrometeors in 

the atmosphere. When the radio wave emitted by the transmitter intercepts any object (here 

the target is hydrometeor), a part of the incident energy is transmitted through, a part of the 

energy is scattered in all directions, and the material of the object absorbs a part of the 

energy. 

2.3.1 Polarimetric Doppler Weather Radar 

Unlike conventional weather radars, the Polarimetric DWR provides a betterprecipitation 

estimation over the single polarization radars, as it transmits and receives pulses of 

microwave energy in horizontal and vertical polarizations. Dual-polarized radar transmits the 

pulse of microwave energy in horizontal and vertical polarizations. It provides information 

about horizontal and vertical characteristics of the target that scatter transmitted energy back 

to the radar and also provide a better sense of the size and shape of the hydrometeor targets 

detected and also differentiate the targets and non-meteorological targets (birds, insects and 

ground clutter). From the backscattered energy, we can calculate the six parameters, i.e., 

Reflectivity (Z), Velocity (V), Spectrum width (SW), Differential Reflectivity (ZDR), 

Differential phase (PHIDP) and Correlation Coefficient (CC). This type of radar gives 

meteorologists a better sense of the size and shape of the detected hydrometeor targets and 

differentiates the targets from non-meteorological targets. 
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Fig. 2.2: C and S-band Doppler Weather Radar located at VSSC and Kochi 

2.3.2 Basic Radar Equation: 

The received power depends on the transmitting power, the target's radar cross-section, and 

the range. Raghavan (2003) provides a more comprehensive derivation. 

   
      

         (2.4) 

2.3.3 Weather Radar Equation 

A radar antenna is composed of an array of distinct dipole antenna elements or, in most cases, 

the paraboloid dish over which radio waves pass through a horn waveguide. 

The following equation gives the received power from a distribution of meteorological 

targets, often called the meteorological radar equation (Probert-Jones, 1962). 

    
     

           
 

           
                             (2.5) 

where      
                                                                                              (2.6)  

The relationship between Z and Pr is given by,    
   

 

 
                              (2.7)                                                           

Where Pr  is the  received power, Pt  is the transmitted power, G  is the antenna gain, θ is the 

beamwidth (horizontal), ϕ is the beamwidth (vertical), h is the pulse length, |K|
2 

is the 

dielectric factor (for rain 0.93),  Di is the scatterer diameters, λ is the radar wavelength, r is 

the distance between sample and radar antenna, C is the constant and  Z is the reflectivity.  

2.4 Block diagram, System Description and Configuration 

C Band DWR, VSSC, S Band DWR, Kochi  (ISRO)     
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The overall block diagram of the Doppler weather radar system is given in Fig.2.3. As per the 

requirement, the system can be configured in different modes of operation based on 

polarization, namely STAR & Alternate mode of operation. In STAR mode, both the 

SSPAstransmit & receive simultaneously. For alternate mode of operation, both SSPA 

transmitsalternatively in H & V polarizations. Two SSPAs are proposed, one for H Mode and 

the other for V mode. Each SSPA is capable of transmitting 300W. It is having forced 

cooling arrangement for maintaining the temperature of the SSPA module. The input to 

SSPA is fed from the TX drive module via a switching module. 

The switching module has a phase shifter and SPDT switch. The phase shifter is used to 

adjust the phase in the transmit path, and the SPDT switch is used during the alternate mode 

of operation. The input to TX drive module is fed from the up converter module. The 

upconverter, exciter & RF down converter module forms the RF subsystem. The RF 

subsystem, along with the digital subsystem (radar computer) & Power distribution, is housed 

inside a 38U rack. The radar controller provides the command signal for the radar computer. 

The radar controller is a GUI that sends commands and experimental specifications for radar 

operation to the radar computer, and radar signal processor and also collects the status of each 

subsystem. The RF & digital subsystem is fully synchronized with a high precision, highly 

stable and low phase noise oven controlled crystal oscillator(OCXO). This OCXO acts as the 

master clock for generating various other clocks and waveforms for synchronization. DAC 

module, Exciter module and up converter are used to generate the RF waveform for 

transmission. The SSPA module amplifies the RF signal to the required power level through 

a circulator & directional coupler & OMT radiates to the atmosphere. Circulator provides the 

isolation between the transmitted signal and the received signal. The received signals are 

processed using four digital receiver channels, two for Horizontal polarization(High and Low 

gain) and the other two for vertical polarization (High/Low gain). The Compressed I & Q 

data are sent to the radar signal processor through Ethernet for further base data processing. 

The system has a provision for validating the noise figure of the receiver chain by injecting 

the noise source at the coupled port of a 20 dB directional coupler. The BITE signal can be 

injected via the SPDT switch controlled by the radar computer. The entire power supply for 

the Radar system is derived from the 3-Phase supply. Fig 2.3 shows the block Diagram of X-

Band Polarimetric Doppler Weather Radar upgradation system. 
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Fig 2.3: Block Diagram of X-Band Polarimetric Doppler Weather Radar upgradation system 

(Source: Data Pattern) 

The functional requirements of the Polarimetric Doppler Weather Radar can be met with the 

following Subsystems. 

1. Antenna Subsystem 

2. Transmitter Subsystem 
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3. RF subsystem 

4. Radar Controller 

5. PSU Subsystem 

2.4.1 Antenna Subsystem 

Basically, An antenna operates as a transducer between freespace and guided wave 

propagation. During transmission, the antenna emits energy in the form of a shaped beam that 

points in the desired direction into space. During reception, the antenna absorbs energy, 

which includes an echo signal, and transfers it to the receiver. The parabolic dish and 

mechanical mounting fittings comprise the Antenna subsystem. The antenna's beam width is 

roughly 1 degree in the azimuth and elevation planes. 

2.4.2 Transmitter Subsystem 

The transmitter subsystem is responsible for the generation of high power X band (9.3 to 9.4 

GHz) RF signal with required power level and pulse width. The output of the transmitter 

subsystem is fed to the directional coupler through the isolator & circulator. The directional 

coupler output is fed to the OMT, where the signal is polarized into different planes 

(Horizontal &Vertical). 

2.4.3 RF Subsystem 

RF Subsystem consists of an Exciter module, Switching module, TX drive module, 

upconvertermodule, RF front module, down converter module & Log detector module. The 

exciter module is responsible for generating the X-band and L band Local oscillator signals. 

These LO signals are used for the up-conversion in case of transmission mode and in receiver 

mode for down-converting the received pulse to IF frequency. The Exciter module also 

generates the 120MHz ADC sampling clock signal and 240MHz reference clock for the DAC 

module. The receiver uses the X band LO signal (7.675 to7.725 MHz) for the down-

conversion of the X band received signal to the L band (1625 to 1675MHz), then uses an L 

band LO signal (1560MHz) for the further down conversion to IF frequency. 

2.4.4 Radar Controller 

The radar controller is a Man Machine Interface (MMI). All the radar experiments are carried 

out through the radar console. This involves the configuration of experiments and displays of 

online health status. This entity generates the control signals based on the commands issued 

by the GUI and distributes them to the other subsystems of radar. The radar controller 
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comprises a processor module, PC & IOT module. The processor module consists of an 

onboard quad ADC channel and a piggy DAC module. The ADC channel digitizes the IF 

signal synchronously with the same master reference clock. Thus the digitized data is 

processed till pulse compression in FPGA and sent to the radar signal processing computer 

through Ethernet for base product generation. 

2.4.5 PSU Subsystem 

The AC and DC power distribution throughout the system is carried out by the PSU 

subsystem of radar. The input to the entire system is a 3ɸ AC supply, which is regulated and 

supplied to all thesubsystems of radar through the UPS units as a single phase 230VAC 

supply. The PSU subsystem distributes the DC power to SSPA and other cards from AC-DC 

converters. 

Table 2.1: Specifications of Polarimetric X band DWR located at Gadanki 

S.NO Parameter Specification 

1. Type Polarimetric DWR with solid state technology 

2. Operating Frequency 9.3-9.6 GHz with instantaneous BW of 

100MHz 

3. Polarization Alternate transmission of H and V 

4. Volumetric coverage hemispherical 

5. Observation Time <8 min 

6. AZ coverage 0 to 360 deg 

7. Elevation -5 to +95 deg 

8. Beam width <=1.2 deg 

9. Beam point accuracy <=0.1 deg 

10. Beam pointing resolution <=0.01 deg 

11. System Sensitivity Better than 13 dBZ @ 100 Km 

12. Antenna Side lobe Level 28 dB or better down from the main lobe to 12 

deg, 30dB or lower thereafter 

13. Scan strategy 10 Elevations within -5 to 30deg for normal 

observations. 

14. Scan capability Upto 6 RPM 

15. Transmit & Receive RMS phase 

noise 

<=0.2 deg 

16.  Cross Polar Radiation Better than 36 dB 

17. Transmitter H & V channel SSPA's should have minimum 

300W peak power output each. 

18.  Max capabiliy 150 Km 

19. Minimum range resolution Better than 75m 

20. Range side lobes Less than 35 dB 

21. Clutter suppression capability 40 dB typical (time & frequency domain) 
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Fig: 2.4: System Transmit Path. (Source: Data Pattern) 

2.4.6 Transmit Chain Gain 

The transmit chain gain for the system is provided below. The transmit chain consists of 

OCXO, exciter module, up converter module, switching module and Tx drive module. The 

output from the coherent signal generator is -6±2 dBm, which is converted to RF signal using 

an exciter module, up converter module, switching module, Tx drive module & SSPA. 

2.4.7 Receiver Chain Gain 

The signal level that is received at RF front end is -125dBm to -25dBm. Hence theRF 

receiver chain is designed in such a way that the power levels at all the RF & IF modules of 

the receiver are not saturated. For higher power levels, the digital receiver chain is protected 

from saturation by the limiter at the front end, while the signal input below the noise floor is 

recovered by the signal processing gain. The power calculation of the RF receiver chain is 

given below. 
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Fig 2.5: System Receive Path. (Source: Data Pattern) 

2.5  Noise  

Noise is random in nature, which are unwanted signals that are entering into the receiver 

system. When an object has a physical temperature greater than 0
0
 K, the system can emit 

noise. This noise might come from within or without the receiver system. The major source 

of external noise for the receiver chain is antenna noise.  

The antenna's location is critical for this noise power, which must be estimated appropriately. 

The antenna noise changes with elevation angle, with lower elevation angles producing more 

noise than higher height angles. Because of the warm temperature of the Earth, the noise 

temperature rises at lower elevation angles. The amount of precipitation recorded also has an 

effect on antenna noise. The noise temperature stays almost constant when looking at clear 

air, but increases in the presence of warm precipitation. At low to moderate SNR levels, the 

reflectivity and spectrum width estimators rely on noise power measurements; erroneous 

noise power measurements may result in biased meteorological variables. To achieve the 

highest quality radar outputs, it is preferable to compute radar variables after eliminating 

noise and clutter from the Doppler power spectra. To get a reliable assessment of moments, 

the noise and clutter in the Doppler power spectrum must be removed. 
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2.6  Ground Clutter 

Weather radars are not only collecting echoes from precipitation but also from the ground 

features such as mountains, trees, ships, aircraft, buildings and birds. Knowing the 

characteristics around the radar, like hills, buildings, and towers, allows you to identify 

ground clutter from the reflectivity display. The existence of ground clutter around the radar 

is quite strong, and the gain reduction techniques cannot reduce it. There is more like 

probability to get eliminates precipitation echoes during this process. Vertical side lobes will 

have strong clutter echoes. Raising the antenna elevation can eliminate most of the clutter, 

but sometimes the precipitation echoes will also get removed. The ground clutter from the 

solid targets will be steady, i.e. have a smaller variance than precipitation echoes, which 

fluctuate considerably, that can be used to reject the ground clutter.  

The presence of clutter also will affect the moments estimation and introduce bias on weather 

radar parameter estimation. The radar environment is so complex that a wide range of sources 

of clutter are present, e.g. clutter from the ground, insects and birds, radio frequency 

interferences, radar artifacts, etc. In particular, it has a significant impact on the accuracy of 

measurements and observation of precipitation areas. To that end, a way of reducing the 

undesirable echoes must be found. To suppress ground clutter that is centered around 0 m/s, a 

conventional method like a narrow notch filter will be useful. This method depends on the 

ground clutter spectrum width. As a result of changes in environment and observation 

conditions, the spectrum width is therefore variable. There may be overlaps between the 

radial velocities of rain and ground clutter that result in loss of target signal. Groginsky 

(1980) introduced a canceller design for removing the clutter. But one of the main limitations 

of this approach is that there is a chance that the precipitation echoes will be eliminated, 

which have near zero velocities. Passarelli, 1983 proposed a parametric estimation approach 

for retrieving spectral moments using autocorrelation function from the clutter contaminated 

observations. But one of the limitations of this approach is the complexity of the multiple trip 

echoes that are present. Sachidananda (2000) employed a staggered PRT waveform with 

negligible distortion to minimize clutter using the matrix approach. 

2.6.1 Ground Clutter detection and suppression techniques in DWR 

 

The identification of ground clutter needs an adaptive algorithm that examines time series 

data. The clutter mitigation decision (CMD) algorithm is one such adaptive technique. The 
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CMD technique is widely recognized and approved in the weather radar field for integrating 

three discriminants: clutter phase alignment (CPA), texture of reflectivity (TDBZ), and SPIN 

to detect the presence of clutter using a fuzzy logic approach. The CPA is calculated using 

time series data, while the TDBZ and SPIN are calculated using reflectivity over the range. 

Clutter identification on a bin-by-bin basis is performed by Clutter Mitigation Decision 

(CMD) algorithm, and clutter suppression or reduction is performed by the Gaussian Model 

Adaptive processing (GMAP) algorithm (Siggia, 2004). GMAP algorithm applies filtering 

only to those bins identified by the CMD. Weather signals and clutter signals look different. 

This can be approximated by the Gaussian curve. 

1. Remove the power from a narrow spike near zero velocity 

2. Once power is removed, GMAP attempts to rebuildthe lost weather signal 

Weather and clutter signals have different characteristics. A clutter signal has high power, is 

centered at zero velocity and has a narrow spectrum width.  Weather signals (broader ones) 

are not usually centered at zero velocity, which will have varying power, velocity and 

spectrum width. GMAP design is that both clutter and weather signals can be well 

represented by Gaussian curves. 

CLEAN-AP (clutter environment analysis using adaptive processing) filter, which uses 

ground clutter features to automate the identification and mitigation of ground clutter 

contamination in both Normal propagation (NP) and Anomalous propagation (AP) conditions 

(Groginsky, 1980). CLEAN-AP outperforms the present CMD/GMAP in terms of ground 

clutter mitigation (detection and filtering). 

SCI, the spectrum clutter identification  method (Sachidananda, 2000; Li, 2013; Zhang, 

2014), integrates four discriminants to determine the existence of clutter: spectral power 

distribution, spectral phase variations, spatial texture of echo power, and spectrum width. 

This approach is designed to identify ground clutter in conjunction with meteorological 

signals. Even with a low clutter to signal ratio (CSR), this approach can provide biased 

weather moment estimations. 

The Scan-to-scan (Li, 2013) correlation approach, which takes use of the fact that the 

correlation time of echoes from hydrometeors is often significantly shorter than that of 

ground objects, is another way for identifying ground clutter. 

2.7 Received signal characteristics 
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Individual scatterers' relative positions in a scattering resolution volume are constantly 

varied, regardless of whether the density of scattered particles remains constant, for 

precipitation particles which are randomly distributed and defined by beamwidths from radar 

antenna and pulse duration. As a result, the scattered signal becomes random and is 

interpreted as a stochastic signal, with the returned signal phase from one scatterer signal 

being evenly distributed throughout [-π, π]. Furthermore, the magnitude of scattered signals 

varies at random. For this reason, an approach based on statistics is necessary to obtain any 

relevant information from radar signals. 

The back scattered signals received from the pulsed Doppler radar can be written as the sum 

of individual scattered echoes generated by all scatterers in the resolution volume. Papoulis 

1965 used the central limit theorem and showed that the real and imaginary components of 

the back scattered received signals being distributed in Gaussian shape with zero mean, in 

case of zero bias.  

Let us consider V(t) is the received signal, which can be written as 

V(t)=I(t)+Q(t) (2.8) 

The following properties should be met by the in-phase (I(t)) and quadrature-phase 

components (Q(t)), which provide information about stochastic processes. 

 At the same time I and Q components are uncorrelated. 

 Mean of I and Q components are Zero. 

 Variance of the I and Q components are same.  

 I and Q components have the same Autocorrelation function. 

 Even though the I and Q components are uncorrelated simultaneously, they are 

correlated at different times. 

Fig.2.6. Shows the statistical distribution of the weather signals observed through time series 

data. The absolute value and the intensity value of the complex weather signal follows a 

Rayleigh distribution and exponential distribution, respectively (Bringi, 2001).  
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Fig.2.6. Statistical Properties of the received signal 

2.8  Signal Processing 

Received signals are random variables. A wide range of physical characteristics for scatterers 

can be estimated by processing a number of received signals statistically. The analysis of the 

frequency components that compose the radar signal received and which are used for spectral 

analyses is a fundamental processing technique. In addition, for radar signal processing it is 

generally necessary to analyse correlation functions as an efficient means of analysing the 

relationships between more than one signal in a time series. The Fourier transform, which is 

the most commonly used spectral analysis technique for transforming time series signals into 

a signal in the frequency domain, is an important tool to do this. However, the processing of 

time series signal is carried out with autocorrelation function analysis. When one signal is 

shifted to a certain time with respect to an original signal, it displays the degree of similarity 

between that signal with its original signal. The cross-correlation function also useful to 

deduce the time delay between two similar signals.  

2.9 Moments Estimation 

The first three order moments are very important for weather radar and atmospheric radar to 

study the dynamics of the weather and atmosphere.Any error generated during moments 

extraction will lead to an erroneous estimation of the weather and atmospheric parameters. 

Moments can be extracted by the two methods 1.) Pulse pair processing 2.)Spectral moment 

estimation. 
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2.9.1. Pulse pair estimation algorithm (Auto covariance processing) 

The pulse pair processing technique is frequently used in weather radars to compute spectral 

moments. The Doppler frequency can be found by analyzing the autocorrelation between two 

subsequent pulses. It is a time domain process that uses a complex autocorrelation function of 

the weather radar signals. This method requires the first few lags to estimatethe first 

(velocity) and second moment (spectral width). The first moment gives information about 

velocity, and the second moment provides information about spectrum width. When M pulses 

are transmitted in a series at intervals of Ts, the autocorrelation can be inferred from the sum. 

The first moment velocity will be computed at lag 1 is given by Doviak(1984) 

R(1) =
 

 
               

                                 (2.9) 

     
 

    
                                                              (2.10) 

As the weather signal spectrum is closely correlated with a Gaussian shape, its spectrum 

width shall usually be estimated from estimates of an autocorrelation coefficient. The 

spectrum width is given by, 

    
 

      
    

  

     
  

   

       
  

     
                                             (2.11) 

By deducting the known noise power from the average of the squares of the magnitudes, the 

signal power    can be calculated.  

    
 

 
             

    (2.12)  

V(N) is the N
th

 sample complex voltage. The complex conjugate represented by the asterisk 

(*) symbol.  

Ts is the pulse repetition time  

λ is the radar wavelength 

Arg indicates the argument of the complex quantity of R, expressed in radians. (Doviak 

1984,1993). The term "sgn" is used in this context to identify the negative spectrum width 

values and permits the assignment of widths to a collection of small values. 

The complete theoretical background of signal processing may be found in Bringi (2001), 

Dovik and Zrnic (1984), and Keeler and Passarelli (1990). 
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This approach is useful for analyzing the Gaussian spectra, and this method introduces 

negative and large bias in the case of increased spectrum widths and skewed spectra. A wider 

spectral width is an indicator of severe weather conditions. The spectrum width also indicates 

turbulence, which is hazardous to air carriers. This is one of the limitationsof the pulse pair 

estimation technique, where this is not the case for both Fourier and bispectrum methods. The 

advantage of the Fourier and Bispectrum methods is the absence of bias introduced by the 

skewed spectra. 

2.9.2. Spectral processing 

Direct spectral methods are becoming an attractive means of calculating the mean frequency, 

due to the introduction of FFT and subsequent reduced circuit costs required for computation. 

The estimation of mean Doppler frequency f is given by employing the discrete power 

spectral density estimate. 

   
 

   

       
   
      

      
   
      

 (2.13) 

Where       is the kth sample periodogram given by 

       
 

   
                 

    
 

  (2.14) 

The aforementioned estimations are biased, particularly when an aliasing-induced 

displacement of a portion of the original Doppler spectrum occurs (Mahapatra 1999). The 

equation below enhances the Doppler frequency and spectrum width to reduce estimation 

bias. 

We must first estimate the periodogram, which estimates the power spectrum, in order to 

calculate the mean frequency. Afterward, calculate a rough estimate of the mean frequency, 

km/MTs, where km(-M/2 ≤ km≤ M/2) may be the index of the strongest Fourier coefficient. 

The mean frequency estimate is then provided by, 

    
 

  
 
  

  
 

 

    
                   

      
        (2.15) 

Where   is the total power in the periodogram, and modM(k) is the remainder by dividing k by 

M.  

Spectrum width is given by, 
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                                                                         (2.16) 

In the present study,all three moments were computed in the spectral and time domains. The 

signal power, Doppler shift, and spectrum width are all represented by the three lower-order 

moments. The zeroth moment provides a total power of the required weather echo. The 

Doppler shift is related to the motion of raindrops. The spectrum width is useful for studying 

the characteristics of turbulence. The time series data obtained is subject to removing the DC 

bias before pre-processing by taking out the mean value from each sample point. So, any bias 

that influences the moment estimation will be removed by this method. The radar reflectivity 

is proportional to the mean power of the received signal. When estimating the mean power, it 

is necessary to average either the signal power intensity or the logarithmic signal levels. 

Averaging the signal power provides smaller variance values for the same number of 

independent samples.The first moment throws some light on the Doppler shift. We can 

estimate the radial velocity by multiplying the Doppler shift by half of the radar wavelength. 

The second central moment represents the variance, which measures the velocity dispersion; 

from the second central moment, we can calculate the spectrum width, which is the square 

root of the second moment. 

2.10 Wind Measurements 

Wind is one of the meteorological risks that can have a significant effect on regions with 

dense people. One of the hazardous properties of abrupt changes in wind speed and/or 

direction, such as those caused by whirlwinds or microbursts, is wind shear. The horizontal 

wind field estimation is based on velocity measurements from Doppler weather radars. 

During field campaigns, a few methods have been used in the past. Short term nowcasting, 

such as around an airport, could take advantage of a wind field. Weather radars will not give 

an exact wind vector; they are merely measuring a radial component of the wind vector. 

Doppler weather radars not only provide information about precipitation but are also capable 

of providing wind associated with severe weather phenomena. The mean radial velocity, 

which depends on range, azimuth, and elevation, is a measurement that the Doppler weather 

radar provides data on. Weather radars are used to track the dispersion of velocities inside 

each pulse volume as well as to monitor precipitation in the free atmosphere. The wind shear, 

turbulence, and precipitation fall speed all affect the Doppler power spectra's structure. 
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However, meteorological factors like wind and rainfall rate are more interesting than 

reflectivity or radial velocity. A Doppler radar is typically used to determine the radial speed 

of hydrometeors. In some circumstances, such as those involving vertically focused beams, 

these speeds may be significantly different from the radial component of the wind. Targets 

like water drops have a little mass and are rapidly responsive to horizontal wind forces, 

allowing them to trace the wind precisely. For radar beams at low elevation angles, the target 

terminal velocity (steady state vertical velocities relative to the air) produces small bias errors 

in the radial wind component. High elevation angles must be used to estimate these 

velocities. 

2.10.1 Linear wind model 

The horizontal winds and wind vectors at unknown spatial point can be measured using the 

linear wind model. The model assumes that on the vertical altitude plane z and horizontal 

distance plane x y, wind speed has a linear variation in all directions. First, it explains how to 

use a general model for estimating wind vectors from unknown spatial locations. The general 

model is in three dimensions (3D), in comparison to horizontal wind estimation (2D) Doviak 

and Zrnic (1984). 

The horizontal wind speed and direction are described as, 

          (2.17) 

Wind direction=atan2(v,u)*(180/pi) (2.18) 

   x- component of    in m/s 

  y-component of     in m/s 

  
  

 
       

 

 
 , where   is negative 

 
 

 
       

 

 
 , where   is positive. 

The total amount of the solution errors was reduced via the linear least squares method. 

2.10.2 Velocity Azimuth Display (VAD) 

The Velocity Azimuth Display (VAD) technique, which was initially presented by Lhermitte 

and Atlas (1961), can be used to derive the wind field using a single Doppler radar. A single 

radar can be used to estimate the wind vector using the conventional VAD technique. That 
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technique can be categorized as a frequency-based technique because it relies on a Fourier 

series to determine the direction and speed of the wind. 

 

Fig.2.7: Coordinate scheme of VAD method (Browing, 1968). 

The conically guided radar beam in the wind field is depicted in the Fig. 2.7, circulating in a 

circle at a constant range of r. 

With the VAD approach, the horizontal wind vector and its horizontal gradients above the 

radar are precisely measured as an average around the circle at a constant range of a conical 

PPI scan, or at an elevation of roughly 20
0
. This method makes the assumption that the wind 

field inside this circle is uniform. Unless this assumption is neglected, the estimate for the 

horizontal wind vector is quite precise and falls within the standard deviation of a Doppler 

velocity. The VAD method is used to analyze a radar round scan with a Doppler velocity as 

harmonic data, but it has no impact on the physical frequency. Additionally, it is presumable 

that the homogenous vertical wind vector w, which symbolizes the fall speed, is present 

throughout the full circular scan. 

In the VAD approach, the zeroth coefficient can be utilized to calculate horizontal wind 

divergence and the second coefficient to calculate deformation (Doviak, 1984; Browing, 

1968).  The horizontal wind speed and direction can be calculated using a defined    . Data 

points that are oriented symmetrically in the azimuth direction and round scan velocity data 

from an elevation angle of a constant are prerequisites for the VAD method. 

2.10.3 Volume Velocity Processing 

A precise assessment of wind, divergence, and wind field deformations depends on a number 

of elements, including the volume's size and shape, accurate measurement of wind speed in 
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radial directions, and actual winds linearity, etc. By using a single Doppler radar, the VVP 

approach is able to acquire wind vectors directly within the volume with a radial speed. The 

volume's dimensions are range depth of 20–30 km, azimuthal angle width of 30
0
–40

0
, and 

elevation angle width of 1
0
–2

0
. Doviak (1984) provides a comprehensive description of 

volume velocity processing. 

2.11 Wind Profiles  
 

Wind profilers are useful to measure the wind aloft regularly. The radar signals sent by a 

wind profiler are scattered by dust, molecules, insects and turbulence particles moving with 

the wind. As those objects move closer or farther away from the wind profiler, the frequency 

of the returning radar pulse varies. The shift in the return frequency of the radar beam may be 

used to calculate the wind speed of the air. This allows the vertical wind field to be measured 

at a certain location continuously. An essential part of understanding weather and climate is 

to monitor the atmosphere. Thousands of weather observations are made in the world every 

day. In meteorology, the instruments used for such measurements have evolved into a 

common instrument. 

Weather radar provides precipitation information, whereas atmospheric radars provide wind 

information. The Indian MST radar is an outstanding tool for monitoring high-resolution 

atmospheric winds, vertical shear of horizontal winds, and numerous atmospheric turbulence 

characteristics. One of the important parameters of the atmosphere is the turbulence eddy 

dissipation rate, which measures the turbulence intensity. 

2.11.1 Observation of echoes from Clear Air 

Even if there are no phenomena like tornadoes or hail in clear air, which can be seen during 

severe storms, their structure is strongly influenced by weather events that leads to the storms 

developments. 

2.11.2 Wind profiling 

Using radar techniques, wind profiling allows the measurement of winds at a very distant 

altitude. Such measurements can be made using Doppler weather radars, lidars, and special 

purpose profiling radars known as profilers. 

The Wind Profiler is a Doppler radar that can be used in almost all weather conditions to 

measure vertically and horizontal wind profiles. The first clear air radar of wind soundings in 
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the troposphere was demonstrated in 1979 (Ecklund et al., 1979), and soon after, a wind 

profiling network was proposed(Strautch et al., 1984) which operates in the frequency band 

of VHF and UHF bands (50-900 MHz). A particular frequency band will be selected based 

on the desired altitude coverage and economy. The eddies create largescale distortions in the 

Refractive Index, which are less likely to occur in the dissipative range of turbulence. 

However, the antenna size for lower frequencies should be greater to get higher resolution. 50 

MHz, 400 MHz and 900 MHz radars are designed to cover the height up to 20km, 16km and 

10km, respectively, depending on the transmitted aperture power product. 

2.12 Indian MST radar 

MST radar is an excellent tool for studying the different dynamical processes in the 

atmosphere, operating at 53 MHz (VHF band). It is also useful for studying the prevailing 

winds, turbulence, atmospheric stabilities and other phenomena. It is also used to study 

irregularities in the ionosphere results from coherent backscatter above 100 km. This radar 

can provide atmospheric parameters on a continuous basis. The Indian MST radar currently 

located at Gadanki (13.5
0
N, 79.2

0
E). This radar was commissioned for scientific use in 1993.  

 

Fig.2.8: Indian MST Radar phased antenna array (https://www.narl.gov.in/) 

The radar employs a phased antenna array with two orthogonal sets of 1024 three-element 

Yagi-Uda antennas arrayed in a 32 x 32 matrix across a 130m × 130m area. The radiation 

pattern is generated by the array with a major lobe of 30 and a gain of 36 dB. 

In the matrix grid, the inter-element spacing is 0.7, where  is the wavelength of the radar. 

The grating lobe free array beam may scan up to angles of 20° from the vertical in the EW 

and NS planes with a resolution of 1° by utilizing the 8-bit phase shifters. The feeder line's 
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suitable couplers are used to distribute the 32 antennas in line along the subarray through a 3 

dB inphase power divider (combiner for reception). The power distribution throughout the 

array approximates Taylor's modified distribution in both principal directions. By recording 

the radio source Virgo-A (3C274), phase switching interferometry techniques (Ryle, 1952)  

were used to analyze the antenna pattern in reception mode.    

2.12.1 System Block Diagram 

 

Fig. 2.9: Block diagram of MST radar (Rao, 2020) 

Table 2.2: Specifications of MST Radar Gadanki 

Parameter Value 

Frequency  53MHz 

Transmitted peak power (maximum) 2.5MW 

Antenna 1024 3-element Yagi 

Antenna area 130 ⨯ 130 m
2
 

Beam width (one-way half power) 3
0
 

Beam direction 13.2
0
 off zenith and due north 

Receiver gain 120 dB 

Receiver bandwidth 1.7 MHz 

Receiver dynamic range 70dB 

Pulse width 16 μs 

Interpulse period 2000 μs 

Pulse code Complementary code 

Baud length 1 μs 
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Coherent integration 4 

Incoherent integration 1 

Number of FFT points 128 

 

2.13 Wind Profiling Methods 

There are mainly two types of wind profiling techniques that exists 1) Doppler Beam 

Swinging (DBS) and spaced Antenna method (SAM). 

2.13.1 Doppler beam swinging method (DBS) 

The Doppler beam swinging type of operation for VHF and UHF radar is the most popular. 

In this technique, a small radar beam pointed vertically up is used by the antenna array. The 

beam can be switched from zenith angle to off-vertical (north, east, south or west of vertical) 

directions, ψ=(90- ),  , ψ are the elevation and zenith angle. By controlling the signal's 

relative phase by feeding it to individual antenna elements. Sometimes the observed Doppler 

shifts may exceed certain windows in ionosphere applications. Therefore, it is desirable to 

increase the maximum unambiguous Doppler beyond ±125 Hz, and more range gates are also 

required than the currently available 256 and more than 512 FFT points. More beams are also 

required for conducting some special experiments. DBS is one of the most used radar 

techniques to measure wind vectors. In DBS, the entire antenna array will act as transmitter 

and receiver. The radar beam will be pointed in three or five orthogonal directions to measure 

the radial velocities. One will be the zenith beam, which will directly measure the radial 

velocity. 

2.13.2 Spaced Antenna method (SA) 

Spaced Antenna method was originally used for ionospheric studies. In SA mode, the array 

has to be divided, and complex signal amplitudes are to be recorded for two-phase centres 

along East-West and North-South directions. This method provides the horizontal structure of 

the scattering irregularities. In the SA method, the entire array is divided into segments, 

where one will act as a transmitter, and all other segments will act as receivers 

simultaneously. In this method, radar measures the field intensity of scattered signals from 

refractive index irregularities. The transmitter section will be transmitting vertically into the 

atmosphere. The refractive index irregularities moving through the radar transmitter beam 

will create a diffraction pattern in the receiving segments of the radar. The horizontal 
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velocities can be calculated by cross-correlation analysis of signals received from different 

receivers. 

2.14 Signal Processing Techniques 

Processing of atmospheric radar signals is nearly as similar to the processing of Doppler 

weather radars. Clear details have been mentioned in Clothiaux et al. (1994), and Keeler and 

Passarelli (1990). The returns from a turbulent scatter are quite weak for VHF and UHF 

radar. Compared to the inter pulse period of the radar, the correlation time of the scattering 

process is very high. Therefore, the I and Q signal components are integrated separately. 

Coherent integration refers to this procedure since integration happens in the same phase. As 

a result, integrating N samples increases the SNR by a factor of N while decreasing the 

amount of data that has to be processed. Here we obtained the power spectrum using Fast 

Fourier Transformation (FFT) technique. Due to the random nature of the turbulence, the 

power spectrum produces statistical fluctuations. The outputs from the radar receivers consist 

of time series data with Gaussian distribution. The power spectral density (PSD) is the sum of 

the squares of the spectral components' real and imaginary parts. The spectral density is 

proportional to the power spectrum's standard deviation. By incoherent integration of 

successive data, the magnitude of statistical fluctuations can be decreased. 

Before estimating the spectral moments, we need to remove the noise from the power 

spectrum. First, the noise power density value for each range gate is calculated following 

Hildebrand and Sekhon (1974). The radial velocity is chosen by selecting the largest spectral 

peak first. The extent of the peak that exceeds the maximum noise is determined. The power 

of all the points within the extent of the peak above the mean noise is summed. This gives the 

total backscattered power (zeroth moment). The Doppler (first moment) shift is determined 

by dividing the sum of the power times frequency of the points within the extent of the peak 

by the sum of the power points. The spectral width is two times the square root of the second 

moment about the mean velocity, which is the sum of the power times the frequency squared 

of the points within the extent of the peak above the mean noise divided by the sum of the 

power points. These moments (zero, first and second) can be  computed using Woodman 

(1985).   The equations for estimating spectral moments are given below in detail. 

 The total signal power is given by 

      
 
     (2.19)  
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 The Doppler shift is given by 

                
 

  
     

 
     (2.20)  

 The variance, is given by  

                 
 

  
          

  
    (2.21)                                           

Where m, n are the lower and upper limits of the Doppler bin of the spectral window.  

 The Signal-to-Noise Ratio (SNR) in dB is given by  

          
  

   
   (2.22)  

N and L represents total number of Doppler bins and mean noise level, respectively.   

 The formula for calculating doppler width, which is assumed to be the whole width of 

the doppler spectrum, is 

                        (2.23)  

2.15 U V W Estimation  

Radial velocity (Vr) at each height can be obtained  from Doppler shift (fd) and it is given by  

Vr= −fdλ/2 ms
−1

, where λ is the wavelength.  

Following the calculation of the radial velocity at various beam positions, the absolute 

velocities (U, V, W) can be determined. To calculate (U, V, W), at least three non-coplanar 

beam radial velocity data must be available. If more distinct beam data are provided, the 

algorithm will yield the best result using the least squares approach. 

Case 1:  The computation of (U, V, W) from six beam positions is given by. 

 

  
             

     
 (2.24) 

 

  
               

     
 (2.25)  

 

                        (2.26) 

 

where suffixes represents the different beam directions. 

Case 2: The computation of (U, V, W) from one East (West) and one North (South) beam 

position and one vertical beam position is given by, 

 

  
                                    

    
 (2.27) 

 

  
                                      

    
 (2.28) 
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W can be calculated in a similar way as mentioned above. 

Case 3: The zonal (U) and meridional (V) may be computed as indicated above if all the 

beams are present except for the vertical beam, and a vertical velocity can be determined as 

  
                           

     
 (2.29) 

 

 

2.16 Turbulence studies: An overview 

Turbulence generation in the atmosphere is considered as a chaotic phenomenon in 

meteorology. The study of atmospheric turbulence is having great interest tothe research 

community and operational forecasters and meteorologists due to its importance in 

influencing weather changes and atmospheric energy transportation and its dynamics. Higher 

turbulence in the atmosphere is a hazardous parameter for air carriers; unexpected turbulence 

can cause severe damage to aircraft and loss of life. Turbulence study has considerable 

interest to the radar and aircraft engineers for selecting wavelength and aircraft design. 

Atmospheric turbulence can be generated by static and dynamic instability related to 

buoyancy and shear mechanisms. Normally Clear air turbulence (CAT) is associated with 

shearing, and Convective Turbulence is associated with buoyancy. CAT is the erratic air 

currents that occur in the cloudless regions that cause violent aircraft buffeting. This 

turbulence is associated with wind shear commonly occurring at higher altitudes. Convective 

turbulence is commonly caused by thunderstorms which have strong updrafts and 

downdrafts. If the atmosphere is more turbulent, nonlinear interactions between eddies results 

in coupled spectral frequency components in the backscattered signals received, which can be 

identified by the higher-order spectral analysis. 

The conversion of kinetic energy into heat represents the eddy dissipation rate. It is an 

important parameter to understand the energy flow (which represents how the energy of 

eddies transfers from larger to smaller scales) within the atmosphere. Methods for estimating 

ε from VHF radar are discussed by Hocking (1983), Cohn et al. (1995), and Satheesan 

(2002). Various methods are available for estimating turbulence measurements; however, 

these approaches require additional in situ data. The spectrum width method is one of the 

most frequently used techniques for measuring the ε from the spectral moments. The major 

limitation of this approach is non-turbulent spectral broadening by the instrumental and 

meteorological sources, which need to be known and accounted. Spectrum width 
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measurements are influenced by five main spectral broadening processes, according to 

Doviak (1984). Spectral broadening includes beam broadening and wind shear broadening 

effects. The antenna beam's finite width leads to the beam broadening. Koaly et al. (2002) 

have examined the narrowing and widening of the doppler spectrum as a result of external 

contributions. Atlas (1964) observed that the finite beam width, wind shear, and atmospheric 

turbulence contribute to the spectrum width. Sloss (1968) studied shear broadening in the 

cross-beam motions of radar scatterers. A series of theoretical works have been reported on 

estimating ε from the Spectral width calculations (Frisch, 1974; Gossard, 1983; Gossard, 

1998; Hocking, 1983; Hocking, 1985; Brewster, 1986; Nastrom and Eaton, 1997; Gage, 

1980; Sato, 1985; Narayana et al., 1997; Delage, 1997; Ghosh, 2000; Furumoto, 2001; 

Narayana Rao et al., 1997; Li, 2016). 

The turbulent eddy dissipation rate ԑ quantifies the energy cascade via inertial subrange 

turbulence scales. ԑ is an essential component of turbulence theory. It is also crucial to our 

knowledge of energy movement throughout the atmosphere since it represents energy 

conversion into heat. The movements of the smallest turbulent eddies are determined by the 

fluid's dissipation rate and kinematic viscosity. When there are no sources or sinks of kinetic 

energy in the inertial subrange, indicates the rate at which energy cascades to smaller eddies 

until it is converted into heat in the viscous subrange. As a result, although ԑ  may be 

calculated from the energy flow at any scale within the inertial subrange, its magnitude can 

be utilized to infer information about turbulence at smaller scales. 

2.17 Methods for Estimating Turbulence Energy Dissipation Rate 

Observed from the Radar 

Three methods are available for calculating turbulence energy dissipation rate using radar 

spectral parameters.1.) Power method, 2.)Variance method and 3.)Spectrumwidth method. 

The power and variance method requires additional insitu measurements (such as Brunt 

Vaisala Frequency (N)) which can be measured from Radiosonde. Spectrum width depends 

on the radar and meteorological parameters, and it requires spectral broadening correction for 

the measurement of turbulence energy calculations. 

2.17.1 Dissipation Rates from Backscattered Power 
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The power method uses a measured profile of refractive index structure constant (Cn
2
) and 

requires well calibrated and additional information about atmospheric humidity and stability. 

The average reflectivity per unit volume η  of the target is related to the backscattered power 

at the radar antenna P by the radar equation (Rogers 1979).  

     
        

             
 (2.30) 

Where Pt, G, λ  θ       are the radar transmitted power, antenna gain, radar wavelength, radar 

beamwidth in radians, transmitted pulse width, and range to the target, respectrively. 

η is correlated with the Cn
2 

averaged over the pulse volume (Cn
2
)avg for refractive index 

variations driven by turbulence within the inertial subrange (Tatarskii 1961). 

   η =0.38(Cn
2
)avg λ

-1/3
 (2.31) 

Therefore, the fundamental turbulence measurements of the radar are the volume averaged 

refractive-index structure constant (Cn
2
)avg. 

Hocking (1985) shows the relation between ԑ and (Cn
2
)to be 

   
  
      

       
 
   

 (2.32) 

where         ⨯        

  
⨯         

 

 
 

        

    
  (2.33) 

Where ԑ and   
  are the turbulence eddy dissipation rate and refractive index structure 

constant within a turbulence layer. The critical Richardson number Ric is taken to be 0.25, 

and a
2
and α' are constants approximately equal to 2.8 and 1, respectively. M is the mean 

vertical gradient of generalized potential refractive index (Ottersten 1969), andN is the Brunt-

Vaisala frequency. 

Where P, T, g, q, q' is the pressure in millibars, absolute temperature, gravity acceleration, 

specific humidity, its vertical derivative, respectively. To apply this equation to radar data, it 

must be modified to account for the fact that   
  is the structure constant within a turbulent 

layer, but the radar measures a volume average (  
 )avgthat can include turbulent layers of 

varying strengths and possibly also non-turbulent layers. As a result, the radar volume's 

fraction F was filled with turbulence must be estimated for use with the radar-determined 

value (   
 )avg. the modified equation is shown below,  
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 (2.34) 

2.17.2 Dissipation rates from variance method 

The eddy dissipation rate influences the velocity variance driven by turbulence in stably 

stratified flow, and it is given by 

      N (2.35) 

where C is a constant that was calculated empirically by Hocking (1985) and can range from 

0.45-0.49. For the radar estimation, previous research typically utilize a value of C 0.45- 0.5. 

The velocity variance observed by the radar corresponds to the transverse one-dimensional 

spectrum function for the direction radial from the radar, as shown by various studies. From 

the radiosonde measurements, the buoyancy frequency N was derived as gdln(θs)/dz, where  

θs(z) is the sorted profile of dry potential temperature monotonically. 

2.17.3 Turbulence eddy dissipation rate from Spectrum width 

The turbulence intensity affects the fluctuating RMS velocity of scatterers in the 

turbulence medium. Turbulence energy dissipation rate (ε) from spectrum width is given by 

(Cohn, 1995), 

  
 

 
 

  

        
  

  
 
 

 

 

  (2.36) 

Pulse length in the radial direction and receiver-matched filtering gives an effective 

distribution that is approximately Gaussian with a standard deviation of σp=150 m. In the 

transverse direction (beamwidth), the power distribution of radar pulse volume is effective, 

that is approximately Gaussian with a standard deviation of  σB=100-300 m depending on 

range. 

γ
2 

= 1-( σp/ σB)
2
 , and δ= σB, when σp< σB, 

γ
2 

= 4(1-( σB/ σp)
2
) , and δ= σp, when σp > σB, 

σ is the turbulent spectral width,   is a constant value, and lies in the range of 1.53-1.68 

(Gossard and Strauch, 1983). 



44 

 

2.18  Spectral broadening corrections 

Before estimating the accurate measurements of turbulence eddy dissipation rate, it is 

important to do the spectrum width corrections. The intensity of turbulence is merely one 

factor that affects the spectrum's width. The spectrum can be broadened by the non-turbulent 

fluctuations in the winds and radar characteristics. The two elements, such as beam and shear 

broadening, can both broaden the spectrum. 

2.18.1 Beam broadening 

A radar beam with a finite width exhibits beam broadening due to the horizontal wind radial 

velocities close to the edge. The radar's limited beam width leads to beam broadening. This 

problem affects all beams. The radar measures the scattering movements of the radar beam in 

the radial direction. For instance, the radial is not nearly vertical at the edge of a vertical 

beam, therefore, any scatterers in that area of the pulse volume will contribute radial 

velocities with both vertical and off-vertical components. A tiny component of the horizontal 

velocity observed at the beam's edges could still be relevant because horizontal winds are 

frequently stronger than vertical winds. The Doppler spectrum will be broader because the 

horizontal component won't have the same radial velocity as the vertical wind. The 

beamwidth increases with increasing broadening. Beam broadening varies substantially in 

size 

2.18.2 Shear Broadening 

Shear broadening is a fluctuation in the mean horizontal  wind inside a radar pulse volume. 

When echo frequencies vary with radial wind velocity, the Doppler spectrum is broadened. 

When the mean wind velocity varies across a pulse volume at various ranges, shear 

broadening happens. Because the horizontal velocity of off-vertical beams has a strong radial 

component and changes greatly with height. Therefore, shear broadening occurs only in the 

off-vertical beams. Sloss and Atlas (1968) explored shear broadening for a vertical beam and 

found that it had a considerable effect on the Doppler spectrum. Vertical velocity changes are 

often linked with turbulent dynamics, hence shear adjustments are not required for vertical 

beams. 

The observed variance can be written as (Hocking, 1983; Sato, 1985), 
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σobs
2
=σturbulence

2
+σshear

2
+ σbeam

2
+ σwave

2                                                                                                             
(2.37) 

σturbulence
2
, σshear

2
, σbeam

2
, and σwave

2  
represent the spectral broadening due to turbulence, shear, 

beam width and atmospheric waves. Since σwave
2
 is so small in comparison to the other 

correction variables, the final term may be ignored. 

σshear
2
=  |Uh|                     (2.38) 

σbeam
2
=0.5  

   

  
         (2.39) 

Where Uh is the horizontal wind speed,  
   

  
  is the vertical shear of horizontal wind 

respectively with height, 

  is the half power half width of the two-way radar beam, and   is the off-zenith angle. 

2.19 Turbulence eddy dissipation rate from the Thorpe method using 

Radiosonde observations 

Thorpe method (Thorpe and Deacon, 1977) uses the potential temperature profile (ө) to 

estimate the turbulence eddy dissipation rate. The fundamental idea underlying this approach 

is that the potential temperature rises monotonically with altitude under stable conditions. 

Thorpe's technique is affected by instrument noise. We followed Wilson et al. (2010, 2011) 

method to remove the instrument noise variance observed from the radiosonde data to 

identify the actual overturns by comparing the range of data samples with the range of 

normally distributed data of the same data sample size. In the Thorpe method, the potential 

temperatures were sorted monotonically in increasing order. The vertical displacement of the 

air parcel's position in the actual profile to that of the same parcel in the sorted profile can be 

used to determine Thorpe displacements (Td = Zp-Zq, where Zp is the initial position of the air 

parcel and Zq is the position of the air parcel after sorting the potential temperature). By using 

the Root Mean Square (RMS) value, the Thorpe scale can be calculated from the Thorpe 

displacement.  

The relationship between ε and Lt is given by, 

ε=CLt
2
N

3
                                                                                                                (2.40)                                                                                                                                          

Where N=(g/θ)(       is the Brunt Vaisala frequency, C=0.3 is considered for the Indian 

region (Sunil Kumar, 2015;Nath, 2010; Alappattu, 2010; Muhsin, 2016). Sometimes, C 
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values vary between 0.2 to 1 (Fritts, 2016) depending on stages of turbulence, but till now, 

exact values have yet to be provided. 

 

2.20. Turbulence length scales 

The two most crucial elements of turbulent movements are the turbulent kinetic energy and 

the interaction among turbulent eddies. There are various subranges that can be used to 

distinguish the relationship between the scales of turbulent development and decay as well as 

the energy flow between them. The transition between the energy input, viscous, and inertial 

subranges characterizes a turbulent flow. The discovery of these transitions can reveal a lot 

about a turbulent volume and its more significant effects. Size scales are crucial for 

displaying the size of the eddies. The largest scale of turbulence, referred to as the Inner 

scale, transition occurs from inertial to viscous subranges at the Taylor Microscale. When 

talking about turbulence, it's important to consider the inner and buoyancy scale sizes.The 

inner scale size of turbulence l0 is given by 

l0=7.4η (2.41) 

whereηis the Kolmogorov microscale. 

Where    
  

 
 
   

 and    
 ⨯    

⍴
 

Where v, ԑ and ⍴ are the kinematic viscosity, turbulence eddy dissipation rate and density of 

the atmosphere, respectively. Sasi and Sen Gupta's (1986) model was used to determine 

atmospheric density for the calculation of η and l0. The buoyancy scale represents the largest 

eddies that can be obtained from ε and N.  

   
  

    
          (2.42) 
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Chapter 3 

Higher Order Spectral Analysis on Weather Signals 

Prelude: This chapter discusses the application of Higher-order spectral estimation 

techniques to analyse the weather signal to know its statistical distribution and find any 

deviations from the normality. This chapter also discusses how the Bispectrum performs well 

under noisy conditions and how this technique significantly removes the Gaussian noise 

components and improves signal detectability under noisy conditions. 

3.1  Introduction to Higher order spectral analysis 

Higher-order spectral analysis is the rapidly developing technique in digital signal processing 

for solving the signal detection and reconstruction problem in radar systems. It is used in 

various applications of science and engineering to understand the characteristics of unknown 

signals and the associated process. This technique is very helpful for identifying and 

estimating signals through a nongaussian process with additive Gaussian noise of unknown 

covariance. Even though various statistical tools are available for analysing random 

processes, it utilises first- and second-order statistics for the analysis. Many of the signals in 

nature are related to nonlinear, non-Gaussian and non-stationary statistics; therefore, these are 

poorly characterised and indexed by second-order statistics. 

The Power spectral density is one of the most frequently used techniques in signal processing 

of discrete-time signals, whether deterministic or stochastic. The power spectrum is a second-

order spectrum, a member of the Higher-Order Spectra. The power spectrum is useful for 

analysing the Gaussian distribution signals. One of the disadvantages of the power spectrum 

is that it does not provide any phase relationship between the frequency components. Only 

the Higher-order spectrum contains such information about deviation from Gaussianity 

andthe phase of the signals. 

HOSA  has an important property of being identically zero for the mean Gaussian process. 

So, it is useful to analyse the weather signals which are contaminated by the Gaussian noise 

components. Applying Bispectrum on weather estimates is useful to find out whether any 

deviation is occurring from the normality also. Generally, the noise associated with most 
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observations is Gaussian; the bispectrum process will work in a higher SNR regime, thereby 

better detecting the signal. Bispectrum estimation is a double Fourier transform of the third-

order cumulant function. Most of the signals are always contaminated by noise; applying the 

bispectrum estimation may help to eliminate the Gaussian noise and characterise the 

remaining signals for further applications(Giannakis,1990).  

The motivation behind the use of higher-order spectral analysis (Nikias, C.L., and J. M. 

Mendel, 1993;  Nikias, C. L., and A. P. Petropulu, 1993;  Nikias C. L., and M. R. Raghuveer, 

1987; Rosenblatt,1965)  in signal processing is 1) It suppresses the additive Gaussian noise, 

2) it can reconstruct the non-minimum phase signals, 3) It extracts the information about 

deviation from Gaussianity (Sadler,1994)  4) It is useful for characterisation and detection of 

nonlinearities in time series (Kim,1949; Nikias, C. L., and A. P. Petropulu,1993). In the first 

motivation, all cumulant spectra of order greater than two are identically zero for the 

Gaussian process. Third-order cumulant spectra will suppress and eliminate any Gaussian 

noise that is additive to the received signal. Therefore, certain advantages exist in detecting 

and estimating signal parameters from cumulant spectra.  

In the second motivation, the Higher-order spectrum preserves the true phase of the signals. 

Second-order statistics are useful for modelling the time series data in signal processing. 

Because these are results from least squares optimisation criteria, using the autocorrelation 

function will suppress the phase information of the signal. The phase reconstruction can only 

be possible in the autocorrelation domain if the signal is the minimum phase. Higher order 

spectrum can reconstruct the non-minimum phase signal due to the ability of polyspectra to 

preserve the magnitude and phase information. In the case of the third motivation, non-

Gaussian signals have nonzero higher-order spectra. The fourth motivation is based on the 

analysis of nonlinearities present in a system operating at random input. Higher order spectra 

will help in identifying and characterising the nonlinearity in a system from its output data 

(Rao and Gabr, 1980; Nikias and Petropulu, 1993; Hasselemann et al., 1963; Barnell et al., 

1971) 

Therefore, HOSA technique is widely used in various applications such as oceanography 

(Cherneva, 2004; Hara,2003; Hasslemann, 1963), bio-medicine (Barnell, 1971; Coelli,2019; 

Kotriwar, 2018; Pradhan,2012), speech signal processing (Nasrolahzadeh,2018), fluid 

mechanics(Imran,2018; Van Atta,1976) (to study the nonlinearity and non-Gaussianity 
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processes) (Birkelund, 2009;Kim, 1979; Peter,2018; Pires, 2021) and Radar signal processing 

(Totsky, 2018). 

Here, a Higher order spectrum has been considered for analysing weather signals, which is 

useful to find out the deviation from the Gaussianity and suppress the Gaussian noise 

components thereby, improve the spectral estimations, mainly first and second-order 

moments. The pulse pair estimator will be biased for meteorological targets with high 

spectrum widths (Doviak, 1984). The higher-order spectral analysis provides an improved 

velocity and spectrum width estimation. In conventional methods, noise level estimation is 

required before calculating moments. In contrast, higher-order spectra do not require noise 

level computations because the third-order spectrum will become identically zero for 

Gaussian components. This paper mainly focuses on how Bispectrum performs under noise-

varying conditions and improvement in the spectral moments, especially first and second-

order moments since noise is considered white Gaussian.  

The definition, properties, and higher-order statistics computation for real signals, namely 

cumulants and moments, as well as higher-order spectra of them are clearly explained in 

(Nikias, C.L., and J. M. Mendel, 1993;  Nikias, C. L., and A. P. Petropulu, 1993;  Nikias C. 

L., and M. R. Raghuveer, 1987; Rosenblatt,1965). 

3.1.1 Cumulants and Moments 

For a Gaussian process, cumulant spectra order greater than or equal to two are equal to zero, 

because cumulants are strongly associated with moments. Non-Gaussian cumulant spectra 

thus give a measure of non-Gaussianity. Moments or cumulants are frequently used to define 

HOSA (Nikias, C.L., and J. M. Mendel, 1993). For stochastic signals, cumulants are 

preferable, whereas moments are preferable for deterministic signals. Lower-order statistics 

are contained in Moments. Cumulants may be calculated in the same way as moments 

can. The natural logarithm of the moment generating function yields the cumulant generating 

function. When Gaussian noise components contaminate signals, cumulative-based 

approaches increase the signal-to-noise ratio (SNR) and detectability. 

The bispectrum technique is generally a complex function. Cumulant spectra are more 

effective than moment spectra, particularly when processing random signals. It is known that 

complex signals do not have the same symmetric properties as real signals. For complex-

valued signals, the position of the complex conjugate operator in the third-order cumulant 
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function determines the symmetry property of the Bispectrum (Brillinger, 1967). There are 2n 

different ways to define the nth order moment functions of a complex signal, depending 

depending on where the complex conjugate operators are positioned. As a result, each 

moment spectrum with various conjugation patterns has its own principal domain and 

symmetries. This is clearly described in literatures (Jouny,1992; Nikias, C. L., and A. P. 

Petropulu,1993). 

3.1.2 Higher order spectral analysis on complex signals 

 

Let us consider x(n), x(n+p) and x(n+q) as complex data sample points with zero mean. 

The autocorrelation function of complex data is given as 

r(p)=Ʃ x*(n) x(n+p)                                                                                                   (3.1) 

The equivalent power spectrum is given by, 

S(ω)=Ʃ r(p)exp(-jωp)                                                                                                 (3.2)                    

The third-order cumulant of complex data is defined as, 

Case1: c(p,q)=Ʃ x*(n)x(n+p)x(n+q) (3.3) 

Bispectrum is the double Fourier transform of third-order cumulants. Hence, the Bispectrum 

is defined as, 

B(f1,f2)=                                  (3.4) 

Where c(p,q) is the third order cumulant of complex data, is defined as, 

Case1:  c(p,q)=Ʃ x*(n) x(n+p) x(n+q)      (3.5) 

B(f1,f2)=                                              

           =                                                  

(where, n+p=k and n+q=r) 

                 =                                                              

                 =X*(      X(   X(    

                  =X*(   X(   X(    (3.6) 
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where,   =      

Case2:  c(p,q)=Ʃ x(n) x*(n+p) x(n+q) (3.7) 

B(f1,f2)=                                              

           =                                                  

           =                                                              

                        =X*(-f1) X(-f1-f2) X(f2) (3.8) 

The definition of cumulants is based on the Expectation operations and an infinite length of 

data, but in practice, we only deal with a finite length of data. Therefore cumulants can only 

be approximated. The cumulants and power spectra can be calculated by using two 

methods.1) Indirect method 2) Direct method. The direct method is being followed in the 

present (Nikias, C.L., and J. M. Mendel,1993; Nikias C. L., and M. R. Raghuveer,1987) 

analysis. 

       Bispectrum can be obtained by applying a Fourier transform to the third-order cumulant 

function, and it is a 3-dimensional (3D) complex-valued function having both magnitude and 

phase. Therefore Bispectrum can be plotted against frequency variables f1 and f2 in a 3D plot. 

The interaction between frequency components f1 and f2 represents the nonlinear interactions 

in signals. The bispectrum function in discrete form is given by, 

B(f1,f2)=X(f1) X(f2) X*(f1+f2)                                            (3.9) 

B(f1,f2)=|B(f1,f2)| exp(jθ(f1,f2)), where f1, f2 are frequency indexes. X denotes the Fourier 

transform of the signal, and X* is its conjugate. The Bispectrum in the above equation (3.9) 

explain the measure of the level of three-wave interactions observed in the frequencies of f1, 

f2 and f1+f2. 
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Fig.3.1: Symmetric properties of Bispectrum for complex valued signals (Peter J. S, 2006) 

Therefore, knowledge of the bispectrum in this triangle region is sufficient to describe its 

whole bispectrum. Fig.3.1 shows the symmentric properties of bispectrum for complex 

signals. 

Table 3.1: Placement of the Complex Conjugate in the Third Order Cumulant and its 

Corresponding Bispectrum 

 

 

 

 

 

 

3.2  Bispectrum algorithm 

3.2.1 Direct Method 

Third order cumulants Bispectrum 

Ʃx*(n)x(n+p)x(n+q) X*(   X(   X(    

Ʃx(n)x*(n+p)x(n+q) X*(-f1)X(f2) X(-f1-f2) 

Ʃx(n) x(n+p) x*(n+q) X(f1)X*(-f2)X(-f1-f2) 

Ʃx(n) x*(n+p) x*(n+q) X*(-f1) X*(-f2)X(-f1-f2) 

Ʃx*(n) x*(n+p) x(n+q) X*(-f1) X(f2)X*(f1+f2) 

Ʃx*(n) x(n+p) x*(n+q) X(f1) X*(-f2)X*(f1+f2) 
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This paper followed the Direct method for estimating Bispectrum based on DFT coefficients 

(Anandan et al., 2001; Bartlet, 1984; Nikias, C.L., and J. M. Mendel,1993; Nikias C. L., and 

M. R. Raghuveer,1987 ). 

Let {X(1),X(2),…….,X(N)} be the available data set of observations for the bispectrum 

estimation.  

Let fs be the sampling frequency and  

∆0=fs/N0be the required spacing between frequency samples in the bispectrum domain  

N0 is the total number of frequency samples. 

The following are the steps to be followed: 

Segment the data into K segments of M samples each, i.e., N = KM. 

Subtract the mean value of each segment. We can do zero padding to get the required series 

length for FFT analysis. 

Based on M points, compute the Discrete Fourier Transform (DFT) coefficients Yi (λ) of 

each segment. 

Yi(λ)=
 

 
       

        

 ,     i=1, 2,...., K                                             (3.10)                                                  

Bispectrum estimated based on the DFT coefficients.  

ci(λ1,λ2)=
                      

              

  
                  (3.11) 

For the special case where no averaging is performed in the bispectrum domain, M1 = 1, L1 = 

0, and therefore: 

ci(λ1,λ2)=
              

        

  
          (3.12) 

Obtain the Bispectrum by averaging all the K segments. i.e., 

B(ω1,ω2)=
 

 
    λ  λ                                                    (3.13)                                

Where ω1= (2πfs/N0 ) (λ1) and ω2=(2πfs/N0 ) (λ2) 
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The direct method produces unbiased bispectrum estimates in cases where N is large. The 

variance of the estimates can be reduced by increasing the number of records and the record 

size. 

3.2.2 Indirect Method 

Let {X(1),X(2),…….,X(N)} be the available data set of observations for the bispectrum 

estimation.  

1. Segment the data into K records of M samples each, i.e., N=KM. 

2. Subtract the average value of each record. 

3. Estimate the third-order cumulant sequence of each segment. 

        
 

 
                    

  
    

                   (3.14) 

Where i=1,2,…,K 

S1=max(0,-m,-n) 

S2=min(M-1,M-1-m,M-1-n). 

4. Average r
i
(m,n) over all segments 

5.   
       

 

 
         

    (3.15) 

6. Now, generate the bispectrum estimate 

7.   
      

                                       (3.16) 

where L<M-1. W(m,n) is a two-dimensional window function.  

3.3  Power spectrum computation from Bispectrum 

The power spectrum can be reconstructed from Bispectrum (Anandan et al., 2001) 

B(ω1,ω2)=X(ω1)X(ω2)X*(ω1+ω2)                                                          (3.17)                   

For given samples, B(p,q)=B((2π/N)p, (2π/N)q); p, q=0,1,….N-1 of the bispectrum B(ω1,ω2) 

of a sequence x(n) of length N. Bispectrum of the samples can be computed as 

|B(p,q)|=|X(p)||X(q)||X(p+q)|                                                                                 (3.18)                                   



55 

 

|X(k)| can be obtained from the samples of |B(p,q)| by using the Bispectrum samples by 

making one of the axes equal to zero. i.e. ω1=0 or ω2=0 this can be done by substituting either 

q = 0 or p = 0, 

When p = 0, 

|B(0,q)| = |X(0)| |X(q)| |X(q)| 

            = |X(0)| |X(q)|²  (Or) 

|X(l)|² =
        

      
                              (3.19) 

Where,|X(0)|=|B(0,0)|⅓                                                                                                       

Equation (3.19) is the equivalent power spectrum computed via Bispectrum estimation. Once 

the power spectrum is obtained from the Bispectrum, moment calculation will be the same as 

in equations (2.15) and (2.16). 

3.4. Simulation Analysis and Verifications 

The weather radar real time series data does not always match the Gaussian spectral model 

exactly. However, for simulating time series data, the model is still a standard method for 

testing signal processing algorithms (Curtis, 2018). 

A simulation study of weather signals has been carried out to investigate any deviation from 

the Gaussian shape observed from the power spectrum and also to study how Bispectrum 

performs well under noise-varying conditions. Simulation has been performed with the 

realisation of different weather signals having different properties in terms of SNR, mean 

velocity and spectrum width. A Gaussian Mixture Model (GMM) of Doppler power 

spectra(Dong, 2022)  has been considered for this analysis and generated the time series of 

complex-valued weather signals using the approach of Zrnic,1975, with different SNR 

conditions. This analysis has been performed clutter free regions because clutter may produce 

non-gaussian spectra. 

The weather signal's power spectrum can be modelled using Gaussian Mixture Model 

(GMM) (Dong, 2022; Yu et al., 2009). 

    = 
   

             

 
        

      
 

    
 
                               (3.20) 
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Where P is the total signal power, K is the number gaussian shaped spectra contained in a 

power spectrum,wk are the weighting coefficients (0<wk<1,   
 
     ), σfk and fk are the 

spectrum width and mean velocity. 

In this section, a known dual Gaussian power spectrum model in each realisation is simulated 

with a 1000 realisation process and simulated weather echoes by the procedure (Dong, 2022; 

Zrnic,1975), which are used as the input of the proposed method. Using Bispectrum and 

Fourier methods, we obtained the velocity and spectrum width and calculated Root Mean 

Square Error (RMSE) to verify the advantage of the proposed method. Finally, we applied 

bispectral analysis on the real-time series obtained from the Doppler weather radar for 

verification. 

The values SNR is 0, 10, 20, 30, and 40dB considered for every 200 realisations, 

respectively. Here, four realisations with different SNRs and the theoretical values of 

skewness and kurtosis were obtained from the Gaussian mixture model. The simulation 

parameters used are listed in Table 3.2. Four realisations are selected for different SNRs, 

shown in Fig.3.2. It can be observed that the power spectrum shape deviates from the 

Gaussianity in all four realisations. Black lines show the simulated spectra (true spectra), and 

spectra reconstructed from the Fourier and Bispectrum are shown by magenta and blue colour 

lines, respectively. It can be seen that the Bispectrum can better characterise the simulated 

spectra, and the noise fluctuations are also suppressed compared to spectra reconstructed 

from the Fourier approach. It can also be observed that the Bispectrum method performs 

much better than the Fourier method. The skewness and kurtosis with different SNRs of four 

realisations are listed in Table 3.3.  

Table 3.2: GMM Power spectrum model Parameters 

No wk v(m/s)  v(m/s) 

1 0.8 3.15 1.5 

2 0.2 -10 to 10 1 to 5 
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Table 3.3: Spectrum width, Skewness and Kurtosis of four realisations with different SNR 

No SNR(dB)  v(m/s) Sk Theoretical 

Sk 

Kt Theoretical 

Kt 

1 10 3.53 B:-0.72 

F:-0.92 

-0.69 B:2.08 

F:2.33 

1.93 

2 20 4.75 B:-1.47 

F:-1.37 

-1.50 B:3.75 

F:3.50 

3.78 

3 30 3.28 B:0.42 

F:0.71 

0.55 B:1.67 

F:1.98 

1.76 

4 40 4.9 B:-0.88 

F:-1.07 

-0.83 B:2.02 

F:2.69 

2.13 

 

 

Fig.3.2: Simulated Power spectrum reconstructed from Fourier and Bispectrum approach 

with different SNR. 

The number of samples is 128, and the maximum unambiguous velocity is 12m/s with a 

number of realisations of R=1000. The root mean square error (RMSE) values are calculated 

to verify the advantage of the bispectrum approach compared to the Fourier method. The 

RMSE is calculated from the actual spectra and reconstructed spectra obtained from both the 
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Fourier and Bispectrum techniques, as shown in Fig. 3.3. It can be seen that the  Bispectrum 

performance is better than the conventional Fourier method under noisy conditions. 

 

 

 

 

 

 

Fig. 3.3: RMSE from both Fourier and Bispectrum methods. 

3.5. Experimental results of weather radar observation 

The dual Gaussian and skewed piecewise Gaussian model fitting algorithms (Lee, 2010)are 

very useful when the Doppler power spectrum deviates from the Gaussianity. It is observed 

that many Doppler spectra deviate from the Gaussianity, which is observed from X-band 

Doppler weather radar on 17
th

 October 2019. To check the deviations, the dual Gaussian 

model (Gaussian Mixture Model)  is used to fit the single-peaked and double-peaked from the 

observed spectra, respectively, of different range bins, as shown in Fig 3.4.  

 



59 

 

Fig. 3. 4: Gaussian Mixture Model(GMM) fit the observed spectra obtained from X-band 

DWR on 17
th

 October 2019, corresponding range gates ofa) 60, b) 71, c) 175 and, d) 354 

azimuth: 70, respectively. 

To obtain the Initial guess parameters followed the Yu et al., 2009 approach to fit the GMM 

to the observed spectrum. Fig.3.4(a)-(d) shows the Fitting of the GMM curve to an estimated 

power spectrum obtained from the Bispectrum for 60, 71, 175, and 354 range gates, 

respectively (in logarithmic scale). On a logarithmic scale, the Gaussian shape corresponds to 

a parabola. It can be observed from Fig 3.4 that the observed spectra deviated from the 

Gaussian spectral shape.   

3.6 Weather Data Analysis  

Bispectral analysis was performed on complex time series data obtained from an X-band 

polarimetric Doppler weather radar at Gadanki (13.5°N, 79.2°E) with a range resolution of 

150m and a sampling period of 1500 Hz. Backscattered signals are preserved as in-phase and 

quadrature-phase components. To get a Doppler power spectrum, complex time series data is 

treated for both Fourier and bispectral analysis. A total of 128 samples were processed using 

a standard algorithm for deriving the power spectrum and bispectrum computations by the 

direct method. 

It is observed from the bispectral analysis the shape of the precipitation echo slightly deviates 

from the Gaussianity in the power spectrum. Therefore, slight deviations can be expected in 

weather signals, which need not follow the exact Gaussian shape. Higher-order spectral 

analysis has been  carried out in every range bin to find the deviation from Gaussianity from 

the observed Doppler power spectra. Since noise has Gaussian characteristics, therefore the 

magnitude of the Bispectrum is very less (it should not be exactly zero but identically zero). 

Thereby, it suppresses the noise level very well from the spectra.  

The bispectrum B(ω1,ω2) is a two-dimensional function. The signal corresponding to B(ω1,0) 

retains the information about the true signal. 

3.7. Results and Discussions 

The direct method of bispectrum estimation algorithm was applied to complex time series 

data of polarimetric X-band DWR. The data corresponds to a single azimuth orientation of 

the antenna with a particular elevation of 10 degrees observed on 17
th

 October 2019. The 
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results obtained from the Fourier method, Pulse pair method and bispectrum analysis are 

presented to show how the bispectrum analysis has performed over the conventional 

methods. 

Fig.3.5 shows the Doppler power spectrum obtained by using the Fourier method up to a 

range of 81.45 km. It is observed that both the ground clutter and the weather signals are 

present in the spectrum. Most of the signals contain ground clutter due to non-moving targets 

like trees and hills, which are typically stationary. We can observe from the Fig. 3.5 that zero-

velocity signals in the ranges from 0 -10 km have the typical characteristics of ground clutter 

(i.e., narrow spectrum with near-zero velocity), whereas the signals in the ranges from 5 – 60 

km have the characteristics of weather signals (i.e., modest spectrum width and velocities 

representative of their radial motion). Fig.3.6(a) shows the power spectrum obtained by both 

Fourier and bispectrum techniques. It can be observed that the bispectral analysis 

significantly filters the noise components that are Gaussian in nature (white noise in 

characteristic) and improves the signal detectability compared to the conventional Fourier 

method. As can be seen from Fig.3.6(a), significant additive components of noise are also 

removed from the weather signal as the spectrum from the bispectral analysis shows reduced 

fluctuations in the weaker returns of the weather signals. Fig.3.6(b) and Fig.3.6(c) clearly 

show that the shape of the precipitation Doppler spectra deviates from Gaussianity. 

Therefore, it is evident that applying the bispectrum method significantly reduces the noise 

components. The spectral components that remain after the application of the Bispectrum are 

the skewed Doppler power spectrum. 
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Fig. 3.5: Doppler Power spectrum estimated through conventional method (FFT) of Azimuth 

70 and 10 degree elevation observed on 17
th

 October 2019. 

 

Fig. 3.6: Sample power spectrum computed through conventional method using Fourier 

method and Bispectrum for different range gates a) NRGB=61, b) NRGB=170, and c) 

NRGB=340.Sample power spectrum computed through FFT and Bispectrum at higher range 

bin. 

Fig.3.7 show the sample power spectrum computed through Fourier and Bispectrum 

approaches. It can be observed that most of the weather signals are not following the exact 

Gaussian spectral shape; some deviations have been observed from the Gaussianity of the 

spectral shape. It can be seen clearly that noise fluctuations have been suppressed in the 

bispectrum approach. Therefore, the noise level comes down to a low value compared to the 

conventional Fourier method.  
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Fig.3.7: Sample power spectrum computed through conventional method using. a) Fourier 

method and b) Bispectrum for fewer range gates. 

 

Fig.3.8: Range profiles of SNR estimated through conventional method using Fourier method 

and Bispectrum method a) Azimuth: 65 b) Azimuth: 70 respectively. 
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Fig.3.9: Range profiles of a) Velocity and b) Spectrum width estimated using Fourier, Pulse 

pair and Bispectrum method, Azimuth: 65 

 

Fig.3.10: Range profiles of a) Velocity and b) Spectrum width estimated using Fourier, Pulse 

pair and Bispectrum method, respectively, Azimuth: 70 
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To understand the capabilities of both methods, one needs to estimate the spectral parameters 

extracted using both analyses. The mean noise level should be calculated and subtracted from 

the signal before estimating moments. There are different noise estimation techniques 

reported in the literature. Here the objective is whatever method is considered the same will 

be applied to both techniques so that the basic comparison of results has the same treatment 

on the estimation of parameters. Even though applying the Bispectrum reduces the Gaussian 

noise components, but needs to estimate the residual components of the noise level present in 

the signal. An objective method developed by Hildebrand and Sekhon (1974)is system 

independent and is mostly used in atmospheric signals, and the same has been used in this 

analysis. In this method, the mean noise level of each range bin is subtracted from the 

corresponding power spectra, and then the spectral moments (Bringi, 2001; Doviak, 1984) 

are computed. 

Fig.3.8(a)-(b) shows the SNR computed using the Fourier method and Bispectrum method up 

to a range of 60km as it can be observed that an improvement in SNR in the precipitation 

region when using the bispectrum method. This is evident as the precipitation is present in the 

Doppler spectrum from 5km to 60km. 

The Doppler weather radar not only gives information about the backscattered power 

received from the target but also gives information about the velocity component of the target 

in the direction in which the radar beam is pointed. 

The target velocity is negative if it moves towards the radar and positive if it moves away 

from the radar. The X-Band Polarimetric DWR can track targets with a Doppler velocity 

range of -12 m/s to 12 m/s. Fig.3.9 and Fig.3.10 show the Doppler velocity and Spectrum 

width computed  using Fourier, Pulse pair, and Bispectrum methods up to a range of 60km 

for azimuths of 65 and 70 degrees, respectively. We can observe that Doppler velocity and 

spectrum width profiles obtained by the three  methods are almost the same, as shown in Fig. 

3.9(a)-(b) and 3.10(a)-(b). It can be observed that the fluctuations are reduced in velocity and 

spectrum width obtained from the bispectral method compared to other conventional 

methods. The spectrum width range is about 0 to 7 m/s. The spectrum width is useful for the 

study of the turbulence characteristics of the atmosphere. 
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                                      a)                                                                  b) 

   

Fig.3.11:The Histogram plot of Noise and Power is computed through a). Fourier method b). 

Bispectrum  

Fig.3.11(a)-(b) shows the histogram plots of the noise levels and the power computed through 

Fourier and Bispectrum methods. The noise power range in Fig. 3.11(a) is -12 to 13 dB, 

whereas in Fig.3.11(b), the noise power range is about -22 to 5dB. It can be seen from both 

figures there is a significant reduction of close to 10 dB in the noise level corresponding to 

the Bispectrum plot as compared to the conventional method because of the Gaussian noise 

elimination in the process of bispectrum estimation. From these observations, it can be 

concluded that the Bispectrum works effectively under noisy conditions and improves signal 

identification. 

a)                                                                       b) 

  

Fig.3.12: The Scatter plot of velocity is computed through the conventional method using a) 

the Fourier method and Bispectrum b) the Pulse pair method and Bispectrum. 
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Fig.3.12(a)-(b) shows the scatter plot of the velocity, which is computed by the three 

techniques, namely the Fourier, Pulse pair and Bispectrum methods. It can be observed that 

the correlation is high, which shows that the bispectral process essentially gives the same 

result as the conventional method based approach.  

a)                                                              b) 

 

                                                                     c) 

 

Fig.3.13: Feather plots of wind speed and direction are computed through a). Fourier method 

b).Bispectrum c). Pulse pair method 

To study the effect of bispectrum method on the wind estimation as compared to the 

conventional methods, the wind speed estimation extracted by the three techniques is 

presented. Fig.3.13 (a)-(c) shows the feather plots of the wind speed and direction plotted on 

Velocity PPI plots. It can be seen clearly that in three cases, the wind direction and speed on 

the velocity plots arethe same. This shows that parameter extraction is not disturbed by the 

bispectral process. The horizontal wind speed and direction extracted by both techniques are 

presented by using a linear wind model (Browning,1968). The wind barbs/feather is plotted 
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on velocity plots, representing the horizontal winds' speed and direction. The maximum wind 

speed observed in both cases is 12 m/s, and the wind direction is -180
0
 to 180

0
.  

a)                                                                  b) 

  

Fig.3.14: Scatter plot of Wind Speed computed through a) Fourier and Bispectrum method b) 

Pulse pair and Bispectrum method. 

Fig.3.14(a)-(b) shows the statistical comparison of wind speed obtained from the Fourier, 

Pulse pair and Bispectrum based methods. It can be observed that the correlation is high, 

which shows that the bispectral process essentially gives the same result as the conventional 

method based approach. The comparison of velocity azimuth display (VAD) obtained from 

the three methods has been shown in Fig.3.15. 

 

Figure 3.15:Comparison of wind velocity azimuth display obtained from the Pulse pair  

method, Fourier method and Bispectrum method. 

In Fig.3.15, it can be observed that the three methods follow the same profile. The radial 

velocity is shown as a function of azimuth, which resembles the sine wave (Browning,1968). 

The amplitude and phase of the sine wave give the wind speed and direction, respectively. 
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The VAD method assumes uniform wind over the region and expects radial velocity to 

follow a sine curve over azimuth. 

 

Fig.3.16:Variance profile of all azimuths estimated through conventional Fourier, Pulse pair, 

and Bispectrum methods. 

From Fig 3.16, it can be seen that the variance plot is associated with the Fourier, Pulse pair 

and Bispectrum methods. The second moment gives information about variance. All azimuth 

scans have been considered for the variance analysis to check the relative consistency of the 

three methods. Fig.3.16 shows that the variance associated  with Bispectrum is less compared 

to the conventional methods like Fourier and Pulse pair methods.The power values obtained 

from the bispectrum  technique, Fourier and Pulse pair processing are shown in Table 3.4. 

The power obtained from the pulse pair technique is always high compared to the other 

methods. Whereas in the case of the Bispectrum,the power values obtained were almost the 

same as those obtained from the Fourier method. In some cases, less than 1 dB was observed 

in the Bispectrum approach because of the elimination of Gaussian components during the 

process. 

Table 3.4: Power values in (dB) estimated from the Fourier method, Pulse pair method and  

                                                       Bispectrum  

 Pulse Pair method Fourier Method Bispectrum method 

 

 

 

Power Values (in 

dB) for a few Range 

19.8065 19.7031 18.5762 

21.7483 20.4368 19.0001 

17.6456 16.6577 16.4010 

20.3248 20.2426 19.3645 

17.9864 17.4055 17.0012 
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bins 17.5843 16.7416 15.9635 

17.1909 16.5895 15.4023 

18.2007 17.7092 16.9521 

16.8404 16.2192 15.8771 

16.9927 15.8467 14.9675 

 

3.8. Chapter Conclusion 

From the results, it can be concluded that slight deviations occur from the Gaussianity 

observed from the Doppler power spectra. Therefore, the Bispectrum method significantly 

reduces the Gaussian noise components compared to conventional techniques like Pulse pair 

and Fourier methods, and this method is efficient when working under noisy conditions. This 

helps in improving the signal-to-noise ratio, which in turn improves the detectability of the 

weather signal returns. The improvement in the SNR leads to a more consistent estimate of 

the target velocity, especially in a noisy environment. It proves that the bispectral process 

improves parameter estimation. The simulation analysis considers Gaussian Mixture Models 

of the Doppler power spectrum with different SNR conditions. To quantify the advantage of 

the bispectrum approach, root mean square error (RMSE) has been estimated. It indicates that 

the Bispectrum decomposes the actual spectra (skewed spectra) in high SNR conditions. The 

results show that the bispectrum method significantly worked well for the weather signals 

and improved the SNR in noisy regions. 
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Chapter 4 

Atmospheric Turbulence measurements using 

Higher order Spectral Analysis 

Prelude: In this chapter, we discuss the Novel approach for the measurement of turbulent 

energy dissipation rate (ε) from Nonlinear index (NLI) based measurements using the Higher 

Order Spectral Estimation (HOSE) technique. This Chapter provides an overview of 

atmospheric turbulence and methods using both  radar and radiosonde-based measurements. 

This chapter also briefly discusses data analysis and describes the results obtained and 

compares the results obtained through the proposed method with the existing approaches and 

gives the conclusion. 

4.1 Atmospheric Turbulence: An overview 

Turbulence can be considered as a nonlinear process and chaotic in behaviour that may occur 

in various regions of the atmosphere. The size and intensity of atmospheric turbulence may 

be defined by fundamental factors such as eddy dissipation rate, diffusivity, and length scales 

(Ghosh et al., 2003; Das, 2010). The turbulence parameters are depends on the atmospheric 

variables such as temperature, wind speed, and vertical shear of horizontal winds, which 

change with season and latitude (the parameters of both the atmosphere and the turbulence 

fluctuate with season and latitude). Turbulence consists of eddies of different time and length 

scales. The mean shear and buoyancy produce large scales in the atmosphere. 

These eddies are unstable and eventually break down into eddies of smaller sizes during the 

inertial cascade process. During this process, eddies are folded and deformed by other eddies 

of similar scales. Squeezing and enlarging of eddies transfer energy into smaller ones, and so 

on, until eddies become so small that they work against viscous forces and convert kinetic 

energy into heat. Kolmogorov's theory explains the energy transportation from larger to 

smaller eddies. Kolmogorov's similarity hypothesis gives a simple representation of the 

turbulence model (Mac Cready, 1953; Batchelor, 1950). 



71 

 

  The turbulent energy spectrum represents three different ranges of scales: energy 

production range, inertial subrange, and dissipation region. The shear or buoyancy 

mechanism produces turbulence, and the fluctuations caused by eddies have a characteristic 

size defined as an integral length scale. This scale for the convective boundary layer is 

approximately the depth of the boundary layer, while for shear, it is close to the wavelength 

of developing Kelvin Helmholtz waves. In the inertial subrange, turbulence can be isotropic 

and homogeneous (Doviak, 1984). The turbulent energy spectrum in the inertial subrange 

depends upon the wave number and turbulent energy dissipation rate (ε). In the dissipation 

region, the turbulent kinetic energy is dissipated into heat. The length scale depends only on 

the turbulent energy dissipation rate (ε) and kinematic viscosity (v), called the Kolmogorov 

microscale. This scale is typically around 1mm, at which eddies dissipate into heat and 

determines the size of the eddies.  

 In turbulent flow, quasi-random movements cause inhomogeneities in density  

temperature, humidity and pressure (Panchev, 1971; Rottger, 1980). Atmospheric turbulence 

is defined by irregularities in variables such as temperature, density, water vapour, and so on, 

over a wide variety of motion scales (in terms of space and time), as well as mixing 

characteristics. The variation in temperature and density produces small-scale inhomogeneity 

in the refractive index, which is responsible for the received backscatter of radio waves. 

Variations in the refractive index can be characterized as a spectrum with critical scales (such 

as the inner and outer scales of turbulence) (Tatarski, 1971). The ensemble average of the 

overall illuminated volume comprising scatterers with inhomogeneous volume distribution is 

the received backscattered power. 

4.2 Turbulence generation  

The generating mechanism will dictate the scale of the largest turbulent eddies; the lifespan 

of a turbulent flow is determined by the amount of energy supplied by its generation 

mechanism. The two main mechanisms of atmospheric turbulence formation are shearing and 

buoyancy. Static and dynamic instability (Sunil Kumar, 2015) generates atmospheric 

turbulence, which is related to buoyancy and shear mechanisms.  

4.2.1 Shearing mechanism 

Dynamic instabilities are formed by shearing forces at low viscosity, resulting in wave-like 

structures that eventually become unstable and leading to turbulence. Stull (1988) discusses 

such a destabilizing process. There is shear across a density interface, and when shear reaches 
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a critical value, the flow becomes dynamically unstable. Then, on the interface, calm waves 

begin to develop. These waves' crests are normal to the direction of the shear. The amplitude 

of these waves continues to increase. When a wave reaches a specific point, it begins to spin 

up or break. A Kelvin Helmholtz wave is the name given to this breaking wave. Clear Air 

Turbulence (CAT) is normally associated with shear. CAT is the erratic air currents that occur 

in cloudless regions and cause violent aircraft buffeting. This turbulence is associated with 

wind shear commonly occurring at a higher altitude region from 7-12 km (John, 1967). 

4.2.2 Buoyancy  

In most cases, buoyant instabilities are caused by ground heating. Radiative cooling, such as 

at cloud tops, can also create buoyant instability by causing negative buoyancy or the release 

of latent heat. Convective turbulence is associated with buoyancy. Convective turbulence is 

commonly caused by the buoyancy mechanism, which has strong updrafts and downdrafts 

(Das, 2010; Sato, 1995). The existence of buoyancy as a turbulence-generating mechanism is 

questionable; the formation of turbulent eddies from a convective cell will emerge from the 

same shear-induced dynamic instabilities at small-scale shear  (described in the prior section). 

Moving air near the edge of a convective cell is sheared by surroundings, resulting in very 

strong turbulent eddies. 

The study of decaying homogeneous isotropic turbulence frequently starts by invoking a 

Fourier representation of the turbulence fields (Pope, 2000). Navier-Stokes (NS) equation 

(second order partial differential equation, which is useful to describe the flow of viscous 

fluids) contains one nonlinear term, called the convective term. After applying a Fourier 

transform, this term becomes nonlinear and nonlocal as it involves interactions of 

wavenumber triads. Pope (2000) provides a detailed description of the transport equation of 

turbulence in the spectral space. Triad interactions refer to the elementary momentum 

exchanges between Fourier components of the velocity field in wave vector space 

(Domaradzki, 1990). Discussions on nonlinear triad interactions of homogeneous turbulence 

in spectral space and detailed behaviour of the energy transfer function are reported by 

Orszag (1970), Domaradzki (1990), and Waleffe (1992). Various authors have reported the 

importance of considering local versus nonlocal triad interactions in simulations of isotropic 

turbulence (Yeung, 1995; Moffatt, 2013; Praskovsky et al., 1993; Domaradzki, 1990; Zhou, 

1993a and b; Waleffe, 1992). 
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        The conversion of kinetic energy into heat represents the eddy dissipation rate. It is an 

important parameter to understand the energy flow (which represents how the energy of 

eddies transfers from larger to smaller scales) within the atmosphere. Methods for estimating 

ε from VHF radar are discussed by Hocking (1983), Cohn et al. (1995), and Satheesan (2002). 

Various methods are available for estimating turbulence measurements; however, these 

approaches require additional in situ data. The spectrum width method is one of the most 

frequently used techniques for measuring the ε from the spectral moments. The major 

limitation of this approach is non-turbulent spectral broadening by the instrumental and 

meteorological sources, which need to be known and accounted for. According to Doviak 

(1984), five major spectral broadening mechanisms contribute to the spectrum width 

measurements. Spectral broadening includes beam broadening and wind shear broadening 

effects. The beam broadening is a consequence of the finite width of the antenna beam. 

Doppler spectrum narrowing and widening due to external contributions have been discussed 

by Koaly et al. (2002). Atlas (1964) observed that the finite beam width, wind shear, and 

atmospheric turbulence contribute to the spectrum width. Sloss (1968)studied shear 

broadening in the cross-beam motions of radar scatterers. A series of theoretical works have 

been reported on estimating ε from the Spectral width calculations (Frisch, 1974; Gossard, 

1983; Gossard, 1998; Hocking, 1983; Hocking, 1985; Brewster, 1986; Nastrom and Eaton, 

1997; Gage, 1980; Sato, 1985; Narayana et al., 1997; Delage, 1997; Ghosh, 2000; Furumoto, 

2001; Narayana Rao et al., 1997; Li, 2016). 

     Several studies have proposed methods for spectral width corrections from radar 

measurements (Jacoby et al., 2002; Nastrom, 1997; Chu, 2002). In a method established by 

Hocking (1983), the effects of spectral broadening mechanisms have been considered and 

corrected to estimate the root mean square (RMS) velocity of clear air. For many years 

broadening effects on different targets have been examined, and many studies suggested a 

formula for the spectral broadening corrections to measure the ε (Frisch, 1974; Gossard, 

1983; Hocking, 1983; Nastrom, 1997; Chu, 2002; Kumar, 2020). However, the turbulence 

measurements from the spectrum width method lead to filtered results. Some of these 

corrections will yield negative values of spectral widths and do not provide a consistent value 

of ε in the presence of strong winds (Satheesan, 2002; Doviak, 1984). Turbulence energy 

dissipation rate (ε) measurements from low-resolution signals are always affected by the 

instrument noise; some literature on instrument noise corrections is available. For example, 

Wilson et al. (2010, 2011) proposed a method based on optimal smoothing and statistical tests 
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to remove the false overturns caused by the instrument noise. Waclawczyk et al. (2017) 

proposed a new method for estimating ε and preliminary tests of the new method performed 

on the data from Stratocumulants top measurement campaign (POST). He proposed two 

possible modifications of the zero crossing method, showing that the performance of the new 

methods was comparable with estimates from standard retrieval methods. The generation of 

turbulence in the atmosphere will create nonlinearity in the processes (Pope, 2000). This kind 

of nonlinear interaction among eddies can be studied using HOSE (Lii et al., 1976; VanAtta, 

1979). 

  Here, we proposed a novel approach to estimating ε from the nonlinear index based 

measurements obtained from the Bicoherence (Choudhury, 2003), which provides 

characteristics of the turbulence in the atmosphere. Turbulence in the atmosphere causes 

spectral width enhancement in radar observations, making the process nonlinear. A new index 

has been formulated to determine the nonlinearities in the received backscattered signals. This 

index is called the nonlinear index (NLI), which can be calculated from the Bicoherence. It 

represents a measure of turbulent energy in the atmosphere for a given volume. An empirical 

relationship is generated using a nonlinear index to determine the turbulent energy dissipation 

rate (ε). Generally, spectrum width can measure the strength of turbulence since the spectrum 

width is a function of both meteorological and radar parameters (Doviak, 1984). Therefore, 

spectral broadening corrections must be done to measure the turbulence energy dissipation 

rate (ε). In the case of nonlinear index based estimation, the correction of parameters due to 

the system is not expected. This new approach is completely based on nonlinear statistics, 

which indirectly measures atmospheric turbulence. A large number of data sets have been 

considered for this analysis to ensure a good correlation exists in estimating ε between the 

two approaches (from the nonlinear index and spectrum width). Various literature 

experimentally studied the spectral energy transfer due to wavenumber interactions in a 

turbulent flow using Bispectrum measurements (Lii et al., 1976; Van Atta, 1979;Yamada, 

2010; Hasselman, 1973; Helland, 1978; Yeh, 1973; Herring, 1980). This is one of the main 

reasons to consider the HOSE on atmospheric signals. 

The regression analysis has been carried out, and we observed a good correlation between 

the estimated parameter (ε from the NLI approach) and the observed parameter (ε from the 

spectrum width approach). In this paper, we considered convective and clear-air event data 

sets to study the nonlinear interactions in the signals using HOSE. Empirically, we observed a 



75 

 

power law relationship exists between the NLI and ε through regression analysis. Both 

variables are logarithmically correlated well with each other, and the observed correlation 

between these variables is above 75%. 

4.3 Higher-order spectral analysis for nonlinearity identification 

Nonlinearity identification in the system is generally based on input and output data. Such 

datasets can be generated for an ideally controlled system, but for most natural processes, 

control of the input is not possible to measure directly. Therefore, measurements are derived 

indirectly.  

Whereas man-made structures are linear in design, they approach nonlinearity under 

severe load situations. The atmosphere is governed by generalized equations for 

thermodynamics and dynamics of the fluids. 

     Higher-order spectral analysis has been carried out on the backscattered atmospheric 

signals received from the MST radar to study the nonlinearities in the atmospheric signals 

caused by turbulence patterns. This new approach is completely based on the nonlinear 

statistics and observed in the signal regions (i.e. noise-free regions: the presence of noise 

generates many spurious peaks during Bicoherence estimation. These spurious peaks can be 

removed by following the approach of Choudhury et al. (2003)). This approach has been 

tested for various datasets of clear air and convective events and provides an indirect 

measurement of atmospheric turbulence. 

Higher order spectral analysis or Bispectrum is one of the useful techniques in signal 

processing. The traditional signal processing tools use only first, and second-order statistics. 

These tools are mainly suitable for processing linear and Gaussian signals, which are not 

useful for finding nonlinearities in the process associated with it and the signals generated. In 

practice, some processes may exhibit nonlinear behaviour, i.e. the process deviates from 

linearity and Gaussianity. This type of behaviour can be studied using Higher-order statistics 

(HOS). Higher order spectrum utilizes tools such as Bispectrum and Bicoherence to identify 

and quantify the nonlinearities in the process. A detailed description of the Higher-order 

spectral analysis is given by Nikias and Mendel (1993), Nikias and Petropulu (1993), and 

Nikias (1987). 
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     Bispectrum is a Fourier transform of the third-order cumulant function (Nikias and 

Mendel, 1993;Nikias and Petropulu, 1993). By definition, it is a 3-dimensional (3D) 

complex-valued function with both magnitude and phase. Therefore, the Bispectrum can be 

plotted against frequency variables f1 and f2 in a 3D plot. The interaction between frequency 

components f1 and f2 represents the nonlinear interactions in the signals and can be identified 

in the principal domain of Bicoherence. A detailed study of nonlinear interaction 

identification in the principal domain is given by Peter et al. (2006) and Jouny (1992). The 

Bispectrum function in discrete form is given by, 

B(f1,f2)=X(f1)X(f2)X*(f1+f2)                                       (4.1) 

B(f1, f2)=|B(f1, f2)|exp(jθ(f1, f2)), where f1, f2 are frequency indexes. X denotes the Fourier 

transform of the signal, and X* is its conjugate. Bispectrum in the above equation (1) explains 

the three-wave interactions observed in f1,  f2, and f1+f2. 

We know complex signals do not have the same symmetric properties as real signals. The 

symmetry property of the Bispectrum of the complex-valued signals depends on the 

placement of the complex conjugate operator in the third-order cumulant function (Brillinger, 

1967). Therefore, each moment spectra of different conjugation patterns have its own 

principal domain and symmetries (as shown in Table 1). The definition and symmetric 

properties of the Bispectrum of complex-valued signals have been discussed by Peter et al. 

(2006) and Jouny (1992). The bispectrum algorithm is already discussed in Chapter 3.  

Anandan et al. (2001) applied Higher order spectral analysis on atmospheric signals and 

showed that the atmospheric signals could not be completely Gaussian in nature. Still, 

significant non-Gaussian components will also be present in the backscattered received 

signals. Conventional methods like the Fourier transform cannot identify features such as 

non-Gaussianity and nonlinearities of eddies in a turbulent flow.  

Turbulence measurements from the spectrum width method require corrections for various 

radar dependent and meteorological parameters. However, the nonlinearity index does not 

depend on any radar system related parameters, which may help better estimate turbulence 

parameters in the atmosphere.  

4.3.1 Spurious peaks removal 
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Small spurious peaks arise in the bicoherence plot occasionally, making interpretation 

difficult. These misleading peaks are caused by tiny values in the bicoherence denominator 

(Collis et al., 1998). To minimize this effect, we must add a small constant (C) to the 

denominator. The bicoherence denominator is comparable to the power spectrum of the 

original signal. If the signal includes one or more spectral peaks at specified frequencies, the 

denominator possesses these qualities as well. 

Choosing the right value of C will aid in the removal of spurious peaks. C may be generated 

automatically by taking the maximum of the Pth percentiles of the estimated values of D(f1, 

f2). If 25% of the values in D(f1,f2) are assumed to represent the peaks, then P can be selected 

as the 75
th

 percentile. 

BIC
2
(f1,f2)=

 
 

 
               

         
  

   

 
 

 
               

  
     

 

 
                 
   

         (4.2) 

4.3.2 Nonlinear index measurement from Bicoherence based method  

Bicoherence (BIC) is useful to provide the quantitative measure of nonlinearities in 

signals, and it can be obtained by statistical averaging of Bispectrum estimation and 

normalization procedure as given by,  

BIC
2
(f1,f2)=

 
 

 
               

         
  

   

 
 

 
               

  
     

 

 
              
 
   

       (4.3) 

Bicoherence (BIC) from the above (4.3) represents the squared version of the normalized 

Bispectrum. M is the number of data segments. Bicoherence is a dimensionless quantity that 

varies from 0 to 1.  

The signal generation process is called linear if the signal is Gaussian (Rao and Gabr, 

1980).  The signal generating method should be evaluated for linearity if the signal is non-

gaussian. The amplitude of the squared bicoherence for a non-gaussian and linear signal will 

be a non-zero constant for all bifrequencies in the principal domain. We may readily check 

the consistency of squared bicoherence by analyzing and observing the flatness of the 3-D 

squared bicoherence plot. If the magnitude of the squared bicoherence is constant at all 

bifrequencies in the principal domain, the variance of the calculated bicoherence should be 

zero. 
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Hinich (1982) constructed a statistical hypothesis test to identify the linearity in the signals 

by examining the Bicoherence at each frequency in the principal region. A limitation of this 

approach is that it overestimates the number of bi-frequencies in the principal domain.  

Choudhury et al. (2004) constructed a nonlinearity measure by comparing the highest 

squared bicoherence with the average squared bicoherence plus two times the standard 

deviation of the estimated squared bicoherence to test the flatness or constancy of the squared 

bicoherence. 

Later, Choudhury (2003) developed a new Nonlinear Index; to test nonlinearity in the 

signals. The estimation of the nonlinear index from the Bicoherence is given by, 

NLI=BIC
2

max-(BIC
2

robust+2              )      (4.4)                          

Where BIC
2

robust,               are the robust mean and robust standard deviation, 

respectively. The term robust statistics refers to the measurements that are not affected by 

outliers in the data. They can be calculated by excluding the largest and smallest Q% of the 

bicoherence. A good value of Q can be chosen as 10 (Choudhury et al., 2004).  

Nonlinearities can be identified and analyzed in the principal domain of Bicoherence 

(Peter et al., 2006; Jouny, 1992). The magnitude of this index is bounded from -1 to 1.The 

NLI is always less than or equal to zero for the linear signal process. For nonlinear signal 

processes, NLI is greater than zero.  

4.4 Data Analysis and Method 

4.4.1 MST radar  

The MST radar is located at Gadanki (13.5
0
N, 79.2

0
E), Tirupati, operating in the VHF 

band (53MHz). This radar can detect the backscattering atmospheric echoes resulting from 

the small-scale inhomogeneities in the refractive index fluctuations due to variations in 

humidity and temperature. The data used in this analysis are collected during the convective 

event (on 16 March 2006, between the period of 12:00 to 17:00 Indian Standard Time (IST)) 

and the clear air event (on 29 July 2004, between the period of 13:00 to 15:00 IST). 

Convective and clear air events are selected based on observations from the vertical velocity 

profiles. If the vertical velocity exceeds 1.2 ms
-1

, then the system will be considered as a 

convective system. Rao et al. (1999) distinguished stratiform, convective, and clear-air 
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Doppler profiles from the vertical velocities. Radar uses four obliques (off-vertical beams) 

and a vertical beam. The complete details of the system description and signal processing 

techniques can be found elsewhere (Rao et al., 1995). The analysis has been carried out in the 

height range of 3.6 to 20 km with 150 m vertical resolution along the beam direction. 

Experiments have been conducted in both vertical and off-vertical directions with a range 

resolution of 150 m. The backscattered echoes in time series are stored in the form of in-

phase and quadrature phases for offline processing. Here in this paper, various data sets have 

been considered for HOSE analysis. Fig.4.1 shows the process steps of the proposed method. 

 

 

 

 

 

 

  

 Y N 

 

 

Fig. 4.1: Flow chart of process steps of the proposed approach. 

4.4.2 Radiosonde 

To check the accuracy of the nonlinear index based approaches, we used radiosonde data to 

compare the turbulence energy dissipation rate (ε) obtained from the nonlinear index (NLI) 

and spectral width (SW) based method. The radiosonde will be launched every day at 

Gadanki around 17:00 IST. In this paper, we used the Thorpe method (Thorpe and Deacon, 

1977) on radiosonde data (observed on 29 August 2008, around 17:00 IST) to measure the 

turbulence energy dissipation rate (ε).  

Start 

Time series 

data 

Estimate Bispectrum 

Estimate Bicoherence by normalizing the 

Bispectrum 

Calculate NLI by performing a statistical test 

followed by Choudhury.et.al 2003 approach 

The Process is Nonlinear 
   NLI > 0? 

The Process is Linear 
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4.5 Results and Discussions 

The Bispectrum algorithm has been applied to the atmospheric signals received from the 

MST radar. From Bicoherence, a nonlinear index has been calculated for each range bin. The 

Doppler power spectrum is computed for backscattered radar signals using Fast Fourier 

Transform (FFT). The mean noise level is calculated for each range bin (Hildebrand, 1974) 

and removed from the power spectrum, after that; moments are computed (Woodman, 1985). 

The spectrum width can be obtained from the second moment, which gives information about 

turbulence. Spectral broadening corrections have been done, followed by Das (2010) and 

Hocking (1983). We followed Cohn (1995) method for measuring turbulence energy 

dissipation rate (ε), as discussed in Chapter 2. 

 

Fig. 4.2: a) Sample power spectra computed through FFT, and  b) Bicoherence plot of the 

off-vertical beam on a clear air day 

Fig. 4.2(a) shows the power spectrum obtained for one range bin (before the noise level 

estimation). The main atmospheric signal peak is observed from 0 to 2 Hz. Since atmospheric 

signals are contaminated with noise, and most of the time, their fluctuations influence the 

analysis. Sometimes, spurious peaks occur in the bicoherence plot due to noise in the signal; 

therefore, noise removal is an important part of signal processing to get the best estimation. 

       The noise level should be removed from the power spectrum to analyze nonlinear 

statistics in the signals. Fig. 4.2(b).Shows the nonlinear interactions between frequency 

components in the principal domain of the Bicoherence plot. A maximum bicoherence value 

of 0.3575 is observed at frequencies of (1.575 Hz, 1.024 Hz). Fig. 4.3(a)-(c) shows the 

spectrum width, turbulent energy dissipation rate (ε), and nonlinear Index (NLI) observed 

during a clear air day. The maximum value of 10
-1 

m
2
s

-3
 turbulence energy dissipation rate is 
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estimated at 15-20 km height, as shown in Fig. 4.3(b). At this height, there is always a large 

disturbance in the atmosphere associated with the shear mechanism. It can be seen from Fig. 

4.3(a) and Fig. 4.3(c) that a significant enhancement in the value of the nonlinear index is 

observed along with a large value of spectral width at the same region. The characteristic of 

this enhancement resembles that of ε estimated. The maximum spectrum width is observed 

around 3 ms
-1

, and the maximum nonlinear index is around 0.75 between the 15-20 km 

altitude region. Fig. 4.4(a)-(c) shows the spectrum width, turbulent energy dissipation rate (ε), 

and nonlinear Index (NLI) for the observation conducted during the convective system 

prevailing over the radar site. Here also, it is observed that the profiles of the nonlinear index, 

spectrum width, and turbulence energy dissipation rate almost follow the same pattern. In 

Fig. 4.4(c), the maximum  nonlinear index is observed to be around 0.23 at the height of 10-

12 km; the same is observed in the spectrum width and turbulent energy dissipation rate at 

this height, as shown in Fig. 4.4(a) and Fig. 4.4(b).  

 

Fig. 4.3: Height profiles of a) Spectrum width (ms
-1

), b) Turbulent energy dissipation rate, ε 

(m
2
s

-3
) and c) Nonlinear index observed on a clear air day. 
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Fig. 4.4: Height profiles of a) Spectrum width (ms
-1

), b) Turbulent energy dissipation rate, ε 

(m
2
s

-3
) and c) Nonlinear index observed on a convective day. 

 

Fig. 4.5: The height and time contour plots corresponding to a) Turbulent energy dissipation 

rate, ε (m
2
s

-3
) in log scale, b) Nonlinear index (NLI) in log scale, c) Spectrum width in ms

-1
, 

of the off-vertical beam (East beam) of the convective system observed on 16 March 2006. 

 

Fig. 4.6: The height and time contour plots corresponding to a) Turbulent energy dissipation 

rate, ε (m
2
s

-3
)  in log scale, b) Nonlinear index (NLI) in log scale, c) Spectrum width in ms

-1
, 

of the vertical beam (Zenith-X) of the convective system observed on 16 March 2006. 
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Fig. 4.7: The height and time contour plots corresponding to a) Turbulent energy dissipation 

rate, ε (m
2
s

-3
)  in log scale, b) Nonlinear index (NLI)  in log scale, c) Spectrum width in  ms

-1
, 

of the vertical beam (Zenith-X) of clear air system observed on 29 July 2004. 

 

Fig. 4.8: The height and time contour plots corresponding to a) Turbulent energy dissipation 

rate, ε (m
2
s

-3
) in log scale, b) Nonlinear index (NLI) in log scale, c) Spectrum width in ms

-1
, 

of the off-vertical beam (East beam) of clear air system observed on 29 July 2004. 

4.5.1 Case 1: Convective system (16 March 2006) 

Analysis has been carried out in many data sets for better understanding and quantifying 

these two approaches (ε from the spectrum width and nonlinear index). A convective system 

was observed over the radar site on 16 March 2006 between the period of 12:00 to 17:00 IST. 

Both vertical and off-vertical beams have been considered for the analysis. Fig. 4.5(a)-(c) 

shows the range and time contour plots corresponding to the turbulent energy dissipation rate 

(ε), nonlinear index, and spectrum width. 

Fig. 4.5(a) shows the contour plot of turbulence energy dissipation rate (ε) plotted in a log 

scale from 1.5 to 20 km. The turbulent energy dissipation rate range is observed from 10
-1 

to 

10
-8 

m
2
s

-3
.Maximum values of turbulence energy dissipation rate (-15 to -30 m

2
s

-3
) are 

observed at the lowest altitude, up to 12 km, and the minimum values (-40 to -60 m
2
s

-3
) are 

found above 13.5 km. These values may vary depending on the season (Nastrom, 1997). 

Strong turbulence can occur in the lower regions of the atmosphere due to the convection 

process, where we can expect a maximum number of nonlinear interactions among eddies in 

this region. Therefore the index of nonlinearity will be more in this turbulence region. It can 

be observed from Fig. 4.5(b) that the nonlinear index indirectly gives an indication of 

turbulent energy dissipation rate (ε), as it has a maximum value of the nonlinear index at 

lower height regions up to 10.5 km, similar kind of enhanced values of turbulence energy 
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dissipation rate and spectrum width observed at the same region. Therefore, it can be 

observed clearly that there exists a good similarity between the nonlinear index and turbulent 

energy dissipation rate (ε). Fig. 4.5(c) shows the spectrum width values vary between the 

range of 0 to 5 ms
-1

, the maximum spectrum width of 2 to 4.5 ms
-1 

is observed at lower 

heights (~10 km), and minimum values are found above 13 km with a magnitude around 0.5 

ms
-1

. Fig. 4.6(a) shows the strong turbulence (-10 to -30 m
2
s

-3
) that occurred in the regions of 

the lower layer (up to 10 km height); correspondingly, we can observe the maximum values 

in nonlinear indexes and spectrum width (2 to 4.5 ms
-1

) at the same region, as shown in Fig. 

4.6(b) and Fig.4.6(c). 

4.5.2 Case2: Clear Air system (29 July 2004) 

Radar observations during clear air day (on 29 July 2004, between the period of 13:00 to 

15:00 IST) were also considered for the higher order spectral analysis to identify the 

nonlinear interactions between the eddies in a turbulent flow caused by wind gradients/wind 

shears. It is expected that strong wind shear regions have more turbulence. Fig. 4.7(a) and 

Fig. 4.8(a) show the contour plot of turbulent energy dissipation rate corresponding to 

vertical and off-vertical beams plotted in a log scale from 3.6 to 20 km. The lower regions 

have strong turbulence (-35 to -45 m
2
s

-3
) up to an altitude of 12.5 km; also, we can observe 

the maximum value of the nonlinear index at the same region, as shown in Fig. 4.7(b) and 

4.8(b). From Fig. 4.7(a) and Fig. 4.8(a), a strong turbulence peak is observed between the 

region of 15 to 18.5 km; this may be due to the presence of temperature sheets near the 

tropopause region. These sheets are commonly formed in regions of higher static stability 

(Luce, 2001; Jayarao, 1994; Lane et al., 2003; Trier et al., 2020; Sharman et al., 2012; Ko and 

Chun, 2019; He et al., 2022; Nath, 2009). The study of temperature sheets is detailed given in 

Chapter 6. We can see that similar enhanced values of the nonlinear index are also observed 

at the same altitude (15 to 18.5 km), as shown in Fig. 4.7(b) and Fig. 4.8(b). From Fig. 4.7(c), 

the spectrum width is found to be in the range of 0 to 0.9 ms
-1

, with a maximum value of 0.5 

to 0.9 ms
-1 

found near 9.45 to 12 km and above 15 to 18.45 km. Fig 4.8(c) shows the 

maximum values of spectrum width observed at the height of 15 to 18.45 km with a 

magnitude of 0.5 to 1.2 ms
-1

. 
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4.6 Regression Analysis of Variables 

We established an empirical relationship between the nonlinear index (NLI) and turbulent 

energy dissipation rate (ε) through regression analysis. It is observed that the turbulence 

energy dissipation rate is proportional to the nonlinearity index raised to a power. Therefore, 

we considered the power regression model for this analysis. Since power regression is a 

nonlinear model, thus we calculate the logarithms of the parameters to obtain a linear 

regression. A perfect fit regression has been established using a log regression model and 

tested for various data sets. We observed that the correlation coefficient between the two 

approaches is approximately 0.80, as given in Table 3.  

The empirical relationship between turbulence energy dissipation rate measured from 

spectrum width and nonlinear index in the power model is given by 

  ε=A(NLI)
B                                                 

(4.5) 

To obtain a linear regression model, apply log10 in the above equation on both sides.  

log10(ε)=log10(A(NLI)
B
)                                                                                 (4.6) 

After transforming variables into the log-log regression model, the (4.6) can be written as  

log10(ε)=p1(log10(NLI))+p2                                                                      (4.7) 

Where A and B are nonlinear regression coefficients, and p1 and p2 are log-transformed 

linear regression coefficients. The values of corresponding R
2
 and correlation coefficient for 

different data sets of convective and clear air systems have been given in Table 3. From the 

analysis of various data sets, we observed that the values of p1=5.4, p2=-0.9415, A≈0.1144, 

and B=5.4. The values of p1, p2, A, and B closely match with the values obtained from 

various data sets. These values have been checked for different data sets and found to have a 

good correlation between NLI and ε.  

Therefore (4.7) can be summarized empirically, and it is given by 

log10(ε)≈5.4*(log10(NLI))-0.9415                                                          (4.8) 

ε ≈ 0.1144*(NLI) 
(5.4)

 

NLI≈1.4940*(ε)
(1/5.4)                                                                                                                             

(4.9) 
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The above (4.9) is valid for both convective and clear air systems. 

Fig. 4.9(a) and 4.9(b) show the turbulence energy dissipation rate (ε) computed from the 

spectrum width (SW) and nonlinearity index (NLI) observed during convective (16 March 

2006) and clear air events (29 July 2004). It can be seen that the turbulent energy dissipation 

rate follows almost the same for both techniques.  

Fig. 4.10(a)-(d) shows the statistical comparison of turbulence energy dissipation rate 

estimated from spectrum width (εSW) and from nonlinearity index (εNL) observed from the 

corresponding datasets of 16 March 2006, 29 July 2004, 29 August 2008, and 23 June 2007 

respectively. The correlation coefficients observed from these figures are above 0.7. 

 

Fig. 4.9: Height profiles of turbulence energy dissipation rate, ε (m
2
s

-3
) computed from 

spectrum width (SW) (dotted line) and Nonlinearity index (NLI) (Solid line) in log scale for 

the data sets of, a) 16 March 2006, and b) 29 July 2004. 
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Fig. 4.10: Scatter plot of turbulence energy dissipation rate, ε (m
2
s

-3
) measured from 

spectrum width and nonlinearity index in log scale for different data sets of a) 16 March 2006  

b) 29 July 2004  c) 29 August 2008, and d) 23 June 2007. 

4.7 Error analysis 

Table 4.1: Standard Error values of regression model for different data sets. 

Data sets Standard Error (SE) P value 

16 March 2006 0.1412 2e-37 

29 July 2004 0.181 5e-29 

19 June  2020 0.24 0.25e-34 

24 April 2019 0.112 3.5e-40 

29 August 2008 0.38 6e-39 

23 June 2007 0.290 5.5e-39 

09 October 2009 0.100 4.2e-25 

21 September 2009 0.172 3.1e-22 

 

 

Fig. 4.11: Boxplot of turbulence energy dissipation rate, ε (m
2
s

-3
) obtained from the NLI and 

SW (in log scale) for various data sets  

Fig.4.11 shows the boxplot of ε obtained from the NLI and SW method for the various data 

sets of 16 March 2006, 29 July 2004, 09 October 2009, 21 September 2009, 23 June 2007, 24 

April 2019, and 19 June 2020, respectively. The Middle line of each box represents the 

median value, and it is observed between the range of 10
-3

 to 10
-5

 m
2
s

-3
. We can see from the 
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boxplots the spread of data is less in NLI based approach compared to the spectrum width 

based approach. The corresponding standard errors of the estimates of each data set have 

been listed in Table 2. 

 

Fig. 4.12. Standard error of the estimates with different sample sizes 

To assess the accuracy of estimations and to check the error in the third-order statistics, we 

considered different sample sizes for the analysis. We calculated the standard error of the 

estimates. Fig. 4.12 shows the standard error as a function of sample size. It shows that 

Bispectrum produces consistent results as the sample size increases; thus, the standard error 

decreases, indicating that the observations are closer to the fitted line. 

4.8 Turbulence Parameters estimation from Radiosonde and Radar 

observations and its comparison   

Atmospheric turbulence parameters such as eddy dissipation rate, diffusivity, inner scale, 

and outer scale of turbulence can be measured using radiosonde instruments. The 

transformation of turbulence energy from larger scale to smaller scale eddies is called inertial 

subrange. In an isotropic, homogeneous turbulence, the eddy dissipation rate equals the 

spectral energy flux or the cascade rate within the inertial subrange. Eddy dissipation rate can 

be estimated by integrating the wave number space of kinetic energy loss due to molecular 

viscosity per unit mass. Thorpe method (Thorpe and Deacon, 1977)  has been utilized to 

estimate the turbulence eddy dissipation rate, as discussed in Chapter 2. 

4.8.1  Turbulence length scales 

Length scales are useful to represent the size of the eddies. The buoyancy scale represents the 

largest eddies that can be obtained from ε and N.  

                                                               l0=7.4η                               (4.10) 
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Fig. 4.13. Profiles of a) Temperature (K), b) Stability parameter (s
-2

), c) Wind speed (ms
-1

), 

and d) Turbulence energy dissipation rate, ε (m
2
s

-3
) obtained from the Radiosonde data on 29 

August 2008 (05:00 IST). 

 

Fig. 4.14. Profiles of  a) Kinematic Viscosity, b) Kolmogorov Scale, c) Buoyancy Scale, and 

d) Inner scale obtained from the Radiosonde data on 29
th

  August 2008 (05:00 IST) 

Fig.4.13(a)-(d) shows the vertical variation of temperature, stability parameter, wind speed, 

and ε, respectively. The variation of the stability parameter is observed in the order of 0.01s
-2,

 

as shown in Fig. 4.13(b). 
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Fig. 4.15.Thorpe Displacement and Thorpe length obtained from the radiosonde. 

From Fig. 4.13(c), the maximum wind speed is observed between the region of 10 to 18 

km. The maximum values of ε (~ 0.001 m
2
s

-3
) are observed above 8 km, 12 km, and 15 km 

(Fig. 4.13(d)). Fig. 4.14(a)-(d) shows the vertical variations of kinematic viscosity, 

Kolmogorov scale, buoyancy scale, and inner scale. It can be seen from Fig. 4.14(a), the 

variation of kinematic viscosity increases with height. Fig. 4.14(b) shows the Kolmogorov 

scale, varying from ~0.001 to 0.004 m. The buoyancy scale varies from 10 to 800 m (in Fig. 

4.14(c)). Variations of inner scales are observed in the order of 3✕10
-2

 m, as shown in Fig. 

4.14(d), with smaller values occurring at lower altitudes and larger values at higher altitudes. 

Fig. 4.15  shows the vertical profiles of Thorpe displacement and Thorpe length, respectively. 

The Thorpe length is the root mean square of the Thorpe displacement.  
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Fig. 4.16. Contour plots of Spectrum width (ms
-1

) a) before and b) after corrections and 

turbulence energy dissipation rate, ε (m
2
s

-3
)obtained from the c) SW, and d) NLI (in log 

scale). 

Fig.4.16(a)-(d) shows the contour plots of spectrum width before and after spectral 

broadening corrections followed by Das (2010) and Hocking (1983), and ε obtained from the 

spectrum width (after corrections) and nonlinear index. The maximum values of ε (-20 to -45 

m
2
s

-3
) in the log scale are observed between the region of 3.6 to 9.5 km, as shown in Fig. 

4.16(c). We can observe that maximum values of the nonlinear index are also found at the 

same region of 3.6 to 9.5 km, as shown in Fig. 4.16(d). Therefore, the nonlinear index 

indirectly indicates turbulent energy dissipation rate (ε), 

 

Fig. 4.17. Comparison profiles of turbulence energy dissipation rate, ε (m
2
s

-3
) obtained (in 

log scale) from the GPS Radiosonde, NLI, and SW 

4.9  Frequency distribution of Turbulence energy dissipation rate 
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Fig. 4.18: Histogram plots of turbulence energy dissipation rate, ε (m
2
s

-3
) obtained (in log 

scale) from the a) GPS radiosonde, b) SW, and c) NLI  

Fig. 4.17 shows the comparison profiles of ε obtained from the radar (NLI and SW) and 

radiosonde measurements (using the Thorpe method). The variation of ε obtained from the 

radiosonde measurement agreed well with that of the NLI and SW method. In all estimates, 

large values of ε are observed from 9 to 10 km, 12 to 13 km, and 15 to 16 km. Kohma et al. 

(2019) assumed that the distance between the radiosonde and the radar slightly affects the 

statistics, and the radiosonde did not always measure the same volume as the radar. Earlier 

studies compared ε estimation from radar and radiosonde based measurements and observed 

the difference in the order of magnitude of 1 (Kohma. et al., 2019). Previous research 

(Kantha and Hocking, 2011; Li et al., 2016) revealed that due to the high degree of 

intermittency and spatial variability of turbulence in the free atmosphere, a one-to-one 

connection between radar and radiosonde estimations is challenging. As a result, many earlier 

research concentrated on the statistics of the two estimations, despite the fact that some 

papers detailed case studies of turbulent layers from simultaneous radar and radiosonde 

observations (Wilson et al., 2014). In the next Section, the current study compared radar and 

radiosonde-based estimations. 

Fig. 4.18 (a)-(c) shows the frequency distribution of ε obtained from the radiosonde and 

radar based measurements (such as spectrum width and nonlinearity Index). Turbulence 

energy dissipation rate (in log scale) variability is observed from 10
-7 

to 10
-2 

 m
2
s

-3
, with the 

median values of ~ 8✕10
-5 

to 3✕10
-4 

m
2
s

-3
.  It shows that all quantities approximately follow 

the log-normal distribution, but radar based estimations show a slightly skewed distribution. 

Estimating ε from the radar and radiosonde  have different approaches; furthermore, there are 

height ambiguities between the proportionality constant in Thorpe scale length and the 

Ozmidov scale (Clayson  and  Kantha, 2008). Comparisons between all are reasonable when 

all of these criteria are considered. 

4.10 Comparison with previous studies on turbulence eddy dissipation 

rates  

To check the accuracy of this algorithm, the turbulence energy dissipation rate obtained from 

both (NLI and SW) approaches have been compared with the previous results published by 

Kumar et al. (2020). The experiment was conducted on 24 April 2019 (09:43-18:33 Indian 
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Standard Time (IST) and on 19 June 2020 (10:36-19:22 IST), and considered these datasets 

for the HOSE analysis. The MST radar has been operated in vertical and two 10-degree off-

vertical towards east and south directions with parameters: number of FFT points-256, Inter 

pulse period-160 μs, number of coherent integrations-256, pulse width-8 μs and range 

resolution-150 m.  

Case 1: 24 April 2019 

Weak to moderate winds with a magnitude of 10 ms
-1

 have been observed during this 

experiment. Kumar.et al.(2020)uses various antenna configurations for the spectrum width 

corrections (in this paper, we considered the variance values obtained from 32✕32 antenna 

configuration) and showed that the values of observed variance vary for east and south beams 

in a larger magnitude for smaller and larger configurations at 7.65 km. The correlation 

coefficient of the ε measurements, obtained from the NLI and SW, is around 0.79. Fig.4.19 

shows the vertical profiles of temperature and brunt vaisala frequency (N) observed from the 

radiosonde on 24 April 2020 at 17:30 IST from Gadanki. 

 

Fig. 4.19: Temperature and Stability parameter profiles obtained from the GPS radiosonde on 

24 April 2019. 

Fig. 4.20(a)-(c) shows the Contoured Frequency by Altitude Diagrams (CFAD) profiles of 

ε estimated from  the NLI and SW. The values of turbulence energy dissipation rate (ε) vary 

between 10
-8

 to 10
-1 

m
2
s

-3 
in the region of 3.6 to 18 km (in log scale), with the mean values 

varying from 10
-4

 to 10
-3 

m
2
s

-3 
in both approaches (ε from SW and NLI). The values of ε 

obtained in the present study compared very well with those available in the literature 

(Kumar et al., 2020). Several field campaigns were conducted during this experiment to 
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compare the ε obtained from radar and in-situ measurements. In those studies, they observed 

the mean values of ε vary in the range of 10
-4

 to 10
-3 

m
2
s

-3 
in the lower and middle 

atmosphere. The present study also shows the mean value of ε approximately varies from 10
-4

 

to 10
-3 

m
2
s

-3 
between the region of 3.6 to 18 km, which matches well with those stated by the 

in-situ measurements. 
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Fig. 4.20: CFAD profiles of turbulence energy dissipation rate, ε  (m
2
s

-3
) estimated from the 

nonlinear index and spectrum width (in log scale ) for a) East, b) South, and c) Zenith beams, 

respectively, on 24 April 2019 (09:43-18:33 IST). 

 

 

Fig. 4.21: Scatter plot of turbulence energy dissipation rate, ε (m
2
s

-3
)  measured from 

spectrum width and nonlinear index (in log scale) for the data set of 24 April 2020 (09:43-

18:33 IST). 

Fig. 4.21 shows the statistical comparison between turbulence energy dissipation rate (ε) 

obtained from the spectrum width and nonlinear index (in log scale), showing a correlation 

coefficient of 0.7980. 

Case 2: 19 June 2020 

To check the efficiency of the proposed method, we considered strong wind events 

observed on 19 June 2020. The wind speed of more than 30ms
-1

 has been observed during 

this experiment due to the prevailing tropical easterly jet during the monsoon season (June-

September). The corresponding plots of zonal and meridional wind components (u and v) 

have been shown in the literature (Kumar et al., 2020). 

       Fig. 4.22(a)-(c) shows the Contoured Frequency by Altitude Diagrams (CFAD) profiles 

of ε estimated from the NLI and SW. The range values of 10
-6

 to 10
-1 

m
2
s

-3 
turbulence eddy 

dissipation rate (ε) are observed between the region of 3.6 to18 km, with the mean values of 

2✕10
-4

 to 8✕10
-4 

m
2
s

-3 
are observed in both approaches (ε from SW and NLI). The values of 

ε obtained in the present study compared very well with those available in the literature 

Kumar et al. (2020). Several field campaigns were conducted during this experiment to 

compare the ε obtained from radar and in-situ measurements. In those studies, they observed 
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the mean values of ε vary between the range of 0.2✕10
-3

 to 0.8✕10
-3 

m
2
s

-3 
in the lower and 

middle atmosphere. The present study also shows that the mean values of ε approximately 

vary from 0.2✕10
-3

 to 0.8✕10
-3 

m
2
s

-3
 between the region of 3.6 to 18 km, which matches 

well with those stated by the in-situ measurements. 

  

 

 

Fig. 4.22: CFAD profiles of turbulence energy dissipation rate, ε  (m
2
s

-3
) estimated from the 

nonlinear index and spectrum width (in log scale ) for a) East, b) South, and c) Zenith beams, 

respectively, on 19 June 2020 (10:36-19:22 IST). 
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Fig.4.23: Scatter plot of turbulence energy dissipation rate, ε (m
2
s

-3
) measured from spectrum 

width and nonlinear index (in log scale) for the data set of 19 June 2020 (10:36-19:22 IST). 

Fig. 4.23 shows the statistical comparison between ε obtained from the spectrum width and 

nonlinear index (in log scale), showing a correlation coefficient of 0.7848. 

Table 4.2: Values of correlation coefficients for different data sets. 

 

 

 

Different 

data sets of 

Clear air 

and 

convective 

observations 

 DD-MM-YY Correlation 

Coefficient(CC) 

Convective system  (16 March 2006) R
2
: 0.6945, CC: 0.8334 

Clear air  system (29 July 2004) R
2
 : 0.6618, CC:0.8135 

Clear Air system (29 August 2008) R
2
 : 0.6668, CC:0.8166 

Convective system (09 October 2009) R
2
 : 0.7150, CC:0.8456 

Convective system (21 September 2009) R
2
 : 0.5875, CC:0.7663 

Clear Air system (23 June 2007) R
2
 : 0.6139, CC:0.7835 

Clear Air system (24 April 2019) R
2
 : 0.6368, CC:0.7980 

Clear Air system (19 June 2020) R
2
 : 0.6159,CC:0.7848 

 

4.11 Chapter Conclusion 

Higher-order spectral analysis has been applied to the atmospheric radar backscattered 

signals to detect the nonlinearities present in the atmospheric signals. Both convective and 

clear air events data have been considered for the analysis. The empirical relationships are 

established between NLI and ε through regression models. The turbulent energy dissipation 
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rate (ε) estimated from the Nonlinear index matches fairly well with ε measured from the 

spectral width method in both clear air and convective system with a good correlation of 

around 0.8. A better correlation index may be possible by tuning the parameters; however, 

more attempts have not been made because spectral width based approaches also implement 

system-dependent corrections. Therefore, the possibility of estimation errors needs to be 

quantified in greater detail. NLI doesn't apply any correction on computed value. From the 

above results, we can observe that the nonlinear index shows the existence of turbulence in 

the backscattered signals, which means that it measures the turbulence intensity. To check the 

accuracy of this algorithm, a comparison has been made with the radiosonde observations and 

with previous studies published and found to be in good agreement. One of the limitations of 

this approach is that this analysis needs to be carried out on time series data having a 

reasonable number of sample points to capture the statistical properties, and the analysis is 

computationally intensive. From the above results, one can say that higher-order spectral 

analysis effectively identifies and characterizes the nonlinearities in the atmospheric signals, 

which can be used for estimating one of the important atmospheric parameters, such as 

turbulence energy dissipation rate. 
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Chapter 5 

Empirical Mode Decomposition (EMD) on Weather 

Radar signals 

Prelude: This chapterprovides an overview of various EMD denoising techniques based on 

threshold criteria. This chapter discusses the weather radar simulation analysis using 

various EMD denoising techniques in the presence of ground clutter and noise. We also 

discussed the limitations of the existing approaches. This chapter presents a new EMD 

denoising approach for removing noise and clutter in weather signals. This chapter gives the 

results obtained from EMD denoising techniques and provides the conclusion derived from 

the results.  

5.1. Introduction to Empirical Mode Decomposition 

The empirical Mode Decomposition (EMD) is a time domain technique that can decompose 

any signal into a small number of components termed as Intrinsic Mode Functions (IMF). 

This technique is convenient for dealing with nonlinear and non-stationary data (Huang et al., 

1998). First, IMF always contains high-frequency components, which can be considered as 

noise. EMD-based denoising algorithms are widely used in various applications such as 

speech signal processing (Molla, 2007), seismic data processing, biomedical (Donoho, 1994; 

Hadjileontiadis, 2007; Jing-Tian, 2007; Zhang, 2007; Zhang, 2020), acoustic signals 

(Boudraa, 2007; Kopsinis,2008; Molla, 2007; Mao, 2007) and image processing (Ning et al., 

2007; Tsolis, 2011). 

Several efforts have been made to understand the performance of the EMD or enhance its 

performance in various applications. However, it still needs a solid mathematical theory and 

is, in essence, regarded as an algorithm. Some studies have proposed EMD based denoising 

methods using threshold criteria (Boudraa, 2004, 2006; Byung, 2004; Donoho,1994, 1995; 

Huang, 2000; Lagha,2013; Tsolos, 2011). However, using wavelet thresholding to 

IMFs  directly might result in incorrect conclusions for signal continuity (Kopsinis, 2009, 

2008). The hard threshold function causes certain high-frequency coefficients over the 

threshold to be lost. To address the shortcomings of traditional EMD threshold-based 
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approaches, the EMD interval-based threshold was created (Kopsinis, 2009, June 2008; Yang 

et al., 2015). 

Several EMD denoising techniques have been developed and applied in various applications. 

Inspired by standard wavelet thresholding techniques, a series of novel EMD-based denoising 

methods were developed (Kopsinis, 2009; June 2008). These methods use thresholding in the 

EMD domain to remove noise from the first IMFs. EMD partial reconstruction and EMD 

Direct threshold method have been discussed (Kopsinis, June 2008; Zhang et al., 2020), but 

these techniques have some limitations in reconstructing the signal. Compared to the EMD-

DT technique, the EMD-IT approach significantly overcomes the denoised signal's 

discontinuity by considering the whole zero crossing interval of the IMF. Li et al. (2015) 

provide EMD denoising technique based on multiple iterations, which needs random change 

of the samples of the noisy regions of all IMFs. Still, one of the limitations of this approach is 

its computational complexity as the increase in the number of iterations. 

Wu et al. (2004) used the EMD approach to expose the statistical properties of additive white 

Gaussian noise. They categorised each IMF according to its energy-density spread function. 

Boudraa et al. (2004) later suggested a denoising approach based on partial reconstruction of 

the relevant modes. Peng et al. (2005) established correlation-based thresholding algorithms 

to distinguish between relevant and irrelevant IMFs. However, because the correlation 

between the noisy signal and the first IMF is very strong, this technique is particularly 

unstable for noisy signals with varying SNRs (Ayenu, 2010; Tang, 2010). To address this 

issue, the relevant modes are chosen based on the similarity between the probability density 

function (pdf) of the noisy signal and that of each IMF mode (Komaty, 2012,2014; Yang, 

2015). However, if the hurst component of the Gaussian noise (fGn) approaches 1, this 

technique will fail. Qu et al. (2010) presented a unique EMD-based mode cell filtering (MCF) 

approach in which the threshold is determined by analyzing the statistical properties of the 

mode cell amplitudes using EMD. This strategy, however, fails to identify the 

appropriate, relevant modes; regardless of the EMD-based denoising method used, it is 

important to distinguish which IMFs are pure signal, pure noise, or contain both. Even though 

many methods have been proposed to identify the noisy IMF, the performance is 

unsatisfactory when these techniquesare directly applied to the weather signal denoising. 

Therefore, to resolve the problems associated with previous existing approaches, we modified 
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the correlation-based EMD-IT approach based on the first and last IMF energy, which we 

named as the correlation based EMDIT energy constraints (CR-EMDIT-EC).  

In comparison to earlier approaches, the accuracy and efficiency are enhanced. Recently, 

Ramyakrishna et al.(2022) applied higher-order spectral analysis on weather signals during a 

convective event to investigate how the bispectrum performed well under noisy conditions 

and showed significant improvement in the low signal-to-noise ratio (SNR) conditions. 

Nowadays, the Fourier-based approach has been extensively used to analyse the random 

processes. But the main limitation of these methods is that it is based on the assumption of 

linearity and stationarity. EMD is an adaptive time-frequency data analysis method that 

decompose the data into a number of Intrinsic Mode Functions (IMFs) along with a residue 

component. The EMD can reveal important characteristics of the waves with a few IMF 

components. The pulse pair processing method degrades significantly at low SNR conditions 

and produces biased estimates in the presence of clutter regions (Doviak, 1984).  

In this paper, we made an attempt to develop a denoising and clutter removal algorithm for 

weather signals using the EMD method, which is simple and easy to implement. This method 

significantly recovers the signal from clutter and noisy conditions. This method will check 

the presence of clutter during the partial reconstruction based on the last IMF energy. In this 

method, we will check the correlation plot between the original signal with that of each IMF 

mode. Later we will identify the decreasing trend of the IMF from the first local maximum 

value of the last IMF that will be considered as the kth mode. From the first IMF to kth mode 

IMF will be considered as the useful modes, remaining IMFs will be considered as the 

relevant modes. Now reconstruct the signal with useful modes by discarding the relevant 

modes during partial reconstruction. In this paper, we use various Empirical Mode 

Decomposition denoising techniques based on threshold criteria on weather radar signals to 

check which method is efficient for denoising the weather signals and removing ground 

clutter. 

5.2. A Brief Description of EMD 

The EMD method is based on the assumption that all data consists of several simple 

intrinsic modes of oscillations which have a corresponding number of extrema and zero 

crossings. As far as the local mean is concerned, those oscillations will be symmetrical. 
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5.2.1. EMD Algorithm     

The EMD decompose the signal into a number ' n' of IMF components. 
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Fig. 5.1: Flow Chart diagram of Empirical Mode Decomposition  

An IMF function satisfies two conditions (Huang., 1998). 

1. In the whole data set, the number of extrema and zero crossings must either equal 

or differ by at most one. 

2. The mean value of the envelope defined by the local maxima and the envelope 

defined by the local minima is zero at any point. 

Original signal x 
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The first condition will be identical to that of the usual narrowband requirement for a static 

random process. The second condition is capable of changing the global requirement to local 

one. The local mean of the envelope is defined by the local maxima and the local minima to 

force the local symmetry. Fig.5.1 shows the flow chart of the EMD algorithm. 

We briefly discussed the EMD algorithm (Rilling et al., 2003) in the following steps. Let us 

consider x(t) as a non-stationary signal. 

1) Locate the local maxima and minima of the signal x(t) and get the upper envelope 

xu(t) and the lower envelope xl(t), respectively.  

2) calculate the local mean value M1(t)=(xu(t)+xl(t))/2 of data x(t), then remove the mean 

value from original signal x(t) and get the difference: H1(t)=x(t)-M1(t). 

3) Consider H1(t) to be a fresh dataset and repeat the above steps (1) and (2) for k 

number of times, H1k(t)=H1(k-1)(t)-M1(t), where M1k(t) is the mean value of H1(k-

1)(t) and H1k(t). 

Step (3) is repeated until the resultant data meets the two requirements of an IMF, 

which are specified as c1(t)=H1k. The residual data r1(t) may be calculated as r1(t)= 

x(t)-c1(t). 

4) consider r1(t) as new dataset, and repeat the above steps (1-3) to extract all the IMFs. 

Now stop sifting process until the n
th

 residue rn(t) is smaller than a predetermined 

number, or the residue becomes monotonic. 

5) The sifting process can be terminated based on Standard Deviation (STD), which can 

be calculated using the two successive sifting results provided in equation (5.1).  

         STD= 
                    

           
 
                                                                    (5.1) 

6) STD values ranges from 0.21 to 0.3. 

7) Steps (1-4) should be repeated until the residual includes no relevant frequency 

information. The total of the original signal's IMFs equals the original signal. If we 

have 'n' IMFs and a final residual rn (t), we may define the original signal x(t) as 

follows  

x(t)=       
 
                                                                   (5.2) 

EMD can be used as a denoising tool in various applications by knowing whether a specific 

IMF contains useful information or mostly noise. Therefore, significant IMF tests based on 

the statistical analysis of modes resulting from the decomposition of signals solely consisting 
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of fractional and white Gaussian noise, respectively, were developed by both (Flandrin, 2005; 

Huang, 2005)  and Wu et al.(2004). The above method separates the signal and noise, 

assuming that the first IMF always represents high-frequency composition and can be 

rejected during the reconstruction. But, if the signal is widespread in the observational 

bandwidth, there is a possibility that the signal also may get removed. That may lead to an 

incorrect estimation of signal parameters. Flandrin et al.(2004) show that, apart from the first 

IMF, which contains noise only, the IMF energies linearly decrease in a semilog diagram 

because of exhibiting self-similar characteristics (Kopsinis, June 2008). 

Many studies have reported different denoising techniques in weather applications 

(Hildebrand et al., 1974; Ivic, 2010; Ivic, 2013; Lagha, 2013). The main reason to consider 

EMD denoising: To explore the effect of different thresholding techniques (EMD Interval 

Thresholding (IT), correlation-based EMD-IT, Iterative Interval Thresholding (IIT), and 

Adaptive thresholding based on 3σ criteria) on weather signals. These findings will help us to 

find the best thresholding-based EMD denoising technique to improve the detection of 

signals in noisy conditions. 

5.3. Denoising based on IMF Thresholding 

It was discovered that executing thresholding and locally eliminating the low-energy IMF 

parts regarded as noise was feasible to execute thresholding and locally eliminate the low-

energy IMF parts regarded as noise, inspired by wavelet-based thresholding (Kopsinis, 2009, 

Aug 2008). EMD-DT is an application of direct wavelet thresholding to EMD denoising. 

This is followed by hard and soft thresholding operations, which keep signals that surpass the 

thresholding criterion. However, straight use of wavelet thresholding is, in 

principle, incorrect and may result in a discontinuity in the denoised signal. Unlike EMD-DT, 

EMD-IT performs the thresholding operation over the whole zero-crossing period, which 

overcomes the limitation of EMD-DT. The threshold level chosen has an impact on EMD's 

denoising capacity. The universal threshold is given by, 

Ti = σi      (5.3) 

Where N is the data length, σi is the noise standard deviation, which can be obtained by using 

a robust estimate based on the IMFs' median, given by ( Donoho, 1994) 

   
                

      
     , n=1,2,…., N                                                       (5.4) 
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The power spectra of the remaining IMFs, except the initial noise-only IMF, show self-

similarity features as a result of decomposition by EMD for additive white Gaussian noise. 

The energy of each Ei of each IMF decreases in a semilog manner as given by, 

   
  
 

 
                                                            (5.5) 

Where E1 is the energy of the first-order IMF and β, ρ is 0.7 and 2.01, respectively (Flandrin, 

2004). 

Based on the relationship between Ei and σi, Ti is given by, 

Ti=σi      =                               i=1,2 ,3 …, L                           (5.6) 

The denoising using EMD in various applications is classified into two categories, based on 

relevant modes known as partial reconstruction using correlation coefficients and complete 

reconstruction without relevant modes based on filtered modes. In this paper, we used four 

methods to check the best performance of the denoising technique.  

1. EMD Adaptive threshold based on 3σ criteria 

2. EMD Interval threshold (EMDIT) 

3. Correlation-based EMD Interval threshold (CR-EMDIT) 

4. EMD Iterative interval threshold (EMD IIT) 

5.3.1. EMD Adaptive threshold 

The EMD adaptive threshold has been developed by Zhang et al. (2020)based on the 3 sigma 

(σ) criteria. This method will temporarily remove the non-noisy useful values in the IMFs 

that are larger than three-sigma. The remaining noise values are considered as the new 3 

sigma, and this process will be repetitive until no values are removed. The last value of 3 

sigma can be considered as a noise and can be used as a threshold and calculated adaptively 

for differentiating between actual signal and noise values. The procedure for the 

determination of the adaptive threshold method is as follows: 

1.) Determine the IMF standard deviation: 
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                                               (5.7) 

2.) Discard the values larger than 3   in                        . The remaining values can be 

considered as the new noisy signal IMF
1
(n), with the length N1. 

3.) Determine the new noisy signal IMF
1
(n) standard deviation. 

 

    
 

    
                             

   
                               (5.8) 

4.) Finally, discard the values in                                  that are larger than 3σi-1. Then 

again remaining values will be regarded as the new noisy signal IMF
i
(n), which has a 

length of Ni. The standard deviation of IMF
i
(n) is: 

    
 

    
                            

   
                                   (5.9) 

5.) Repeat the above step (4) until no value exceeds 3σi. Therefore 3σi is the final 

threshold that can be denoted by the T. 

T=3σi  (5.10)                               

6.) In this process, the value of 3σ in each step will decrease gradually. 

 

5.3.2. EMD Interval Threshold (EMD-IT) 

The intrinsic mode functions obtained from the EMD decomposition look like AM and FM 

sine waves with zero mean. Because of this property of the IMFs, the EMD-DT method 

produces discontinuities in the denoised signal (Hadjileontiadis, 2007). Therefore the 

amplitude of the IMFs does not provide information on whether IMF contains noise or signal. 

Only extreme point between specific zero crossing intervals can determine whether IMFs 

contains noise or signal. The extreme value will be below the predefined threshold if IMF 

contains only noise and  vice versa. This method has applied a threshold on the zero crossing 

interval zj
i 
and zj+1

i
; thus, it is called Interval thresholding. 

The denoising method based on the extrema value in the corresponding interval is given by 

(Kopsinis, 2009, Aug 2008). 

     
  = 

     
            

      

                     
      

                                                                     (5.11) 
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For j=1, 2, 3,….., where      
   Indicates zero crossing interval samples from zj

i
 and zj+1

i 
of 

the i
th 

IMF. The above equation resembles wavelet thresholding. 

5.3.3 Correlation-based EMD Interval Threshold (EMD-IT) 

This method selects relevant modes based on the correlation between the original signal and 

each mode. In this paper, we followed the approach of Zhang et al.(2015) for selecting the 

relevant modes. 

Partial reconstruction of the signal using relevant modes is given by, 

                    
 
     

                                                                       (5.12) 

Here     can be determined by calculating the correlation between original signals and each 

IMF.      can be rewritten as 

                     
                                                                          (5.13) 

Correlation between      and       is given by, 

           
                

               
 
                               (5.14) 

Where N is the length of the data, m is the one when      starts smaller than some constant 

C. C lies between [0.75, 0.85]. We used a C value of 0.80 in this paper [46]. The     is given 

by,  

                              (5.15) 

Where "last" stands for the last value in      bigger than 0.8. However, this method is 

sensitive to noisy signals with different SNR conditions; this is one of the limitations of this 

method. 

5.3.4. EMD Iterative Interval Threshold (EMD-IIT) 

This method was inspired by the translation invariant wavelet thresholding method (Kopsinis, 

Aug 2008).  

This method is summarized as follows. 

1. Apply the EMD decomposition method on the original signal x, which contains noise. 
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     2. Then reconstruct the signal by using the partial reconstruction method followed by   

Kopsinis(2009)approach. 

3. Alter the sample positions of the first IMF randomly.  

     4. Construct a different noisy version of the original signal. 

     5. Apply EMD on the new altered signals. 

     6. Perform the EMD interval threshold on the IMFs to obtain the denoised version of  

thesignal        of the original signal. 

7. Repeat the above 3-6 steps K-1 times, where K is the number of averaging iterations to 

obtain the k-denoised versions of x, i.e.,    ,   ….   . 

8. Finally, take the mean of the denoised the signals 

      
 

 
       

 
                                                                                     (5.16) 

5.4. Limitations of Existing EMD denoising Techniques 

Since threshold based method depends on the energy of the first IMF, assuming that the first 

IMF contains most of the noise energy. But in real-time applications, this assumption may not 

be valid. We observed from the correlation plots that in some cases, the first IMF strongly 

correlates with the original signal (as shown in Fig.5.2). Therefore, thresholding the first IMF 

using the above techniques may lead to losing the information of the signal. Therefore we 

should be careful, particularly in the case of the first IMF, when it strongly correlates with the 

signal information. The above methods will not be valid for denoising. In this paper, we 

discussed the limitations of the existing approaches and the advantages of the new approach 

clearly through simulation analysis. 

5.5. Proposed Method (Correlation-based EMDIT energy constraints ) 

In this paper, we modified the existing correlation-based EMD Interval thresholding approach 

based on the energy of the first and last IMF. The required steps of the proposed method are 

described in detail as follows, 
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1. Apply the EMD decomposition method on the original signal x, which contains noise and 

clutter. 

2. To identify the clutter, check whether the last IMF strongly correlates with the original 

signal (this can be easily identified from the correlation plot if there is a rapid increase in the 

correlation of the last 2 IMFs). If the last IMF has a strong correlation, then check for the kth 

mode, which is a decreasing trend of IMF from the first local maximum value of the last 

IMF. From the first IMF to the kth mode, IMF will be considered as useful, and the remaining 

IMFs will be considered as relevant modes.Then we can discard the relevant modes for 

clutter removal. Then the partial reconstructed signal is given by 

     
 

 
      

   
                                                                                          (5.17) 

3. Apply EMD–IT to all IMFs (If the correlation of the original signal with the first IMF is 

greater than all other IMFs), 

     
  = 

     
            

      

                     
      

                     for i=2,3…, N                              (5.18)                   

Otherwise, 

     
  = 

     
            

      

                     
      

                   for i=1, 2, 3,…, N                           (5.19) 

The advantage of the proposed EMD denoising approach is that it significantly removes the 

noise components and ground clutter. This method effectively works for weather signals. We 

checked the efficiency of this approach through simulation analysis and real data analysis.  

5.6. Simulation analysis of Weather signal denoising using EMD 

5.6.1. Signals with Noise Simulation Analysis 

A simulation study of weather signals has been conducted to perform EMD denoising on 

weather signals and how these methods perform well under noise-varying conditions. 

Simulation with the realization of weather signals having different SNRs has been performed. 

A Gaussian Model of Doppler power spectra have been considered for this analysis and 

generated the time series of complex-valued weather signals using Zrnic et al. (1975) 
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approach with different SNR conditions. The power spectrum of weather signals can be 

modelled by using Gaussian Model. 

S(f)=
 

            
     

      
 

   
                (5.20) 

Where P is the total signal power, σf and fare the spectrum width and mean velocity, and    is 

the Doppler shift. 

In this section, a known Gaussian power spectrum model in each realization is simulated with 

a 1000 realization process and simulated weather echoes by the procedures Zrnic et al., 1975, 

which are used as the input of the proposed method. Calculated the velocity and spectrum 

width using both various denoising methods using EMD and Fourier method, also calculated 

Root Mean Square Error (RMSE) to verify the advantage of the proposed EMD denoising 

method. At last, the real-time series obtained from the Doppler weather radar has been 

considered for EMD analysis to verify its performance.The values of SNR are 5, 7, 10, 17, 

and 25 dB considered for every 200 realizations, respectively. Five realizations are selected 

and applied to various denoising techniques for different SNRs.  

Fig.5.2 shows the simulated power spectrum where the main peak is observed between 450-

550 Hz. Fig.5.3(a)-5.3(b) shows the real and imaginary components of the IMFs observed in 

the time domain. Fig.5.4(a)-5.4(b) shows the power spectrum of corresponding IMFs. The 

power spectrum of the first IMF shows similar characteristics to the main signal, as shown in 

Fig.5.2. The EMD decomposes the signals from higher frequencies to lower frequencies. We 

assume that always the first IMF contains most of the noise information, but where in 

practical applications, it is not valid. Here, the first IMF exhibits the main signal 

characteristics with maximum amplitude, whereas the remaining IMFs have very less 

amplitude. Fig.5.5 shows a corresponding correlation between each IMF and the original 

signal. The first IMF has a strong correlation of almost 0.98, which means that the IMF has 

most of the signal information, whereas other IMFs correlate less than 0.2. Therefore first 

IMF is enough to reconstruct the whole signal.  
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Fig.5.2: Simulated Power spectrum  

a)                                                                                           b) 

 

(a) (b) 

Fig.5.3: a) Real and b) Imaginary parts of the IMFs of the simulated signal in time domain. 
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a)                                                                                        b) 

 

Fig.5.4: a) Real and b) Imaginary parts of IMFs in the spectral domain 

 

Fig. 5.5: Correlation plot between each decomposition mode (IMF) and the original signal. 
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Fig 5.6: Power spectrum of the reconstructed signal obtained using various denoising 

techniques. Such as a) EMD-Adaptive, b) EMD-IT, c) Correlation-based EMD-IT, d) EMD 

Iterative Interval threshold and e) Proposed method (CR-EMDIT-EC). 

Fig.5.6 shows the power spectrum obtained using different denoising methods (such as EMD-

Adaptive, EMD-IT, correlation-based EMD-IT, EMD-IIT and CR-EMDIT-EC). We can 

observe from Fig. 5.6(a)-5.6(d) that the existing approaches consider the first IMF (which has 

most of the signal information) for thresholding, where most of the information of the signal 

has been lost and fail to reconstruct the whole signal. Fig.5.6(e) shows the result of the power 

spectrum obtained through the proposed method (without considering the first IMF for 

thresholding). We can see clearly that the proposed method significantly removed the noise 

components without disturbing the main signal information. Therefore before doing the EMD 

interval thresholding, first calculate the correlation of IMFs with its original signal; if the first 

IMF has a strong correlation with the signal, then the first IMF should not consider for 

thresholding. 
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Fig. 5.7: Denoised versions of a) Real and b) Imaginary components of the signals using 

different EMD based denoising techniques and CR-EMDIT-EC with SNR of 5dB.  

Fig. 5.7 shows the denoised version of the signals obtained from different EMD denoising 

techniques with the SNR of 5db. The noiseless signal has been shown by a black line, noisy 

signal, and reconstructed signal (using various denoising techniques such as EMD-Adaptive, 

EMD-IT, correlation-based EMD-IT (CREMDIT), EMD-IIT with 4 iterations, and CR-

EMDIT-EC) have been shown by red and blue colour respectively. 

It can be seen that the proposed method of CR-EMDIT-EC (Modified Correlation-based 

EMD Interval thresholding (IT)) has a better performance compared to the other methods, 

which significantly removes the noise components and reconstruct the signal without losing 

the signal information. The Velocity and Spectrum width with different SNR of five 

realizations is listed in Table 5.1.  

Table 5.1: Values of velocity and spectrum width obtained from various EMD denoising 

techniques compared with the theoretical values. 

                                                  SNR(dB) 

Methods Moments 5dB 7dB 10dB 17dB 25dB 

EMD Velocity (ms
-1

) 1.1331 1.1247 1.1124 1.1712 1.2186 



115 

 

Adaptive Spectrum width(ms
-1

) 1.2014 1.3047 1.3521 1.4686 1.4852 

EMDIT Velocity(ms
-1

) 1.1430 1.1853 1.1710 1.1825 1.1907 

Spectrum width(ms
-1

) 1.6567 1.4287 1.4504 1.5003 1.5514 

CREMDIT 

 

Velocity(ms
-1

) 1.1424 1.1558 1.1924 1.1918 1.1910 

Spectrum width(ms
-1

) 1.5273 1.4709 1.3066 1.5238 1.5630 

EMDIIT 

 

Velocity(ms
-1

) 1.1460 1.1623 1.1910 1.1889 1.1900 

Spectrum width(ms
-1

) 1.5054 1.4839 1.5142 1.5536 1.5494 

Proposed 

method 

Velocity (ms
-1

) 1.1582 1.1711 1.1890 1.1895 1.1901 

 Spectrum width(ms
-1

) 1.5050 1.5123 1.5102 1.5006 1.5308 

       

Theoretical 

values 

Velocity(ms
-1

)                             1.19 

Spectrum width(ms
-1

)                             1.5 

 

The number of samples is 256, and the maximum unambiguous velocity is 12ms
-1

 with a 

number of realizations of R=1000.  

To check the performance of the EMD denoising techniques, Root Mean Square Error 

(RMSE) has been estimated between true values and estimated values obtained from the  

various EMD denoising methods (as shown in Fig. 5.8), and it is given by, 

      
 

 
               

    (5.21)                                                   

 

Fig.5.8: Root Mean Square Error (RMSE) plot between the true and estimated values 

obtained using various EMD denoising methods. 
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From Fig.5.8, it can be seen that the proposed approach (CR-EMDIT-EC) of EMD denoising 

performs better than other techniques; also, we can observe that the EMD-IIT threshold has a 

better performance. This is expected because of multiple iterations, but one of the limitations 

of EMD-IIT is more computational complexity compared to the existing methods. The 

adaptive method based on the 3 sigma threshold does not improve much in the low signal-to-

noise ratio conditions.  

5.6.2. Signals with Clutter Simulation Analysis 

Both clutter and signals have been considered to model the power spectrum for the simulation 

of weather signals, followed by (Dong, 2022; Yu et al.,2009). 

The power spectrum of weather signals can be modelled by using Gaussian Mixture Model 

(GMM) (Dong, 2022; Yu et al.,2009). 

    = 
   

             

 
        

      
 

    
                                                       (5.22) 

Where P is the total signal power, K is the number Gaussian shaped spectra contained in a 

power spectrum, wk are the weighting coefficients (0<wk<1,   
 
     ), σfk and fk are the 

spectrum width and mean velocity. 

Fig.5.9(a)-5.9(b) shows the signal at 20-100 Hz and clutter at near zero frequency. These 

have been added, as shown in Fig.5.9(c) and considered for further analysis. Generally, the 

clutter is more dominant than precipitation with high reflectivity. Here we can see that clutter 

power is higher than the weather signal power. Therefore correlation plot in Fig. 5.9(d) shows 

the rapid change in correlation at the 6
th

 and 7
th

 IMFs. To identify the presence of the clutter, 

we need to identify the relevant modes to discard these IMFs during partial reconstruction. 

To do this, first check the kth mode, which is the decreasing trend of the local maxima from 

the last IMF. Here we can see that the 6
th

 IMF is the first local maximum, and the 5
th

 IMF is 

the one which can be considered as kth mode. The 6
th

 and 7
th

 IMFs are identified as relevant 

modes for discarding. Therefore, we can discard the 6
th

 and 7
th

 IMFs during partial 

reconstruction, producing clutter-free signals in the Doppler spectrum, and we can further 

proceed with the denoising analysis. Fig.5.10 shows the energy of each IMF mode in the 

spectral domain. Fig.5.11(a)-5.11(e) shows the power spectrum obtained through various 

EMD denoising techniques. We can observe that the existing approaches fail to reconstruct 

the signal in the presence clutter region; still, clutter peaks are discernible in the Doppler 
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power spectrum, as shown in 5.11(a)-5.11(d). Correlation-based approaches (as shown in 

Fig.5.11(c) will consider the IMF with clutter information (which has a strong correlation) as 

a useful mode during reconstruction. This is the reason these approaches fail to give 

satisfactory results during reconstruction. Fig.5.11(e) shows the power spectrum obtained 

through a new method, which significantly removed the clutter signals and produced 

enhanced signal information capabilities. 

Fig.5.12(a)-5.12(b) shows the power spectrum with signal and the power spectrum with 

clutter alone. These both have been added and produced the power spectrum that contains 

both clutter and signal, as shown in Fig.5.12(c). We can observe that clutter is more dominant 

than signal. The correlation plot in Fig.5.12(d) shows a high correlation at the 6
th

 and 7
th

 

IMFs. The best way to differentiate between clutter and signal is by identifying the kth mode, 

which can be identified by the decreasing trend of IMF from the first local maximum of the 

last IMF using a correlation plot. Here 6
th

 IMF is considered as the kth mode, as the 7
th

 IMF 

has the first local maximum value and can be considered as the relevant mode. Therefore 7
th 

IMF can be discarded during partial reconstruction, and the remaining IMFs can be 

considered for further denoising analysis. The IMF from where a rapid decrease in correlation 

after the first local maximum from the last IMF indicates the presence of clutter. Because the 

EMD decomposes the signal from higher frequency to lower frequency components, high-

frequency components contain noise information, and low-frequency components contain 

clutter information. The correlation will be high for the last IMF (if clutter is present, then the 

correlation will be high at the final IMFs). To identify and remove the unwanted IMFs, the 

correlation will be helpful. This method is valid if there is no signal at higher IMFs (last 

IMF).      
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Fig. 5.9: Simulation of a) Signal alone b) Clutter alone c) Signal with Clutter using Dual 

Gaussian model using conventional method and EMD denoising at Doppler frequency 

76.17Hz. and d) Correlation plot with and without clutter. 

a)                                                                                  b) 

 

                                 (a)                                                               (b) 

Fig.5.10: The energy of each IMF in the spectral domain  
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Fig.5.11: Reconstruction of the power spectrum using various EMD denoising techniques 

and a new approach. 
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Fig.5.12: Simulation of a) Signal alone, b) Clutter alone, c) Signal with Clutter using Dual 

Gaussian model using conventional and EMD denoising at Doppler frequency 52.73Hz and 

d) Correlation plot with and without clutter. 

a)                                                                           b) 

 

Fig.5.13: The energy of each IMF in the spectral domain 
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Fig.5.14: Reconstruction of the power spectrum using various denoising techniques and a 

new method. 

Fig. 5.13 shows the energy of each IMF mode in the frequency domain. Fig.5.14(a)-5.14(e) 

shows the power spectrum obtained through various EMD denoising techniques. The existing 

approaches fail to reconstruct the signal in the presence of clutter region, as shown in 5.14(a)-

5.14(d). Because these methods considered the IMF, which has a strong clutter of 

information, as a useful mode during reconstruction, this is the reason these approaches fail to 

give satisfactory results during reconstruction. Fig.5.14(e) shows the power spectrum 

obtained through a new method, which significantly removed noise components, and the 

clutter signals produced enhanced signal information capabilities. 

5.7. Data Analysis 

EMD-based denoising analysis has been applied to complex time series data of an X-band 

polarimetric Doppler weather radar located at Gadanki (13.5°N, 79.2°E) with a range 

resolution of 150 m and a sampling period of 1500 Hz. The backscattered signals are stored 

in the form of in-phase and quadrature-phase components. The complex time series data is 

subjected to Fourier and EMD analysis to obtain a Doppler power spectrum. A total of 238 

samples were processed using a standard algorithm for deriving the power spectrum using 

Fourier and EMD-based denoising techniques. 

5.8 Results and Discussions 

To understand the performance of the EMD algorithms in the presence of noise and clutter 

regions. EMD algorithm has been applied to the weather signals observed from the 

Polarimetric X-band Doppler weather radar on 17
th

 October 2019.  
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The First IMF is a high frequency component containing the most information about the 

noise and sometimes the signal parts. Therefore the noise fluctuations in the first IMF should 

be suppressed before reconstructing the signals. The presence of noise gives biased 

estimation and produces errors at the moment estimation. Fig.5.15 shows the sample power 

spectrum where the main peak is observed between 400-600 Hz. Fig.5.16 shows the 

corresponding power spectrum of IMFs. The first IMF power spectrum shows similar 

characteristics of the main signal with maximum amplitude, as shown in Fig.5.15. The EMD 

decomposes the signals from higher frequencies to lower frequencies. We assume that always 

the first IMF contains most of the noise information, but where in practical applications, it is 

not valid. Here it can be seen that the first IMF exhibits the main signal characteristics with 

maximum amplitude, whereas the remaining IMFs have very less amplitude. Fig.5.17 shows 

a corresponding correlation between IMFs and their original signal. The first IMF has a 

correlation of almost 99%, which means that the IMF has most of the signal information, 

whereas other IMFs correlate less than 10%. Therefore first IMF is enough to reconstruct the 

whole signal.  

 

Fig. 5.15:Sample Doppler power spectrum of single range bin. 
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a)                                      b) 

  

Fig.5.16: The energy of each IMF in spectral domain 

 

Fig.5.17: Curve of Correlation versus IMFs of a signal 

Fig.5.18 shows the results of the power spectrum obtained through Fourier and EMD-based 

denoising techniques such as EMD-Adaptive, EMD-IT, correlation-based EMD-IT, EMD-IIT 

with 4 iterations and the CR-EMDIT-EC. Compared to other techniques proposed method 

(CR-EMDIT-EC) produced the enhanced denoising capabilities of EMD.  
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Fig.5.18: Power spectrum of EMD-based denoising results of the signals compared with the 

Fourier-based method using a.)EMD-Adaptive, b.)EMD-IT, c.)Correlation-based EMD-IT, 

d.)EMD-IIT and e.)CR-EMDIT-EC. 

Fig.5.19 shows the results of the Power spectrum obtained through Fourier and EMD-based 

denoising techniques EMD-Adaptive, EMD-IT, correlation-based EMD-IT, EMD-IIT and 

CR-EMDIT-EC for fewer range bins. We can observe that the Proposed approach produced 

enhanced denoising capabilities of EMD compared to the other denoising techniques. Even 

though EMD-IIT performed well compared to the existing approach, its computational 

complexity is higher than other techniques and fails to give satisfactory results, especially 

when first and last IMF have strong energy. 
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Fig.5.19: Power spectrum of EMD-based denoising results of the signals for few range bins 

compared with the Fourier-based method, EMD-Adaptive Threshold technique,  EMD-IT, 

Correlation-based EMD-IT, EMD-IIT using 4 iterations and CR-EMDIT-EC.  

Fig. 5.22-5.23 shows the range profiles of power, velocity, and spectrum width obtained from 

the EMD Adaptive, EMD-IT, Correlation-based EMD-IT, EMD-IIT, and CR-EMDIT-EC. 

These moments obtained from EMD denoising techniques have been compared with those 

obtained from the pulse pair processing. From the results, it can be observed that the 

proposed method has a better performance compared to other techniques. The adaptive 

method based on the 3sigma threshold did not improve the velocity plot much and produced 

severely biased moments estimation. Fig 5.24(a)-5.24(b) shows the range profiles of SNR 

computed from Fourier and EMD-adaptive based on 3sigma, EMD-IT, Correlation-based 

EMD-IT, EMD-IIT and proposed method. It can be observed that there is a slight 

improvement in SNR when using the proposed approach compared to the other methods. 

 

Fig. 5.20: Power spectrum of single range bin 
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Fig.5.21: Power spectrum of EMD-based denoising results of the signals compared with the 

Fourier-based method using EMD-Adaptive, EMD-IT, Correlation-based EMD-IT, EMD-IIT 

and Proposed approach (CR-EMDIT-EC). 

Fig.5.20 shows the power spectrum, which contains strong clutter near zero frequency and 

weather signal at -200 Hz. Fig.5.21(a)-5.21(e) shows the results of the Power spectrum 

obtained through Fourier and various EMD-based denoising techniques and CR-EMDIT-EC. 

We can observe that the proposed approach significantly removed the clutter signals and 

noise fluctuations compared to the other EMD denoising techniques, as shown in Fig.5.21(e). 
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Fig.5.22: Range profiles of a) Power, b) Velocity, c) Spectrum width estimated through Pulse 

pair, EMD-adaptive based on 3sigma, EMD-IT, Correlation-based EMD-IT, EMD-IIT and 

proposed method obtained in Time domain processing. Azimuth: 90. 

 

Fig.5.23: Range profiles of a) Power, b) Velocity, c) Spectrum width estimated through Pulse 

pair, EMD-adaptive based on 3sigma, EMD-IT, Correlation-based EMD-IT, EMD-IIT and 

proposed method obtained in Time domain processing. Azimuth: 60. 
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Fig.5.24: Range profiles of Signal to Noise ratio (SNR) obtained through Fourier, 

Correlation-based EMD-adaptive, EMD-IT, Correlation-based EMD-IT, EMD-IIT and 

proposed method a) Azimuth: 90 b) Azimuth: 60 

To check the accuracy of the proposed method in the presence of clutter region, we compared 

it with the conventional moving average method. 

Fig.5.25 shows the sample power spectrum obtained from both Fourier and EMD methods. It 

can be seen that the power spectrum obtained from the Fourier approach shows the presence 

of a DC component (due to ground clutter) near the zero frequency. The conventional 

method, like the 5-point or 3-point moving average method, removes the DC component by 

replacing the spectral power at zero frequency with the average of four adjacent points or 2 

adjacent points. But in this case, it has been observed that the moving average method is not 

effectively working. It can be seen from Fig.5.25c EMD method effectively removes the DC 

component without disturbing the actual signal. The residue component obtained through 

EMD always contains the information of the DC component, which can be neglected during 

reconstruction. This is one of the advantages of the Empirical Mode Decomposition. 

Fig.5.26(a)-5.26(d) shows the Doppler profile obtained through the Fourier method and 

obtained through the EMD technique up to a range of 80km. It can be seen from Fig.26a-26d 

the proposed EMD denoising technique effectively works in the presence of ground clutter, 

as it is helpful to remove the ground clutter without disturbing signals present in that region. 
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Fig.5.25: The sample Power spectrum obtained from both Fourier, conventional DC removal 

technique and Proposed method. a) rangebin: 25 b) rangebin:40 

a)  
                             Before Clutter removal              After Clutter removal using Proposed method 

 

b)  
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c)  

 

d)  

 

Fig.5.26: Doppler profile before and after clutter removal using EMD. 

5.9 Chapter Conclusion 

Various denoising techniques have been studied using the EMD approach on the weather 

radar signals to characterize and evaluate its performance. Even though the correlation-based 

EMD interval threshold method shows significant improvement in denoising the signal 

compared to the existing techniques, this approach fails during the reconstruction of IMFs 

when the first IMFs contain signal information and the last IMF contains strong clutter 

information than the signal. To overcome this problem, we modified the correlation-based 

approach with threshold criteria based on the energy of the first and last IMFs are integrated 

with the original analysis. The analysis is carried out with a large number of data sets, and it 

found that the new approach successfully removes the ground clutter and denoise the weather 

signal in all cases. The moment estimation and its comparison with other techniques 

demonstrate the effectiveness of the signal processing approach in a complex observational 

environment.  
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Chapter 6 

Study of temperature sheets using Higher order spectral analysis 

 

Prelude: This chapter discusses the existence of temperature sheets observed in the lower 

stratosphere up to 20km, with strong (positive) temperature gradients within very thin layers. 

These can be observed from vertical profiles obtained from the VHF radar. However, these 

sheets also formed in the troposphere and the middle stratosphere. The sheets tend to occur 

in groups and contribute to the regions of high static stability. To study the process 

associated  with the formation of sheets, higher-order spectral analysis has been carried out 

on backscattered signals received from the MST radar.  

6.1 Introduction 

The two main echoing mechanisms for MST radar are Fresnel reflection/scattering from 

hydrostatically stable atmospheric areas and Bragg scattering as a result of variations in radio 

refractive index caused by clear air turbulence (CAT). For oblique beams, the radar echoes 

arise mainly because of CAT, which induces fluctuations in the radio refractive index. In 

contrast, for vertical beams, echoes are partly due to CAT and partly due to Fresnel 

reflection/scattering arising from sharp gradients in the radio refractivity index induced by 

stable layers. 

Regarding scattering from the CAT induced refractive index fluctuations, radar echo power is 

directly proportional to the volume reflectivity, and turbulence intensity. Thus, high range 

and temporal resolution measurements of stable layers such as the tropopause or clear air 

turbulence are made possible by using VHF radars. It is still not possible to fully understand 

how these irregularities are created in different altitudes of the troposphere and low 

stratosphere. 

In the tropopause region and lower stratosphere a number of multiple layer structures can be 

seen. These layers often called as sheets. It is shown that the key characteristics of multiple 

layers, which have been found at low altitude, are similar to those obtained at tropopause 

level. 

The lowest altitude above 500mb level where the temperature lapse rate drops to 2K/km or 
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less is the meteorological tropopause, which may be located using the radiosonde’s 

measurement of air temperature. The average temperature lapse rate between this level to any 

level in the following two kilometres is 2K/km or less. Thus, comparing radar SNR 

measurements with radiosonde measurements would be interesting. 

The specular form of echoes seen by VHF radar at vertical incidence come from areas with 

significant hydrostatic stability responsible for the intensity gradient in the radio refractive 

index. The atmospheric refractive index is given by, 

             

 

    

  
   

      

 
    

 

 
 

    

  
    

  

             (6.1) 

    

  
is proportional to atmospheric stability. 

Specular reflection; and Irregularities in anisotropic refractive indices are the two primary 

causes of aspect-sensitive radar backscatter. 

The matter remains very controversial as to how these temperature sheets are generated; 

various authors have already discussed possible causes of these temperature sheets. Some 

research have suggested that Kelvin-Holm holtz instabilities (KHI) are the cause of this 

temperature differential. Wind shear causes the turbulence in a stable environment, which 

results in KHI. Strong gradients at the borders result from the turbulent layer being mixed. 

Many experiments have reported the multiple layered structures at and around the tropopause 

regions, especially in the lower stratosphere. It is now well established that these layered 

structures are due to strongly negative and positive temperature gradients, commonly known 

as temperature sheets. As mentioned above, Fresnel reflection/scattering from stable layer 

structures is expected to cause the increased echo energy structures for vertical beams. 

Experimental investigations confirmed that the parameter squared vertical gradient of 

potential refractive index M
2
 (or squared Brunt Vaisala frequency (N

4
) in the stratosphere) 

deduced from radiosonde measurements (such as pressure temperature, and humidity) 

replicated the backscattered received power at vertical incidence, showing a significant 

relationship between the vertical echo power and the medium's static stability. The 

correlation between vertical radar echo enhancement and temperature sheet position has been 

reported to be good. For example, it's striking that sheets with a horizontal echo enhancement 

look very much like those identified around the tropopause. 
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6.2.Generation of Temperature Sheets 

A long time before the existence of these structures has been confirmed in the atmosphere, 

they were suggested to exist on temperature sheets that cause a partial reflection of 

electromagnetic waves. The statistical characteristics of the VHF radar echoes are responsible 

for balancing the generation and destruction of these structures. Additionally, it is incredibly 

interesting that the majority of the suggested generation mechanisms are likewise dependent 

on the action of turbulent mixing, despite the fact that the sole accessible destruction 

mechanism is diffusion (molecular or turbulent).  

Nevertheless, a number of mechanisms do not directly result from turbulent mixing; 

nonlinear steeping gravity waves can cause temperature gradients as well. With the same 

period and at the same speed as the wave, these sheets will develop and spread. Viscosity or 

thermal conduction waves can also produce gradients in the temperature field (Hocking et al., 

1991). 

The beginning stage of a kelvin-Helmholtz billow growth is another process that might cause 

a high temperature gradient (Smyth, 2000). However, the sharp gradient is inextricably linked 

to a strong mixing zone that occurs nearby at the same height. It is also unknown if the 

created gradient would survive the billow's future evolution. In this situation, the sheet would 

be created and destroyed by the K-H billow. 

Because of the existence of significant wind shear, the KHI is generated in the atmosphere. It 

is frequently observed during coastal front inversions, downslope win formations 

(Smyth,1991), and jet streams (VanZandt,1979). Several experimental and theoretical studies 

have also addressed the development, growth, and billow structure of the KHI, which are 

heavily influenced by the shear flow's Richardson (Ri) number. For Ri>0.25, the  flows are 

unconditionally stable. Previous investigations using VHF radars suggest that KHI frequently 

occurs in the upper troposphere coupled with meteorological jet streams or at mesospheric 

heights (VanZandt, 1979).   

Another mechanism suggested is irreversible modification of the temperature profile resulting 

from turbulence mixing, The primary feature of these mechanisms is that, on the boundary of 

a turbulence patch itself, temperature sheets are formed. (Coulman et al., 1995).  

Specular reflectors in the stratosphere and mesosphere might be caused by viscosity and/or 
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thermal conduction waves (Hocking, 1991). These waves would form as a result of partially 

reflected waves and gravity waves that become severely nonlinear and reach a critical point 

in time.  

Direct observations of temperature sheets in the lower atmosphere and vertical echo power 

profiles at VHF clearly suggest that these structures contribute considerably near the zenith 

beams (Dalaudier et al., 1994; Luce et al., 1995). They demonstrated that the position of the 

chosen sheets closely correlate to the height of the enhanced vertical echo power. 

6.3 Nonlinear Index from Bicoherence  

The estimation of the nonlinear index from the Bicoherence is given by, 

NLI=BIC
2

max-(BIC
2

robust+2              )                                                   (6.2)                                       

Where BIC
2

robust,               are the robust mean and robust standard deviation, 

respectively. The term robust statistics refers to the measurements that are not affected by 

outliers in the data. 

Nonlinearities can be identified and analyzed in the principal domain of Bicoherence 

(Peter et al., 2006; Jouny, 1992). The NLI is always less than or equal to zero for the linear 

signal process. For nonlinear signal processes, NLI is greater than zero.  

6.4 Data Analysis and Method 

6.4.1 MST radar  

The MST radar is located at Gadanki (13.5
0
N, 79.2

0
E), Tirupati, operating in the VHF 

band (53MHz). This radar can detect the backscattering atmospheric echoes resulting from 

the small-scale inhomogeneities in the refractive index fluctuations due to variations in 

humidity and temperature. The data used in this analysis are collected during the clear air 

event (on 21 January 2023, between the period of 12:00 to 23:00 IST). Radar uses four 

obliques (off-vertical beams) and a vertical beam. The complete details of the system 

description and signal processing techniques can be found elsewhere (Rao et al., 1995). The 

analysis has been carried out in the height range of 3.6 to 20 km with 150 m vertical 

resolution along the beam direction. Experiments have been conducted in both vertical and 

off-vertical directions with a range resolution of 150 m. The backscattered echoes in time 

series are stored as in-phase and quadrature phases for offline processing.  
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6.5 Results and Discussions 

Analysis has been carried out in many data sets for better understanding and quantifying 

the nonlinearities present in the temperature sheets. A clear air system was observed over the 

radar site on 21 January 2023 between the period of 12:00 to 23:00 IST. 

                                              a)                                          b) 

 

Fig. 6.1. a) Sample power spectra computed through FFT, and b) Bicoherence plot of the 

vertical beam on a clear air day (21 January 2023). 

Fig. 6.1a shows the power spectrum obtained for one range bin (before the noise level 

estimation). The main atmospheric signal peak was observed from -1 to 1.5 Hz. Since 

atmospheric signals are contaminated with noise, and most of the time, its fluctuations 

influence the analysis. Sometimes, spurious peaks occur in the bicoherence plot due to noise 

in the signal; therefore, noise removal is an important part of signal processing to get the best 

estimation. 

       The noise level should be removed from the power spectrum to analyze nonlinear 

statistics in the signals. Fig. 6.1b.Shows the nonlinear interactions between frequency 

components in the principal domain of the Bicoherence plot. A maximum bicoherence value 

of 0.82 is observed at frequencies of (0.4587 Hz, 0.4587 Hz). 
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a)                                                                                             b) 

 

Fig. 6.2. Height profiles of Nonlinear index and SNR observed on a clear air day a) 129 

rangebin b) 889 rangebin. 

Fig. 6.2a-b shows the vertical profiles of nonlinear Index (NLI) and SNR plotted from 3-

21 km observed during a clear air day. The maximum value of 28 dB SNR is estimated at 14-

16 km height, as shown in Fig. 6.2a. This may be due to the presence of temperature sheets 

near the tropopause region associated with the wind shear mechanism. These sheets are 

commonly formed  in regions of higher static stability (Luce, 2001; Jayarao, 1994; Lane et 

al., 2003; Trier et al., 2020; Sharman et al., 2012; Ko and Chun, 2019; He et al., 2022; Nath, 

2009). It can be seen from NLI that a significant enhancement in the value of the nonlinear 

index is observed in the same region. The characteristic of this enhancement resembles that 

of temperature sheets that have been identified.  

 

Fig. 6.3. The Height and time contour plots corresponding to a) Power, b) Nonlinear index 

(NLI), and c) SNR in log scale, of the vertical beam (Zenith beam) of the clear air system 

observed on 21 January 2023. 
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Fig. 6.4. The Height and time contour plots corresponding to a) Power, b) Nonlinear index 

(NLI), and c) SNR in log scale of the vertical beam (Zenith beam) of the clear air system 

observed on 21 January 2023. 

Fig. 6.3a-c  and 6.4a-c shows the Height and Time contour plot of NLI and SNR plotted in 

a log scale from 3.6 to 21 km. The NLI range is observed from -20 to 0 dB.Maximum values 

of NLI (-7 to 0 dB) are observed at the lowest altitude, up to 6 km, and the maximum values 

of -10 to -5 dB are found above 9 km. Strong SNRs have occurred in the lower regions of the 

atmosphere with maximum values of 20-40 dB. Stable layer structures have been found at 9-

12 km with strong SNR that occurred with maximum values of 10-20 dB and above 11 km 

with 10-20 dB values. We can expect a maximum number of nonlinear interactions among 

eddies in this region; therefore, the nonlinearity index will be higher in this region. Therefore, 

clearly, we can observe a good similarity between the nonlinear index and SNR.   

Fig.6.5a-f shows the vertical variation of temperature, Specific humidity,Pressure, wind 

speed, Lapse rate and Brunt Vaisala frequency, respectively. Fig. 6.5a shows the vertical 

profile of temperature, which shows the temperature gradients near the tropopause region 

above 15 km. The variation of the stability parameter is observed in the order of 0.01-0.04s
-2,

 

as shown in Fig. 6.5f. From Fig. 6.5d, the maximum wind speed is observed between the 

region of 10 to 15 km. The maximum values of specific humidity (~10g/kg) are observed 

below 5 km (Fig. 6.5b).  
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Fig. 6.5. Profiles of a) Temperature (K), b) Specific humidity (g/kg), c) Pressure (hPa), d) 

Wind speed (ms
-1

),e) Lapse Rate (K/km) and f) Brunt Vaisala frequency obtained from the 

Radiosonde data on 21 January 2023 (05:30 IST). 

6.6 Chapter Conclusion 

Higher-order spectral analysis has been applied to the atmospheric radar backscattered 

signals to detect the nonlinearities associated with temperature sheets near the tropopause 

region. Clear air events data have been considered for the analysis from the above results. 

Enhancement of the radar signal in the vertical direction reveals the existence of the 

temperature sheets, which are clearly related to the occurrence and location of these 

gradients. The enhancement in the radar signal improves the SNR in the corresponding 

region. We can observe that the nonlinear index improvement in the same region shows the 

existence of temperature sheets due to the Fresnel reflection mechanism observed from the 

vertical profiles of the MST radar. From the above results, one can say that higher-order 

spectral analysis effectively identifies and characterizes the presence of temperature sheets 

present in the near tropopause region.However, this is one of the interesting subjects to study 

using Higher order spectral analysis. More data sets have to be considered to properly 

investigate these temperature sheets, and analysis should be carried out by using Higher-order 

statistics with corresponding location, date, and time of in situ measurements. 
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Chapter 7 

Conclusions and Future Works 

 

This chapter summarizes the overall observations and conclusions of the studies presented in 

the previous chapters of this thesis. Further, recommendations and future research directions 

in radar signal processing in turbulence studies are also presented in this chapter. 

This thesis has investigated the statistical distribution of weather signals and the process 

associated with the weather and atmospheric signals and implemented efficient algorithms for 

estimatingradarparameters. This thesis proposed algorithms for noise and clutter removal in 

weather signals using Higher order spectral analysis and Empirical Mode Decomposition 

techniques alsodeveloped a new approach for the measurement of one of the important 

atmospheric parameters of turbulence eddy dissipation rate for atmospheric radars. Here we 

included the major conclusions of this thesis as chapter-wise below. 

 In Chapter 3, the results from this chapter concluded that the bispectrum method is 

efficient when working under noisy conditions, as it significantly reduces the 

Gaussian noise components compared to conventional techniques like Pulse pair and 

Fourier methods.The remaining signal in the Doppler power spectrum is the non-

Gaussian components that follow the non-Gaussian distribution characteristics.  This 

helps in improving the signal-to-noise ratio (SNR), which in turn improves the 

detectability of the weather signal returns.  

 In Chapter 4, we introduced a new approach for the measurement of turbulence eddy 

dissipation rates. Both convective and clear air system data have been considered for 

the analysis. The empirical relationship between NLI and ε established through 

regression models. The turbulent energy dissipation rate (ε) estimated from the 

Nonlinear index matches fairly well with ε measured from the spectral width method 

in both clear air and convective system with a good correlation of around 0.8. From 

the above results, it has been established that the nonlinear index shows the existence 

of turbulence in the backscattered signals, which means that it measures the 

turbulence intensity, and also observed that the estimation of the nonlinear index 
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efficiently identifies the multiple-layer structure around the tropopause region. From 

the above results, we can say that higher-order spectral analysis effectively identifies 

and characterises the nonlinearities occurring in the atmospheric signals, which can be 

used for estimating one of the important atmospheric parameters, turbulence energy 

dissipation rate.  

 In Chapter 5, introduced a new approach, which is a modified version of EMD 

correlation based denoising method for removal of noise and clutter in weather 

signalsbased on the energy of the first and last IMFs.The analysis is carried out with a 

large number of data sets, and it found that the new approach successfully removes 

the ground clutter and denoise the weather signal in all cases. The moment estimation 

and its comparison with other techniques demonstrate the effectiveness of the signal 

processing approach in a complex observational environment.  

 In Chapter 6, we developed an algorithm for analysing temperature sheets observed 

from the vertical profiles of VHF radar using Higher order spectral analysis. 

Future Directions 

 The turbulence studies discussed in previous chapters can extend to understanding the 

nonlinearities in weather signals caused by turbulence during severe weather 

conditions by using the indirect approach of the Nonlinear index for empirically 

calculating the turbulent energy. 

 Study the turbulence associated with Squall lines and bow echoes from Mesoscale 

Convective Systems.  

 Otherthan HOSA, Hilbert-Huang Transform technique also reveals the information 

about presence of nonlinearities in the data. Therefore, we can develop another 

method of HHT based algorithm for finding nonlinearities in weather signals. 

 Development of Rain estimation algorithms and their impact due to statistical 

distribution of weather signals. 
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