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Abstract
The Cardiovascular System (CVS) is an intricate and essential part of human physiology
which maintains oxygen transport, blood flow and homeostasis throughout the body. Un-
derstanding the dynamics and regulation of the CVS is important in clinical medicine,
biomedical research and healthcare innovation. Experimentation with the human body to
understand physiology is a challenging research area in the modern world. The mechanisms
postulated to explain the human system can be easily studied using mathematical expres-
sions in computer simulation due to the extremely complex structure of the human system.
These mathematical representations involve creating dynamical equations and computa-
tional simulations to describe the physiological process of the human system.

During the initial phase of the research work, a lumped parameter model for CVS is de-
veloped using the pressure voltage analogy. In the existing arterial Windkessel models, the
viscoelasticity characteristics are not considered, leading to error in the model and hence
false prediction is unavoidable. To incorporate this characteristic, improved Fractional
Order (FO) Windkessel models are developed by introducing fractionality in the existing
2-element, 3-element and 4-element Windkessel models (Wk4). The MATLAB function
fmincon() is used to optimize the model parameters and fractionality of the differential
equation by minimizing the error between the clinical data and the model output consid-
ered as an objective function. The simulation results indicate that the FO models provide
least error index than the existing Integer Order (IO) Windkessel models. In specific, the
FO Wk4 model provides better closeness to the clinical data than other FO Windkessel
models. Hence, FO Wk4 model is further used to study the behavior of system subjected
to abnormalities like atherosclerosis and arterial stiffness.

The Windkessel model is a single compartment representation which simplifies the
complex arterial system into a series of resistive and compliant elements, neglecting the
intricate branching and geometry of the chambers and the valve functionality. A more
complex model is required to address the limitations of Windkessel model for specific ap-
plications or studies which need better accuracy. Hence, a FO geometric model is presented
which includes four chambers of the heart, systemic and pulmonary circulation. The heart
chambers are modeled based on the geometry and systemic and pulmonary circulation are
modeled using the Windkessel approach. To include the viscoelastic property, a fraction-
ality is included in the dynamics of the chambers. An optimization method is presented to
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obtain the fractionality of different chambers by minimizing the error index between clin-
ical data of healthy human and model output using heuristic algorithms such as Cuckoo
search, Firefly and Accelerated particle swarm optimization.

Baroreflex dysfunction is one of the common causes associated with the CVS. The
buffering capability and baroreflex gain influence large variation in blood pressure for short
term control. For regulating the blood pressure, a model with the baroreflex control is pro-
posed to study the complex interactions between the autonomic nervous system and CVS.
Initially, baroreflex control is designed for the IO extended windkessel model which han-
dles the distribution of total blood volume changes under the influence of postural changes
by means of short term baroreflex control utilizing the sympathetic and parasympathetic
nerve activities. To show the efficiency of the proposed model, the simulation is carried out
further for orthostatic hypotension and hypertension conditions. The existing IO model will
not consider the viscoelastic property of CVS. Hence to get the realistic anatomy and bet-
ter accuracy, the baroreflex control is designed for the proposed FO geometric model and
validated with clinical data. Also, the proposed model is studied for different abnormality
conditions like orthostatic intolerance, hemorrhage, atherosclerosis and arterial stiffness.
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Chapter 1

Introduction

1.1 Introduction

Experimentation with human system is one of the challenging research areas in the modern
world. The mechanisms postulated to explain human system can be easily studied with the
use of computer simulations due to the extremely complex model of the human system. For
example, when the astronauts have to fly from high-g to zero-g and vice versa, they have
to encounter various problems like dizziness, lightheadedness, diaphoresis, nausea, visual
disturbances etc,. For analyzing these issues, direct experimentation in human system may
lead to serious health consequences. In this scenario, modeling and simulation of biological
systems is important and it plays a vital role. These mathematical models can be used to
detect diseases in the early stage itself.

1.2 Literature Survey

Human system is a highly complex system that performs complex functions and needs
immense knowledge in this area to understand the behavior. Doing experimentation in
the human system to study the complex working and interaction of the different systems
inside the human body is difficult. The complex behavior can be studied with the help
of mathematical modeling and computer simulations that mimic the behavior of human
system. Like other systems in human body, Cardiovascular System (CVS) is unique for its
complex, dispersed anatomical structure, physical properties and dynamic activity.

Heart disease is the main cause of death worldwide. Such diseases can be diagnosed
and treated using various forms, like following diets which is a simplest method to very
complex and high risk such as heart transplantation. Due to their important roles in pump-
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ing blood into the circulation system, heart models have been paid more attention. Modern
engineering technology is allowing opportunities to find improved technologies for diagno-
sis and prevention of such diseases which are considered as dreadful diseases in the olden
days. New medical assist devices or predictive medical instruments can help to get aware-
ness of the risky situations to occur in due time to our health. To realize such goals, various
mathematical modeling of human heart has been studied using physical models.

For representing CVS, the electrical analogy of CVS is used. To explain the arterial
pressure decay during diastole, a single lumped Windkessel model is developed which
gives a mathematical description of the arterial system. In [1], authors developed a model
which improves the characteristics at high frequency by placing a resistance in series with
the 2-element Windkessel model (Wk2) and known as the 3-element Windkessel model
(Wk3). This provides a better pressure profile compared to Wk2. However, the parameters
estimated do not match the values derived using Poiseuille’s law [5]. To overcome this
issue, an inductor is introduced to represent the inertia of the blood flow [6]. There are two
ways of including the inductor (i) parallel to the series resistance [7] and (ii) series with
resistance [8]. Due to physiological interpretation, an inductor in series with resistance is
widely used and named as 4-element Windkessel model (Wk4) [2]. The performance of
these models are analyzed by fitting the pressure profile with data collected from healthy
subjects of different age groups [9]. The estimated model parameters are compared with
the theoretical values and found that the Windkessel model with series inertance performs
better than other models.

To get better performance, more characteristics need to be added which make the model
complex. In [10], Wk4 is extended by adding diodes as valves. Over the years, circuit mod-
eling become complex since the models developed are the combination of many lumped
segments. The level of complexity further increases with the introduction of complex con-
trol loops. As the computer era started, the complexity in analyzing the mathematical
model in simulation platform is dramatically reduced [11].

On the other hand, distributed parameter models are used for representing the blood
flow relations using the Navier-Stokes equation [12]. However, lumped parameter mod-
els are commonly used in literature due to their simple representation and easy analysis.
In [13], the mitral valve and tricuspid valves are modeled using resistors that vary with the
pressure gradient across them. This assures unidirectional flow and can be further used for
disease diagnosis. In order to simulate the CVS including the baroreceptor model, a mathe-
matical and physical analogy model of the total artificial heart is developed [14]. From the
literature, it is noted that a complete heart model is obtained by adding all four chambers
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and valves. The complete artery structure of the CVS along with the pulmonary circu-
lation is modeled which is complex and hence difficult to analyze [2], [12]. The control
mechanism to regulate the blood pressure of the artery also be included to get a realizable
model.

The rhythmic contraction and relaxation of the cardiac muscles eject blood from the
Left Ventricle (LV) and the pressure exerted by the blood on the wall of arteries is known
as Mean Arterial Pressure (MAP). This is influenced by four key factors (i) cardiac output
(ii) blood volume (iii) peripheral resistance and (iv) viscosity [15]. The sudden variation in
MAP can lead to the dysfunction of the different body parts and organs. On changing the
position from supine to standing, blood pools towards the lower body due to gravity, which
changes the distribution of the blood volume in the body, leading to change in venous pres-
sure. The Baroreceptors fire action and this information is processed in the medulla oblon-
gata and its cardioinhibitory and vasomotor centers then create sympathetic and parasym-
pathetic nerve activities respectively [16]. The efferent pathways transmit these activities
in the form of impulses to the various parts of the CVS which affects the blood pressure
by changing the peripheral resistance, compliance, stroke volume and contractility. Hence
baroreceptor control plays an important role in modeling of CVS [16].

A model of the heart including ventricular pressure as a function of change in heart
rate is given in [17]. In [18] and [19], heart rate data is directly given to the model and
does not include the cardio-pulmonary circuit. These models use sigmoidal relationships
for the control parameters with respect to the pressure and use differential equations sim-
ilar to [20]. The heart models along with the baroreflex mechanism presented in [21] use
non-pulsatile (linear) models whereas [19] and [20] deal with pulsatile model (non-linear).
When compared with the experimental data, the nonlinear model provides better result than
the linear model. In [22], change in heart rate is modeled, however other parameters like
peripheral resistance, contractility, compliance and stroke volume are not taken into con-
sideration. However, this model does not include the cardio-pulmonary circuit which leads
to inaccuracy.

In [23], 0D-3D model combination is used to analyze the baroreflex control, but the
effect of the pulmonary circuit and right heart is not taken into consideration. The effect
of respiration is considered in [24], but instead of compartment modeling, the systolic and
diastolic phase modeling approach is used. The parameters used in the models are predicted
using experimental or optimization methods. Kalman filtering method can also be used for
the prediction of parameters in the modeling of baroreflex control [25]. The mechanisms of
baroreflex are extensively studied through experimental procedures on animals and found
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nonlinear behavior of the control mechanisms [26] - [27]. The statistical analysis of the
data has been done to analyze the relation between heartbeat and pressure due to the head
up tilt position and postural changes [28] - [29].

Orthostatic Intolerance (OI) is common in elderly and post flight in astronauts and is
hard to diagnose and treat [30] - [31]. The ability of the CVS to regulate the blood pressure
(i.e. baroreceptor mechanism) will be compromised after the return from microgravity con-
ditions for astronauts. During space travel, the loss of hydrostatic force due to microgravity
causes reduction in intravascular volume. To understand the diagnosis and treatment, it is
crucial to study the underlying mechanism of short-term blood pressure management. This
is aided by pressure sensors called baroreceptors found in the walls of major arteries in
the thorax and neck [32]. Experimentation with human body is difficult and is done in
controlled conditions [33]. Studies show that after returning from space, astronauts are
provided with medical assistance in the ground station to avoid the problems related to
OI [34]. The effect of microgravity conditions can be mathematically modeled and studied
by altering the baroreceptor control mechanism which can be used to analyze health of
astronauts [35].

Fractional Order (FO) calculus is a generalization of classical calculus that extends the
concept of differentiation and integration to non-integer orders. In the real-world prob-
lem, processes exhibit non-integer order behavior that cannot be captured using traditional
Integer Order (IO) calculus. Hence, FO calculus can be used to model complex systems
more accurately. Fractional calculus has gained increasing attention in recent years for its
potential to provide more accurate and flexible mathematical models of physical systems.
One of the significant contributions of FO in modeling is its ability to capture the com-
plex dynamics of physical systems that cannot be described by IO models. In many fields
of science and engineering, researchers have used FO models to improve the accuracy of
their predictions. In [36], a study on the behavior of a mass-spring system subjected to a
FO damping force is presented, which uses a novel approach to accelerate the system’s re-
sponse by introducing an external force expressed using FO that acts on the system’s mass.
The introduced external force allows the system to overcome the damping effect and reach
a steady-state response more quickly.

Fractional calculus has also been used in the modeling of biological systems. A re-
cent study has proposed a mathematical model for simulating the behavior of the human
liver using the Caputo-Fabrizio fractional derivative to describe the memory effects of the
liver’s behavior [37]. The viscoelasticity of the arterial wall is one of the important factors
which controls the pressure-flow relation of the arterial system. This property is incorpo-
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rated in the Windkessel models by introducing fractionality to the capacitor. A two-stage
algorithm based on modulating functions is used for the parameter estimation and validated
using clinical data [38]. This indicates that transitions between viscosity and elasticity are
modeled accurately. In [39], FO derivatives in the lumped circulation models are used for
diagnosing different types of heart abnormalities using pressure-volume loops. In [40], the
arterial stiffness is analyzed using the FO based paradigm of arterial compliance.

Many studies over the last decade show the feasibility of adopting fractional modeling
to represent artery wall viscoelasticity [41]. FO viscoelastic models for one-dimensional
blood flow are presented in [42]. The viscoelasticity of the arterial wall is one of the im-
portant factors that control the arterial system’s pressure-flow relation. This property is
incorporated in the Windkessel models by introducing fractionality to the capacitor. The
importance of the FO Windkessel model lies in its ability to capture the complex dynamics
of the arterial system, which cannot be fully explained by the classical model. The arte-
rial system exhibits viscoelastic and nonlinear behavior which can account more accurately
using FO Windkessel models than IO models. This makes it a valuable tool for studying
the pathophysiology of various cardiovascular diseases such as hypertension, atheroscle-
rosis etc., and for designing interventions/treatments for these diseases. Studies show that
fractionality is introduced to Wk3 model [43]. However, the effect of inertance of the flow
of blood and the effect of diseased conditions are not modeled. Its potential applications
in medical device development and non-invasive diagnostics further emphasize its impor-
tance.

Different methods like Oustaloop approximation, Charef method, etc., are used to ap-
proximate FO systems for simulation [44]. Adams-Bashforth-Moulton predictor-corrector
method is widely used for numerical solution of FO systems [45]. The basic Windkessel
model is used for these FO models which only considers the arterial model of CVS. FO
approach is introduced to a cardiovascular circulatory system and left carotid model which
includes the left atrium, left ventricle and aorta [46]. Determining the FO of a model is an
important step when dealing with systems that exhibit non-integer order dynamics.

Several methods and techniques can be employed to find the fractionality of a model.
One of the common methods is to fit experimental data to a FO transfer function model in
which fractionality is obtained by adjusting the FO and other model parameters, the best fit
to the real-world data can be obtained [47]. The slope of the Bode plot in the low-frequency
region can be an indicative of FO system representation [48]. Hence, the order of fractional
dynamical equation are obtained by analyzing the frequency response of a system. Simi-
larly, the step response of a system can also help in determining the FO by receiving the
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the rate at which the system approaches a steady state response. Other methods like least
squares fitting, system identification techniques, recursive identification, machine learning
and data driven approaches are also available and used in real time systems like induction
motor, magnetic levitation, inverted pendulum [49], [50], [51].

In practice, most of the real time control problems cannot be solved analytically and
hence, optimization techniques are widely applied. A wide range of optimization tech-
niques exist like traditional and constrained optimization. Many of literature shows that the
fmincon() solver in MATLAB which includes sequential quadratic programming, interior
point etc,. are used for solving optimization problems [52]. The traditional optimization
fails when dealing with complex systems, systems in which mathematical modeling is diffi-
cult and models which have large datasets. Hence, the optimization problems can be solved
only using heuristic algorithms.

Heuristic optimization methods have gained popularity due to their ability to efficiently
find near-optimal solutions for complex problems, especially in cases where traditional
mathematical optimization techniques may be impractical or computationally expensive.
Unlike some traditional optimization techniques that rely on derivatives of the objective
function, heuristic methods do not require derivatives. This makes them suitable for prob-
lems where derivatives are difficult to obtain or are not available. Nature-inspired meta-
heuristic algorithms like Particle Swarm Optimization (PSO) [53], Genetic Algorithm (GA),
Cuckoo Search (CS), ant colony optimization, Firefly Algorithm (FA) [4], honey bee mat-
ing optimization, Accelerated Particle Swarm Optimization (APSO), artificial bee colony
algorithm, etc., are introduced to find the optimal parameters of the system model. Later
different modifications are introduced to improve the accuracy and convergence of these
algorithms [54]. The intelligent optimization method for designing FO controller based on
GA is presented in [55]. Hence, heuristic optimization can be used to find the fractionality
of the complex optimization problem of CVS model.

1.3 Motivation

The above literature show that the issues related to human system can be easily analyzed
with the help of mathematical model and in turn helps in avoiding the risk caused. Math-
ematical modeling of the CVS holds significant importance for various aspects of medical
research, clinical practices and healthcare innovation. Mathematical models help in under-
standing physiology, clinical decision support, risk assessment, surgical planning etc., in a
cost effective manner. Many physical systems exhibit behaviors that cannot be accurately
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represented by IO models. FO models, with their ability to capture non-integer order dy-
namics, can better represent the behavior of these systems. For CVS model, the viscoelastic
property is ignored while modeling using IO approach. The FO modeling can incorporate
the viscoelastic property and memory dependent characteristic.

Also, the modeling is not complete without adding the control loop to the system.
Hence, a perfect model with an accurate baroreflex control is important for the easy anal-
ysis of human health. This motivates to propose FO models with baroreflex control which
mimics the CVS and further can be useful for analysing the abnormalities.

1.4 Research Contributions

Overall, this research work presents the modeling of CVS using (i) FO Windkessel and (ii)
FO geometric model with baroreflex control. The obtained CVS model using optimization
methods is further studied for various abnormality conditions. The research contributions
of the thesis are summarized as follows:

• A partial CVS model along with baroreflex is developed using the extended IO Wind-
kessel model. This is validated for normal and postural change conditions. Further,
the simulation is performed for OI conditions

• FO Windkessel and FO geometric models are developed and fractionalities are ob-
tained using heuristic optimization methods like CS, FA and APSO algorithms. The
proposed models are validated and studied in detail by introducing different abnor-
mality conditions

• Baroreflex control mechanism is developed for the proposed FO geometric CVS
model. To validate the model, simulation is conducted for (i) normal (ii) postural
changes and (iii) various abnormality conditions

1.5 Organisation of Thesis

• Chapter 2 discusses the anatomy of heart and the mathematical models of CVS which
includes Windkessel and geometrical model

• In Chapter 3, the detailed description about baroreflex control for CVS is given which
includes a simplified extended IO Windkessel model. Simulations are done for pos-
tural changes and OI to show the performance of baroreflex control
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• Chapter 4 presents the FO modeling of Windkessel and geometric model using dif-
ferent heuristic optimisation techniques like CS, FA and APSO

• Chapter 5 presents the integrated design which consistS of baroreceptor control mech-
anism and the FO geometric model

• Chapter 6 provide the conclusion and future directions of this research work

8



Chapter 2

Modeling of CVS

2.1 Introduction

Mathematical modeling involves using mathematical equations and computational tech-
niques to simulate and analyze the behavior of CVS to understand the complex interactions
between the various components such as the heart, blood vessels and blood flow. CVS is
a highly dynamic and intricate system and mathematical modeling provides a quantitative
framework to investigate its physiological processes. There are many different modeling
methods available. One common approach is to model CVS as a network of interconnected
compartments, representing different anatomical regions or physiological components. For
example, the heart can be represented by a set of differential equations that describe its elec-
trical activity and mechanical pumping function. The blood vessels can be represented as
a network of resistances and capacitances that determine blood flow and pressure distribu-
tion. Other methods like modeling based on Navier Stokes equation and partial differential
equations are also available. For this study, Windkessel model and geometric model are
considered. To model the behavior of heart and its interaction with the blood vessels, it is
important to know the anatomy and physiological theories behind the mechanisms. In this
chapter a brief description about the anatomy and physiology of the heart and circulation
system is provided.

2.2 Anatomy of CVS

CVS is a system that circulates blood through vessels between the heart and different parts
of the body, carrying nutrients and oxygen to tissues and removing carbon dioxide and
other wastes from the tissues. CVS mainly consists of the heart and circulation. The
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heart includes four chambers and four valves and the circulation includes pulmonary and
systemic vasculature which consists of arteries, veins and capillaries as shown in Figure
2.1.

Figure 2.1: Schematic of CVS 1

The primary function of the heart is to serve as a muscular pump propelling blood
through vessels to and from all parts of the body. The pressure and velocity of the ar-
teries which receive blood from heart is high and have thick walls that are composed of
elastic fibrous tissue and muscle cell. The arterial tree terminates in short, narrow, mus-
cular vessels called arterioles, from which blood enters simple endothelial tubes known
as capillaries. These thin microscopic capillaries are permeable to vital cellular nutrients
and waste products that they receive and distribute. From the capillaries, the deoxygenated

1https://www.vedantu.com/question-sets/7563f5e3-60cc-4d37-97c6-a8421820106b8206685272555919929.png
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blood with impurities moves more slowly and under low pressure to vessels called venules
that converge to form veins and guide the blood back to the heart.

Figure 2.2 shows the block diagram of different compartments of CVS and the flow of
blood. This consists of (i) heart (ii) systemic and (iii) pulmonary circulation.

Figure 2.2: Compartmental representation of CVS

2.2.1 Heart

The heart is made up of cardiac muscle cells. It consists of four chambers Left Ventricle
(LV), Left Atrium (LA), Right Atrium (RA) and Right Ventricle (RV). The blood flow
between these chambers are controlled by four valves namely Mitral Valve (MV), Tricuspid
Valve (TV), Pulmonary Valve (PV) and Aortic Valve(AV) as shown in Figure 2.3. They
allow one-directional flow of blood in the chambers.

The RA and LA are the higher chambers and the RV and LV are the lower chambers.
The septum is a wall that separates the right and left atria as well as the right and left ven-
tricles. The largest chamber is the LV. It transports oxygen rich blood from the pulmonary
veins to the body via the aorta. The RV receives the deoxygenated blood from the veins.
Deoxygenated blood enters the RA through superior and inferior vena cava and the TV
allows the flow only into the RV, from where the blood is directed by the pulmonary valve
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towards lungs for purification via pulmonary arteries. The oxygenated blood then enters
the LA through pulmonary veins from the lungs and the MV directs the blood into the LV,
from where the blood is pumped via aorta regulated by AV.

Figure 2.3: Schematic of Heart 2

2.2.2 Circulation

Blood is carried from the heart to the rest of the body and back to the heart via a com-
plex network of arteries, arterioles and capillaries, venules and veins and comes back to
the heart is known as systemic circulation. Systemic vasculature consists of the aorta, sys-
temic arterioles, systemic capillaries, systemic venules and systemic veins. Aorta carries
oxygenated blood to the different part of the body and the deoxygenated blood reach RA
through systemic veins. The oxygenated blood is pumped by LV of the heart via aorta and
is distributed throughout the body via arteries. Further, blood percolates into the tissues via
capillaries, which are branches of arteries, where the body cells use oxygen and nutrients.
The deoxygenated blood received from different parts of the body is given to the RV of the
heart is purified by the lungs and given back to the LA of the heart through the pulmonary
circulation. The pulmonary vasculature consists of pulmonary arteries, arterioles, capil-
laries, venules and veins. Pulmonary arteries carry impure blood from RV to pulmonary
arterioles of the lungs and the oxygenated blood returns to LA through pulmonary veins.

2https://www.vedantu.com/question-answer/blood-vessels-are-attached-to-the-heart-are-class-10-
biology-cbse-5f62c960bc188a784311250b
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2.3 Windkessel Models

The Windkessel model is the basic mathematical model that describes the behavior of the
cardiovascular arterial system in specific the arterial circulation. The model consists of a
simple electrical circuit that represents the arterial system as a hydraulic network as shown
in Figure 2.4. The circuit consists of a capacitor which represents the compliance or elas-
ticity of the arteries and a resistor which represents the resistance of the arterial system.

Figure 2.4: Hydraulic analogy of arterial system 3

In Windkessel models, the heart pumps blood into the arterial system during systole
causing the arterial pressure to rise. During diastole, when the heart is relaxed, the pressure
falls as blood flows through the arterial system and into the smaller vessels. The capacitor
in the circuit represents the ability of the arteries to store energy during systole and release
it during diastole, which helps to maintain a relatively constant blood flow. The resistor
represents the resistance offered by the arterial system to blood flow which is determined
by factors such as the diameter of the blood vessels, their length and the viscosity of the
blood. The mathematical modeling of the arterial system is based on the lumped parameter
approach in which the pressure-volume relationships are analytically represented in the
form of an ordinary differential equation.

2.3.1 2-element Windkessel model

In Wk2 model, the relation between pressure and flow rate can be represented using an
IO differential equation obtained from the electrical circuit given in Figure 2.5. In this

3https://www.google.com/gasearch?q=Windkessel%20Effect&source=sh/x/gs/m2/5vhid=qdyFIngaVhkD_M&vssid=l
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Figure 2.5: Circuit diagram of Wk2 model [1]

figure, the voltage represents pressure inside the artery and the current represents the flow
rate of blood through the artery. The circuit resistance corresponds to resistance of the
blood flow and the capacitor corresponds to compliance of the arterial system. By applying
Kirchhoff’s law:

I(t) = C
dP (t)

dt
+

P (t)

R
(2.1)

where, P (t) is the blood pressure in the aorta in mmHg, I(t) is the flow rate, modeled
as a time-varying current source, R is the peripheral resistance of aorta to the flow of blood
in mmHgs/cm3 and C is the compliance in cm3/mmHg.
From (2.1), the change in pressure of WK2 is written as:

dP (t)

dt
=

1

C

(
I(t)− P (t)

R

)
(2.2)

2.3.2 3-element Windkessel model

To include the resistance offered by the aortic valve to the blood flow, Wk3 is introduced
which includes the impedance of the aortic valve (r) in series with the Wk2 model as shown
in Figure 2.6.

Figure 2.6: Circuit diagram of Wk3 model [1]
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By applying Kirchhoff’s law:

I(t) = C
d

dt
(P (t)− I(t)r) +

P (t)− I(t)r

R
(2.3)

By rearranging (2.3):

I(t)
(
1 +

r

R

)
= C

dP (t)

dt
− Cr

dI(t)

dt
+

P (t)

R
(2.4)

Hence, the change in pressure for Wk3 is given as:

dP (t)

dt
=

1

C

[(
1 +

r

R

)
I(t) + Cr

dI(t)

dt
− P (t)

R

]
(2.5)

2.3.3 4-element Windkessel model

The effect of inertia on the blood flow through the blood vessel is not included in Wk2
and Wk3. Hence, Wk4 model is developed in which the total arterial inertance is added as
the fourth element [6]. Here, an inductor (L) is added in series to the circuit in an account
of inertia as shown in Figure 2.7. This model provides an accurate representation of the

Figure 2.7: Circuit diagram of Wk4 model [1]

arterial blood flow when compared to Wk2 and Wk3. By applying Kirchhoff ’s Law:

I(t) = C
d

dt

(
P (t)− I(t)r − L

dI(t)

dt

)
+

P (t)− I(t)r − LdI(t)
dt

R
(2.6)

By rearranging (2.6):

I(t)
(
1 +

r

R

)
= C

dP (t)

dt
−
(
Cr +

L

R

)
dI(t)

dt
− LC

d2I(t)

dt2
+

P (t)

R
(2.7)
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Hence, the change in pressure for Wk4 is obtained as:

dP (t)

dt
=

1

C

[(
1 +

r

R

)
I(t) +

(
Cr +

L

R

)
dI(t)

dt
+

LC
d2I(t)

dt2
− P (t)

R

]
(2.8)

The equations (2.2), (2.5) and (2.8) are used for generating the pressure profile of the
Windkessel models.

2.4 Geometrical Model

Windkessel model includes only the arterial part of the CVS with which acquiring com-
plete information of the system is not possible. The compartment model of CVS is a
simplified representation that divides the system into discrete compartments, each repre-
senting a specific region or component of the CVS. This model is widely used in cardio-
vascular physiology to analyze and understand the dynamics of blood flow, pressure, and
other relevant variables. In the compartment model, the CVS is divided into several inter-
connected compartments, and the flow of blood between these compartments is described
using mathematical equations. Each compartment represents a specific anatomical or phys-
iological region, such as the heart, arteries, veins, or capillaries. The connections between
the compartments represent the blood vessels and their interactions. These connections can
be modeled using resistances which determine the resistance of blood flow between com-
partments and capacitances which represent the ability of blood vessels to store and release
blood.

In this model, the heart chambers are modeled based on the geometry and the valves
are modeled analogous to diodes [3]. The systemic and pulmonary vasculature are mod-
eled based on the arterial Windkessel model. All the chambers are included along with
pulmonary and systemic lumped parameter models.

2.4.1 Modeling of heart

The four chambers of the heart LV, LA, RA and RV are modeled based on geometry. The
geometry of LV and RV are shown in Figure 2.8. It is assumed that the geometry of RV
is larger and more complicated compared to LV. Ellipsoidal shape and a lobulated cross-
section with a triangular side view are used for representing the LV and RV of the heart
respectively.
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Figure 2.8: Geometry of LV and RV

2.4.1.1 LV modeling

The mathematical model describes the relationship between the pressure and radius in the
heart chambers. Left ventricular geometry resembles a truncated ellipsoid [3] and hence, an
ellipsoidal geometry is used for the modeling of LV. The LV volume (Vlv) is expressed using
the LV radius (rlv), long axis length (llv) and an additional coefficient (Klv) which allows
to include effects of the contraction in the long axis and scales the proportion between the
LV radius and volume over a cardiac cycle. It is expressed as:

Vlv = Klv

4
3
πr2lvllv

2
(2.9)

The radius (rlv) will be changing over a cycle, where as the long axis length remains the
same. The change in radius is given by:

drlv
dt

=
3dVlv

dt

4πKlvllv

(
6Vlv

4πKlvllv

)− 1
2

(2.10)

The rate of change in volume is the change in the flow rate which is given by, Qmv −Qav.
Hence, by using the relation between the radius and volume bounded by the ellipsoid, the
change in radius of LV is expressed as:

drlv
dt

=
3(Qmv −Qav)

4πKlvllv

(
6Vlv

4πKlvllv

)− 1
2

(2.11)

where, (i) rlv, llv and Vlv are the radius, length and volume of LV respectively (ii) Klv is
the constant which incorporates contraction along the long axis and (iii) Qmv and Qav are
flowrates of MV and AV respectively.

When the volume and flow rate change, the radius of the chambers changes which in
turn changes the pressure inside the chambers. The pressure inside the chambers are the
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sum of active and passive pressures. The relation between pressure and radius of LV is
expressed as:

Plv(t) = Ees−lv

[
2

3
πKlvllv

(
r2lv − r2lv−0

)]
fact−lv (t)

+
[(

Ae
1
6
BπKlvrlv(t)

2llv
)
− 1

] (2.12)

where, (i) Ees−lv is the end systolic elastance (ii) rlv−0 is the radius at zero pressure of LV
(iii) fact−lv is the cosine activation function for LV and (iv) A and B are constants.

The activation function fact−lv generates a bell-shaped curve that varies between 0 and
1. The activation function fact is selected such that the mathematical description of the ven-
tricle agrees with actual measured isovolumic ventricular pressure for different volumes.
There are different types of activation functions are available in literature like Mulier’s
method, polynomial function, gamma distribution function, combined Exponential, Hill
function, cosine function, sine function etc. For the geometrical model, the cosine function
is used and is given as [17]:

fact,lv(t) =


1−cos(t/T1)π

2
0 ≤ t ≤ T1

1+cos((t−T1)/(T2−T1)π)
2

T1 ≤ t ≤ T2

0 T2 ≤ t ≤ T

(2.13)

where, t is the time over a cardiac cycle, T1, T2, and T are the times at the end of systole,
end of the ventricular relaxation and duration of the cardiac cycle.

2.4.1.2 RV modeling

RV has a more complex shape with respect to LV and resembles a crescentic cross-section
and a triangle from the side view. The crescentic cross-section of the RV is more extensive
with respect to the circular cross-section of the LV and the triangular side view of RV seems
like an ellipsoid which has a larger volume occupied by LV. Therefore, an ellipsoidal vol-
ume trimmed at the long axis and the basal axis of RV provides a quite good approximation
to model the RV volume and is given by:

Vrv = Krv

4
3
πr2rvlrv

4
(2.14)

Similarly the change in radius of RV is expressed as:
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drrv
dt

=
3(Qtv −Qpv)

2πKrvlrv

(
3Vrv

πKrvlrv

)− 1
2

(2.15)

where, (i) rrv, lrv and Vrv are the radius, length and volume of RV respectively (ii) Krv is
the constant account for the contraction along the long axis of RV and (iii) Qtv and Qpv are
flowrates of TV and PV respectively.

The relation between pressure and radius of RV is expressed as:

Prv(t) = Ees−rv

[
1

3
πKrvlrv

(
r2rv − r2rv−0

)]
fact−rv (t)

+
[(

Ae0.66BπKrvrrv(t)2lrv
)
− 1

]
,

(2.16)

where, (i) Ees−rv is the end systolic elastance (ii) rrv−0 is the radius at zero pressure
and (iii) fact−rv is the cosine activation function for RV.

2.4.1.3 Atria Modeling

The left and right atrial geometries are modeled using a similar model to the LV geometry.
Therefore, the same relations for the left and right atrial volumes and radiuses are used as
in the LV model with different parameter values. The atrial pressure radius relationship is
modeled by adopting a time-varying elastance pressure volume and expressing the atrial
volume as a truncated ellipsoidal shape.

In this model, the truncated ellipsoidal shape is used to represent the geometry of RA
and LA. Hence the change in radius of LA is expressed as:

drla
dt

=
3(Qvp −Qmv)

4πKlalla

(
3Vla

2πKlalla

)− 1
2

(2.17)

where, (i) rla, lla and Vla are the radius, length and volume of LA respectively (ii) Kla is the
constant account for the contraction along the long axis and (iii) Qmv and Qvp are flowrates
of MV and pulmonary vein respectively.

Similarly, the rate of change in radius of RA is expressed as:

drra
dt

=
3(Qvs −Qtv)

4πKralra

(
3Vra

2πKralra

)− 1
2

(2.18)

where, (i) rra, lra Vra are radius, long axis length and volume of RA respectively (ii) Kra

is the constant account for the contraction along the long axis and (iii) Qvs and Qtv are
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flowrates of systemic veins and TV respectively.

The atrial pressure radius relationship is modeled by adopting a time-varying elastance
pressure volume. The LA pressure is expressed as:

Pla(t) = [Emin−la + 0.5 [Emax−la − Emin−la] fact−la(t−D)][
2

3
πKlalla

(
r2la − r2la−0

)] (2.19)

where, (i) Emin−la and Emax−la are minimum and maximum elastance of LA (ii) rla−0 is
the radius at zero pressure of LA (iii) fact−la is the cosine activation function and (iv) D is
the delay in activation function.

The pressure in RA is expressed as:

Pra(t) = [Emin−ra + 0.5 [Emax−ra − Emin−ra] fact−ra(t−D)][
2

3
πKralra

(
r2ra − r2ra−0

)] (2.20)

where, (i) Emin−ra and Emax−ra are the minimum and maximum elastance of RA, (ii) rra−0

is the radius at zero pressure of RA and (iii) fact−ra is the cosine activation function for RA.

Further, the four valves of the heart are modeled using diodes which ensures the unidi-
rectional flow of blood between chambers. For MV, which is situated in between LA and
LV, when the pressure inside LA is greater than LV, the valve opens and hence the blood
flows from LA to LV. When the pressure inside LV is greater than LA, the valve closes and
hence the blood stops flowing. This process is defined as:

Qmv =


Pla(t)−Plv(t)

Rmv
if Pla(t) > Plv(t),

0 otherwise,
(2.21)

where, Rmv is the MV resistance.

Similarly, the other valves (TV, PV and AV) are modeled based on the pressure of the
compartments to which it is connected.

2.4.2 Modeling of systemic and pulmonary vasculature

The vasculature system consists of systemic and pulmonary circuits. This is modeled using
the arterial Windkessel model [1]. Figure 2.9 shows the Windkessel circuit representation
of the aorta.
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Figure 2.9: Windkessel circuit representation of Aorta [1]

The expressions for pressure and flow rate are obtained as:

Pao =
1

Cao

∫
(Qas −Qao) dt, (2.22)

Qao =
1

Lao

∫
(Pao −RaoQao − Pas) dt, (2.23)

where, (i) Cao, Lao, Rao, Pao and Qao are capacitance, inductance, resistance, pressure and
flow rate of the aorta and (ii) Qas and Pas are flow rate and pressure of the systemic arteries.

Similarly, all the compartments of systemic and pulmonary vasculature are modeled [3].

2.5 Summary

In this chapter, the anatomy of CVS is explained in detail which includes heart, systemic
and pulmonary vasculature. The development of methematical model is explained with
the basic Windkessel model which includes resistance, inductance and capacitance. The
clinical data for input flow rate and output pressure is used and the parameters are estimated.
Further to include the complete compartment of CVS, a geometrical model is studied in
which the chambers are modeled based on the geometry. Also the pulmonary and systemic
circulation is modeled using the Windkessel model. This model is further used for FO
modeling and abnormality analysis.
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Chapter 3

Baroreflex control for CVS

3.1 Introduction

The baroreflex is a critical mechanism that helps to regulate blood pressure and maintain
cardiovascular homeostasis in the human body. It operates through a negative feedback
loop involving sensory receptors, control centers in the brain and effectors in the CVS. The
afferent limb of the baroreflex refers to the sensory input and signaling that occur from
peripheral receptors to the ANS, particularly in brainstem. The baroreflex control design
includes the afferent dynamics, ANS and efferent dynamics. The afferent dynamics of
baroreflex control illustrate a feedback loop that enables the body to respond rapidly to
changes in blood pressure. This regulatory mechanism plays a crucial role in maintaining
cardiovascular stability and preventing extreme fluctuations in blood pressure that could be
harmful to the body [18]. The afferent nervous fibers attached to the aortic arch are acti-
vated due to changes in pressure. he ANS consists of the sympathetic and the parasympa-
thetic nervous system which is responsible for modulating various physiological processes
to maintain cardiovascular stability. The balance between sympathetic and parasympathetic
influences on the heart and blood vessels, orchestrated by the ANS, is critical for maintain-
ing blood pressure within a narrow and optimal range. The efferent dynamics in baroreflex
mechanism is modulated by the ANS. This is essential for adapting to changes in physio-
logical conditions and ensuring cardiovascular homeostasis. The efferent dynamics of the
baroreflex are geared toward maintaining cardiovascular homeostasis by adjusting heart
rate, cardiac output and vascular resistance in response to changes in blood pressure. This
reflex mechanism ensures that blood pressure is kept within a narrow and optimal range to
meet the metabolic demands of the body.

Orthostatic Intolerance (OI) is one of the abnormality conditions arises due to the mal-
function of baroreflex control which is common in elderly and post flight in astronauts.
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It is accompanied by dizziness, falling, syncope and hypotension and is complex to diag-
nose and treat. In elder people, sudden changes in pressure can cause falling down during
postural change under gravity conditions. This is due to decreased baroreflex sensitivity,
parasympathetic activity, renal salt water conservation and LV diastolic filling or increased
vascular stiffness.

On the other hand, when the astronauts are exposed to microgravity conditions, there
will be alterations in the behavior of the CVS which affects the OI of the human system
when they return to Earth and get exposed to normal gravity conditions. The ability of the
CVS to regulate the blood pressure (i.e. baroreceptor mechanism) will be compromised
after the return from microgravity conditions. During space travel the loss of hydrostatic
force due to microgravity causes reduction in intravascular volume. The nervous system
adapts to these changes and hence this process weakens the baroreflex control under gravity
conditions. Studies show that after returning from space, astronauts are provided with
medical assistance in the ground station to avoid problems related to OI.

To understand the diagnosis and treatment of hypotension conditions, it is crucial to
study the underlying mechanism of short-term blood pressure management. In general,
OI happens when there is a change which affects the normal control process of baroreflex
and related mechanisms. Experimenting such conditions in human system is difficult and
is done in controlled conditions. Hence, it is necessary to develop a mathematical model
with baroreflex control for studying the effect of OI in elderly people and microgravity
conditions in addition to controlling MAP during disturbance conditions such as postural
change, hemorrhage and certain abnormalities.

3.2 Mathematical Modeling

In this section, modeling of CVS using the extended Windkessel model and baroreflex
control mechanism using afferent, ANS and efferent dynamics is presented. The integrated
block diagram of CVS and baroreflex control is shown in Figure 3.1.

The red and blue arrows in Figure 3.1 indicate the flow of oxygenated blood and de-
oxygenated blood, respectively. The upper block represents cardiopulmonary system which
includes the blood flow between heart and lungs. The middle block represents CVS which
consists of heart and systemic vasculature. The heart block is characterized by contractility
(c), heart rate (H) and stroke volume (Vstr). The vasculature is characterized by arterial
and venous pressures (Pa, Pv), compliances (Cv, Ca) and peripheral resistance (R). The
lower block represents baroreflex control which consists of baroreceptors, medulla oblon-
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Figure 3.1: Block diagram representation for baroreflex control for CVS

gata, sympathetic and parasympathetic control. The baroreceptor takes MAP as the input
and produces firing rates (n) which are given as information to the medulla oblongata. This
produces chemical tones (Ts, Tp) which controls the heart and vascular characteristics.

3.2.1 Heart and circulation model

This model consists of LV and RV as source and sink for the circulation respectively. The
valves of the LV (aortic and mitral valves) are modeled as diodes to ensure no backward
flow of blood and the valves of the RV (tricuspid and pulmonary valves) are ignored. The
LV is modeled as non-linear pulsatile pressure source [56], where the diastolic pressure
pd(Vlv) is given by:

pd(Vlv) = a(Vlv − b)2 (3.1)

where, Vlv is the volume in the LV, a is the ventricular elastance during relaxation and b is
the ventricular volume for zero diastolic pressure. Systolic LV pressure ps(Vlv) is given by:
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ps(Vlv) = pd(Vlv) + cVlv − d (3.2)

where, c and d represent the volume dependent and volume independent parts of the pres-
sure respectively. Hence, the total isovolumetric ventricular pressure plv(t, Vlv) is given
by:

plv(t, Vlv) = a(Vlv − b)2 + c(Vlv − d)f(t) (3.3)

where, f(t) is an activation function is a simple polynomial model and is given by [17]:

f(t) =

pp(H) (ta−α)n(β−ta)m

nnmm[(β−α)/(m+n)]m+n , α ≤ ta ≤ β(H)

0 β(H) < ta < th
(3.4)

ta = mod(t, th) (3.5)

tp(H) = tp,min +

[
θv

Hv + θv

]
(tp,max − tp,min) (3.6)

β(H) =
n+m

n
tp(H)− αm

n
(3.7)

pp(H) = pp,min +

[
Hη

Hη + ϕη

]
(pp,max − pp,min) (3.8)

where pp(H) is the peak ventricular pressure, n and m characterize contraction and relax-
ation respectively, α represents onset of contraction, β is the time for end of force, th is the
heart period (th = 1/H), H is the heart rate , tp(H) is the time for the peak pressure, θ and
ϕ are medians of tp and pp respectively and v and η are the steepness of tp and pp curves
respectively.

This will be coupled to the windkessel arterial load and it is fed by a constant venous
pressure reservoir. In the proposed model, the arterial load is replaced with the systemic
vasculature which includes arteries, veins and capillaries. For a non-pulsatile model of LV,
the input to the systemic circuit is the outflow from LV and is given by:

qout = HVstr (3.9)

where, Vstr is the stroke volume and H is the heart rate.

The blood is assumed to be an incompressible Newtonian fluid and arteries and veins as
compartments characterized by compliance [57], [58]. The analytical expressions relating
to the volume (V ), pressure (P ), compliance of the vessel (C), flow (q) and resistance (R)

between two vessels are:
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dV

dt
= qin − qout (3.10)

V = CP (3.11)

q =
Pin − Pout

R
(3.12)

dV

dt
= C

dP

dt
(3.13)

The main pressure drop occurs at capillaries which are modeled as a systemic/peripheral
resistance to the flow between arteries and veins. Similarly, dynamical equations for pul-
monary circuits can be derived. The outflow from the LV is the input to the arterial system,
from where the blood flows into the veins via capillaries. From veins, it reaches RV (sink)
and the blood will flow into LV through veins. This is considered as the inflow to the LV.
The outflow and inflow rates are given by:

Qout(t) =


Plv(t)−Pa(t)

Rout
Plv(t) > Pa(t)

0 otherwise
(3.14)

Qin(t) =


Pr−Plv(t)

Rin
Pr > Plv(t)

0 otherwise
(3.15)

where, Qout, Qin are the out and inflows of the LV, Rin is the resistance to flow into the
LV, Rout is the resistance to flow out of the LV, r is the resistance to the flow from veins to
RV, Plv is the left ventricular pressure and Pa is the pressure at arteries.

Using (3.1 - 3.15), the expressions of pressure for CVS are derived as follows:

d

dt
Pa(t) =

−1
RCa

Pa(t) +
1

RCv

Pv(t) +
Qout(t)

Ca

(3.16)

d

dt
Pv(t) =

−1
Cv

(
1

R
+

1

r

)
Pv(t) +

1

RCv

Pa(t) (3.17)

where, Pa and Ca are the arterial pressure and compliance, Pv and Cv are the venous
pressure and compliance respectively. R is the peripheral resistance and q is the blood flow
between arteries and veins. The MAP P̄a of the pulsatile model for a heart period is given
by:

dP̄a

dt
=

1

kH(t)
(Pa − P̄a) (3.18)

where, k is a constant.

27



3.2.2 Model of baroreflex control

The cardiovascular model is non-linearly controlled by the baroreceptors and it consists of
three parts (i) the afferent dynamics from baroreceptors to the ANS (ii) the processing unit
to process firing rate into tones and (iii) the efferent dynamics from ANS to the control
parameters [59], [60].

The process begins with specialized sensory receptors called baroreceptors, which are
located near the carotid sinus in the carotid arteries and the aortic arch. When there is a
change in blood pressure these baroreceptors are activated. The arterial walls will stretch
more when there is a rise in blood pressure and they stretch less when there is a dip in blood
pressure. The sensory neurons transmit the electrical signal generated by the baroreceptors
to the brain and are known as afferent dynamics. The sympathetic and parasympathetic
tones in the ANS are responsible for regulating many bodily functions, including heart rate
and vascular tones.

In response to the brainstem’s assessment, the ANS is activated to make necessary
adjustments by stimulating vagus nerve for an increase in blood pressure and stimulating
sympathetic nerve for a decrease in blood pressure. The heart and blood vessels are the
primary effectors in the CVS. They respond to the signals from the ANS by adjusting heart
rate, stroke volume and vascular resistance (the degree of constriction or dilation of blood
vessels) and known as the effector dynamics. The baroreflex operates as a continuous
feedback loop. As blood pressure returns to the desired set point, the baroreceptors detect
this change and generate the brainstem signal to reduce the autonomic responses. This
helps to maintain blood pressure within the allowable range.

3.2.2.1 Model of afferent dynamics

The baroreceptor is a mechanoreceptor and can be modeled as a spring-damper system [21],
which deploys viscous nature of blood and elastic nature of the aortic wall. Strain applied
to this model will be proportional to the pressure (MAP) sensed. The total stress produced
will be transduced into the current I(t) which in turn transmit as action potentials Vm(t) by
the Hodgkin-Huxley equivalent model across the nerves to the ANS [61] and [20]. This is
expressed as:

I(t) = k1P̄a(t) + k2
d

dt
P̄a(t) (3.19)

where, k1 and k2 are constants.
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The action potentials Vm(t) are given by:

C
d

dt
Vm(t) = I(t)− gleakVm(t) (3.20)

where, C is the capacitance of the lipid layer and gleak is the leak conductance.
A unified model for average firing rate is derived as [61]:

d

dt
ni(t) = ki

d

dt
P̄a(t)

n(M − n)

(M/2)2
− ni

τi
(3.21)

where, i = L-long, S-short and I-intermediate neuronal reflexes, n = nI+nL+nS+N .
Here, N and M are minimum and maximum firing rates respectively.

3.2.2.2 Model of ANS

The sympathetic (Ts) and parasympathetic (Tp) tones are sigmoidally related to firing rate
as:

Ts(n̄) =
1

1 +
(

n̄
µn

)vn (3.22)

Tp(n̄) =
1

1 +
(
µn

n̄

)vn (3.23)

where, n̄ is the firing rate, vn is the constant that determines steepness and µn is the
firing at which Ts = Tp = 0.5 [19].

3.2.2.3 Model of efferent dynamics

The efferent dynamics refers to how the parameters (H , R, Vstr, c and Cv) are controlled
by tones chemically [57]. The corresponding equations are:

d

dt
H =

1

τH
(−H + αHTs − βsTp + γH) (3.24)

d

dt
R =

1

τR
(−R + αRTs + γR) (3.25)

d

dt
Vstr =

1

τVstr

(−Vstr + αVstrTs + γVstr) (3.26)

d

dt
c =

1

τc
(−c+ αcTs + γc) (3.27)
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d

dt
Cv =

1

τCv

(−Cv + βCvTp + γCv) (3.28)

where, τH , τR, τVstr , τc and τCv are the time constants corresponding to the control pa-
rameters H , R, Vstr, c, Cv respectively. αH , αR, αVstr and αc are parameters that determine
the amount of control by the sympathetic tone. βH and βCv are parameters that determine
the amount of control by the parasympathetic tones. γH , γR, γVstr , γc and γCv are the value
of the control parameters under complete denervation [21].

3.3 Modeling of Postural Changes

To study the effect of baroreflex control in postural change, a supine to standing is intro-
duced as a disturbance. The change in position of the veins from supine to standing is
represented in Figure 3.2. The cylinders represent veins and the arrow indicates the change
in orientation of vessels with respect to ground from supine to standing. This introduces
the effect of gravity on venous pressure (increased from 5 mmHg to 150-200 mmHg) in
turn decreases the MAP [19]. For the standing model, the supine position is taken as a

Figure 3.2: Vein under postural change

reference. The change in height is modeled by:

h(t) =
hmax

1 + exp (t− tst − δ)
(3.29)

where, hmax is the maximum height, tst is the time at which the subject stands and δ is the
time taken to change the position from supine to standing. Hence, the change in venous
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pressure Pv(t) is [19]:
Pv(t) = Pv(t) + ρgh(t) (3.30)

where, ρ is the blood density, g is the acceleration due to gravity and h is the change in
height.

3.4 Results and Discussion

The analytical expressions for representing the proposed model are solved using ODE45
in MATLAB. This model is validated under postural change (supine to standing) using the
clinical data [22] for healthy condition. This model is used for further simulation studies (i)
Positional change (supine to standing and vice-versa) for a healthy person and (ii) Supine
to standing for orthostatic hypotension and hypertension condition.

The simulated result of MAP for pulsatile and non pulsatile model integrated with the
baroreflex and pulmonary circuit along with clinical data [22] are presented in Figure 3.3.
The validation of the proposed models are performed with the available clinical data which
is limited from 50 sec to 90 sec only. At time t=60 sec, supine to standing position is
introduced and it is observed that pressure is dropped from 93 mmHg (nominal) to 56
mmHg. Due to the baroreflex control mechanism, the pressure is driven back to the nominal
value with a recovery time of 40 sec from the time of disturbance given. The corresponding
effect due to postural change on contractility, peripheral resistance, compliance, stroke
volume, firing activity and venous pressure is shown in Figures 3.4 and 3.5.

Figure 3.3: Responses of MAP and HR for supine to standing position at t=60 sec under
normal condition
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(a) (b)

Figure 3.4: Responses of LV contractility and firing rate for supine to standing at t=60 sec
under normal conditions

It is observed that the venous pressure increases because of the increase in blood volume
in the veins due to the effect of gravity which in turn reduces MAP as shown in Figure 3.3.
The firing activity and venous compliance are also decreased as shown in Figure 3.4b and
3.5b . It is also observed that there is an increase in HR, peripheral resistance, stroke
volume and contractility of the heart due to the dip in MAP as shown in Figures 3.4a, 3.5c
and 3.5d.

The Root Mean Square Errors (RMSE) for non pulsatile and pulsatile models are com-
puted by using 3.31 is shown in Table 3.1.

RMSE =

√√√√ n∑
i=1

(x− x̄)2

n
(3.31)

where, x is the simulated output, x̄ is the realtime data and n is the number of sample.
From Table 3.1, it is observed that pulsatile model provides the least error compared to the
non pulsatile model.

Table 3.1: RMSE for MAP and HR of non pulsatile and pulsatile model.

Model
RMSE

MAP HR
Non Pulsatile model 6.3781 0.22119

Pulsatile model 4.7525 0.0931

For further analysis, the pulsatile model is only considered for simulation. The simu-
lation is performed by introducing supine to standing at t=60 sec along with standing to

32



(a) (b)

(c) (d)

Figure 3.5: Responses of venous pressure, peripheral resistance, stroke volume, venous
compliance for supine to standing at t=60 sec under normal condition

supine position at t=200 sec and the corresponding responses are shown in Figures 3.6 and
3.7. This results to increase in MAP, peripheral resistance, stroke volume and a decrease in
compliance for supine to standing condition and vice versa for standing to supine condition.

Figure 3.6: Responses of MAP and HR for supine to standing at t=60 sec and for standing
to supine at t=200 sec under normal condition for pulsatile model

OI refers to a medical condition where the HR cannot be controlled by poor baroreflex
efferent innervation of the heart. This is observed commonly in elderly and astronauts.
This is modeled by changing the baroreflex parameter which in turn loses the ability to
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(a) (b)

(c) (d)

Figure 3.7: Responses of venous pressure, compliance, peripheral resistance and stroke
volume for supine to standing of pulsatile model at t=60 sec and standing to supine at
t=200 sec under normal condition

make the pressure to nominal value. Figure 3.8 show the simulated results for the effect of
orthostatic hypotension and hypertension condition on MAP and HR. At t=60 sec a postural
change from supine to standing is introduced along with reduced sympathetic gain. Due
to the abnormalities in the vascular baroreceptors which happens due to postflight, age,
brain stem stroke etc., the MAP and HR cannot attain its steady state value which leads
to orthostatic hypotension as shown in Figure 3.8. At t=200 sec, postural change from
standing to supine is introduced along with a change in parasympathetic baroreflex gain.
Due to the poor control of parasympathetic nerve system, a higher pressure and lower HR
is observed which leads to orthostatic hypertension.

The proposed model is further simulated for short-term variation in MAP which may
occur due to other underlying issues along with postural change. To perform the simu-
lation, a disturbance signal is introduced for different conditions like normal, supine to
standing and standing to supine. Under normal conditions, the disturbance is introduced
at t=20 sec. Further, disturbance is introduced along with supine to standing and standing
to supine position at t=60 sec and t=100 sec respectively. It is observed that MAP and HR
attain its steady state value which is due to the regulatory action taken by the baroreflex
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Figure 3.8: Responses of MAP and HR for individuals with OI (hypotensive at t=60 sec
and hypertensive at t=200 sec) and healthy condition for Pulsatile model

mechanism. This is shown in Figure 3.9.

Figure 3.9: Responses of MAP and HR for individuals with pressure disturbance under
normal condition (t=0-60 sec), supine to standing (t=60-200 sec) and standing to supine
(t=100-150 sec)

3.5 Summary

A mathematical model for baroreflex control along with the CVS is proposed to study the
complex interactions between ANS and CVS for healthy and orthostatic hypotension con-
ditions. The simulation study indicates that the proposed integrated system with pulsatile
model of heart is closer to the real time data compared to the non pulsatile model of the
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heart. To show the efficiency of the pulsatile model, the simulation is carried out under (i)
postural changes like supine to standing and standing to supine under normal conditions
and (ii) Orthostatic hypotension condition for supine to standing.
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Chapter 4

Fractional order Windkessel and Geomet-
ric Models

4.1 Introduction

The IO Windkessel and geometric models do not consider the viscoelastic behavior of the
arterial system. To incorporate these behaviors, fractionality is introduced to Windkessel
models (Wk2, Wk3 and Wk4) and geometric model. The capacitor which represents the ar-
terial compliance of the blood vessel is modeled using the FO differential equation. Hence,
the elastic and viscous nature of the aorta and other blood vessels are captured which in-
creases the accuracy of arterial system modeling.

4.2 Preliminaries of Fractional Calculus

The following definitions are used to describe the fractional derivative and integration op-
eration:

1. Riemann-Liouville Fractional Integral [62]

This definition is derived directly from the traditional expression of repeated integra-
tion. For this purpose, it starts with the following Cauchy’s formula for evaluating
nth integration (Jn) of the function f(t):

Jnf(t) =
1

(n− 1)!

t∫
a

(t− τ)n−1f(τ)dτ (4.1)
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The subscripts a and t denote the two limits (or terminals [63]) related to the opera-
tion. Since (4.1) contains factorial, it cannot be used for non-integer n. By replacing
the factorial by its analytical expansion i.e. gamma function in order to generalize
(4.1) for all α ∈ R+, we obtain Riemann-Liouville fractional integral Jα

RL as follows:

Jα
RLf(t) =

1

Γ(α)

t∫
a

(t− τ)α−1f(τ)dτ (4.2)

where, the gamma function Γ(α) is defined by the integral

Γ(α) =

∞∫
0

e−ttα−1dt (4.3)

Properties

(a) Integration of order, α = 0

J0
RLf(t) = f(t) (4.4)

(b) Repeated Integration

Jα
RLJ

β
RLf(t) = Jα+β

RL f(t) (4.5)

where, α, β ∈ R+.

(c) Convolution

Let the ϕα(t) be defined as:

ϕα(t) =
tα−1

Γ(α)
(4.6)

Then, (4.2) can be expressed as the following convolution:

Jα
RLf(t) = ϕα(t) ∗ f(t) (4.7)

2. Riemann-Liouville Fractional Derivative [64]

The fractional derivative Dα
RL is expressed as:
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Dα
RL := DnDα−n = DnJn−α

RL (4.8)

where, D denotes derivative operation and (n− 1) < α ≤ n; (n ∈ N).

Therefore, from (4.2) and (4.8), the Riemann-Liouville fractional derivative is ob-
tained as follows:

Dα
RLf(t) =

dn

dtn

 1

Γ(n− α)

t∫
a

f(τ)

(t− τ)α−n+1
dτ

 (4.9)

3. Caputo Fractional Derivative [65]

The fractional derivative Dα
C is expressed as:

Dα
C := Dα−nDn = Jn−α

RL Dn (4.10)

Therefore, from (4.2) and (4.10), the Caputo fractional derivative is obtained as fol-
lows:

Dα
Cf(t) = Jn−α

RL fn(t) =
1

Γ(n− α)

t∫
a

fn(τ)

(t− τ)α−n+1
dτ (4.11)

4. Grunwald-Letnikov Derivative [66]

We have the following fundamental definition of nth order derivative (n ∈ N):

Dnf(t) = lim
h→0

1

hn

n∑
k=0

(−1)k
(
n

k

)
f(t− kh) (4.12)

where, (
n

k

)
=

n!

(n− k)!k!
=

Γ(n+ 1)

Γ(n− k + 1)Γ(k + 1)

The generalization of (4.12) to αth order (α ∈ R+) leads to the following Grunwald-
Letnikov derivative (Dα

GL):

Dα
GLf(t) = lim

h→0

1

hα

[ t−a
h ]∑

k=0

(−1)k
(
α

k

)
f(t− kh) (4.13)
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where, (
α

k

)
=

Γ(α + 1)

Γ(α− k + 1)Γ(k + 1)

In (4.13), f(t) is defined over [a, t]. Also,
[
t−a
h

]
truncates

(
t−a
h

)
to integer.

5. Grunwald-Letnikov Integral [62]

Generalization of (4.12) to (−α)th order (α ∈ R+) leads to the following Grunwald-
Letnikov integral (Jα

GL):

Jα
GLf(t) = D−αf(t) = lim

h→0

1

h−α

[ t−a
h ]∑

k=0

(−1)k
(
−α
k

)
f(t− kh) (4.14)

Using the identity
(−α

k

)
= (−1)k Γ(α+k)

Γ(α)k!
, we rewrite (4.14) as follows:

Jα
GLf(t) = lim

h→0
hα

[ t−a
h ]∑

k=0

Γ(α + k)

Γ(α)k!
f(t− kh) (4.15)

6. Miller-Ross Sequential Fractional Derivative [64]

It is defined as follows:

Dαf(t) = Dα1Dα2 . . . Dαnf(t) (4.16)

where,

α =
n∑

k=1

αk, 0 < αk ≤ 1 (4.17)

This definition is useful for obtaining fractional derivative of any arbitrary order. The
derivative operator Dα can be Riemann-Liouville or Caputo.

7. Oldham and Spanier [44]

dqf(βx)

dxq
= βq d

qf(βx)

d(βx)q
(4.18)
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This makes it suitable for the study of scaling and scale invariance. There is con-
nection between local-scaling, box-dimension of an irregular function and order of
Local Fractional Derivative.

8. Kolwankar and Gangal [44]

Local fractional derivative is defined by Kolwankar and Gangal to explain the be-
havior of continuous but nowhere differentiable function. For 0 < q < 1, the local
fractional derivative at point x = y, for f : [0, 1]→ R is:

Dqf(y) = lim
x→y

dq(f(x)− f(y))

d(x− y)q
(4.19)

Some important observations

1. By virtue of its form, the definition (4.13) is utilized for the numerical evaluation of
fractional derivatives. On the other hand, Riemann-Liouville (4.9) and Caputo (4.11)
definitions are useful in finding the fractional derivatives analytically [62].

2. Grunwald-Letnikov derivative given in (4.13) can also be expressed as follows [64]:

Dα
GLf(t) =

m∑
k=0

f (k)(a)(t− a)−α+k

Γ(−α + k + 1)
+

1

Γ(−α +m+ 1)

t∫
a

(t− τ)m−αf (m+1)(τ)dτ

(4.20)

This is true under the assumption that the derivatives f (k)(t), (k = 1, 2, . . . ,m + 1)

are continuous in the closed interval [a, t] and m is an integer number satisfying the
condition m > α−1. The smallest possible value for m is obtained by the inequality
m ≤ α < m+ 1.

For the above assumptions, Riemann-Liouville fractional derivative given in (4.9)
can also be expressed as follows:

Dα
RLf(t) =

m∑
k=0

f (k)(a)(t− a)−α+k

Γ(−α + k + 1)
+

1

Γ(−α +m+ 1)

t∫
a

(t− τ)m−αf (m+1)(τ)dτ

(4.21)

Therefore, from (4.20) and (4.21), the Grunwald-Letnikov derivative definition (4.13)
is equivalent to the Riemann-Liouville derivative definition (4.9) under the above
discussed assumptions.

41



3. On substituting n = m + 1, Riemann-Lioville derivative definition (4.21) can be
rewritten as:

Dα
RLf(t) =

n−1∑
k=0

f (k)(a)(t− a)−α+k

Γ(−α + k + 1)
+

1

Γ(−α + n)

t∫
a

(t− τ)n−1−αf (n)(τ)dτ

=
1

Γ(n− α)

t∫
a

f (n)(τ)

(t− τ)α−n+1
dτ +

n−1∑
k=0

f (k)(a)(t− a)−α+k

Γ(−α + k + 1)
(4.22)

Therefore, using (4.6), (4.11), and (4.22), we get:

Dα
RLf(t) = Dα

Cf(t) +
n−1∑
k=0

ϕk−α+1(t− a)f (k)(a) (4.23)

The equation (4.23) represents the relationship between Riemann-Lioville and Ca-
puto derivatives.

4. With a = 0, Caputo’s derivative (4.11) of a constant is 0 whereas the Riemann-
Lioville derivative of a constant is unbounded at t = 0. However, if one considers
the lower terminal a as −∞ in the Riemann-Lioville derivative definition (4.9), the
derivative of a constant is 0.

5. Short Memory Principle [64]: It follows from the coefficients in the Grunwald-
Letnikov definition (4.13) that for t >> a, the role of the history of the behavior
of the function f(t) near the lower terminal a can be neglected. This leads to the
following short memory principle which takes into account the behavior of f(t) only
in the recent past, i.e. in the interval [t−L, t] instead of [a, t]; where, L is the memory
length:

Dα
GLf(t) := aD

α
t ≈ t−LD

α
t , (t < a+ L) (4.24)

Thus, according to (4.24), the Grunwald-Letnikov fractional derivative with the fixed
lower terminal a is approximated by the one with moving lower terminal t − L.
Due to this, the number of addends in the approximated derivative definition never
exceeds [L/h]. This simplification, however, leads to some inaccuracy due to loss in
information.
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4.3 Laplace Transform of Fractional Derivatives

Laplace transform of the function f(t) is a function F (s) of the complex variable s. The
F (s) is obtained as:

F (s) = L{f(t)} =
∞∫
0

e−stf(t)dt (4.25)

The Laplace transform of fractional derivatives (with the lower terminal a = 0) are as
follows [64]:

1. Laplace Transform of Riemann-Liouville Derivative

L{Dα
RLf(t)} = sαF (s)−

n−1∑
k=0

skD
(α−k−1)
RL f(0) (4.26)

where, F (s) = L{f(t)} and (n− 1) ≤ α < n.

2. Laplace Transform of Caputo Derivative

L{Dα
Cf(t)} = sαF (s)−

n−1∑
k=0

sα−k−1f (k)(0) (4.27)

where, (n− 1) ≤ α < n.

3. Laplace Transform of Grunwald-Letnikov Derivative (4.20) with a = 0

L{Dα
GLf(t)} = sαF (s) (4.28)

As seen from (4.26), for calculating Laplace transform of Riemann-Liouville deriva-
tive one requires initial conditions D(α−k−1)

RL f(0), which are fractional derivatives. On the
other hand, the Laplace transform of Caputo derivative (4.27) requires initial conditions
f (k)(0), which are IO derivatives. Since such initial conditions can be easily interpreted
from physical data and observations, Caputo derivative is a more practical definition than
Riemann-Liouville derivative.
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4.4 FO Windkessel Models

The Windkessel models presented in section 2.3 do not consider the viscoelastic behav-
ior of the arterial system. To incorporate these behaviors, fractionality is introduced to
Windkessel models (Wk2, Wk3 and Wk4). The capacitor which represents the arterial
compliance of the blood vessel is modeled using the FO differential equation. Hence, the
elastic and viscous nature of the aorta is captured which increases the accuracy of modeling
of the arterial system.

By introducing fractionality to the capacitor in the Wk2, equation (2.2) can be rewritten
as:

dαP (t)

dtα
=

1

C

(
I(t)− P (t)

R

)
(4.29)

where, α is the FO of the differential equation. Similarly, the fractional term (α) is intro-
duced in Wk3 and Wk4 models. The corresponding expressions are written as:

dαP (t)

dtα
=

1

C

[(
1 +

r

R

)
I(t) + Cr

dI(t)

dt
− P (t)

R

]
(4.30)

dαP (t)

dtα
=

1

C

[(
1 +

r

R

)
I(t) +

(
Cr +

L

R

)
dI(t)

dt
+

LC
d2I(t)

dt2
− P (t)

R

]
(4.31)

4.5 FO Geometric Model

To represent the FO model of CVS, fractionality terms α and β are introduced. Since the
geometry of LV, LA and RA are similar, the fractionality α is introduced in (2.11), (2.17)
and (2.18) for representing the FO differential equations of CVS. The fractional term β is
introduced in (2.15) to represent the FO differential equation of RV. The corresponding FO
equations for LV, RV, LA and RA are expressed as:

drαlv
dtα

=
3(Qmv −Qav)

4πKlvllv

(
6Vlv

4πKlvllv

)− 1
2

(4.32)

drβrv
dtβ

=
3(Qtv −Qpv)

2πKrvlrv

(
3Vrv

πKrvlrv

)− 1
2

(4.33)
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drαla
dtα

=
3(Qmv −Qav)

4πKlalla

(
6Vla

4πKlalla

)− 1
2

(4.34)

drαra
dtα

=
3(Qtv −Qpv)

2πKralra

(
3Vra

πKralra

)− 1
2

(4.35)

The fractional parameters α and β in (4.32) - (4.35) are obtained by formulating an opti-
mization problem solved using CS, FA and APSO algorithms. The fractional derivatives α
and β are obtained by minimizing the error index as an objective function with inequality
constraints using heuristic algorithms.

4.6 Optimization Problem

The objective function is defined as:

Jmin =

∫ t

0

e2dt (4.36)

and is subjected to the following constraints:

max(Pao) ⩽ 120mmHg (4.37)

min(Pao) ⩾ 70mmHg (4.38)

where, Pao is the arterial pressure and e is the error between the model output and clinical
data of healthy human obtained from literature and physionet [67].

4.6.1 Fmincon() solver

For simulation, the fmincon() solver in MATLAB is used to find the optimized α. Different
types of algorithms like Sequential Quadratic Programming (SQP), interior point, active-
set, etc., are available in MATLAB. The given optimization problem is solved using SQP
based algorithm. The detailed steps for execution of the fmincon() solver are given in
Algorithm 4.1.
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Algorithm 4.1: Fmincon() solver
Require: Objective function f(x)

Initialize error tolerance (ϵ), minimum and maximum limit of α, maximum iteration
(T), select algorithm (SQP);
Generate initial condition, x(0) and Evaluate f(x(0));
t← 0;

while t ≤ T do
t← t+ 1;
Find new x(t) and evaluate f(x(t)) along with constraints;
if f(x(t)) < f(x(t− 1)) then

Find new x(t) and evaluate f(x(t)) along with constraints;
end
if f(x(t))− f(x(t− 1) < ϵ then

Find new x(t) and evaluate f(x(t)) along with constraints;
end
t← t+ 1;

end
Get the best solution

4.6.2 Heuristic Methods

In this section, a brief introduction about CS, FA and APSO heuristic algorithms are pre-
sented to solve the constrained optimization problem.

4.6.2.1 CS algorithm

The nature-inspired metaheuristic algorithm is used for finding the optimized α and β.
This method mimics the breeding behavior of the cuckoo bird which uses the Levy flight
mechanism to search nests and spawn. These birds lay eggs on other birds’ nests. To
increase the probability of their eggs getting hatched, these birds even remove the host eggs
from the nest. This algorithm is developed based on the following idealized rules [68].

i At a time, each cuckoo bird lays only one egg and places it randomly in another
bird’s nest. This mathematically represents a solution

ii The nest with a high-quality egg is termed as the best nest and useful for the future
generation. The best nest is replaced by a better solution in the next generation
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iii The number of host nests (n) available for each generation is fixed. The probability
of the host bird discovering a cuckoo egg is represented as pa [0, 1]. The egg similar
to the host bird only survives and becomes a mature cuckoo

Algorithm 4.2: CS algorithm
Require: Objective function f(x)

Initialize n, pa and maximum iterations (T );
t← 0;

for i=1 to n do
Generate initial population of n host xi(t);
Evaluate fitness F (xi(t));

end
while t ≤ T do

Get a cuckoo randomly by Levy flight;
Evaluate fitness F (xi(t)) along with constraints;
Choose a random nest among n (say j);
if F (xi(t)) > F (xj(t)) then

Replace j with new solution;
end
Worst nest is abondoned with a fraction of Pa ;
New nests are built;
Keep the best solutions;
Rank the solutions;
t← t+ 1;

end
Get the best solution

The objective function f(x) given in this algorithm is replaced with the error index
presented in (4.36). The required constraints given in (4.37) and (4.38) are incorporated in
CS algorithm. The new solution is formed using the concept of Levy flight which is given
by:

xi(t+ 1) = xi(t) + µ⊕ Lévy(λ), (4.39)

where, µ is the step size, ⊕ means entrywise multiplication and λ is Levy distribution pa-
rameter. Levy flight simulates random walks where the step sizes follow levy distribution.
The pseudo code of CS algorithm is presented in Algorithm 4.2.

4.6.2.2 FA

FA is also a metaheuristic algorithm that is inspired by the flashing behavior of the fireflies.
For a particular species, the pattern of flashing is unique. They use this flashing behavior

47



to attract their mates. When a short, unique and rhythmic flash is identified by a suitable
mate, it responds and moves toward each other. Hence, the luminous intensity increases.
The inappropriate fireflies will move away resulting in increased distance and decreased
attractiveness. This algorithm is developed based on the following idealized rules [4].

i Fireflies are unisex and hence they attract each other irrespective of their sex

ii The brightness between fireflies increases when the distance between them decreases.
This is because the attractiveness is directly proportional to the brightness of the flash
emitted by fireflies. For example, when we consider two flashing fireflies, the one
with lesser brightness will approach the brighter one. However, they move randomly
when they have identical brightness

Algorithm 4.3: FA
Require: Objective function f(x)

Initialize number of fireflies(n) µ, β0, γ and maximum iterations (T );
Generate intial population of n fireflies;
t← 0;
Evaluate light intensity f(xi(t)) along with constraints;

while t ≤ T do
for i=1 to n do

for j=1 to n do
if Ij > Ii then

Move firefly i towards j;
end
Evaluate new solution and update f(xi(t));

end
end
Rank fireflies and find current best;
t← t+ 1;

end
Get the best solution

From nature, it is observed that the brightness of a firefly is determined by the objec-
tive function f(x). In this algorithm, f(x) is replaced with the error index presented in
(4.36). The required constraints given in (4.37) and (4.38) are incorporated in FA. In this
process, the movement of ith firefly is attracted by jth brighter firefly and the new position
is determined by:

xi(t+ 1) = xi(t) + β0e
−γr2ij(xj(t)− xi(t)) + µtϵi(t), (4.40)
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where, µt is the randomization parameter and ϵi(t) is a vector of random numbers drawn
from a Gaussian or uniform distribution at time t. The parameter β0 is the brightness of
the firefly j at r = 0 and γ is a light absorption coefficient of the medium. Here, r is the
Euclidean distance between fireflies and is given by:

rij =
√
(xi − xj)2. (4.41)

This algorithm is simple and easier to implement which leads to global search outcome.
The pseudo code of FA is presented in Algorithm 4.3.

4.6.2.3 APSO algorithm

PSO is inspired by the flock of birds’ social behavior of searching for food and the search
strategy is to follow the bird which is nearest to the prey. Each particle in search space ad-
justs its flying according to its own and neighbor birds’ flying experience [69]. To increase
the diversity in the solutions, the standard PSO uses individual best along with global best.
In APSO, only global best is used and the individual best calculation is avoided by intro-
ducing randomness in the initial guess. This makes the APSO algorithm more accurate and
faster convergence [70].

Algorithm 4.4: APSO algorithm
Require: Objective function f(x);
n← population size;
Initialize n, T ;
t← 0;

while t ≤ T do
for i=1 to n do

Generate new velocity vectors;
Calculate new position;
Evaluate f(xi(t)) along with constraints;
Find current best;

end
Find current global best;
t← t+ 1;

end
Get the best solution

In this algorithm, f(x) is replaced with the error index presented in (4.36). The re-
quired constraints given in (4.37) and (4.38) are incorporated in APSO algorithm. Here,
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the velocity vector is introduced to increase the speed of convergence toward the optimal
solution. The updated velocity vector (vi) is expressed as:

vi(t+ 1) = vi(t) + λ(g∗ − xi(t)) + µϵt, (4.42)

where, λ and µ are the learning parameters or acceleration constants, g∗ is the global best,
xi(t) is the position of ith particle at time t and ϵt is drawn from N(0, 1).

Hence the updated position is expressed as:

xi(t+ 1) = xi(t) + vi(t+ 1). (4.43)

The pseudo code of APSO algorithm is presented in Algorithm 4.4.

4.7 Results and Discussion

The detailed simulation is conducted for both IO and FO Windkessel and geometric models.
The fractionality is obtained using fmincon() and heuristic methods like CS, FA and APSO
algorithms.

4.7.1 Windkessel models

The detailed simulation is conducted for both IO and FO Windkessel models using the
clinical data of flow rate as input and arterial pressure as output. The flow rate and pressure
profiles of human used for optimization are extracted from the literature [71].

Remarks: In literature, the data shown in Figures 4.1 and 4.2 is acquired in the follow-
ing procedure (i) eighteen patients are catheterized for various clinical indications. During
rest and exercise no cardiovascular disease is found by hemodynamic measurements, left
ventricular cine angiography or coronary arteriography and (ii) right and left heart catheter-
izations are performed using special multisensory catheters. Steady state conditions are de-
termined by a stable heart rate and stable sequential pulmonary artery hemoglobin oxygen
saturation measurements. The pressure and flow rate of these 18 patients are averaged and
are shown in Figures 4.1 and 4.2 [71].

4.7.1.1 IO model

A detailed simulation is carried out for IO Wk2, Wk3 and Wk4 models. The optimization
method in section 4.6 is used for finding the parameters R, C, r and L. The output pressure
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Figure 4.1: Input flow rate response of healthy human [2]

Figure 4.2: Output pressure profile of healthy human [2]

profile of the system is compared with the clinical output under normal conditions shown
in Figure 4.2. The system parameters obtained for different Windkessel models are given
in Table 4.1. The corresponding pressure profiles are shown in Figure 4.3. From the figure
it is observed that the IO Wk4 model has better matching with the clinical data.

Table 4.1: System parameter for IO Windkessel models

Model R C r L ISE

WK2 0.8 1.35 – – 40.8569
WK3 0.79 1.75 0.033 – 15.8791
WK4 0.82 1.6 0.035 0.0005 10.1897
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Figure 4.3: Pressure profiles of IO Wk2, Wk3 and Wk4 along with clinical data

4.7.1.2 FO model (Considering Only α)

The fractionality α in 4.29, 4.30 and 4.31 for FO Wk2, Wk3 and Wk4 are obtained using the
optimization method. This is performed under the assumption that the system parameters
are constant and shown in Table 4.1. Hence only α is the resulting unknown parameter
obtained through optimization using the fmincon() solver. For optimization, the bounds for
α are selected between 0 – 2. The optimization method provides α = 0.9469 for FO Wk2,
α = 0.9880 for FO Wk3 and α = 0.9966 for FO Wk4. The convergence diagram of the α

and objective function for the FO Wk2, Wk3 and Wk4 models are shown in Figures 4.4
and 4.5 respectively.

Figure 4.4: Convergence diagram of α for FO Wk2, Wk3 and Wk4 models (considering
only α)
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Figure 4.5: Convergence diagram of objective function for FO Wk2, Wk3 and Wk4
models (considering only α)

For FO Wk2, the converged output is observed after 24 iterations whereas the output is
converged after 22 and 16 iterations for FO Wk3 and FO Wk4 models respectively. The
Integral Square Error (ISE) computation given in Table 4.2 indicates that FO WK4 provides
better ISE than FO Wk2 and WK3 models. The corresponding pressure profiles are shown
in Figure 4.6 and it is observed that the FO model provides a response close to the IO
counterpart.

Figure 4.6: Pressure profiles for FO Wk2, Wk3 and Wk4 (considering only α) along with
clinical data
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Table 4.2: Error analysis for FO Wk2, Wk3 and Wk4 using only α

Model Optimized α ISE

FO Wk2 0.9469 36.5519
FO Wk3 0.9880 9.2587
FO Wk4 0.9966 6.0408

4.7.1.3 FO model (considering all parameters and α)

To improve the model accuracy, system parameters along with α are considered for opti-
mization. The range of parameters used for optimization are 0.1 < R < 5, 0.1 < C < 5, 0 <
r < 5, 0 < L < 1 and 0 < α < 2. The parameters R, C, r, L and α are obtained and listed in
Table 4.3.

Table 4.3: Optimized parameters along with ISE for FO Wk2, Wk3 and Wk4 models
(considering all parameters and α)

Models α R C r L ISE

FO Wk2 0.6830 1.3325 2.571 – – 19.7664
FO Wk3 1.1024 0.7162 1.5546 0.0545 – 6.444
FO Wk4 1.2549 0.6114 1.3343 0.0927 0.0018 4.7324

Figure 4.7: Convergence diagram of α for FO Wk2, Wk3 and Wk4 models (considering
all parameters and α)
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The convergence diagram for Jmin, α, R and C are shown in Figures 4.7 – 4.10 respec-
tively. For FO Wk2, the output is converged after 110 iterations whereas for FO Wk3 and
FO Wk4 models, the output is converged after 140 and 290 iterations respectively. The
arterial pressure response of FO Wk2, Wk3 and Wk4 along with clinical data are shown in
Figure 4.11. It is observed from the Figure 4.11 and Table 4.3 that FO Wk4 provides the
least error among other FO models.

Figure 4.8: Convergence diagram of objective function for FO Wk2, Wk3 and Wk4 (con-
sidering all parameters and α)

Figure 4.9: Convergence diagram of R for FO Wk2, Wk3 and Wk4 (considering all pa-
rameters and α)
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Figure 4.10: Convergence diagram of C for FO Wk2, Wk3 and Wk4 (considering all
parameters and α)

Figure 4.11: Pressure profiles for FO Wk2, Wk3 and Wk4 (considering all parameters and
α) along with clinical data

4.7.1.4 Simulation study of abnormalities for Windkessel model

From the previous section, it is noted that the FO Wk4 model gives better closeness to
the clinical data. Hence, the FO Wk4 model is further used for simulating diseases like
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atherosclerosis and arterial stiffness. Atherosclerosis is the narrowing of arteries caused by
cholesterol plaques (fat, calcium) lining the artery over time. This increases the resistance
to the blood flow and can put blood flow at risk as arteries become blocked. Atherosclerosis
begins with damage to the thin layer (endothelium) on the wall of arteries. This is simulated
by changing the resistance in the FO Wk4 model. When the elastic property of the aorta
decreases the stiffness of arteries to the blood flow increases. This increases the pressure
inside the aorta. This condition is simulated by changing the capacitor of the FO Wk4
model. The corresponding pressure profiles with abnormalities are simulated and shown in
Figure 4.12.

Figure 4.12: Simulated pressure profiles for atherosclerosis and arterial stiffness for FO
Wk4 model

4.7.2 Geometric model

This section presents a detailed simulation of the proposed FO geometric model and exist-
ing IO geometric models for CVS. The system parameters considered for simulation are
given in Table 4.4.

4.7.2.1 Existing IO model

The initial simulation is conducted using the existing IO model [3] under normal human
health conditions. The corresponding steady-state pressure responses of four chambers
along with aortic pressure are shown in Figure 4.13.
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Table 4.4: System parameters for geometric model [3]

Parameter Heart chambers
LV RV LA RA

l(cm) 8 8 5.5 5.5
K 1.15 1.75 1.20 1.20
V0(ml) 15 40 5 5
Ees(mmHg/mL) 2.5 1 - -
A 1 1 - -
B 0.02 0.02 - -
Emax(mmHg/mL) - - 0.3 0.3
Emin(mmHg/mL) - - 0.2 0.2
T1(s) 0.26 0.36 - -
T2(s) 0.36 0.36 - -
Ta(s) - - 0.64 0.64
T(s) 0.8 0.8 0.8 0.8
D(s) - - 0.04 0.04

Figure 4.13: Pressure profile of IO model

To validate the model, the arterial pressure is compared with pressure data of healthy
human [67] and plotted in Figure 4.14. It is observed that the aortic pressure of the simu-
lated IO model deviates from the clinical data. To obtain better matching, FO models are
introduced.
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Figure 4.14: Arterial pressure profile of IO model along with clinical data

4.7.2.2 Proposed FO model (α = β)

The fractional terms α and β are considered to frame the dynamical equation of four cham-
bers. In general, RA, LA and LV have the same geometry and the corresponding differential
equations are modeled with the same fractionality ’α’. Since the RV geometry is different
from the other three chambers, the fractionality ’β’ is used to represent the dynamical equa-
tion. During the initial design of the FO model, it is assumed that all the chambers have
the same geometry and hence all the dynamical equations have the same fractionality (ie.,
α = β).

For simulation, the system parameters presented in Table 4.4 are considered. The pro-
posed optimization problem given in the section 4.6 is solved using heuristic methods for
obtaining the fractionality given in (4.32) - (4.35). The fmincon() solver in MATLAB
which utilizes the concept of SQP algorithm is used. The bounds for α are selected be-
tween 0 to 2 and the unique value of α is obtained through optimization as 0.8920 with ISE
as 15.8923. Further CS, FA and APSO algorithms are used to obtain the optimum value of
α. The parameter selections for the heuristic algorithms are given in Table 4.5.

4.7.2.2.1 CS algorithm The CS algorithm is used to provide the optimal α that results
in minimum ISE. To get the optimal value of α, simulation is conducted for 100 different
initial guesses with different pa. The 10 best and closest minimum ISE along with the
obtained optimized α are shown in Table 4.6. It is observed from the table that the value of
α = 0.8970 (highlighted in red color) provides the minimum ISE compared with other pa.
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Table 4.5: Parameter selection for CS, FA and APSO algorithms [4]

CS FA APSO

n=25 n=[1,100] n=[1,100]
T= 200 T=200 T= 200
pa = [0,1] µ=0.3 γ=0.95

β0=0.3
γ=1

The convergence diagram for the objective function and optimized α are shown in Figure
4.15.

Table 4.6: Optimized α for different pa using CS algorithm

T n pa α ISE

200 25 0.02 0.8970 15.9015
200 25 0.07 0.8945 16.0373
200 25 0.12 0.8875 16.2623
200 25 0.17 0.8953 16.0631
200 25 0.22 0.8934 15.9730
200 25 0.27 0.8915 16.4332
200 25 0.32 0.8892 16.3566
200 25 0.37 0.8966 15.9661
200 25 0.42 0.8912 16.4793
200 25 0.47 0.8951 15.9857

Figure 4.15: Convergence diagram of objective function and α for CS
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4.7.2.2.2 FA The simulations are carried out by considering the parameters given in
Table 4.5. To obtain the best α, simulation is conducted for 100 different initial guesses
with different n. The 10 best and closest minimum ISE along with the obtained optimized
α are shown in Table 4.7. It is noted that α = 0.8956 (highlighted in red color) provides
the least ISE compared with other ISE listed in Table 4.7. The convergence diagram for the
objective function and the optimized value of α are shown in Figure 4.16.

Table 4.7: Optimized α for different n using FA

T n µ β0 γ α ISE

200 10 0.3 0.3 1 0.8933 15.7389
200 20 0.3 0.3 1 0.8964 15.7870
200 30 0.3 0.3 1 0.8912 16.0990
200 40 0.3 0.3 1 0.8956 15.5982
200 50 0.3 0.3 1 0.8881 15.9392
200 60 0.3 0.3 1 0.8965 15.7877
200 70 0.3 0.3 1 0.8936 15.9688
200 80 0.3 0.3 1 0.8919 15.9591
200 90 0.3 0.3 1 0.8934 15.5544
200 100 0.3 0.3 1 0.8911 16.0869

Figure 4.16: Convergence diagram of objective function and α for FA

4.7.2.2.3 APSO algorithm The simulations are performed by considering the APSO
parameters given in Table 4.5. To obtain the best α, simulation is conducted for 100 differ-
ent initial guesses with different n. The 10 best and closest minimum ISE along with the
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obtained α are shown in Table 4.8. It is seen that α = 0.8989 (highlighted in red color) in-
dicates the least ISE compared with other ISE given in Table 4.8. The convergence diagram
for the objective function and the optimized α are shown in Figure 4.17.

Table 4.8: Optimized α for different n using APSO algorithm

T n γ α ISE

200 10 0.95 0.8971 16.0588
200 20 0.95 0.9056 16.9299
200 30 0.95 0.8886 16.1706
200 40 0.95 0.8926 16.6504
200 50 0.95 0.8909 16.2229
200 60 0.95 0.8966 16.4236
200 70 0.95 0.8935 15.8275
200 80 0.95 0.8973 16.3096
200 90 0.95 0.8989 15.8108
200 100 0.95 0.8972 15.9631

Figure 4.17: Convergence diagram of objective function and α for APSO

4.7.2.3 Comparative Analysis

Further, the comparative analysis is performed with the obtained optimal α using CS, FA,
APSO, fmincon() solver and IO models. The corresponding pressure profiles along with
clinical data of healthy human are shown in Figure 4.18. For more clarity, one cycle of the
pressure profile is extracted from the steady state and shown in Figure 4.19.
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Figure 4.18: Arterial pressure profiles for optimized α using different optimization meth-
ods along with IO and clinical data

Figure 4.19: Arterial pressure profiles for optimized α using different optimization meth-
ods along with IO and clinical data (one cycle at steady state)

It is observed that the responses obtained from CS, FA, APSO and fmincon() are close
to each other. Hence to show the best α among these algorithms, the performance index
(ISE) and statistical indices [Mean and Standard Deviation (SD)] are computed and shown
in Table 4.9. From the table, it is observed that the α obtained using FA algorithm provides
95.768 % reduction in the ISE of FO model compared to IO model. From these results, it
is concluded that the fractionality (α = 0.8956) obtained using FA provides minimum ISE,
Mean and SD than other algorithms.
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Table 4.9: Error and statistical analysis for CS, FA and APSO algorithms (considering
only α)

Algorithm α ISE Statistical index
Mean SD

IO model 1 368.5730 - -
CS 0.8970 15.9015 0.8932 0.0030
FA 0.8956 15.5982 0.8931 0.0025
APSO 0.8989 15.8108 0.8958 0.0040

4.7.2.4 FO model (considering both α and β)

As it is indicated in the previous section that RV geometry is different from the other three
chambers, the fractionality β is preferred. Hence the simulation is performed with α for
LV, LA and RA and β for RV. For this simulation, α = 0.8956 is considered from the initial
study (α = β) and hence only β is optimized. The fmincon() solver in MATLAB is used
for finding the optimal value of β. The bounds for β are selected between 0 to 2 and the
unique value is obtained through optimization as 0.9689 with ISE = 15.8132.

4.7.2.4.1 CS algorithm The CS algorithm is used to provide the optimal β that results
in minimum ISE. To get the optimal value of β, simulation is conducted for 100 different
initial guesses with different pa. The 10 best and closest minimum ISE along with the
obtained β are shown in Table 4.10. It is noted from the table that the value of β =

0.9633 (highlighted in red color) provides minimum ISE. The convergence diagram for the
objective function and β for the optimized value are shown in Figure 4.20.

Table 4.10: Optimized β for different pa using CS algorithm

T n pa β ISE

200 25 0.1 0.9961 16.0427
200 25 0.2 0.9647 15.8389
200 25 0.3 0.9877 15.9376
200 25 0.4 0.9633 15.7014
200 25 0.5 1.0028 16.0353
200 25 0.6 0.9605 16.8353
200 25 0.7 1.0079 16.4969
200 25 0.8 0.9716 15.7944
200 25 0.9 1.0086 16.1165
200 25 0.99 0.9713 16.2953
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Figure 4.20: Convergence diagram of objective function and β for CS algorithm

4.7.2.4.2 FA The simulations are carried out by considering the parameters given in
Table 4.5 for FA. To obtain the best β, simulation is conducted for 100 different initial
guesses with different n. The 10 best and closest minimum ISE values along with the
obtained β are shown in Table 4.11. It is noted that β = 0.9818 (highlighted in red color)
provides the least ISE compared with other ISE listed in Table 4.11. The convergence
diagram for the objective function and β for the optimized value are shown in Figure 4.21.

Table 4.11: Optimized β for different n using FA

T n µ β0 γ β ISE

200 10 0.3 0.3 1 0.9519 16.1894
200 20 0.3 0.3 1 0.9696 16.0238
200 30 0.3 0.3 1 0.9537 15.7810
200 40 0.3 0.3 1 0.9818 15.3154
200 50 0.3 0.3 1 0.9879 15.7236
200 60 0.3 0.3 1 0.9597 15.6689
200 70 0.3 0.3 1 0.9661 15.5506
200 80 0.3 0.3 1 0.9701 15.5606
200 90 0.3 0.3 1 0.9410 15.9819
200 100 0.3 0.3 1 0.9836 15.3230

4.7.2.4.3 APSO algorithm The simulations are performed by considering the APSO
parameters given in Table 4.5. To obtain the best β, simulation is performed for 100 differ-
ent initial guesses with different n. The 10 best and closest minimum ISE along with the
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Figure 4.21: Convergence diagram of objective function and β for FA

obtained β are shown in Table 4.12. It is seen that β = 0.9722 (highlighted in red color)
indicates the least ISE compared with other ISE listed in Table 4.12. The convergence
diagram for the objective function and β for the optimized value are shown in Figure 4.22.

Table 4.12: Optimized β for different n using APSO algorithm

T n γ β ISE

200 10 0.95 0.9808 15.5239
200 20 0.95 0.9776 15.5351
200 30 0.95 0.9448 15.6055
200 40 0.95 0.9631 15.5188
200 50 0.95 1.0199 15.9376
200 60 0.95 0.9517 15.5135
200 70 0.95 0.9722 15.3913
200 80 0.95 0.9885 15.8483
200 80 0.95 0.9668 15.5661
200 100 0.95 0.9790 15.6802

4.7.2.5 Comparative analysis

Further, a comparative analysis is performed with the obtained optimal α and β of FO
model using CS, FA, APSO, fmincon() algorithms and IO model. The corresponding pres-
sure profiles along with clinical data are shown in Figure 4.23.

For more clarity, one cycle of the pressure profiles are extracted from the steady-state
and shown in Figure 4.24. It is observed that the responses obtained from CS, FA, APSO
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Figure 4.22: Convergence diagram of objective function and β for APSO algorithm

Figure 4.23: Arterial pressure profiles for optimized α and β using different optimization
methods along with IO and clinical data

and fmincon() are close to each other. Hence to show the best result among these algo-
rithms, ISE and statistical indices (Mean and SD) are computed and shown in Table 4.13.
The results indicate that the fractionality β = 0.9818 (with α = 0.8956) obtained using FA
provides minimum ISE, mean and SD than other algorithms. From Table 4.13, it is ob-
served that the α and β obtained using FA algorithm provides 95.845% reduction in the
ISE of FO model compared to IO model. Hence, this model is further used for simulating
abnormalities like arterial stiffness and atherosclerosis.
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Figure 4.24: Arterial pressure profiles for optimized α and β using different optimization
methods along with IO and clinical data (one cycle at steady state)

Table 4.13: Error and statistical analysis for CS, FA and APSO algorithms (considering
both α and β)

Algorithm α β ISE
Statistical index
Mean SD

IO model 1 1 368.5730 - -
CS 0.8970 0.9633 15.7014 0.9890 0.0186
FA 0.8956 0.9818 15.3154 0.9646 0.0146
APSO 0.8989 0.9722 15.3913 0.9744 0.0233

4.7.2.6 Simulation study of abnormalities for geometric model

The heart abnormalities (i) arterial stiffness and (ii) atherosclerosis are simulated and re-
sults are compared with the healthy human condition. In general, the gradual fragmentation
and loss of elastin fibers and accumulation of stiffer collagen fibers in the arterial wall re-
duces elasticity and hence increases the stiffness. This leads to hypertension and other
closely associated diseases. This condition is simulated by introducing a change in the
capacitance of aorta.

On the other hand, atherosclerosis is the buildup of fats, cholesterol and other sub-
stances on the artery walls which blocks the blood flow. This abnormality is simulated by
increasing the peripheral resistance of the aorta. The corresponding arterial blood pressure
responses along with healthy human condition are shown in Figure 4.25. This indicates
that the proposed FO model can be useful for simulating various abnormal conditions of

68



CVS.

Figure 4.25: Arterial pressure profiles during abnormalities for FO geometric model

4.8 Summary

The FO Windkessel models are presented and the corresponding parameters are obtained
using SQP optimization technique. For the initial simulation, only IO Windkessel models
are considered. To improve the accuracy, the viscoelasticity property is enhanced by intro-
ducing the FO derivative in the existing IO Windkessel models. The simulations are carried
out for optimizing (i) only α and (ii) system parameters along with α.

From the results, it is noted that FO Windkessel models provide better accuracy than
IO models. In specific, the FO Wk4 model gives better accuracy in comparison with FO
Wk2 and Wk3 models. Further FO Wk4 model is used for simulating atherosclerosis and
arterial stiffness conditions.

Also, a geometric FO model is developed by introducing fractionality to the dynamical
equations to accommodate the viscoelastic property of CVS. A constrained optimization
problem is framed to obtain the fractional parameters by minimizing the pressure error
between FO model and clinical data of healthy human using CS, FA and APSO and the
results are compared with SQP algorithm. Initial simulation is carried out by considering
the fractional parameter α for all chambers. The further simulation is performed by con-
sidering α for LV, LA, RA and β for RV. The ISE obtained through different optimization
algorithms are compared and it is observed that α and β obtained through FA provided the
least ISE, mean and SD. The best optimized α and β obtained from FA are further used for
simulating the abnormalities (i) arterial stiffness and (ii) atherosclerosis.
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Chapter 5

Baroreflex control for FO Geometric model

5.1 Introduction

This chapter deals with the design of the baroreceptor control mechanism for FO geometric
model. The baroreflex control system plays a crucial role in responding to acute changes in
blood pressure, such as those caused by factors like physical activity, stress, and changes
in posture. It ensures that vital organs receive a consistent supply of oxygen and nutrients
while adapting to various physiological conditions and external influences. The baroreflex
is essential for maintaining overall cardiovascular health and homeostasis. In Chapter 3,
the baroreflex control is designed for an extended IO Windkessel model in which both the
atria and two valves are neglected. Also, pulmonary and systemic circulations are modeled
using a single Windkessel compartment. However, it is essential to have a model which
includes all the chambers and valves which mimic the CVS more accurately. Hence, a
baroreflex control is designed for the FO geometric model explained in Chapter 4 extends
to all the chambers along with more compartments for systemic and pulmonary circulation
which in turn increases the accuracy and reliability of the CVS model.

5.2 FO CVS Model

The mathematical model represented in Section 4.5 is used to design the baroreflex control
in which the heart chambers are modeled using FO differential equations.

The corresponding FO equations for LV, RV, LA and RA are expressed as:

dr0.8956lv

dt0.8956
=

3(Qmv −Qav)

4πKlvllv

(
6Vlv

4πKlvllv

)− 1
2

(5.1)
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dr0.9818rv

dt0.9818
=

3(Qtv −Qpv)

2πKrvlrv

(
3Vrv

πKrvlrv

)− 1
2

(5.2)

dr0.8956la

dt0.8956
=

3(Qmv −Qav)

4πKlalla

(
6Vla

4πKlalla

)− 1
2

(5.3)

dr0.8956ra

dt0.8956
=

3(Qtv −Qpv)

2πKralra

(
3Vra

πKralra

)− 1
2

(5.4)

The pressure volume expressions are same of the FO geometric model in Section 4.5.
The relation between pressure and radius of LV is expressed as:

Plv(t) = Ees−lv

[
2

3
πKlvllv

(
r2lv − r2lv−0

)]
fact−lv (t)

+
[(

Ae
1
6
BπKlvrlv(t)

2llv
)
− 1

]
,

(5.5)

where, fact−lv is the sinusoidal activation function for LV.

For IO and FO geometric models, the activation function is independent of heart rate.
Hence, the pressure and volume are also independent of heart rate. In the previous simula-
tion studies, due to the absence of baroreflex control, the heart rate is maintained constant.
The realistic anatomy of heart shows that the pressure and volume vary with respect to
heart rate. This is important when the baroreflex control is introduced to the FO model.
The baroreflex control mechanism changes heart rate when there is a change in pressure
occurs. To incorporate this, a variable heart rate activation function is used [72]. The
activation function is expressed as:

fact−lv =

{
sin2 π.T (t)

Tsys(t)
u 0 ≤ u ≤ Tsys(t)

0 Tsys(t)

T
≤ u ≤ 1

}
(5.6)

where, Tsys(t) is systolic time, T is the time period and u = frac(
∫

1
T
dt)

The activation function is varying with heart rate which is function of time period. The
baroreflex control changes the heart rate in turn update the activation function.

5.3 Baroreflex Control Design

The FO CVS model is non linearly controlled by the baroreceptors situated near the sinus
node and it consists of afferent dynamics, a processing unit to process firing rate into tones
and the efferent dynamics from ANS to the control parameters. The baroreflex regulatory
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system is a short term blood pressure control and for long term control hormonal activities
are involved. Baroreflex control presented in Chapter 3 is extended to FO geometric model
discussed in Chapter 4. Since the number of chambers are more, the control action has to
go to the parameter in every chamber. The efferent dynamics refers to how the parameters
are controlled by tones chemically [57]. The inotropic and chronotropic effects presented
in Chapter 3 are updated and as follows:

d

dt
H =

1

τH
(−H + αHTs − βsTp + γH) (5.7)

d

dt
Elv =

1

τElv

(−Elv + αElv
Ts + γElv

) (5.8)

d

dt
Erv =

1

τErv

(−Erv + αErvTs + γErv) (5.9)

d

dt
Ras =

1

τRas

(−Ras + αRasTs + γRas) (5.10)

d

dt
Cas =

1

τCas

(−Cas + βCasTp + γCas) (5.11)

d

dt
Rao =

1

τRao

(−Rao + αRaoTs + γRao) (5.12)

d

dt
Cao =

1

τCao

(−Cao + βCaoTp + γCao) (5.13)

where, τH , τErv , τElv
, τRas , τCas , τRao and τCao are the time constant for the control

parameters H , Erv, Elv, Ras, Cas, Rao, Cao respectively. αH , αErv , αElv
, αRas and αRao

are parameters that determine the amount of control by the sympathetic tones. βH , βCas

and βCao are parameters that determine the amount of control by the parasympathetic tones
and γH , γErv , γElv

, γRas , γCas , γRao and γCao are the value of the control parameters under
complete denervation.

The heart rate is controlled by both sympathetic and parasympathetic tones. To study
the proposed model, a disturbance is introduced to the systemic vein as the positional
change from supine to standing.
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5.4 Results and Discussion

To show the superiority of the proposed model, simulation is performed for (i) Postural
change (ii) orthostatic intolerance (iii) hemorrhage conditions and (iv) atherosclerosis and
arterial stiffness.

5.4.1 Postural change

To validate the model, a postural change is introduced at time t=60 sec by adding distur-
bance to the venous pressure. During the postural change from supine to standing, blood
pools to the lower part of the body and as a result the arterial pressure reduces. The venous
pressure increases because of the increase in blood volume in the veins due to the effect
of gravity which in turn reduces MAP, firing activity and venous compliance. The circu-
lation loop continues to work with the reduced blood pressure in the absence of baroreflex
control.

Figure 5.1: Responses of parameter variations with postural change at t=60 sec

The baroreflex control mechanism senses the reduction in pressure and changes the
elastance, resistance, compliance and cardiac period. The resistance and elastance of the
compartment increase and the compliance and cardiac period decrease as shown in Figure
5.1. As a result the arterial pressure also increases and reaches the nominal value as shown
in Figure 5.2.
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Figure 5.2: Arterial pressure with and without baroreflex control

5.4.2 Hemorrhage

A hemorrhage is a medical condition used to describe the escape of blood from the cir-
culatory system. Hemorrhages can occur in various parts of the body and can vary in
severity, ranging from minor, self-limiting to severe and life-threatening. The prognosis for
a hemorrhage can vary widely, with minor hemorrhages often resolving on their own and
severe hemorrhages requiring immediate medical attention. Timely intervention is crucial
to manage and improve the outcome of a hemorrhage.

The FO model with baroreflex control is simulated for the hemorrhage condition by
introducing 4%, 8%, 10% and 14% of blood loss in the veins. To understand the require-
ment of baroreflex control, 4% blood loss is introduced at time t=60 sec in the veins for FO
model with/without baroreflex control. It is observed from Figure 5.3 that the pressure is
dropped when the volume of blood is reduced from the nominal value. However, arterial
pressure is back to steady state value due to baroreflex control. In order to show the limita-
tions of the baroreflex control, the model is simulated for 4%, 8%, 10% and 14% of blood
loss. It is noted that till 10% of blood loss, the controller is able to bring back the arterial
pressure to the nominal value and beyond this the controller is failed to make appropriate
decisions as shown in Figure 5.4.

75



Figure 5.3: Responses of arterial blood pressure with/without baroreflex control under 4%
blood loss introduced at time t=60 sec

Figure 5.4: Responses of arterial blood pressure with baroreflex control under 4% , 8%,
10% and 14% of blood loss introduced at time t=60 sec

5.4.3 Orthostatic intolerance

OI refers to a medical condition where the HR cannot be controlled by poor baroreflex
efferent innervation of the heart. This is observed commonly in the elderly and astronauts.
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This is modeled by changing the baroreflex parameter which in turn loses the ability to
make the pressure to nominal value. Figure 5.5 shows the simulated results for the effect
of orthostatic hypotension condition on MAP. At t=60 sec, a postural change from supine
to standing is introduced along with reduced sympathetic gain. Due to the abnormalities
in the vascular baroreceptors which happen due to postflight, age, local tumor growth etc.,
the MAP and HR cannot attain its steady state value which leads to orthostatic hypotension
condition as shown in Figure 5.5.

Figure 5.5: Response of arterial pressure with OI at t=60 sec and healthy condition for FO
geometric model with baroreflex control

5.4.4 Atherosclerosis and arterial stiffness

Atherosclerosis is a chronic and progressive cardiovascular disease characterized by the
accumulation of fatty deposits, cholesterol and other substances in the walls of arteries,
forming plaques. These plaques can lead to arterial narrowing and stiffening, reducing
blood flow and increasing the risk of various cardiovascular complications. Arterial stiff-
ness refers to the reduced ability of arteries to expand and contract in response to changes
in blood pressure. It is a common consequence of aging but can also be exacerbated by var-
ious risk factors and diseases. The model is further studied for atherosclerosis and arterial
stiffness conditions and the corresponding pressure waveforms are shown in Figure 5.6.
From the response, it is noted that these diseases introduce an increase in arterial pressure
from the nominal value which needs further attention by medical practitioners.
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Figure 5.6: Responses of arterial blood pressure with abnormalities and healthy condition
FO geometric model with baroreflex control

5.5 Summary

A baroreflex control for FO geometric model is proposed to study the effect of postural
changes. It is essential to have an accurate model to study the complex interaction of
baroreflex control. Hence a baroreflex control is designed for the FO geometric model.
The simulation is carried out for postural change and it is observed that the pressure is
coming back to the nominal value after some time with baroreflex control. The model with
control is simulated for orthostatic condition by changing the baroreflex gain. The model
is studied for hemorrhage conditions in which simulations are carried out for 4%, 8%, 10%
and 14% of blood loss and it is observed that above 10% blood loss, the baroreflex fails to
bring the pressure back to normal value. Further, abnormalities like arterial stiffness and
atherosclerosis are introduced to the model and the results are analyzed.
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Chapter 6

Conclusions and Future Scope

A mathematical model of CVS along with the baroreflex control was modeled to study the
complex interactions between ANS and CVS for healthy and abnormal conditions. For
initial simulation, only lumped IO Windkessel models were considered. To improve the
accuracy, the viscoelasticity property was enhanced by introducing FO derivative in the ex-
isting 2-element, 3-element and 4-element Windkessel models in which the fractionality of
the governing differential equation was obtained using optimization method by minimizing
the error between the clinical data and the model output considered as an objective func-
tion. The simulation results indicated that FO models provide the least error index than the
existing IO Windkessel models. In specific, the FO Wk4 model provided better closeness
to the clinical data than other FO Windkessel models. Hence, FO Wk4 model was further
used to study the behavior of abnormalities like atherosclerosis and arterial stiffness.

Further, FO modeling was extended to a more complex geometric model which ad-
dresses the limitations of Windkessel model by including four chambers of heart, systemic
and pulmonary circulation. The heart chambers were modeled based on the geometry and
systemic and pulmonary circulation were modeled using Windkessel approach. A con-
strained optimization problem was framed to obtain the fractionality of the dynamic equa-
tion by minimizing the pressure error between FO geometric model and clinical data of
healthy human using heuristic methods such as CS, FA and APSO algorithms and the re-
sults are compared with conventional SQP algorithm. From the results, it was concluded
that FO geometric model provided better accuracy than IO models. Further, FO geometric
models were used to demonstrate abnormalities like arterial stiffness and atherosclerosis.

Baroreflex control for CVS was essential for maintaining cardiovascular homeostasis.
This ensures efficient blood pressure regulation, optimal perfusion and adaptation to phys-
iological demands. Initially, a baroreflex control was designed for the extended IO Wind-
kessel model and simulated for postural change by modeling afferent, ANS and efferent
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dynamics. To show the efficiency of the proposed model, the simulation was carried out
further for orthostatic hypotension and hypertension conditions. In order to get a better
model which mimics the CVS, a baroreflex control was designed for the proposed FO ge-
ometric model and validated for postural changes. Also, the proposed model is studied for
different abnormality conditions like orthostatic intolerance, hemorrhage, atherosclerosis
and arterial stiffness.

The future directions of the research work carried out in this thesis are as follows:

• The present model do not include the modeling of heart-lung interaction and gas
exchange which is one of the important factors. Hence it is necessary to incorporate
the effect of chemoreceptor to get a better model

• This proposed baroreflex did not consider the effects of change in gravity as a func-
tion of height and time during space travel including environmental effects. The
absence introduced can be compensated by designing a baroreflex control which in-
cludes the effect of gravity and variation in parameters with respect to time

• The interaction between CVS and other organs like lungs, kidneys, liver, etc., can be
modeled and hence will improve the diagnosis/prediction capabilities

• The proposed approach can be extended to identify various diseased models which
are further useful to classify diseases with its severity using artificial intelligence/machine
learning techniques
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