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Abstract

Enormous amount of data is generated globally at an exponential rate in various sectors

such as government, agriculture, finance, defense, engineering, and medicine. Due to the

recent advancements in technology, a rapid growth rate in data generation and collec-

tion of different varieties of data is observed. The exponentially growing data that can

be analyzed computationally to reveal patterns, trends, and associations are considered

as big data. Numerous benefits can be obtained from analyzing such big data that helps

in decision-making and finding solutions for various real-time problems. Over the years,

Artificial Intelligence (AI)/Machine learning (ML) algorithms revolutionized the way of

analyzing vast amounts of data for valuable insights and applications. Machine learning

emphasizes developing computer programs that can access and learn from data to build

a generalized model. Supervised learning is an efficient learning technique to build ML

models using “labeled” training data to predict the output. The model parameters such as

weights are optimized to produce the desired result during the training process. Also, hy-

perparameters are tuned during the training phase to improve the accuracy of the model.

Due to the rapid speeds at which the data grows, big data processing using ML al-

gorithms is an area of concern. ML algorithms face many challenges in dealing with big

data, including computational resources, model selection, optimizing the parameters, and

increasing the algorithm accuracy. Deep learning algorithms such as convolutional neu-

ral networks (CNNs) require huge computational facilities to process very-large datasets

for supervised learning. Also, difficulty in training such deep learning models increases

with the large and complex datasets. In this context, Quantum Machine Learning (QML)

is emerging as a field of interest in computer science with the intersection of quantum

computing and machine learning. Quantum computers are fundamentally different from

classical computers as principles of quantum mechanics are used for information process-

ing. Hence, quantum computing techniques can solve specific computational problems

difficult for a classical computer. Also, quantum computing can enhance classical machine

learning techniques as powerful quantum tools exist for linear algebra. As linear algebra

is the basis for machine learning, quantum computing offers practical performance advan-

tages over classical approaches. Hence, there is a necessity to explore the area of quantum

machine learning, to advance the existing machine learning techniques.
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In this thesis, we propose and study quantum machine learning techniques to enhance

supervised learning of classical data. The ability of quantum computational approaches to

improve classical machine learning algorithms is explored. In particular, the proposal and

study of hybrid quantum-classical machine learning methods to solve supervised learning

problems are addressed in the thesis. As a first step towards quantum machine learning,

an artificial neural network (ANN) using quantum bits (qubits) as artificial neurons is pro-

posed for binary classification. The quantum computing approach for ANN (QC ANN)

aims to develop a clear understanding of the impact of qubits in training an artificial neu-

ral network for binary classification of numerical data. Further, the work is extended to

design a quantum multi-class classifier (QMCC) for multi-class classification. QMCC is in-

tended to be a quantum circuit with parameterized quantum layers for machine learning.

For QMCC, an encoding method for state preparation to input the data into qubits is also

proposed. QMCC, in total, is a parameterized quantum circuit with multiple trainable lay-

ers for the multi-class classification of numerical data. The experimental results show that

the proposed techniques perform binary and multi-class classification with good accuracy.

In the second phase of our research, we proposed QML frameworks for processing spa-

tial big data analytics tasks. At first, a three-layered hybrid quantum-classical (HybridQC)

architecture is proposed for satellite image scene classification. The proposed model con-

sists of the following steps: (i) a classical preprocessing step, (ii) a quantum processing

step to extract image representations, and (iii) a deep neural network built with the ex-

tracted image representations. Our experimental results show that the total parameters

for training a deep neural network reduced with the proposed approach. Next, a data

augmentation technique is proposed using a quantum circuit that can be used to enhance

datasets during training deep neural networks. Also, a hybrid model with a combination

of vanilla convolutional neural network (CNN) and quantum processing is proposed for

image scene classification. Finally, we propose quantum processing techniques to process

synthetic aperture radar (SAR) images for deep learning.

We also discuss the performance advantages of the hybrid quantum-classical approach

over classical computation on both numerical data and spatial data. Our work show that

quantum computational techniques can enhance classical machine learning by reducing

the trainable parameters of the models and, as a result, improvement in the classification

accuracy can also be observed. Finally, the thesis is concluded with the future scope of

QML algorithms in solving complex machine learning problems.
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Chapter 1

Introduction

“Data is the new science. Big Data holds the answers.”

– PAT GELSINGER

“Quantum physics is no longer an abstract theory for specialists.

We must now absolutely include it in our education and also in our culture.”

– CLAUDE COHEN-TANNOUDJI

Big data analytics refers to processing datasets to extract valuable insights by discov-

ering valuable patterns in the data. Due to technological advancement, the exponential

growth rate in data generation can be seen in every data. International Data Corporation

expects the global data of 33 ZB in 2018 to reach 175 Zettabytes by 2025 [1]. Analyzing

such big data is crucial for decision-making to gain numerous benefits from the data pro-

duced. The ability of existing technologies to process the fast-growing big data scenarios

of the future and obtain insights is questionable. Consider an example of Spatial data [2, 3]

where an increasing number of affordable satellite services generate big data with an accu-

racy of the order of centimeters. Such big data can be analyzed and used for the following

purposes: to identify land usage, to monitor factors that influence crop yield, to find areas

prone to flooding, to see the impact of development and property pricing, to monitor the

foot traffic around shopping centers, and to estimate how customers behave.

The term Big Data [4] coined by Roger Mougalas from O’ Reilly Media refers to a large set

of data (which can be a collection of many data sets) which is almost impossible to manage

and process using traditional business intelligence tools. Big data characteristics can be

described using the 5V’s — Volume, Velocity, Value, Variety, and Veracity. Huge volume of

data is generated every day with a unimaginable velocity. The value of the data can be

realized if insights are obtained from it by analyzing the variety of data. The quality and

trustworthiness of the data is considered as veracity. The invention of new technology and
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devices led the rapid growth of sources for the data. Statistics [5] show that the estimated

rate at which data is created every day in 2022 on average is 2.5 quintillion data bytes.

The rapid generation of data results in a variety of data with different properties useful

for analysis. Analyzing the data uncovers various facts and insights in such huge volumes

than the amount that can be inferred for making decisions. Table 1.1 lists most commonly

generated data used for analytics. The information is collected from internet sources such

as Wikipedia. The table also provides information about data types and different proper-

ties of data, along with the most widely used analytical tools. In the table, 1 KB refers to

1 Kilo Byte = 1024 Bytes, and 1 GB refers to 1 Giga Byte = 1,048,576 Kilo Bytes.

Table 1.1: Different types of data and characteristics

S.No Type of Data
Size of

Individual
Data Item

Storage
Locations

File
Format

(widely used)

Analytics
Tools

(widely used)

1
Micro Blogging
(e.g., Twitter)

140 Characters
Hadoop Clusters

and
HDFS

CSV
Twitter

Analytics

2 Image KB-GB
Farms of Servers,

Amazon CDN, and
Amazon S3

JPEG, ECW
Machine

Learning/DL
Tools

3 Video KB-GB
Farms of Servers,

Amazon CDN, and
Amazon S3

MP4
Machine

Learning/DL
Tools

4 Genomics GB AWS Data Centers BAM, FASTA
Google

Genomics

5 Network GB
Data Centers and

Cloud Storage
CSV

Snaplytics,
Google Analytics

6 Spatial KB-GB
Data Centers and

Cloud Storage
SHP, SHX,
and JSON

GIS Software,
R and Hadoop

7 Biomedical KB-GB
Data Centers and

Cloud Storage
CTN, CSV,
and JSON

Hadoop and R

8 Literature KB-GB
Data Centers and

Cloud Storage
NOSQL

Machine
Learning/NLP

Tools

9 Voice KB-GB
Data Centers and

Cloud Storage
WAV

Machine
Learning/NLP

Tools

Over the years, Artificial Intelligence (AI)/Machine learning (ML) techniques gained

prominence in dealing with big data. Machine learning algorithms [6] removed a lot of ob-

stacles in big data processing and turning the data into information for successful decision

making. Apart from these wide applications, the challenge is handling huge amounts of

data and producing useful insights. Existing data analytics processes find difficulty in han-
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dling large amounts of data. Quantum computing has a better ability to deal with the data

in exponential scaling in terms of data representation and speed. Quantum computers are

the quantum-mechanical systems that represent data in quantum bits or qubits. Qubits

are different from classical bits in terms of data representation and operations. Hence,

quantum computing is becoming prominent in solving difficult problems for a classical

computer to solve. In the following sections, we explain the preliminaries of quantum

computing, related to our research work. We primarily discuss the basics of quantum

computing related to information processing using qubits.

1.1 Quantum Computing: Preliminaries

In 1965, Gordon E. Moore, co-founder of Intel Inc., stated: “The number of transistors

incorporated in a chip will approximately double every 24 months" [7]. However, in re-

cent years, Moore’s law is slowing down due to the difficulty in cost-effectively producing

miniature-sized transistors [7]. Also, as the size of the transistors become small, there ex-

ist the possibility of electrical leakage, and further, the chips generate heat. Due to the

heat, there is an increase in the cost of cooling the computational systems. The size of the

transistors becomes so small that the materials start to behave in a quantum mechanical

way. Hence quantum computing became prominent, and many companies such as IBM [8]

and Google [9] started manufacturing quantum processors with materials that behave in a

quantum mechanical way. Quantum computers operate fundamentally differently and are

suitable to solve complex optimization problems that cannot be solved on a classical com-

puter [10]. Quantum computers can also deal with big data as they provide exponential

scaling [11]. Hence, quantum computational techniques can be used to enhance machine

learning algorithms.

A Quantum computer is a complex computational device that works on the principles

of quantum mechanics, quantum information theory, and computer science [12]. Hence,

quantum computers are fundamentally different from classical computers. As quantum

mechanics is considered the basis of the physical universe, a classical computer can also

be described by quantum mechanics. However, quantum mechanical properties are not

used by a classical computer for information processing. In 1981, Richard P. Feynman,

in a physics lecture, stated that: “Nature is not classical, and for the simulation of nature,

quantum mechanical computation systems are necessary.” [13] Quantum computers use spe-

cific quantum mechanical properties such as superposition and entanglement to perform

computations.
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Figure 1.1: Representation of a classical bit and a quantum bit.

1.1.1 Quantum Computer vs Classical Computer

The following are the fundamental differences between quantum computing and classical

computing:

1. Quantum computer works on qubits, and a qubit is a two-level quantum-mechanical

system represented using Dirac notation (Bra-ket). The state of a qubit can be rep-

resented as |0〉, |1〉 or a linear combination of both states, also called superposition.

In superposition, the state of a qubit is indeterminate and can emerge into one of the

two definite states only after measurement. In classical computers, classical bits are

used to represent binary digits 0 and 1. Classical bits represent the voltage levels ON

or OFF, and hence, there are no intermediate states in classical computation. Whereas

in quantum computation, a qubit can take any intermediate state between |0〉 and |1〉
as a linear combination of both the states as shown in Fig. 1.1.

2. Calculation power of a quantum computer increases exponentially. As the number of

qubits increases, more linear combinations can be represented using multiple qubits.

In a classical computer, computational power increases linearly as the number of

transistors on a chip increases.

3. Quantum computers require specialized hardware, where information is processed

using qubits. Qubits are manufactured using subatomic particles (or quantum parti-

cles) that can exist in two discrete states when measured. In comparison, a classical

computer uses hardware made of CMOS circuits.

4. Quantum computers consist of one or more quantum processing units (QPUs) that

are inherently parallel due to superposition. Hence, QPUs are used to solve specific
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problems and operations that can run in parallel. However, general-purpose tasks

such as writing a word document playing multimedia files cannot be performed on

a quantum computer. Hence, quantum computers are not a replacement for classical

computers as they are not universally faster.

5. Qubits in a quantum computer exhibit entanglement, a quantum mechanical prop-

erty. Entanglement is a quantum mechanical property where two qubits can be en-

tangled with each other. Any operation on one of the entangled qubits affects the

state of the other qubit. Classical computers do not exhibit the property of entangle-

ment.

6. Information processing on a classical computer is performed using logic gates, whereas

quantum logic gates are used on a quantum computer. The state of a qubit can be

modified using quantum gates that are represented by unitary operators (U ).

1.1.2 Quantum Gates and Representations

The basic information-carrying unit on a quantum computer is the qubit. A qubit is a

two-level quantum mechanical system represented by two-dimensional complex Hilbert

Space, C2. There can be quantum computers with qutrits, three-level systems, and a term

for more general n-level systems is qudits. The state of a qubit at any given time can be

represented by a vector in a complex Hilbert space, a vector space with an inner product.

The computational basis states of a qubit, |0〉 and |1〉 can be represented with vectors as:

|0〉 =

 1

0

 , |1〉 =

 0

1

 .

In gate-based quantum computers, the state of a qubit can be modified using quantum

gates. Quantum gates are unitary quantum operators (U ) in the form of matrices. The

operators are applied to vectors to change the state of the qubit to the desired state. If a

qubit is in an initial state of |0〉, a sequence of quantum gates can be applied to change the

state as

U |0〉 = |ψ〉 , (1.1)

where |ψ〉 = α |0〉+β |1〉, andα and β are complex numbers. According to the Born rule [14],

the square of the modulus of the amplitudes of a quantum state is the probability of the
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quantum state. Hence, |α|2+ |β|2 = 1, such that the probabilities must sum to one, as qubit

emerges to one of the states after measurement.

Single-Qubit Gates

A quantum gate that acts on a single qubit is called a unary operator. There are several

single-qubit gates in quantum computing, such as the Hadamard gate. The mathematical

computation involved to apply a Hadamard gate to a qubit is detailed below.

Figure 1.2: Superposition state of a qubit after Hadamard operation.

The state vector of the initial state |0〉 of a qubit is

|0〉 =

1

0

 . (1.2)

As shown in Fig. 1.2, the qubit is passed through Hadamard gate where it transforms the

initial state to a superposition of |0〉 and |1〉 as

1√
2

1 1

1 −1

1

0

 =
1√
2

1 + 0

1 + 0

 =
1√
2

1

1

 . (1.3)

Figure 1.3: Representation of Ry gate operation.

A qubit can also be rotated through the intermediate states between |0〉 and |1〉 using

single qubit rotational gates such as Rx, Ry, and Rz gates. Fig. 1.3 represents the state of

the qubit after rotational gate on the Bloch sphere. For example, when Ry gate is applied
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to a qubit in state |0〉, where

Ry(θ) :=

cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

)
 , (1.4)

then the state of qubit is represented using the following state vector as:cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

)
1

0

 =

cos
(
θ
2

)
+ 0

sin
(
θ
2

)
+ 0

 =

cos
(
θ
2

)
sin
(
θ
2

)
 . (1.5)

Hence, Ry operation of the qubit in state |0〉 changes the state of the qubit to state |ψ〉
where,

|ψ〉 = cos

(
θ

2

)
|0〉+ sin

(
θ

2

)
|1〉 . (1.6)

Two-Qubit Gates

Quantum operators also exist for operation on two qubits at a time. Such operators are

called binary operators. When two qubits are operated together, the computational basis

states can be represented as |00〉, |01〉, |10〉, and |11〉. The state vectors can be computed as

|00〉 = |0〉 ⊗ |0〉 =

1

0

⊗
1

0

 =


1

0

0

0

 (1.7)

|01〉 = |0〉 ⊗ |1〉 =

1

0

⊗
0

1

 =


0

1

0

0

 (1.8)

|10〉 = |1〉 ⊗ |0〉 =

0

1

⊗
1

0

 =


0

0

1

0

 (1.9)
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|11〉 = |1〉 ⊗ |1〉 =

0

1

⊗
0

1

 =


0

0

0

1

 (1.10)

Correspondingly, computational basis states for n qubits can also be represented using

vectors. In a quantum computer, two qubits can be modified together using the gates such

as Controlled-NOT gate (CNOT gate). CNOT operator is represented in the matrix form as

CNOT :=


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (1.11)

When a CNOT gate is applied on two qubits, the first qubit acts a control qubit, and the

second as target qubit. If the control qubit is in state |1〉, we flip the target qubit. However, no

operation is performed on the target qubit if the control qubit is in state |0〉. As operation on

one qubit affects the state of the other qubit, CNOT gate is used to entangle two qubits in

a quantum computer. For example, as shown in Fig. 1.4 when CNOT is performed on the

state |11〉, the state is converted to |10〉 as follows.

CNOT :=


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




0

0

0

1

 =


0 + 0 + 0 + 0

0 + 0 + 0 + 0

0 + 0 + 0 + 1

0 + 0 + 0 + 0

 =


0

0

1

0

 = |10〉 (1.12)

|1〉

|1〉

|1〉

|0〉

Figure 1.4: Change in state of qubits after CNOT operation.

Thus, to perform operations on qubits, quantum gates are used. An algorithm with

quantum operations can be designed as a quantum circuit to solve a problem.
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Qubits in the quantum circuit are processed using combinations of unary and binary

gates to obtain the desired result. As shown in Fig. 1.5, the entire unitary operations are

considered as a quantum circuit where each line is considered as wire of a qubit.

U

U

U

U

U

U
U

U

U

Figure 1.5: Illustration of a quantum circuit.

Measurement of Qubits

After the unitary operations, qubits are measured to know the state of the qubits. Mea-

surement in classical computing does not affect the state of the classical bits. However, in

quantum computing, measurement is also an operator that acts on a qubit. Every mea-

surement is represented by a Hermitian operator (O). Hermitian operators are used for

measurement as eigenvalues of Hermitian operators are real numbers. In quantum com-

putations, expectation values are calculated using a measurement operator to obtain the

probabilistic expected value of the result. For example, consider the Pauli-Z operator for

measurement represented as

σz :=

1 0

0 −1

 . (1.13)

The Pauli-Z expectation value 〈σz〉 is then calculated as 〈ψ|σz |ψ〉 for a qubit in state |ψ〉
where,

〈ψ| = |ψ〉T . (1.14)

If the qubit is in state |0〉, Pauli-Z expectation value can be calculated as

〈ψ|σz |ψ〉 =
(
1 0

)1 0

0 −1

1

0

 =
(
1 0

)1

0

 = 1. (1.15)
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If the qubit is in state |1〉, Pauli-Z expectation value can be calculated as

〈ψ|σz |ψ〉 =
(
0 1

)1 0

0 −1

0

1

 =
(
0 1

) 0

−1

 = −1. (1.16)

Further, if the qubit is in a superposition of |0〉 and |1〉, Pauli-Z expectation value results a

value between [−1, 1]. The measurement operation in a quantum circuit is represented as

shown in Fig. 1.6 as qubit measurement results is a classical value, indicated using double

Figure 1.6: Measurement notation in a quantum circuit.

line after the measurement operation. Thus, using measurement operation, we can obtain

a classical result as a final output of quantum processing. Further, the classical values

can also be post-processed using another classical algorithm or a quantum algorithm for

further processing based on the application.

Superposition and Entanglement

In the following example, we show the use of the Hadamard gate, CNOT gate, and mea-

surement to depict the quantum mechanical properties superposition and entanglement.

As shown in Fig. 1.7, a quantum circuit with three operations is considered to entangle two

qubits q0 and q1.

Figure 1.7: Quantum circuit for entanglement.

Initially, the two qubits are in state |0〉 and the state of the entire quantum system with
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the two qubits can be represented as

|ψ1〉 = |00〉 = |0〉 ⊗ |0〉 =

1

0

⊗
1

0

 =


1

0

0

0

 (1.17)

Then, Hadamard gate is applied on q0 (Eqn.1.3) obtain a superposition of basis states. The

state of the quantum system is represented as

|ψ2〉 = H |0〉 ⊗ |0〉 =

 1√
2
1√
2

⊗
1

0

 =


1√
2

0

1√
2

0

 (1.18)

Finally, CNOT gate is applied on the two qubits and the state of the quantum system is

represented as

|ψ3〉 = CNOT |ψ2〉 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




1√
2

0

1√
2

0

 =


1√
2
+ 0 + 0 + 0

0 + 0 + 0 + 0

0 + 0 + 0 + 0

0 + 0 + 1√
2
+ 0

 =


1√
2

0

0

1√
2

 (1.19)

|ψ3〉 =
1√
2
|00〉+ 1√

2
|11〉 . (1.20)

Thus, from Eqn. 1.20, if q0 is in the state |0〉, then q1 is also in |0〉. If q0 is in the state |1〉, then

q1 is also in |1〉. Hence, there is a 50/50 chance to obtain the classical value 0 or 1 when

the two-qubit quantum system is measured. Thus, the two qubits are in a completely

entangled state, also known as the Bell state, or an EPR pair.

1.2 Motivation for the Research Work

Machine learning revolutionized big data analytics with efficient algorithms and tech-

niques for supervised learning [6]. However, big data processing using ML algorithms

faces many challenges in dealing with big data due to the rapid growth of data. The areas

of concern are computational resources, model selection, optimizing the parameters, and

11



increasing the algorithm accuracy for tasks such as classification. In this context, Quantum

Machine Learning (QML) is emerging as a field of interest in computer science with the

intersection of quantum computing and machine learning.

A quantum computer is a computational device that is governed by the laws of quan-

tum mechanics. All the operations on a quantum computer can be described only with

the laws of quantum theory [15]. The two main quantum computing paradigms are quan-

tum annealing and gate-modeled quantum computing [16]. Quantum annealing uses the

effects called quantum fluctuation, a temporary random change in the amount of energy.

Quantum annealing is used to solve quadratic unconstrained binary optimization (QUBO)

problems. Thus, computational problems are solved as energy minimization problems us-

ing quantum annealing. In gate-modeled quantum computers, information is encoded on

qubits, and quantum gates are used to transform the state of the qubits. Due to the new

computing paradigms, quantum computing is expected to handle intractable problems

that classical computers alone cannot handle. For example, a discrete Fourier transform

on 2n amplitudes can be implemented using a quantum circuit with Hadamard gates and

controlled phase-shift gates with exponential speedup [17]. Also, qubits can encode classi-

cal data into the superposition of quantum states. Quantum gates are used to process the

information encoded into qubits. Quantum computers can provide exponential scaling

using qubits for information processing [18].

Quantum computing can enhance classical machine learning (ML) techniques as pow-

erful quantum tools exist for linear algebra [19]. As linear algebra is the basis for machine

learning, quantum computing techniques can be incorporated into ML methods for prac-

tical performance advantages over classical approaches [20]. The process of manipulating

the states of qubits by arbitrarily changing the gate parameters for the desired result is

closely related to the training process of machine learning algorithms. The QML algo-

rithm can be designed as a quantum circuit with a sequence of different quantum gate

operations to solve ML problems. Quantum machine learning techniques can be used

to enhance big data processing for real-world, high-impact applications. However, there

exist a limitation on the number of qubits on quantum computers as of today. Also, be-

sides many advantages, the existing quantum computers are restricted by ambient noise.

Qubits interact with the environment, thereby leading to the loss of the information en-

coded in the qubits. Therefore, using present-day noisy intermediate-scale quantum de-

vices (NISQs) [21] to solve ML problems is challenging. Designing QML algorithms that

can fit the existing quantum computers and handle the limitations is essential.
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Our research work focuses on Quantum Machine Learning for Big Data Analytics, the in-

tersection of quantum computing and classical machine learning to enhance supervised

learning of classical big data. We investigate the ability of quantum computational tech-

niques in enhancing classical machine learning algorithms for big data analytics. In partic-

ular, we propose and study hybrid machine learning methods using quantum and classical

computers together to solve supervised learning problems.

1.3 The Focus and Contributions of the Thesis

The major objective of the thesis is to design methods using quantum computational techniques

to enhance classical machine learning for big data analytics. The efficacy of the proposed meth-

ods is verified on two types of data, numerical data, and spatial data for the classification

task. While achieving the objective, we contribute the following to the field of big data

analytics using quantum machine learning.

1. Proposed an artificial neural network (ANN) using a quantum computing approach

with qubits as artificial neurons (QC ANN). The model, designed as a parameterized

quantum circuit, performs the following tasks:

(a) Classical data is encoded into qubits, and information on qubits is modified using

a series of parameterized quantum gates.

(b) The parameters of the quantum gates are optimized using classical optimization

techniques, and the entire model is trained using supervised learning. Hence,

the design methodology uses a hybrid approach.

2. Explored the scope of the hybrid approach in multi-class classification and proposed

a quantum multi-class classifier (QMCC), consists of the following:

(a) A new state preparation method to encode the classical data into qubits and test-

ing the compatibility of the method on IBM Quantum [8] hardware.

(b) A variational quantum circuit designed as a classifier with multiple layers of

parameterized quantum gates and optimized the gate parameters using classical

optimization.

(c) A new procedure to post-process quantum measurement values suitable for multi-

class classification.
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3. Analyzed the performance of QC ANN and QMCC on benchmark numerical datasets

for the classification task.

4. Proposed a three-level hybrid quantum-classical architecture (HybridQC) to process spa-

tial data for the multi-class scene classification of satellite images, consists of the

following:

(a) Quantum measurement-based features extracted from satellite images to obtain

quantum representations of images by measuring qubits in a quantum circuit.

(b) A quantum circuit to extract measurement-based features, suitable for imple-

mentation on present-day NISQs or a quantum simulator.

(c) Deep neural network models built using quantum representations of the images

and such models are trained with minimum computational resources.

5. Proposed quantum-classical data processing techniques to process spatial data for

satellite image scene classification. The following are the key contributions:

(a) A data augmentation technique, proposed using a quantum circuit (QDA) to cre-

ate blended images combining classical and quantum image representations.

(b) A hybrid quantum-classical convolutional neural network (HQCNN), designed

for the image classification task.

6. Analyzed the performance of HybridQC, QDA, and HQCNN on spatial data to

prove the efficacy of the techniques for the classification task.

7. Proposed quantum processing techniques for processing of synthetic aperture radar

(SAR) images for deep learning. The following are the key contributions:

(a) Two quantum processing techniques to process SAR images.

(b) A detailed study of quality metrics and accuracy of the deep learning models on

the processed images.

1.4 Organization of the Thesis

The thesis is organized into the following seven chapters:
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Chapter 1 starts with a discussion on the importance of big data analytics, followed by a

brief discussion on the different types of big data and characteristics. The chapter

introduces quantum computing concepts and the basics of quantum operations re-

quired for this thesis. Further, the chapter discusses the challenges in dealing with

big data using classical machine learning methods. The motivation behind our re-

search on using quantum machine learning for big data analytics is also explained.

The chapter then defines the thesis focus and enumerates the major contributions.

Finally, the organization of the thesis is outlined, followed by a chapter summary.

Chapter 2 introduces quantum machine learning (QML) and the importance of QML in

enhancing classical computational techniques. The chapter also deals with the scope

of data processing using quantum computing. QML framework used in our research

is explained in this chapter, along with an emphasis on qubit encoding techniques. A

brief comparison of the existing standard qubit encoding techniques is also given in

this chapter. Further, the chapter introduces the concepts of parameterized quantum

circuits, also called the hybrid QML approach, which is the basis for our research.

Chapter 3 discusses the existing work related to quantum machine learning. The related

work in quantum machine learning is categorized into two methodologies: (i) QML

algorithms and (ii) hybrid QML approach. Along with the challenges involved in

using machine learning algorithms on big data, the chapter also covers the challenges

and limitations of using quantum computers.

Chapter 4 focuses on designing hybrid QML models for supervised learning of numer-

ical data. The chapter explains the importance of using the quantum computing

approach for artificial neural networks (QC ANN). Further, the design details of the

quantum multi-class classifier (QMCC) are given in this chapter. The chapter also

presents the performance evaluation of QC ANN and QMCC in classifying numer-

ical data for binary classification and multi-class classification, respectively. Major

observations of the work are also presented in this chapter.

Chapter 5 deals with designing and developing the QML framework for spatial data an-

alytics. The chapter explains the hybrid quantum-classical (HybridQC) architecture

proposed to enhance the deep learning models. Further, the two quantum-classical

image processing approaches: (i) quantum circuit for data augmentation (QDA) and

(ii) hybrid quantum-classical convolutional neural network (HQCNN) are explained
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in detail. The chapter analyzes the performance of HybridQC, QDA, and HQCNN

on spatial data for image scene classification.

Chapter 6 presents the details of two quantum processing techniques developed to pro-

cess SAR images for deep learning using a data-centric AI approach. The chapter

explains the importance of a data-centric approach where input data is systemati-

cally processed/enhanced to build machine learning models. A detailed study of

the quality metrics of the processed images is also presented in the chapter. Also, the

accuracy results of the deep learning models using the processed images are given in

the chapter. The immediate future work for SAR image processing is also discussed

briefly in the summary of the chapter.

Chapter 7 concludes the thesis by enumerating the major conclusions and the directions

for future research.

1.5 Summary

In this chapter, we discussed the characteristics and types of data generated around the

world and the importance of analyzing such data for valuable insights. The need for ex-

ploring efficient computational techniques to handle such huge amounts of data is also

discussed. A brief introduction to quantum computing is provided, along with the limita-

tions of quantum computers at present. The motivation for our work is given in detail by

describing the challenges that machine learning face due to the rapid growth of data. Fur-

ther, the primary focus of the thesis is defined and the major contributions are enumerated.

The organization of the thesis is outlined with the focus of each chapter. In Chapter 2, we

discuss the scope of data processing and quantum machine learning with an emphasis on

quantum encoding techniques and the hybrid QML approach used in our research.
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Chapter 2

Quantum Machine Learning for

Big Data Processing

“Quantum computing has rapidly advanced in both theory and practice

in recent years, and with it the hope for the potential impact in real applications.

One key area of interest is how quantum computers might affect machine learning.”

– GOOGLE QUANTUM AI

Large-scale data processing for feature extraction is essential for machine learning al-

gorithms to perform well in solving real-world problems. Although machine learning

algorithms perform exceptionally well using classical computers at present, as the size

of the data grows, the computational ability of classical computers comes under test. As

the data size grows globally at an exponential rate, classical machine learning techniques

soon become inundated. Hence, computationally efficient hardware and algorithms are

required to analyze huge amounts of data for decision-making. Quantum machine learn-

ing (QML) recently gained prominence due to the computational ability of quantum com-

puters in solving machine learning problems that are intractable on a classical computer.

This chapter discusses the ability of quantum computing techniques in processing big data

with emphasis on standard qubit encoding techniques and the quantum machine learning

framework used in the thesis.

Data processing and feature extraction using quantum computing techniques are fun-

damentally different from classical computational techniques. QML can be used to per-

form different tasks on a quantum computer to solve specific problems. Qubits in a quan-

tum computer represent data in a superposition of quantum states, and hence, hidden

patterns that are difficult for a classical computer to analyze can be found using a quan-

tum computer. Further, entanglement provides a way for the qubits to influence the state

of one another during computation. Hence, quantum computers have a natural advantage
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to enhance machine learning algorithms. QML algorithms use superposition and entan-

glement properties to process the information on qubits. Noise resilient data processing

techniques can be designed using quantum machine learning as quantum computers deal

with inherent noise [22]. In the following section, we discussed the scope of data process-

ing using different computational techniques and highlighted our approach.

2.1 Scope of Data Processing

As shown in Fig. 2.1, there are four different methods to handle data using the existing

computational techniques. Each of the data processing techniques, along with the com-

putational techniques, are used to handle different types of data in various applications.

Classical data here refers to the different types of data existing in the world that also in-

cludes big data. In our thesis, we mainly focus on the Classical Data and Quantum Processing

(CDQP) category to work on numerical and spatial big data processing. The details are

given in the further chapters of the thesis.

Figure 2.1: Data processing and computational techniques.

The details of each method are given in the following.

1. Classical Data and Classical Processing (CDCP): Classical data refers to the data gener-

ated from sources such as remote sensing, social media, and transaction data. CDCP

is the method where classical data is processed to obtain insights using classical com-

putational techniques. CDCP is widely used in real-time applications such as image

classification, object detection, target marketing on social media, and recommender

systems.

2. Classical Data and Quantum Processing (CDQP): In CDQP, classical data is processed
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using quantum computational techniques. Quantum mechanical properties such as

superposition and entanglement are used in quantum computational algorithms to

process classical data. Complex machine learning problems for real-time applica-

tions can be solved using quantum computational techniques. Quantum comput-

ing also consists of techniques that can also be used to enhance the existing ma-

chine learning techniques. Our thesis focuses on CDQP to design QML methods and

frameworks to solve machine learning problems.

3. Quantum Data and Classical Processing (QDCP): Quantum technology is becoming

popular, and many quantum devices are under design. While experimenting with

the design of quantum devices, a lot of quantum data is generated. Also, devices sim-

ilar to quantum sensors generate quantum data. QDCP is a method where quantum

data generated from quantum devices (as quantum states) can be processed using

classical computational techniques.

4. Quantum Data and Quantum Processing (QDQP): Quantum computational techniques

can also be used to process quantum data. Quantum devices in the future can gen-

erate quantum data such as state information of the qubits. As the number of qubits

increases, QDQP becomes popular in handling quantum data. However, the QDQP

methods are expected to be used by quantum physicists to analyze quantum data

generated from quantum devices.

2.2 Quantum Machine Learning Framework

Figure 2.2: Block diagram of QML approach.

The Quantum machine learning approach for big data analytics can be performed us-

ing the following steps as shown in Fig. 2.2. Our work considers that the big data is col-

lected and organized using the widely prominent techniques and made available online.
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Further, big data processing is performed using the quantum machine learning frame-

work.

2.2.1 Preprocessing

A huge amount of classical data is generated from different big data sources. The data is

cleaned to remove any missing values or discrepancies from the data. Further, data prepro-

cessing techniques are used to transform the data suitable for encoding into qubits. Hence,

preprocessing techniques such as data transformation and data reduction are performed

on the classical data.

2.2.2 Quantum Loader

Quantum computational techniques require data to be encoded onto qubits for informa-

tion processing. The qubit encoding process is also called a state preparation where classi-

cal data are encoded into qubits to form a quantum state. A quantum loader can be used

for the purpose of qubit encoding. Quantum loader consists of a quantum circuit with

different unitary operations that encode data into a quantum state using qubits.

The data encoding techniques for a quantum computer are classified into two cate-

gories: standard and application-specific. Standard encoding techniques consist of basis

embedding, angle embedding, and amplitude embedding. Application-specific embed-

ding techniques are designed based on the input data and target application, using quan-

tum circuits with different unitary operations.

(a) Basis (b) Angle (c) Amplitude

Figure 2.3: Three embedding techniques.

Basis Embedding

In basis embedding, binary values of classical data are translated into quantum basis states

as shown in Fig. 2.3(a). The classical data is converted to binary form, then the string of
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binary inputs is translated as a quantum basis state. The binary value of classical data is

encoded as a basis state with amplitude as one for that particular basis state. For example,

to encode a classical value 2, using basis embedding, the quantum state is represented as

|ψ〉 = 0 |00〉+ 0 |01〉+ 1 |10〉+ 0 |10〉 . (2.1)

In basis embedding, a classical data value with n binary bits is encoded using a basis

state of n qubits. Thus, basis embedding requires a huge number of qubits to encode high-

dimensional data as binary representations of the classical data are encoded as basis states.

Angle Embedding

In angle embedding as shown in Fig. 2.3(b), classical data features are encoded as the

rotational angles of qubits using unitary operations. The qubit rotation can be achieved

around x-axis Rx(vi), y-axis Ry(vi), or z-axis Rz(vi) in a Bloch sphere [23] where vi is the

classical data value. The angle embedding encodes n classical features into a minimum of

n qubits [15] where each feature is encoded as a rotational angle of a quantum rotational

gate.

Amplitude Embedding

In amplitude embedding technique [24, 25], the classical features are mapped into am-

plitudes of a quantum state. The initial step in amplitude embedding is the conversion of

classical data into angular representations, as shown in Fig. 2.3(c). The data is encoded into

amplitudes of quantum states using uniformly controlled rotations as per Equation 2.2.

|ψamp〉 = R (xi, β) |q1q2.....qs−2qs−1〉 |qs〉 (2.2)

R is a function of xi and β, where xi is the ith classical feature vector and β is a param-

eter depending on the dimensions of the classical features [15]. State |ψamp〉 is the result

of n rotations with respect to the y-axis in a cascade where n is the power for embedding

a classical feature vector xi. In general, to associate each amplitude with a component of

the input vector, the dimension of the vector must be equal to a power of two because the

vector space of an n qubit register has dimension 2n. Suppose the dimension of the vector

is not an integer power of two. In that case, the input vector needs to be padded with

additional zeros to increase the dimension. This padding is depicted in Fig. 2.3(c), where

the number of classical features is three, the nearest possible value of 2n is four. Hence one
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additional 0 needs to be padded. After the rotations, the input vector X = {x1, x2, . . . , xn}
is encoded in the amplitudes of the quantum state as

|ψ〉 =
n−1∑
i=0

xi |i〉 (2.3)

where, xi is the normalized value of the ith classical feature. Thus, all the values of the

input vector X are encoded as amplitudes of the quantum states in superposition. Hence,

amplitude embedding is space-efficient as exponential scaling is provided using encoding

of values.

Comparison of Embedding Techniques

Basis embedding is a primary way of encoding classical data using basis states. However,

basis embedding encodes binary features into basis states, and hence the dimensional-

ity and qubits requirement increases drastically. In angle embedding, a minimum of n

qubits to encode n classical features. At present, noisy intermediate-scale quantum de-

vices (NISQs) contain limited qubits to work with. Also, maintaining the coherence of

many qubits is a difficult task [26]. Hence, basis and angle embedding schemes are not the

best choices for high-resolution satellite images where encoding the classical data values

requires a huge number of qubits. In amplitude embedding, 2n classical data features can

be encoded using only n qubits. Thus exponentially fewer qubits are required in compar-

ison to other standard encoding techniques for data encoding. The selection of the data

encoding technique depends on the type of data used for analysis and the application.

2.2.3 QML Algorithm

A QML algorithm is used to process and transform the state of the qubits using unitary

gate operations. There are two classes of quantum machine learning algorithms. The first

class of algorithms is a complete quantum circuit with non-parameterized quantum gates

for specific tasks such as classification clustering of input data. The next class of algorithms

is quantum circuits with parameterized quantum gates where gate parameters are opti-

mized for a specific application. The optimization of the gate parameters of the quantum

circuit is performed using classical optimization techniques as shown in Fig. 2.4. Thus, the

second class of QML algorithms is considered a hybrid approach with both classical and

quantum computations. Our thesis focuses on the hybrid approach where both quantum

and classical computational techniques are used to solve machine learning algorithms. We
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further propose novel approaches to enhance the existing machine learning algorithms.

Classical
data

Quantum
state

Layers

Parameterized
Quantum Circuit

Classical
computer

Update parameters

Quantum Processing Unit

Figure 2.4: A hybrid classical-quantum circuit model.

Parameterized Quantum Circuits

Hybrid classical-quantum computation models [27] are built to provide the quantum ad-

vantage to classical computers. Fig. 2.4 depicts the outline of a hybrid computational

model. The computation models are designed as a typical quantum circuit, called a vari-

ational circuit as they are suitable to implement on an existing quantum processing unit.

A variational circuit is a quantum circuit that has a fixed initial state, parameterized quan-

tum circuit, and measurement [28, 29, 30]. The significant difference from a traditional

quantum circuit is that the gates used to build the variational circuit are parameterized as

U(x; θ) where x (input) and θ are parameters. Further, parameters of the gates (θ) used in

the variational circuit are optimized by a classical computer.

The model starts with a classical data item prepared as a quantum state. The quantum

state |ψ〉 is then passed through a sequence of quantum operations which is designed as

a variational circuit with parameterized gates (Uθ) and has a layered architecture with the

repetition of the layers. The initial quantum state |ψ〉 with encoded classical data is modi-

fied through the layers to state |ψ′〉. The layers are repeated to engage the parameterized

gates in a better learning process. Finally, the desired qubits are measured for the output

value. Gate parameters in all the layers are updated based on the difference between the

predicted output and the ground truth. A classical computer is used for the optimization

of the gate parameters. In our work, we used parameterized quantum circuits to design
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the hybrid models QC ANN and QMCC for numerical data classification. A detailed de-

scription of the designed variational circuits for hybrid models is given in Chapter 4.

2.2.4 Quantum Measurement

Quantum measurement is performed on one qubit or a set of the qubit to obtain the result.

For example, if we design a QML algorithm for the binary classification task, the expecta-

tion value of projection-valued Pauli-Z measurement on a qubit in the state |0〉 gives the

result as 1, and on |1〉 it results in -1. Hence input can be classified based on the measure-

ment of the qubits. Further, in a hybrid approach, the measurement values are used to

optimize the parameters of quantum gates.

2.2.5 Postprocessing

The output values of a quantum measurement are numerical values that can be repre-

sented in classical domain. The obtained values based on the measurement operator can

be post-processed using either classical or quantum processing based on the application.

In our work, we used classical postprocessing to process the quantum measurement values

obtained during the process of computation in HybridQC, QDA, and HQCNN methods.

Further details of the methods are given in Chapter 5.

2.3 Summary

In this chapter, we briefly described different data processing approaches using different

types of computations. We also described in detail the different steps involved in the quan-

tum machine learning framework for big data analytics with an emphasis on the quantum

loader. Qubit encoding schemes are discussed with a comparison between the schemes.

In Chapter 3, we discuss the existing work related to methodologies of quantum machine

learning, emphasizing the hybrid QML approach.
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Chapter 3

Related Work

“If I have seen further than others, it is by standing upon the shoulders of giants.”

– ISAAC NEWTON

“The reading of all good books is like a conversation with the finest minds of past centuries.”

– RENÉ DESCARTES

Quantum computers are fundamentally different from classical computers as quan-

tum mechanical properties are used for information processing. Hence, it is believed that

quantum systems produce information in form of quantum states that cannot be produced

by classical systems [31]. The critical aspect is to understand and discover the power of

quantum machine learning and what quantum computing can do for machine learning

applications [32]. This chapter presents the details of existing quantum machine learning

methodologies to solve machine learning problems using quantum computers.

3.1 Quantum Machine Learning Methodologies

There are two different methodologies that are used for quantum machine learning. The

first one is to design quantum algorithms as a complete quantum circuit to solve machine

learning problems. The designed complete quantum circuits require more qubits, and

therefore, the algorithms can probably solve machine learning problems such as classifica-

tion, clustering, and dimensionality reduction faster than classical algorithms [33, 34]. The

second prominent methodology used for quantum machine learning is a hybrid approach

using NISQ heuristics. As mentioned in the previous chapter, hybrid classical-quantum

computational models are built to provide a quantum advantage to classical computers.

In the next section, we discuss the related work on the hybrid approach in detail. The hy-

brid approach at present can enhance machine learning algorithms by giving support to
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classical computation. Fig. 3.1 show the state of quantum machine learning research based

on the methodologies used for solving the problems.

The idea of using a complete quantum circuit to solve machine learning problems

gained momentum during the early 2000s. Powerful tools for linear algebra are designed

using quantum computing such as Fourier transforms, finding eigenvectors and eigenval-

ues and solving linear equations. In 2009, the quantum algorithm for linear systems of

equations, also called the HHL algorithm, is designed by Aram Harrow et al. for solving

linear systems [19]. As linear algebra is the core computational component for machine

learning, the quantum computing community believes that machine learning problems

can be solved efficiently using quantum computation techniques.

In comparison, there exists an exponential quantum speedup over their best known

classical counterparts [19, 35, 36]. The quantum algorithms can be used for a variety of data

analysis and machine learning algorithms, including linear algebra, least-squares fitting,

gradient descent, Newton’s method, principal component analysis, linear, semi-definite,

and quadratic programming, topological analysis, and support vector machines [33]. How-

ever, practical implementation of such techniques requires large-scale quantum comput-

ers.

Figure 3.1: Present state and future goal of research on hybrid and QML algorithms.

Hybrid quantum-classical models can be used to overcome the limitations of quan-

tum computers at present and utilize existing quantum computers to perform different

tasks. Hybrid models consist of parameterized quantum circuits that use different quan-

tum gates to be designed as machine learning models. The models can be designed with

a few qubits available at present and can also be scaled based on the availability of qubits.

The developed models can be used for a variety of data-driven tasks, such as supervised

learning.
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The following Section 3.2 provides details of the existing work related to the work

presented in Chapters 4 and 5. Emphasis is given on the challenge of training machine

learning models on huge amounts of data. Section 3.2 also discusses the techniques and

methods used to overcome the limitations of a quantum computer.

3.2 Hybrid QML Approach

Machine learning algorithms revolutionized the way of analyzing huge amounts of data

for useful insights [37, 38, 39] and applications. Artificial neural networks [40] removed

a lot of obstacles in big data processing, thereby, turning the data into information for

successful decision making. Data growth and size create new problems to be addressed

and challenge the existing computing power of artificial neural networks. An ANN can

learn complex relationships from the input data using the parameters between the network

layers. These parameters are optimized using back-propagation during the training phase.

As the size and dimension of the input data grow, training a neural network with fewer

parameters is a difficult task.

In recent years, deep learning (DL) [41] based methods such as convolution neural net-

works (CNNs) proved to be efficient for various image processing and scene classification

tasks. Such methods [42, 43, 44] extract features from an image using trainable multi-

layer networks and are proven to be successful for remote sensing image scene classifi-

cation [45, 46]. CNN-based deep learning models process images in the form of multiple

arrays using filters of variable sizes. Features from the images are extracted through con-

volution layers and pooling layers. Finally, the fully connected layers are used for decision-

making. Fine tuning [47, 48] of CNN models proved to be efficient for the scene classifi-

cation task. However, the implementation of such methods requires a high-performance

computational facility as many parameters are used in training such models.

Extracting interpretable information and knowledge from the spatial big data gener-

ated by remote sensing imaging systems is also a challenging task. Reichstein et al. [49]

explained the need and importance of integrating physical modeling with machine learn-

ing to address the challenge. Lei Ma et al. [50] discussed the prominence and efficiency

of DL models for image scene classification, object detection, semantic segmentation, and

land-use classification. The authors also highlighted the challenges in training the super-

vised DL models such as CNN.

The training of deep neural networks (DNNs) with more layers is a complex task in

terms of optimization and tuning of parameters [51]. As the number of parameters in-
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creases, the convergence of the optimization process is difficult during training, of the

model [52]. The deeper neural network architectures with a large number of parame-

ters often lead to multiple local minima [53]. Computationally expensive hardware and

memory-intensive methods are required to manage a large number of parameters in a

deep model with more layers [54]. Also, remote sensing image data is high-dimensional,

and the availability of training samples is limited. Hence, the training process of DNNs is

a complex task. Thus, stacking of the layers with more parameters is not an effective way

to improve the efficiency of the models [55, 56].

Complex computational problems can be solved efficiently using a quantum com-

puter [18]. Classical computing can store and process the data in binary digits. In contrast,

quantum computers store and process the data using qubits [57] which use both 0 and

1 at the same time. The composite quantum state produced by the quantum-mechanical

property is called superposition. Entanglement is another quantum-mechanical property

that is used in many algorithms to create interactions between qubits. In this quantum

era, there exists a necessity to explore the possibility of designing QML algorithms suit-

able for implementation on QPUs to harness the power of quantum computing. Quantum

enhanced machine learning algorithms [58] can solve complex problems that are difficult

for a classical computer. Biamonte et al. [31] described the advantages of using quantum

computing in solving machine learning problems. In their work [59, 15], Schuld et al.

designed a quantum circuit as a classifier for binary classification using a distance-based

kernel function. Emphasizing the importance of QML, authors in [60, 61] proposed su-

pervised machine learning models using a hybrid classical-quantum approach that uses a

classical computer to optimize quantum parameters.

Tacchino et al. [62] implemented an artificial neuron on a quantum processor and dis-

cussed the possibility of implementing artificial neural networks on a real quantum com-

puter. Open-source software [16] are developed to implement quantum algorithms on a

real quantum processor or a quantum simulator. The work in [33, 11, 63] states that su-

pervised, unsupervised, and reinforcement learning techniques can be performed using

quantum computing. Schuld et al. [59, 15] implemented a distance-based classifier with a

quantum interference circuit for binary classification. The authors devised a simple quan-

tum circuit and used the quantum computational properties to create a quantum-circuit-

based binary classifier. The main focus of the work is to leverage the computational power

of a quantum computer instead of trying to execute a machine learning algorithm on a

quantum computer. The work proved that quantum computing abilities are unconven-
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tional and can be used to enhance machine learning algorithms. However, identifying the

correct problem statement and constructing a quantum circuit as a machine learnig model

are challenging. The basic idea is to use quantum interference to evaluate the distance

measure of a kernel classifier in quantum parallel. Also, information encoding and avoid-

ing complex quantum circuit design are critical in the scenarios. The authors demonstrated

the circuit for the classification task on the Iris flower dataset on the 5-Qubit IBM quantum

computer. Subsequently, different types of binary classifiers on quantum computers were

designed [60, 61, 62].

The primary step to performing classification on a quantum computer is that the input

data must be encoded in a quantum state. The data can be encoded as the amplitudes

of individual qubits in an entirely separable state (qubit encoding) or the amplitudes of

an entangled state (amplitude encoding). The work performed in [60] tests the quantum

classifier using both methods. The circuits used are tree-like parameterized quantum cir-

cuits one known as a tree tensor network (TTN) and another known as the multi-scale

entanglement renormalization ansatz (MERA). The circuits use single-qubit, two-qubit,

and three-qubit rotations along with fixed CNOT gates. The authors tested the models on

an IBM quantum computer.

Quantum computing can also be used to implement kernel methods [64, 65] for classi-

fication tasks. In [61], the authors proposed two classifiers one is a variational quantum

classifier, and another is a quantum kernel estimator. The work shows that quantum com-

puters can build a feature map that is difficult to estimate classically, thereby producing

a quantum advantage. The observation made a crucial step towards building machine

learning algorithms that can be implemented on noisy intermediate-scale (NISQ) devices.

The kernel methods proposed are expected to work beyond binary classification.

Further advancement in the quantum research related to machine learning is proposed

in [62]. The authors proposed the quantum equivalent of the classical perceptron. First,

the equivalent of k-dimensional classical input and weight vectors is encoded on the quan-

tum hardware using n qubits, where k = 2n. The quantum perceptron model can sort out

simple patterns, such as vertical or horizontal lines, among all possible inputs.Quantum

versions of deep learning techniques such as convolutional neural networks [66], Boltz-

mann machines [67], and generative adversarial networks [68] were also developed. Su-

perposition, entanglement, and interference are the quantum-mechanical properties that

are used in many of such quantum machine learning algorithms [69]. QML algorithms can

also be applied in the field of Chemistry [70].
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Quantum image processing is an upcoming research area at the intersection of quan-

tum computation and image processing. Quantum image representations, processing al-

gorithms, and image measurement are the crucial areas in the research [71]. Pengao Xu

et al. [72] developed a quantum circuit-based quantum image processing algorithm. The

algorithm uses the Kirsch operator and an edge extraction method to perform real-time

image processing with good accuracy. The developed algorithm is also better in image

processing speed than the classical edge extraction algorithms. Mhafuzul et al. [73] pre-

sented a hybrid quantum-classical neural network for attack detection using image data.

Data augmentation is a very important technique used during the training of machine

learning models. Augmentation refers to method that virtually increases the size of the dif-

ferent datasets. Chao Li et al. [74] presented a data augmentation technique on data such

as data collected from inertial sensor data to improve deep learning performance. Data

augmentation can also be performed on combinations of data from sensors such as inertial

and image sensors [75]. Deep learning models for limited-size image datasets benefit from

data augmentation techniques [56]. However, there is a necessity for new data augmenta-

tion techniques as different varieties of data is generated due to the advancement of sensor

technology.

Motivated by the recent advancements in realizing quantum information processors,

quantum versions of neural network algorithms were developed. Cong et al. [76] devel-

oped quantum circuit-based algorithm inspired by convolutional neural networks. Quan-

tum neural networks are also developed as a variational quantum circuit built in the

continuous-variable (CV) architecture [77]. Henderson et al. [78] created a quantum ver-

sion of convolutional neural networks using a transformational layer called a quantum

convolution, or quanvolutional layer. Random quantum circuits are used for operating on

the input by locally transforming the data. Mari et al. [79] extend the concept of trans-

fer learning to hybrid neural networks composed of classical and quantum elements. The

hybrid model uses a pre-trained classical network augmented to a variational quantum

circuit for classification.

Even though the existing quantum neural network models show an advantage over the

classical methods, they are not completely scalable. As the number of quantum operations

increases, the depth of the circuit increases and qubits lose coherence. Such quantum neu-

ral networks require training optimization [80] and state stabilization [81]. Hence, we pro-

pose a hybrid quantum-classical architecture to combine quantum computation techniques

to handle data together with a classical deep neural network for image classification.
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However, solving machine learning problems using the present state of a quantum

computer has its own limitations. Quantum computers are complex systems due to their

need for perfect isolation from the environment. Lack of isolation results in the qubits of

quantum computers losing coherence. The property of decoherence of qubits is a chal-

lenging problem when designing a quantum algorithm as a quantum circuit on near-term

quantum computers [21]. As mentioned in Section 1.2, QML algorithms at present face

challenges such as availability of qubits and decoherence. Hybrid classical-quantum mod-

els are used for designing QML algorithms to overcome the existing limitations of a quan-

tum computer. Table 3.1 summarizes the methods in the related work relevant to the thesis.

Table 3.1: Different types of data and characteristics

Method Highlight of the work

Distance-based classifier
Quantum inference circuit for binary classification
of input data [59]

Hierarchical quantum classifier
Multiple implementations of quantum tree tensor
networks for classification [60]

Quantum kernel methods
Supervised learning using quantum kernel for
enhanced feature spaces [61]

Quantum perceptron
Quantum version of classical perceptron implemented
on quantum hardware [62]

Quanvolutional neural network
Quantum version of convolutional
neural networks for extracting image features [78]

Circuit-centric classifier
A low-depth variational quantum algorithm
for supervised learning [82]

Quantum transfer learning
Feature learning using quantum computation for image
recognition and quantum state classification [79]

3.3 Summary

This chapter discussed the existing research on quantum machine learning using QML

algorithms and a hybrid approach. The important observations from the literature are:

(i) analyzing huge amounts of data using machine learning algorithms requires a huge

number of trainable parameters, (ii) quantum computing enhances machine learning, and

(iii) there exist limitations on qubits at present in the quantum processing units. Therefore,

we consider designing hybrid quantum-classical models to overcome the limitations and

enhance machine learning using quantum computational techniques. Chapter 4 describes

the models developed for supervised learning on numerical data for binary classification.

In Chapter 5 we proposed different hybrid techniques to handle big spatial data for scene

classification.
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Chapter 4

Hybrid QML Models for Supervised Learning

“The real voyage of discovery consists not in seeing new sights,

but in looking with new eyes”

– MARCEL PORUST

Supervised learning is a machine learning technique where the machine learning model

is trained using labeled data to learn the features. We designed hybrid models using quan-

tum and classical computations to perform supervised learning and solve classification

problems in our work. To design the models, we carried out our research in two phases.

The first phase presented in this chapter aims to understand the application of quantum

computing on numerical data. We applied quantum computing in the area of artificial

neural networks. Further, we design a quantum variational circuit for classification.

4.1 Quantum Computing for Artificial Neural Network

Artificial neural networks (ANN) are proven to be efficient in solving many problems for

big data analytics using machine learning. The complex and non-linear features of the in-

put data can be learned and generalized by ANN. In the big data era, enormous amounts

of data arrive from multiple sources. A stage is expected to be reached where even super-

computers are likely to be inundated with big data. Training an ANN in such a situation

is a challenging task due to the size and dimension of the big data. Also, a large number

of parameters are to be used and optimized in the network to learn the patterns and an-

alyze such data. Quantum computing is emerging as a field that provides a solution to

this problem as a quantum computer can represent data differently using qubits. Qubits

on quantum computers can be used to detect the hidden patterns in data that are difficult

for a classical computer to find. Hence, there exists significant scope for application in

the area of artificial neural networks. We primarily focus on training an artificial neural
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network using qubits as artificial neurons in this work. The simulation results in the Sec-

tion 4.4 show that our quantum computing approach for ANN (QC ANN) is efficient when

compared to classical ANN on the benchmark dataset. The model with qubits as artificial

neurons can learn the features of data using fewer parameters for a binary classification

task on numerical data. We demonstrate our experiment using a quantum simulator and

optimize the quantum parameters used in QC ANN using classical computation.

4.1.1 Methodology of QC ANN

In this section, we first briefly describe the classical ANN before discussing QC ANN. In

a classical ANN (Fig. 4.1), the input layer takes N -dimensional data onto the nodes called

artificial neurons. These nodes are connected to the nodes in the hidden layer and the con-

nections contain certain weights which are parameters that can be optimized. The hidden

layer nodes are connected to the output layer with weighted connections. Finally, an acti-

vation function is used to get an output value from the network. The loss is calculated

between the actual and the target output in the next step. The parameters are optimized

through backpropagation until the loss minimizes between the actual and target output.

The training process always depends on the input dimension and the size of the dataset.
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Figure 4.1: Classical Artificial Neural Network (ANN) with artificial neurons as the nodes
of the network.
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Training an ANN is a significant task where the parameters of the network are optimized

by tuning the hyperparameters (parameters such as depth of the network and width of

the network) to avoid overfitting or underfitting of the model. The top-level parameters

of a machine learning model, that control the learning process are called hyperparameters.

The training task becomes complex with the increase in dimension and size of the data be-

cause as the size of parameters to be optimized increases computation power requirement

increases.
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Figure 4.2: Quantum circuit with qubits as nodes of ANN.

Quantum computing has the potential to handle such complex tasks that are intractable

on a classical computer. Fig. 4.2 represents the quantum computing approach used to build

an ANN using qubits as artificial neurons. The approach is named quantum computing

approach for ANN (QC ANN). The artificial neurons in the input layer of classical ANN

are replaced with qubits. The N -dimensional input data is encoded as a quantum state

with the superposition of 2k states where k is the number of qubits. We use the ampli-

tude embedding scheme [24] for the state preparation process. The hidden layer consists

of connections between qubits for interaction as an entanglement. The states of the qubits

are modified using gates with certain rotational parameters. Finally, we measure the state
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of a qubit for an output value. We compare the actual output value with the target value

and optimize the rotational parameters of gates until we get the desired output after mea-

surement. All the quantum operations in Fig. 4.2 can be executed on a near-term quantum

computer and the optimization of rotational parameters of single-qubit gates can be done

using a classical computer. QC ANN is a hybrid approach that uses both classical and

quantum computers together for the binary classification task.

The learning processes of QC ANN is different from classical ANN. The QC ANN is

implemented as a circuit on a quantum computer. The state preparation process allows

encoding of the input data onto qubits as a quantum state. That is, the input data is em-

bedded as amplitudes of different states in superposition (Section 2.2.2). The qubits are

now entangled in a way that modification of the state of one qubit influences the state of

others. Then, the quantum state is modified with gates for single-qubit rotations through

the hidden layers. In the hidden layer each qubit is rotated by a quantum gate and hence,

the state of the system changes. Finally, the state of the desired qubit is measured to obtain

a value and compared with the target value to calculate the loss. The rotational parameters

are modified until the quantum system reaches a state at which the desired qubit, when

measured, gives the target output value. The learning process here denotes that the quan-

tum circuit learns the complex relationship between input and the output as rotational

parameters of gates which transforms the state of the quantum system. Thus, the process

of learning is entirely different from that in a classical ANN.

The advantages of QC ANN are:

1. Using k qubits, 2k attributes of the input data are encoded as a superposition of

states onto a quantum computer. Consider a normalized input data instance of 32

values given as x1, x2, x3, ..., x32. Now the input data can be encoded as a quantum

state (using 5 qubits) with superpositon of different states as x1 |00000〉+x2 |00001〉+
x3 |00010〉+, ...,+x32 |11111〉 using amplitude embedding.

2. Using qubits as artificial neurons avoids the usage of nodes in the hidden layers as in

classical ANN. Thus, the size of parameters to be optimized reduces, as there are no

connections to be established between the layers.

3. Quantum measurement itself acts as an activation function that saves the computa-

tional effort.

However, QCANN can only perform binary classification. Encoding data into quan-

tum computers is an important task and there is a necessity for different data encoding
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techniques for encoding data into qubits. Hence, we addressed the considerations using a

quantum multi-class classifier (QMCC). In the following section, we describe QMCC that

performs multi-class classification using a different quantum circuit we designed.

4.2 Quantum Multi-Class Classifier

We propose quantum multi-class classifier (QMCC) as a variational circuit with a hybrid

classical-quantum approach using quantum mechanical properties such as superposition

and entanglement. We primarily focus on solving the machine learning problem of multi-

class classification using a hybrid model based on both quantum and classical computers

together for the classification task. A unitary operation on a single qubit for the state prepa-

ration is designed and also demonstrated using a real quantum computer on the IBMQX

platform. The entire variational circuit for the classification task is implemented on a quan-

tum simulator. We performed our quantum simulations on three benchmark datasets: Iris

dataset, Banknote Authentication (BNA) dataset, and Wireless Indoor Localization (WIL) dataset

for machine learning algorithms. Our simulation results show that the QMCC model clas-

sified Iris dataset with an accuracy of 92.10%, BNA dataset with an accuracy of 89.50%, and

WIL dataset with an accuracy of 91.73%. The proposed model can also be extended to mul-

tiple class classifiers. The accuracy of a model is calculated from the confusion matrix [83]

with true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).

The formula for accuracy is given as following:

Accuracy =
TP + TN

TP + FP + TN + FN
.

We designed a variational quantum circuit as a machine learning model for classifica-

tion using the hybrid classical-quantum approach. The hybrid approach allows the ma-

chine learning model to overcome the existing limitations of a quantum computer and can

perform better. Our model is designed for the classification of three classes and can be

further extended to classify multiple classes. The major contributions of this work are as

follows:

1. Multi-class classification using QMCC as a variational circuit that classifies three

classes using the hybrid classical-quantum approach.

2. Provisioning of separate data qubits to encode classical data and ancilla qubits for

measurement in the variational circuit design.
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3. State preparation using a unitary operation to encode the classical data instance as

a quantum state on a qubit and verification of the proposed state preparation on

IBMQX [84] platform.

4. Proposal of a new approach for class label prediction after Pauli-Z measurement us-

ing softmax function for achieving better results.

5. Detailed analysis of the results using QMCC on a quantum simulator in comparison

with the amplitude embedding scheme for state preparation.

4.2.1 QMCC as a Variational Circuit

The variational circuit is shown in Fig. 4.3 [85] is designed to classify dataset with four

features.
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Figure 4.3: Illustration of the designed variational circuit model with one layer for classi-
fication of the three classes. The original implementation of the model consists a total of
seven similar layers.

The operations performed on the variational circuit are as follows. Initially, all the four

qubits in the variational circuit are prepared as |0〉. To classify any data on a variational

circuit, each instance of the data is to be encoded into the four qubits. Firstly, for the

purpose of encoding, all the four qubits are operated with Hadamard gate individually to

place the qubits in an equal superposition of |0〉 and |1〉. Second, a classical data instance

with four values is encoded into four individual qubits using unitary operation on each

qubit with a square unitary matrix designed for the state preparation as given in the next
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section. Hence, using the state preparation process, classical data is encoded on the qubits

as a composite state.

Figure 4.4: Generalized architecture of the designed variational circuit model with n-
layers.

Algorithm 4.1 shows the working of the designed quantum multi-class classifier.

Algorithm 4.1: QUANTUM MULTI-CLASS CLASSIFICATION

Input: N -dimensional input features xd ∈ RN re-scaled element-wise in order to

lie in [0, π2 ]

Output: Class label for the corresponding data vector yd for the data set

D = (xd, yd)
D
d=1 where d = 1 . . . D represents the row number in a dataset.

1 Initialize: Data_qubits← |0〉, Ancilla_qubits← |0〉
2 k ← number of layers

3 θ ← quantum gate parameters optimized using classical computer

4 Data_qubits← STATE PREPARATION (xid) ∀i ∈ 1, 2, . . . , N

5 for i← 1 to k do

6 RY (θ) rotations on Data_qubits

7 ENTANGLEMENT (Data_qubits, Ancilla_qubits)

8 RZ(θ)RY (θ)RZ(θ) rotations on Ancilla_qubits

9 end

10 Values← MEASUREMENT (Pauli-Z(Ancilla_qubits))

11 Class label← SOFTMAX(Values)

After the state preparation, the variational circuit is designed with multiple layers of

entangled rotational gates on data qubits and ancilla qubits with adjustable parameters.
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The experimental model of QMCC consists of seven trainable layers. Finally, the ancilla

qubits are measured and output values of the measurement are processed to obtain class

labels as per Eqn. 4.5. The parameters of the layers in the variational circuit are adjusted in

multiple iterations using an optimization technique such that the final circuit with adjusted

parameters of the gates predicts the class label of the given input with the desired accuracy.

State Preparation

Fig. 4.4 represents the generalized architecture of our variational circuit model. Quantum

computers can handle data only as quantum states. Hence, a classical data item is encoded

as a quantum state on the qubits for processing. The State preparation part of the circuit

encodes the classical data onto the four data qubits. The encoding scheme used in this

work consists of single qubit rotations [86].

AnyN -dimensional classical dataset,D = (xd, yd)
D
d=1, where xd ∈ RN is anN -dimensional

input data, can be encoded into a quantum state with yd as the class label for the corre-

sponding data vector. The classical data vectors are re-scaled element-wise in order to lie

in [0, π2 ] and each vector element is encoded on a qubit as ψdn = cos
(
xdn
)
|0〉+ sin

(
xdn
)
|1〉.
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Figure 4.5: State preparation scheme used to encode classical data instances into quantum
states.

On quantum processing units, the qubits are considered in the state |0〉 initially. Hence,

as in Fig. 4.5(a), we pass the qubits through the Hadamard gate to place the qubit in an

equal superposition of |0〉 and |1〉. Then, the superposition state is passed through a square

unitary matrix U that transforms the equal superposition to cos(x1) |0〉+ sin(x1) |1〉 for a

data element x1 in a dataset as can be seen in Fig. 4.5(b). All the data elements in Fig. 4.5(a)

are encoded in a similar way. Finally, the encoded data vectors are given to the next part of

the circuit as a tensor product ψd = ⊗Nn=1ψ
d
n. The mathematical computation involved to
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encode a single instance is detailed below. The state vector of the initial state |0〉 of a qubit

is 1
0

 . (4.1)

The qubit is passed through Hadamard gate where it transforms the initial state to a super-

position of |0〉 and |1〉 as

1√
2

1 1

1 −1

1
0

 =
1√
2

1
1

 . (4.2)

Now, the superposition state is applied with the unitary gate operationUxn with the matrix

designed to encode the classical data onto a qubit as

cos(π4 − xn) − sin
(
π
4 − xn

)
cos
(
π
4 − xn

)
sin
(
π
4 − xn

)
 1√

2
1√
2

 =

cos(xn)
sin(xn)

 . (4.3)

Thus, the final state of a qubit is given with the following equation as

ψn = cos(xn) |0〉+ sin(xn) |1〉. (4.4)

Classification algorithm as parameterized quantum circuit

The classification algorithm is designed with layered architecture in the variational circuit.

In each layer, there exist three parts: Gates on data qubits, Entanglement, and Gates on ancilla

qubits.

The first part of the layer, Gates on data qubits, ensures single-qubit rotations where the

qubits are rotated in a specified way for a data vector of a particular class label. The second

part of the layer is entanglement of the circuit, designed to entangle data qubits with each

other and also with the ancilla qubits. The entanglement between the qubits is designed in

such a way that the rotation of each data qubit influences the rotation of all the other data

qubits, including the ancilla qubits in a specific way. Finally, Gates on ancilla qubits rotate

the ancilla qubits to enable a better learning process with a few more parameters.

All the gates used in the circuit are parameterized unitaries. Thus, the qubits are ma-

nipulated in a specified way through the unitaries. At the end, ancilla qubits are measured

for the Pauli-Z expectation value. The output class encoding scheme, used for class labels,

is based on one-hot encoding scheme. For a dataset with three classes, Class-1 is labeled as

[1, 0, 0], Class-2 as [0, 1, 0], and Class-3 as [0, 0, 1]. Now, the Pauli-Z expectation values from
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the measurement of ancilla qubits are passed through softmax function [87]. The input

values to the softmax function (S) are transformed to a set of probabilities as

S(〈ψi|σz |ψi〉) =
exp(〈ψi|σz |ψi〉)∑3
i=1 exp(〈ψi|σz |ψi〉)

. (4.5)

In Eqn. (4.5), 〈ψi|σz |ψi〉 gives the Pauli-Z measurement value on the qubit represented by

|ψi〉. The predicted labels are obtained from the above softmax function using the output

values from the qubits (where i = 1, 2, and 3 as three ancilla qubits are measured). We

choose to update the circuit parameters by minimizing the cross-entropy loss between the

predictions and the actual labels as defined by the following equation

J(θ) = −
3∑

n=1

yn log((pn)θ) (4.6)

where (pn)θ are the predicted probabilities obtained from the softmax function, over the

gate parameters (θ), and yn are the actual class labels (n = 1, 2, and 3 as each class label

contains three elements). θ represents all the gate parameters to be optimized. The gra-

dient calculation used in our computational model is different from that used in classical

machine learning. We used the analytic gradient [88] that is best suited for gate parameters

update on NISQs to avoid the influence of noise. The analytic gradient is calculated as a

derivative for the θ of the output value for that input. That is,

∂θf(θ) = c[f(θ + s)− f(θ − s)]. (4.7)

From Eqn. (4.7) it can be observed that the gradient value is the difference between the

two output values of the circuit where f is the function to calculate the output value.

The first value, f(θ + s) is the output of the circuit with the parameter θ increased by a

value s, and the second value, f(θ − s) is the output of the circuit with the parameter

θ decreased by a value s. Finally, the difference in the output values of the function is

multiplied by a constant c, where c depends on s [88]. The given gradient calculation is

not a finite differentiation. The essential idea of the gradient calculation is that the circuit

is executed with the input and sampled to get the output value f(θ). Then, two more

circuit evaluations f(θ + s) and f(θ − s) are carried out on the same circuit to get the

gradient. Finally, the circuit is trained to minimize the cost of parameter updates using

a classical computer. Since a classical computer is used for optimization, the approach is

considered as a hybrid classical-quantum approach. In the following section, the details
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of the experiments performed on numerical data using the proposed techniques are given

with performance comparison.

4.3 Experiments on Numerical Data for Classification

In this section, we present the details of the experiments performed on numerical datasets

using QC ANN for binary classification and QMCC for multi-class classification. We per-

formed experiments using default.qubit simulator provided by PennyLane [89]. Ex-

periments are performed on the Wisconsin Breast Cancer dataset using QC ANN. Multi-

class benchmark numerical datasets for machine learning Iris [90], banknote authentica-

tion (BNA) [91], and wireless indoor localization [92] are classified using QMCC. Further,

we present the performance evaluation of QC ANN and QMCC along with the major ob-

servations.

4.3.1 Description of the Numerical Datasets

The following benchmark numerical datasets for machine learning are used for the exper-

iments. Breast Cancer Wisconsin (Original) dataset (WBCD) [93] is used to evaluate the

performance of QC ANN. The datasets Iris [90], Banknote Authentication (BNA) [91], and

Wireless Indoor Localization (WIL) [92] were used to evaluate the performance of QMCC.

WBCD: The WBCD from the UCI machine learning repository is a binary classification

dataset. The attributes of the dataset consist of measurements for breast cancer cases. There

are two class labels in the dataset benign and malignant. Dimensionality of the dataset is 32

with 569 instances of which 357 belongs to benign and 212 belongs to malignant.

Iris Dataset: The Iris dataset contains flower data with four attributes related to length

and width of sepals and petals. Each class label in the dataset consists of 50 samples of Iris

setosa, Iris virginica, and Iris versicolor. These measures were used to create a machine

learning models to classify the species. The dataset is often used as a benchmark dataset

for machine learning to test algorithms related to classification.

BNA Dataset: The BNA dataset involves data and attributes related to banknote to

predict whether a given banknote is authentic. The numerical data given in the dataset

is related to the features from the images of the banknotes. The dataset contains 1,372

rows with five numeric variables used for binary classification. BNA dataset is used in our

experiments to demonstrate the fact that QMCC can also be used for binary classification.

WIL Dataset: The WIL dataset consists numerical data with signal strengths of seven
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WiFi signals visible on a smartphone. There are 2000 rows and seven columns in the

dataset with four rooms as class labels. We synthesized the dataset to suit our experiments

on the designed quantum circuit.

4.4 Performance Analysis of QC ANN for Binary Classification

In this section, we present the results of the simulation performed to prove the efficiency

of QC ANN. To implement classical ANN we used keras [94] library in python. QC ANN

experimented on a quantum simulator provided by PennyLane [89]. PennyLane also pro-

vides methods [88] for optimizing rotational parameters of quantum gates with hybrid

quantum-classical computations. All the experiments are performed on Wisconsin Breast

Cancer Diagnosis (WBCD) dataset with two class labels.

Classical ANN designed for binary classification of WBCD consists of an input layer

with 30 nodes, as the input dimension is 30. As the input values are 30, reduction in the

the number of nodes is not possible in the input layer. Next, two hidden layers with 9 and

3 nodes, are used respectively. The output layer consists of 1 node as each data record is

associated with a class label of the binary value. Hence, the total number of parameters

to be optimized are 300 [(30 × 9) + (9 × 3) + (3 × 1) = 300]. We used sigmoid activation

function for determining the class label.
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Figure 4.6: Cost Vs number of training steps of Classical ANN and QC ANN using NM.

Table 4.1: Details of hyperparameters used for training the networks in classical and quan-
tum computing approach for ANN

Type Value

Optimization (SGD)
Nestrov momentum (NM)

and Adaptive momentum estimation (Adam)
Learning rate 0.01
Momentum 0.9
Kernel initialization Standard normal distribution
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Figure 4.7: Cost Vs number of training steps of Classical ANN and QC ANN using Adam.
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Figure 4.8: Training accuracy comparison of Classical ANN and QC ANN using NM.

The QC ANN is implemented using 5 qubits in the input layer. As there are 30 input

values in the dataset, the values are embedded as amplitudes of quantum states. Therefore,

it is required to use at least 5 qubits (as 25 = 32). The amplitude embedding encoding

scheme is used for the state preparation where the input data of 30 values are encoded as

amplitudes of the quantum state with 32 superpositions. The other two values for the input

are padded with constants to match the size of states in superposition. The amplitudes are

represented by a state vector with a 32×1 dimension. The hidden layer consists of Controlled

NOT (CNOT) gates for entanglement and Ry(θ) gates on each qubit. The Ry(θ) gate is a

single-qubit rotation around y− axis represented in the Bloch sphere (Fig. 1.3) through an

angle of θ (radians). We used six such hidden layers and the last qubit (Fig. 4.2) is measured

using Pauli-Z (σz) measurement for an expectation value. A Pauli-Z (σz) measurement

operator on basis states is represented as 〈0|σz |0〉 and 〈1|σz |1〉. As the operations 〈0|σz |0〉
and 〈1|σz |1〉 give binary values 1 and −1, respectively, this measurement is suitable for

binary classification of the input data. The total number of parameters to be optimized in

this approach is 30 as there are six hidden layers with five single-qubit rotations in each

layer.

The results show that QC ANN is outperforming the classical version of ANN for bi-

nary classification on WBCD dataset with a validation accuracy of 82.51% whereas the

classical ANN is giving 39.86% validation accuracy using Nesterov Momentum (NM) [95].
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Figure 4.9: Training accuracy comparison of Classical ANN and QC ANN using Adam.
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Figure 4.10: Validation accuracy comparison of Classical ANN and QC ANN using NM.
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Figure 4.11: Validation accuracy comparison of Classical ANN and QC ANN using Adam.
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Table 4.2: Accuracy comparison of Classical ANN and QC ANN on WBCD dataset.

Type Classical ANN QC ANN

Training steps 100 100
Parameters trained 300 30

Training accuracy (426 records)
34.09% (NM)

98.12% (Adam)
83.33% (NM)

84.74% (Adam)

Validation accuracy (143 records)
39.86% (NM)

98.60% (Adam)
82.51% (NM)

83.21% (Adam)

However, Classical ANN is giving good accuracy over QC ANN using Adaptive Momen-

tum Estimation (Adam) [96]. Both NM and Adam are Stochastic Gradient Descent (SGD)

optimization techniques. Comparatively, QC ANN is able to perform well with very few

parameters.

Table 4.1 shows the details of hyperparameters used to train the models and a compar-

ison of accuracy is given in Table 4.2. In Fig. 4.6, a comparison of the training cost for both

classical ANN and QC ANN models using NM is provided. Mean-squared error is used

as the cost function. The transition of the cost curve for the QC ANN is smooth, thus in-

dicating that the model is able to learn the features from the data and can generalize the

characteristics of the data efficiently in the model. However, the training cost for classical

ANN is significantly less when compared to QC ANN using Adam, indicating that tuning

hyperparameters is an important task in training an artificial neural network.

In Figs. 4.8 and 4.9, the training accuracy of both the models is compared. Figs. 4.10

and 4.11 show the plots for validation accuracy. We observe that with good training ac-

curacy and validation accuracy, QC ANN is performing extremely well even when only

fewer parameters are trained. Thus, using a quantum computer, we can train an ANN

efficiently.

Quantum computers have vast potential to solve many complex problems that are dif-

ficult for a classical computer to solve. In this work, we show that the quantum computing

approach for training ANN on a quantum computer performs exceptionally well when

compared with classical ANN. QC ANN used only a few parameters to learn the com-

plex and non-linear patterns in data. Hence, it is computationally efficient. The training

approach used in this work can also be extended to train deep neural network models for
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image classification. Also, the approach using a quantum computer in training a deep neu-

ral network is considered efficient in terms of computational space as we require only k

qubits to represent 2k input values of classical data. Thus, we achieved good results using

a few qubits and fewer parameters for optimization.

4.5 Performance Analysis of QMCC for Multi-Class Classification

In this Section, we present the details of our experiments and quantum simulations. We

experimented with the state preparation on the real quantum hardware provided by IBM

on the IBM QX platform. The entire QMCC variational circuit is implemented on the

default.qubit simulator provided by PennyLane.

IBM provides access to real quantum hardware through Qiskit [97] quantum comput-

ing framework on the IBM QX platform. The unitary operations for the state preparation

are executed on the IBM QX platform using Pennylane-Qiskit [98] plugin. Pennylane-Qiskit

plugin provides necessary packages to integrate Qiskit with PennyLane’s quantum machine

learning capabilities. Hence, we can execute a Python program with quantum operations

written using PennyLane package on realtime quantum hardware. The following sample

code snippet is used to access the real quantum hardware.

import pennylane as qml

dev = qml.device( ' qiskit.ibmq ' , wires = 4,

backend = ' ibmq_16_melbourne ' , ibmqx_token = "XXX")

The method qml.device is used to initialize a quantum device or a quantum simula-

tor for performing quantum operations with the number of qubits given as input to wires.

The input parameter, qiskit.ibmq, is used to indicate that the quantum hardware on

the IBM QX platform is used to perform quantum operations. The selection of quantum

hardware for experimentation is given as input to backend. The IBM QX API token, nec-

essary to perform quantum operations, can be obtained by creating a profile on the IBM

QX. The token is given as input to ibmqx_token. All the qubits on the selected quantum

hardware are initialized to |0〉 by default. After the selection of IBM’s quantum device,

qml.Hadamard and qml.QubitUnitary operations are used to create the state with the

unitary operations as mentioned in Eqn. 4.2 and Eqn. 4.3, respectively. The results for the

state preparation experiment on real quantum hardware are given in Section 4.5.

The entire QMCC variational circuit is implemented as a quantum node on the qubit

simulator named default.qubit. The quantum node with one layer is programmed in
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five modules: State preparation, Gates on data qubits, Entanglement Gates on ancilla qubits,

and Measurement. The decorator @qml.qnode(dev) is used for creating a quantum node

on the simulator. Gates in the variational circuit are implemented using qml.RY, qml.RZ

operations and the entanglement between the qubits are created using qml.CNOT oper-

ation. The measurement operation on the ancilla qubits is performed on each wire using

qml.exp.PauliZ(n), where n= 1, 2, . . . k is the label of the wire. The output values from

the measurement are passed through softmax function provided in Eqn. 4.5. The model

is trained and the gate parameters are optimized classically using the optimization tech-

niques NesterovMomentumOptimizer and AdamOptimizer, provided in the package

pennylane.optimze, such that the model performs with the desired accuracy. PennyLane

provides necessary interfaces to perform hybrid classical-quantum operations together on

the classical computing facility and the quantum simulator. The details of the results for

the simulations, along with discussions, are given in the following sections.

Dataset and preprocessing

The simulations and experiments were carried out using three benchmark datasets for

machine learning algorithms. The datasets we used are the following: (i) Iris dataset, (ii)

Banknote Authentication (BNA) dataset, and (iii) Wireless Indoor Localization (WIL) dataset. The

Iris dataset consists of three class labels and 150 instances, BNA dataset consists of two class

labels with 1372 instances, and the WIL dataset consists of three class labels with 1500 in-

stances. Min-Max scaling is used on the datasets and then the values are rescaled between

[0, π2 ] for Ry rotations. As stated before, one-hot encoding is used to relabel the class names.

A single data vector from one of the 150 instances from Iris dataset is considered for the state
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Figure 4.12: Experimental result of state preparation scheme on IBMQX platform with
probabilities calculated as || |ψ〉 ||22.

preparation experiment on ibm_16_melbourne [99] real quantum hardware on IBM QX. The

48



designed unitary matrix converts the initial state of a qubit to the desired state using qubit

encoding scheme. The input consists of four elements from a data vector of Iris dataset and

Fig. 4.12 shows the state obtained after the state preparation as a superposition of all the

basis states as follows:

c1 |0000〉 + c2 |0001〉 + c3 |0010〉 + c4 |0011〉 + c5 |0100〉 + c6 |0101〉 + c7 |0110〉 + c8 |0111〉 +
c9 |1000〉+ c10 |1001〉+ c11 |1010〉+ c12 |1011〉+ c13 |1100〉+ c14 |1011〉+ c15 |1110〉+ c16 |1111〉
where c1, c2, . . . , c16 are the amplitudes of the quantum states in superposition.
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Figure 4.13: Cost plot for our approach (QMCC) and the model using angle embedding
scheme.

The encoding scheme needs more computational space as it requires n qubits to encode

a N -dimensional data-vector. However, as our approach uses only single-qubit rotations,

the encoding scheme is efficient in terms of time. A comparison study between our ap-

proach and the model developed with angle embedding scheme [25] is carried out on a

binary classification task using classes 1 and 3 in the Iris dataset. The class declaration is

carried out based only on Pauli-Z measurement of a selected qubit. The parameters are

updated by minimizing the mean square error.

Due to the ease of preparing a state as cos
(
xdn
)
|0〉+ sin

(
xdn
)
|1〉, all the four features

from each data vector of Iris dataset are encoded on each of the qubits. The model with an

angle embedding scheme used two features and the state preparation consists sequence of

multiple single-qubit rotations. As only two features are encoded on the angle embedding

model, the cost for our approach is comparatively less as shown in Fig. 4.13. The cost for

the angle embedding model with two features is reduced after 60 training steps. Whereas,
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Figure 4.14: Training accuracy for our approach (QMCC) and the model using angle em-
bedding scheme.
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Figure 4.15: Test accuracy for our approach (QMCC) and the model using angle embed-
ding scheme.

from Fig. 4.14 and Fig. 4.15 it is clear that the model using our approach for state prepa-

ration is able to learn fast in 20 training steps with four features encoded as a quantum

state.

Variational Circuit and training

The circuit after state preparation consists of layered architecture as shown in Fig. 4.3.

Each layer is configured with single qubit and two qubit gates. For Gates on data qubits

part, parameterized Ry(θ) rotations are used to allow only real rotation of qubits. We

used three Ry(θ) rotations in sequence for each of the first four qubits. The Entanglement

part of the circuit is implemented using CNOT gates. Later, the ancilla qubits are passed

through a sequence of Rz(θ), Ry(θ), and Rz(θ) each in Gates on ancilla qubits part of the

layer. We used seven such layers. Finally, three ancilla qubits are measured individually

using Pauli-Z measurement, and the obtained expectation values are given as input to the
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softmax function to obtain predicted labels. At each training step t, we calculate the analytic

gradient as in Eqn. (4.7).

On Iris dataset, cost value optimization is performed using Nesterov momentum opti-

mization with parameters updated using the following equation

θ(t+1) ← mθ(t) + η(t)∇J (t) (4.8)

where m is momentum that shifts the current input, η is step size, and∇J (t) is the analytic

gradient. In our simulations, we used m = 0.9, η = 0.01 and the gate parameters (θ) are

initialized using standard normal distribution. Cost value optimization on BNA dataset

and WIL dataset is performed using Adam optimizer [100] with β1 = 0.9, β2 = 0.9, and

η = 0.01.

(Data1) |0〉

(Data2) |0〉

(Data3) |0〉

U

Uθ0
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Uθ3

Uθ4
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〈σ1
z〉

〈σ2
z〉

〈σ3
z〉

State preparation
(Amplitude embedding)

Gates on
data qubits

Entanglement

One layer Measurement

Figure 4.16: Illustration of amplitude embedding model (AEM) with one layer for classi-
fication of the three classes. The original implementation of the model consists a total of
seven similar layers for comparison with our QMCC model.

Figure 4.17: Generalized architecture of amplitude embedding model with n-layers.

The QMCC model is trained for 100 iterations to minimize the cross entropy loss on

all the three datasets. Datasets are partitioned into 75% of data instances as training set

and 25% are used for testing the model. We used the early-stopping technique [101] in
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training to avoid over-fitting of the data. All numerical simulations are preformed on

qubit simulator provided by Pennylane.

The results obtained from the QMCC model are compared with the results from the am-

plitude embedding model (AEM) built using amplitude embedding [102, 24] for the state

preparation. For the comparison study, we made certain changes to our model, as shown

in Fig. 4.16. The state preparation scheme in QMCC is replaced with amplitude embedding

and the layer structure is the same as in QMCC withRy(θ) gates followed by entanglement

using CNOT gates. The measurement process for AEM is different from QMCC. As there

are no ancilla qubits, only data qubits are measured. The generalized architecture for the

amplitude embedding model is shown in Fig 4.17. The remaining process after measure-

ment for class prediction using softmax and cross entropy loss minimization is the same as

QMCC. The results presented in Table 4.3 show the comparison between QMCC model

and AEM on all the three datasets.

Table 4.3: Comparison of QMCC and AEM

Type AEM QMCC

State preparation Amplitude embedding Designed unitary
Layers 7 7
Rotations on data qubits Ry Ry
Rotations on ancilla qubits — Rz, Ry, Rz
Training steps 100 100
Training accuracy on Iris dataset 58.92% 87.50%
Test accuracy on Iris dataset 57.89% 92.10%
Training accuracy on BNA dataset 73.17% 88.53%
Test accuracy on BNA dataset 69.67% 89.50%
Training accuracy on WIL dataset 46.84% 89.60%
Test accuracy on WIL dataset 46.93% 91.73%

The cost curve plot for Iris dataset with 150 instances is given in Fig. 4.18. The loss

curves in the Fig. 4.18 represents the cross-entropy loss between the predicted labels and

the actual labels of Iris dataset for 100 training steps. Training accuracy plot for Iris dataset

given in Fig. 4.19 shows that our QMCC model can generalize the data in the early stage

of the training process. The QMCC model shows the best training accuracy of 87.50%, and

AEM shows the best training accuracy of 58.92%. In the testing phase, as given in Fig. 4.20,

QMCC model classified Iris dataset into three class labels with the best test accuracy of

92.10% where as the best test accuracy for the AEM is 57.89%.

On BNA dataset with 1372 instances and two class labels, the QMCC model shows
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Figure 4.18: Cost comparison of QMCC and AEM on Iris dataset.
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Figure 4.19: Comparison of training accuracy between QMCC and AEM on Iris dataset.
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Figure 4.20: Comparison of test accuracy between QMCC and AEM on Iris dataset.

better performance than AEM. The cost curve plots for QMCC model and AEM are given

in Fig. 4.21. The training loss for the QMCC model was reduced after 80 training steps

in comparison with the AEM model. After the first ten training steps, the QMCC model

shows the best training accuracy of 88.53%, whereas AEM shows the best training accuracy

of 73.17% only. The training accuracy plot for both the models is given in Fig. 4.22. The
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Figure 4.21: Cost comparison between QMCC and AEM on BNA dataset.
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Figure 4.22: Comparison of training accuracy between QMCC and AEM on BNA dataset.
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Figure 4.23: Comparison of test accuracy between QMCC and AEM on BNA dataset.

best test accuracy for the QMCC model is 89.50% and, similarly, the best test accuracy of

AEM is only 69.67% on BNA dataset as can be seen from Fig 4.23.

The WIL dataset is preprocessed and 1500 instances with four attributes and three class

labels are used for our quantum simulations. The training loss for the QMCC model is very

less when compared to the AEM, as given in Fig. 4.24. In Fig. 4.25, the training accuracy
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Figure 4.24: Cost comparison between QMCC and AEM on WIL dataset.
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Figure 4.25: Comparison of training accuracy between QMCC and AEM on WIL dataset.
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Figure 4.26: Comparison of test accuracy between QMCC and AEM on WIL dataset.

curve for the QMCC model shows that the model can learn the patterns in the input with

the best training accuracy of 89.60%. The best training accuracy of AEM is only 46.84%.

QMCC model can classify the larger dataset with the best test accuracy of 91.73%, thereby,

outperforming AEM. The test accuracy plot is given in Fig. 4.26, whereas, the best test

accuracy for AEM is 46.93% only.
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The above results show that the QMCC model outperforms the AEM on all three

datasets. The proposed model can also be extended to classify datasets with more than

three class labels based on the availability of qubits for processing.

Quantum computing is considered to be one of the possible future options for dealing

with highly complex data processing problems that cannot be dealt with classical comput-

ing approach. Quantum computers can represent data as high-dimensional superposition

in a quantum state. Hence, quantum circuits can be used to build hybrid models that de-

tect features in data using both classical and quantum operations. The huge amounts of

data existing today, can be handled efficiently using a quantum computer due to the use

of qubits for data processing.

In this work, we proposed a Quantum Multi-Class Classifier (QMCC) using the varia-

tional circuit approach for classification on a quantum computer. Existing quantum classi-

fiers perform only binary classification. The results obtained from experiments conducted

on IBMQX show that the unitary matrix designed for the state preparation is compatible

with the real quantum hardware. Our QMCC approach stands unique as we used sepa-

rate data qubits to encode classical data and ancilla bits for measurement. The proposed

QMCC model uses classical machine learning techniques such as softmax function and cross

entropy loss effectively to obtain results. The QMCC model is implemented on a qubit sim-

ulator with seven qubits considering the dimension of the datasets used for the quantum

machine learning simulations. Alternatively, our approach can be expanded to classify

multiple classes considering the availability of qubits. We studied our QMCC model us-

ing the three datasets, Iris dataset, BNA dataset, and WIL dataset and obtained classification

accuracy of 92.10%, 89.50%, and 91.73%, respectively.

4.6 Major Observations

The performance of the hybrid models on benchmark numerical datasets proves the effi-

cacy of quantum computing in enhancing machine learning algorithms. Even though both

the hybrid models are performing well on numerical datasets, the architecture of the mod-

els is not entirely suitable for analyzing spatial big data, especially satellite images. The

major observations on the two models are as follows:

1. Data encoding is an important step for any quantum computer application. How-

ever, there exists no single encoding technique that suits all data types.

2. Non-linearity is not present in the quantum circuits of the hybrid models as the same
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qubits and, therefore, the same operations are used in all layers.

3. Depth of the quantum circuits increases drastically as more layers are added when

processing large amounts of data.

4. Efficient hybrid models are required to handle huge amounts of data such as image

data, as the data consists of huge dimensionality.

As per the observations above, handling spatial big data is difficult with the same cir-

cuit design and implementation process. Hence, as the next step, we propose and study

hybrid models to address the problem of non-linearity in the parameterized quantum cir-

cuits and develop models to enhance the training process of machine learning models.

4.7 Summary

This chapter presents two models designed for supervised learning on numerical data. We

first proposed a quantum computing approach for ANN to study the impact of applying

quantum computing techniques. We extended the idea by designing a new quantum cir-

cuit and a data encoding process for a multi-class classification circuit. Our results show

that QC ANN performed binary classification with an accuracy of 82.51% on WBCD. Also,

multi-class classification is performed using QMCC on three benchmark datasets for ma-

chine learning iris dataset with an accuracy of 92.10%, BNA dataset with an accuracy of

89.50%, and WIL dataset with an accuracy of 91.73%.
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Chapter 5

Hybrid QML Architectures for

Spatial Data Analytics

“No problem is too small or too trivial if we can really do something about it.”

– RICHARD FEYNMAN

Spatial data refers to any data with a spatial identifier that refers to a position on the

earth. Spatial data is essential and can be analyzed using machine learning algorithms.

The following sections provide information about spatial data and its analysis. There exist

several sources for spatial data. Some of these sources include: GPS, GPS-enabled devices,

satellite remote sensing, aerial surveying, radar, LiDAR, sensor networks, digital cameras,

and RFIDs. Data from all such sources give various opportunities to explore and discover

useful information.

Spatial data analysis has a wide range of applications [103, 104, 105, 106, 107, 108, 109,

110, 111]. Analyzing Spatial data can be very advantageous to different sectors [3]. Con-

sidering the insurance industry, optimal portfolios can be designed for dynamic insurance

pricing based on different features ranging from topographical features to social risks in a

particular geographical area. Emergency responders can be positioned in a particular area

during natural havoc base on real-time spatial data available from the affected area. Im-

ages from drones can be analyzed for taking different decisions. In the agriculture sector,

food production can be improved by giving proper instruction to farmers after analyzing

weather data. In the commercial sector, retailer analytics can be carried out to find cus-

tomer behavior as a function of spatial regions thereby, making business decisions. In our

work, we focus on satellite image scene classification.

In the previous chapter, we highlighted the limitations of existing hybrid models in

handling spatial data. In this chapter, we performed the work to overcome the limitations

of the existing models and also to enhance the machine learning models. The main focus is
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to process huge amounts of spatial data, particularly satellite images using hybrid models

and enhance existing deep learning models. The two scenarios presented in this chapter

allow for the processing of spatial data efficiently using hybrid models. The proposed

models reduce the training parameters of the deep learning models, thereby, enhancing

the training process. In the following, we explain the details of the designed models.

5.1 Quantum-Enhanced Deep Neural Networks Architecture

Deep learning algorithms gained prominence in analyzing images for real-time applica-

tions such as detection of objects, segmentation of instances, semantic segmentation, and

classification of image scenes. However, deep learning models for image classification,

such as convolutional neural networks (CNNs), require extensive computational facilities.

Also, training such models with multiple layers becomes complex as many trainable pa-

rameters are to be optimized. Quantum computing emerged as a research area to handle

complex problems using quantum-mechanical properties for computation on a quantum

computer. In this work, we primarily focus on designing a hybrid quantum-classical deep

learning model for image scene classification. We propose a novel hybrid architecture

that uses quantum computation for feature extraction and classical computation for scene

classification. In the hybrid architecture, we use quantum measurement-based features

to obtain the quantum representations of images. The obtained quantum representations

of images are used to train and build a classical deep learning model for image scene

classification. Our experiments performed on ibm_santiago quantum computer shows that

the proposed model is suitable for implementation on noisy intermediate scaled quan-

tum computers (NISQs). Our experimental results show that the proposed three-layered

hybrid architecture models can classify data efficiently using trainable parameters approx-

imately 27%–30% less than the state-of-the-art models on satellite image datasets. Hence,

the complexity of training the deep learning models reduces as the number of parameters

to be optimized reduces. Using the designed architecture, the deep learning model can

classify data with an overall accuracy of 95.89%, 86.13%, and 79.32% on UC Merced Land-

Use [112], AID [113], and NWPU-RESISC45 [114] datasets, respectively for image scene

classification.

The major contributions of our work are as follows:

• Designed a three-level hybrid quantum-classical architecture for the multi-class scene

classification of satellite images using quantum computation and classical computa-
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tion together.

• Extracted quantum measurement-based features from satellite images to obtain quan-

tum representations of images by measuring qubits in a quantum circuit. The quan-

tum circuit is suitable to implement on present-day NISQs or a quantum simulator.

• Performed experiment on ibm_santiago quantum computer provided online by IBM Q

Experience [8], to prove the feasibility of implementation of the method to obtain

quantum representations on NISQs.

• Quantum representations of the images are used to design and build fully connected

deep neural network models, and such models are trained with minimum computa-

tional resources.

• Detailed analysis of the results using hybrid quantum-classical models compared

with the state-of-the-art deep learning models for image scene classification on three

benchmark datasets.

Figure 5.1: Three-level hybrid quantum-classical architecture.

5.1.1 Three-Level Hybrid Quantum-Classical Architecture

The proposed hybrid quantum-classical architecture (HybridQC) consists of three satellite

image scene classification levels. In Level-1, image data preprocessing is performed to

preprocess the images and make them suitable for giving as input to the quantum circuit

in Level-2. The pixel values of each row from the input images are processed by a set of

unitary operations in Level-2 as shown in Fig 5.1. The qubit measurement output values

from Level-2 are stored as comma-separated values (.csv files) for every image. Each row

of a .csv file contains the information [Image id, Measurement values, Class label] for every
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image in a dataset. A classical deep learning model is developed using a fully connected

deep neural network (DNN) in the Level-3. The model is trained using the quantum image

representations stored in the .csv files. The details of the operations performed at each level

are given in the following sections.

Level-1: Image Data Preprocessing

The first step of the image data preprocessing in Level-1 is to resize each satellite image

from datasets to the nearest power of 2. For example, an image of size 600×600 is resized

to 512×512 because 512, which is 29, is the nearest power of 2 for 600. Every image is

converted from the original Red, Green, and Blue (RGB) color space to a grayscale in the

second step. The two steps are crucial to facilitate the qubit encoding scheme used in the

Level-2 for encoding image data into qubits to process the pixel values and extract quantum

measurement-based features.

Figure 5.2: Illustration of grayscale and position of pixel to quantum state mapping.

Level-2: Quantum Representations of Images

After preprocessing in the Level-1, quantum measurement-based features are extracted

from the images in the Level-2 to create quantum representations of images. As a quantum

computer uses qubits to process the data, images are encoded into qubits using amplitude

embedding scheme [24]. The controlled rotations of Ry and Rz gates, along with CNOT
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Figure 5.3: Illustration of quantum circuit for an input of 2n values.

(Controlled-NOT) gates, are used to encode the pixel data as amplitudes of the superposi-

tion of quantum states. The idea of amplitude embedding is to transform the initial state of

a quantum system with n qubits into the desired state |ψn〉 using the uniformly controlled

rotations. Using the amplitude embedding scheme, 2n normalized classical data points are

represented as amplitudes of a n-qubit state |ψn〉:

|ψn〉 =
2n∑
i=0

ai |i〉 (5.1)

where ai is the ith data point and |i〉 the ith computational basis state. Thus, the exponential

advantage is obtained as 2n pixel values are encoded using n qubits.

As the image data is encoded into n qubits, the pixel values are represented in a Hilbert

space. The state |φ1〉 in Fig. 5.2 represents the grayscale value and position of the pixel to

be represented by the quantum state for the 4 × 4 image where Uamp contains the unitary

operations [24] for amplitude embedding. For example, if {a1, a2, a3, a4} = {1, 2, 3, 4}, then

the normalized values { 1√
30
, 2√

30
, 3√

30
, 4√

30
} are encoded into quantum states as amplitudes

using a quantum circuit. The superposition of quantum states after the Uamp operations is:

|φ1〉 =
1√
30
|00〉+ 2√

30
|01〉+ 3√

30
|10〉+ 4√

30
|11〉 (5.2)

Thus, input values are encoded into a quantum state using amplitude embedding. The

entire quantum circuit used to extract the quantum representations from an image of size

2n × 2n, is given in Figure 5.3. In the quantum circuit, Uamp is used for generating the
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amplitude embedded state. After the Uamp operation, the CNOT gate is operated on every

pair of qubits for strong entanglement between all the qubits in the quantum circuit. The

entanglement operation is followed by Ry(θi) operation on the qubits, where i represents

the qubit number in the quantum circuit. For a systematic operational procedure, an aver-

age of a set of input pixel values is considered as θi. However, any value of θi (∈ R) can be

used in the circuit.

Figure 5.4: Illustration of quantum circuit for an input of 22 values.

The complete sequence of the unitary operations on the input pixel data is described

below. For simplicity, we use Row 1 of the grayscale from Fig. 5.2 as input to the quantum

circuit given in Fig. 5.4.

Figure 5.5: Illustration of amplitude encoding.

For example, if {a1, a2, a3, a4} = {1, 2, 3, 4}, then the normalized values{
1√
30
,

2√
30
,

3√
30
,

4√
30

}
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are encoded into quantum states as amplitudes using the quantum circuit given in Fig. 5.5.

The superposition of quantum states after the Uamp operations is:

|φ1〉 =
1√
30
|00〉+ 2√

30
|01〉+ 3√

30
|10〉+ 4√

30
|11〉. (5.3)

Thus, the input values are encoded into a quantum state using amplitude embedding.

There exist different qubit encoding methods used in different contexts. Encoding classical

data values into qubits is a very important step in quantum processing.

After applying Uamp on Row-1 of the grayscale, the values a1, a2, a3, and a4 are embed-

ded into amplitudes of quantum state in superposition as:

|φ1〉 =
1√
N

(a1 |00〉+ a2 |01〉+ a3 |10〉+ a4 |11〉) (5.4)

where N = (a1)
2 + (a2)

2 + (a3)
2 + (a4)

2 is the normalization constant. Next, the state is

acted upon by CNOT gate and transforms |φ1〉 to |φ2〉:

|φ2〉 =
1√
N

(a1 |00〉+ a2 |01〉+ a4 |10〉+ a3 |11〉) . (5.5)

Now, Ry(θ) rotations acted on both the qubits with θ1 = (a1+a22 ) and θ2 = (a3+a42 ), trans-

forms |φ2〉 to |φ3〉:

|φ3〉 = A00 |00〉+A01 |01〉+A10 |10〉+A11 |11〉 , (5.6)

where

A00

A01

A10

A11


=

1√
N



(
a1 cos

θ1
2
− a3 sin

θ1
2

)
cos

θ2
2
−
(
a2 cos

θ1
2
− a4 sin

θ1
2

)
sin

θ2
2(

a1 cos
θ1
2
− a3 sin

θ1
2

)
sin

θ2
2

+

(
a2 cos

θ1
2
− a4 sin

θ1
2

)
cos

θ2
2(

a1 sin
θ1
2

+ a3 cos
θ1
2

)
cos

θ2
2
−
(
a2 sin

θ1
2

+ a4 cos
θ1
2

)
sin

θ2
2(

a1 sin
θ1
2

+ a3 cos
θ1
2

)
sin

θ2
2

+

(
a2 sin

θ1
2

+ a4 cos
θ1
2

)
cos

θ2
2


.

(5.7)

In the final step, Pauli-Z (σz) measurement is performed on the qubits to obtain the

quantum measurement-based features. Let the state of a two qubit system before mea-
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surement be |S〉, where

|S〉 = 1√
α2 + β2 + γ2 + δ2


α

β

γ

δ

 . (5.8)

After Pauli-Z (σz) measurement where

(σz) = Z ⊗ Z =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1


. The state |S〉 of qubit collapses and the value obtained is:

Tr(|S〉〈S|σz) =
(|α|2 − |β|2 − |γ|2 + |δ|2)

(α2 + β2 + γ2 + δ2)
(5.9)

where Tr denotes the trace operation. Pauli-Z measurement on a qubit always gives a

value between [−1, 1]. Hence, for the four values of input pixel data: Row 1 = {a1, a2, a3, a4},
we obtain two values for quantum measurement on two qubits using the Pauli-Z mea-

surement. The same quantum circuit is used to obtain the quantum measurement-based

features for the remaining rows of the grayscale. Thus, for the input image of 4 rows ×
4 values = 16 pixel values, a total of 4 rows × 2 measurement values = 8 values are ob-

tained as quantum representations of the image. All the 8 values are stored as comma-

separated values along with Image Id and Class label. The quantum representations of the

images are used to train the fully connected deep neural network in the Level-3. The details

of the quantum simulations performed on the images of the benchmark datasets to obtain

quantum representations are given in Section 5.4.

Level-3: Classical Deep Learning Model

The Level-3 of the hybrid architecture is to develop a classical deep learning model us-

ing the quantum representations of the images obtained in the Level-2. The classical deep

learning model is designed using a fully connected deep neural network with three types

of layers:

1. Input Layer: A single layer with a number of nodes equal to the number of features
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Figure 5.6: Illustration for the architecture of a classical deep learning model.

given as input.

2. Hidden Layers: Multiple layers with a variable number of nodes.

3. Output Layer: A single layer with a number of nodes equal to the number of class

labels in a dataset.

Fig. 5.6 shows an example of a classical deep learning model for classification. The

model consists of an input layer with 9 nodes, Hidden Layer1 with 6 nodes, Hidden Layer2

with 4 nodes, and an Output Layer with 2 nodes. The total trainable parameters of the

model can be calculated as [9× 6 + 6× 4 + 4× 2] = 86. The model is trained for multiple

steps to converge the training loss and improve overall accuracy.

Table 5.1: Details of number of nodes used in each layer of fully connected deep neural
network for different datasets

Dataset Input Layer (In) Hidden Layers (Hn) Output Layer (On)

UC Merced Land-Use In = 2048 H1
n = 880

H2
n = 64 On = 21

AID In = 4608 H1
n = 256

H2
n = 64 On = 30

NWPU-RESISC45 In = 3548 H1
n = 512

H2
n = 64 On = 45
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In this work, we used three different models for the classification of the three bench-

mark datasets. Table 5.1 contains the details of the number of nodes used in each layer for

the three different datasets. Table 5.2 shows the total number of quantum measurement-

based features extracted per image along with the number of qubits used for each of the

datasets. The implementation details of the designed classical deep learning model are

given in Section 5.4. Thus, a hybrid quantum-classical model that uses quantum compu-

tation and classical computation is developed for satellite image scene classification.

Table 5.2: Details of number of quantum measurement-based features extracted along with
number of qubits used for each of the datasets

Dataset Images
Size after

Level 1
Qubits
used

Measurement-based
features per image

UC Merced Land-Use 2100 256×256 8 2048
AID 10,000 512×512 9 4608

NWPU-RESISC45 31,500 256×256 7 3584

5.2 Hybrid Quantum-Classical Convolutional Neural Network

In recent years, convolutional neural network models gained prominence in sensor sig-

nal processing ranging from inertial sensors to image sensors. Convolutional neural net-

works (CNNs) are used in many real-time high-impact applications such as hand tremor

detection, fingerprint detection, and target classification [115, 116, 117]. Target or scene

classification is a significant task that aims to process the high-resolution images and find

an object or scene in the images. There is a potential application of satellite image scene

classification in various fields such as detection of natural calamities, vegetation mapping,

military applications, urban planning, and environment monitoring [46].

Deep learning proved to be efficient for different satellite image processing and scene

classification tasks [44]. Feature extraction with CNNs uses multiple layers with trainable

parameters for remote sensing image scene classification. However, training such methods

requires large datasets to attain good classification accuracy. Also, CNN models use a large

number of trainable parameters to learn the features that lead to complexity in training.

Quantum computing techniques [118] can be used to design and develop methods that

improve the performance of machine learning models for applications in remote sensing

such as scene classification [119, 120].

Sensor signal processing with CNNs is an area of concern as rapidly growing data (col-
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lected from sensor signals) affects the performance of CNNs for classification [121]. For

example, satellite image data collected for analysis consists of various labels with fewer

samples for each label. Data augmentation can help deal with such datasets. Images are

modified using augmentation techniques such as rotation and noise-addition to increase

the size of datasets. Also, data augmentation is proved to be effective in avoiding over-

fitting of the models and improving accuracy [122]. However, no one augmentation tech-

nique fits all types of data, and thus there is a need for more techniques. Another major

concern of CNNs is the training process, as the models require many parameters during

the training phase.

In this work, we propose image processing techniques using both hybrid quantum

and classical computations to enhance the training process of CNNs and also improve

classification accuracy. The significant contributions of the work are as follows.

1. Designed a data augmentation technique using a quantum circuit and classical com-

putation.

2. Experimented with the quantum circuit on ibm santiago quantum computer provided

by IBM QX [84].

3. Designed a hybrid quantum-classical CNN model to improve scene classification

accuracy with reduced training parameters.

4. Detailed analysis of results in comparison with the other models.

Figure 5.7: Quantum circuit for data augmentation.

5.2.1 Quantum Circuit for Data Augmentation

In the NISQ era, quantum processing units (QPUs) at present consist of a limited number

of qubits for computation [26, 84] and hence, we designed a quantum circuit with four

qubits for the data augmentation purpose. As shown in Fig. 5.7, Ry gates are used with
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entanglement between the qubits using CNOT gates. However, different quantum opera-

tions can also be used in the circuit based on the requirement. In our work, we used the

UC Merced Land-Use dataset [112] with 21 classes with 100 images for each class.

The proposed data augmentation technique is used to enhance the dataset size as fol-

lows. All images from the size 256×256 are converted to grayscale as processing RGB

images is difficult with only limited qubits available. Each 256×256 image is divided into

a 2×2 sub-block, and four values are given as an input to the rotational gates of the quan-

tum circuit with four qubits.

As shown in Fig. 5.7, each pixel value from the 2×2 sub-block is encoded into the

rotational gate (Ry(θ)) of the quantum circuit. The initial state of all qubits in the quantum

circuit is |0〉. The rotational gate Ry rotates the qubit in the Bloch sphere at an an angle of θ,

where θ ∈ pixel values. The entangled state of all the qubits is given as

|ψ〉 = cos(a/2) cos(b/2) cos(c/2) cos(d/2) |0000〉+

cos(a/2) cos(b/2) cos(c/2) sin(d/2) |0001〉+

· · · − sin(a/2) cos(b/2) cos(c/2) sin(d/2) |1110〉

+sin(a/2) cos(b/2) cos(c/2) cos(d/2) |1111〉 .

(5.10)

Finally, Pauli-Z (σz) measurement is performed on the qubits to obtain a value between

[-1, 1]. The quantum measurement values are scaled back to [0, 255] to obtain a grayscale

representation. Thus, all the sub-blocks of the 256x256 image are processed using a quan-

tum circuit to obtain a quantum image representation. In the quantum circuit, measure-

ment of one qubit influences the measurement of the entangled qubit, and hence values

of qimage are randomized. Thus, different outputs can be obtained for the same image if

multiple measurements are performed.

Interpolation is used to blend (bimage) the obtained quantum image representation

(qimage) with the classical image (cimage). The interpolation equation is given as

bimage = cimage ∗ (1.0− α) + qimage ∗ α (5.11)

where α is a constant value between 0 and 1 that decides the overlap between qimage and

cimage. In our work, we used α as 0.5 to create a blended image with 50% of each of the

images. The interpolated images can be used to train deep learning models.

Qubits are fundamentally different from classical bits as they are prone to noise (de-

coherence) from electromagnetic fields and material defects [26, 22]. Hence, transforming

69



the images using a quantum circuit adds inherent quantum noise to qimage. Thus, inter-

polating a quantum image with a classical one adds inherent noise that cannot be exactly

generated using a classical computer. In the training phase, adding noise to the input data

reduces generalization error, and therefore, the models can learn better [123, 122]. The

proposed quantum circuit can also be implemented on real quantum hardware as given in

Section 5.5.

5.2.2 Hybrid quantum-classical CNN Architecture

This section describes the details of the hybrid quantum-classical model proposed to re-

duce the parameters used for training CNNs.

Figure 5.8: Illustration of computational layers in HQCNN.

A convolutional neural network (Vanilla CNN) is a deep learning model with an input

layer, convolutional layers, pooling layers, and finally, a fully connected layer. The prob-

lem with CNN models is that they require vast amounts of training samples and extensive

computational facilities as many parameters are to be trained.

Recently, Quantum neural networks (QNN) [30] are derived from the concept of vari-

ational quantum circuits and machine learning. Deep learning algorithms are designed as

QNNs using parameterized quantum circuits. Classical data is encoded into qubits with

a quantum loader using efficient encoding schemes [118]. Qubit encoding schemes such

as amplitude encoding [24] can encode 2n data points into n qubits as a superposition of

different quantum states. Thus, huge amounts of classical data can be handled efficiently

using as quantum loader.

Each layer in the quantum neural network consists of parameterized quantum gates with

combinations of the rotational gate, phase gates, and entanglement [57]. The parameters of
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the quantum gates are optimized using classical optimization techniques. The parameters

are optimized until the quantum measurement gives the desired output.

In our work, we combine the vanilla CNN (VCNN) and QNN together to obtain a hy-

brid quantum-classical CNN model (HQCNN) for image scene classification. As shown

in Fig. 5.8, the model consists of a combination of classical CNN layers and quantum lay-

ers in between the CNN layers. Each quantum layer is a quantum circuit consisting of a

quantum loader and parameterized quantum gates, followed by measurement operations.

The output values from the pooling layer can be encoded into qubits using encoding

schemes such as amplitude encoding. As data encoding into qubits provides exponential

scaling, there results a huge reduction in the trainable parameters of the model. The quan-

tum loader is followed by parameterized quantum gates that consist of rotational gates

with rotational angles as trainable parameters. Finally, a measurement operation is per-

formed on the qubits of the quantum circuit. The output values of the quantum layer are

given as input to the fully connected layer.

Convolutional layers and pooling layers of CNNs effectively extract features from im-

ages. QNNs are efficient in handling huge amounts of data and provide exponential scal-

ing. Thus, we combine the ability CNNs and QNNs to process the information for the

scene classification task. We consider that high-performance computing environments

consist of CPUs, GPUs, and QPUs to process information in the future.

airplane buildings

runway beach

(a)

bridge church

islandmountain

(b)

stadium parking

farmland resort

(c)

Figure 5.9: Examples of satellite images from: (a) UC Merced Land-Use dataset, (b)
NWPU-RESISC45 dataset, (c) AID.

5.3 Experiments on Spatial Data for Classification

In this section, we present the details of the three datasets used for demonstrating the effec-

tiveness of the proposed architecture. The three benchmark datasets used for remote sens-
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ing scene classification are: UC-Merced Land-Use [112], Aerial Image Dataset (AID) [113],

and NWPU-RESISC45 [114]. Fig. 5.9 shows the example images from the datasets, and the

details of the datasets are given below.

Land-Use Dataset by UC Merced (UC Merced Land-Use): The Land-Use dataset by the

University of California Merced (UC Merced) consists of 2100 aerial scene RGB color im-

ages with a resolution of 256×256 pixels. The images are divided into 21 land-use classes

with 100 images per class label.

Aerial Image Dataset (AID): AID consists of 10,000 aerial scene RGB color images with a

resolution of 600×600 pixels and the images are divided into 30 scene types with 200-400

images per class label.

Northwestern Polytechnical University - Remote Sensing Image Scene Classification (NWPU-

RESISC45): NWPU-RESISC45 is a complex dataset with 31,500 images with a resolution of

256×256 for 45 scene classes for Remote Sensing Image Scene Classification (RESISC) with

700 images per class label created by Northwestern Polytechnical University (NWPU).

All the images from the three datasets are converted to grayscale and processed row-

wise using a quantum circuit. The detailed methodology followed to implement the hy-

brid architectures is given in the following sections along with the the details of the quan-

tum simulations performed on the three benchmark datasets.

5.4 Performance Analysis of HybridQC for Satellite Image

Scene Classification

The quantum circuit described in Section 5.1.1, to obtain quantum representations of im-

ages, is implemented using PennyLane [89]. Qubits are simulated using the default.qubit

simulator provided by PennyLane. The unitary operations (Uamp) for amplitude encod-

ing of the input values is implemented using AmplitudeEmbeddingmethod provided in

pennylane.templates.embeddings.

The entanglement between the qubits is implemented using pennylane.CNOT opera-

tion. pennylane.RY operation is used to perform the rotations on qubits after the entan-

glement. Finally, using pennylane.expval(pennylane.PauliZ) operation, the qubits

are measured with Pauli-Z measurement.

The details of the strategy followed on each dataset to obtain quantum representations

of the images are given in the following sections.
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Figure 5.10: Illustration of quantum measurement-based feature extraction on UC Merced
Land-Use dataset.

Quantum Simulations on UC Merced Land-Use Dataset

All the UC Merced Land-Use dataset images are converted to grayscale, and thus each

row of the pixel matrix for an image consists of 256 values. As shown in Fig. 5.10, the

256 values (28) from each row of 256×256 matrix are given as input to the quantum circuit

with 8 qubits. All the 256 values are encoded as amplitudes of 256 quantum states in

superposition.

An entanglement operation is performed in the next step between all the pairs of 8

qubits using the CNOT gate. Then, rotational gate Ry(θi), where i = {1, 2, . . . , 8}, is im-

plemented on the 8 qubits. The input data of 256 values are divided into eight sets of 32

values each. Then, θi values are calculated as the average of 32 values in each set. Hence,

we obtain eight values as input to Ry(θi) gate, and each gate is applied on the eight qubits

of the circuit individually. Finally, Pauli-Z measurement (〈σz〉) is performed on qubits

to obtain quantum representations of the image. Hence, for each 256×256 image, 2048

(256 rows × 8 output values) quantum measurement-based features are extracted using

eight qubits.

Figure 5.11: Illustration of quantum measurement-based feature extraction on AID.
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Quantum Simulations on AID dataset

Aerial Image Science Dataset (AID) images are converted to grayscale, and the resultant

size of each image is 600×600. As 512 is the nearest power of 2 for 600, all the images are

resized to 512×512. As shown in Fig. 5.11, the 512 values from each row of 600×600 matrix

are given as input to the quantum circuit with 9 qubits. The input data of 512 values are

encoded as amplitudes of 512 quantum states in superposition.

An entanglement operation is performed in the next step between all the pairs of 9

qubits using the CNOT gate. Then, rotational gate Ry(θi), where i = {1, 2, . . . , 9}, is im-

plemented on the 9 qubits. The input data of 512 values are reduced to 504 values by

removing the last eight values. Then, the 504 values are divided into nine sets of 56 val-

ues each. Then, θi values are calculated as the average of 56 values in each set. Hence,

we obtain nine values as input to Ry(θi) gate, and each gate is applied on the nine qubits

of the circuit individually. Finally, Pauli-Z measurement (〈σz〉) is performed on qubits

to obtain quantum representations of the image. Hence, for each 512×512 image, 4608

(512 rows × 9 output values) quantum measurement-based features are extracted using

nine qubits.

Figure 5.12: Illustration of quantum measurement-based feature extraction on NWPU-
RESISC45 dataset.

Quantum Simulations on NWPU-RESISC45 dataset

The images of the NWPU-RESISC45 dataset are of size 256×256, and each image is con-

verted to grayscale. Even though the image size is similar to the UC Merced Land-Use

dataset, NWPU-RESISC45 is a large dataset with 45 scene class labels. Hence, more fea-

tures are to be collected to train the deep learning model for classifying all the 45 scene

classes. Collecting fewer quantum measurement-based features leads to underfitting of the

deep learning model used for NWPU-RESISC45 dataset classification. Hence, a different
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approach is followed to collect more quantum measurement-based features for quantum

representations of images.

Each row of the image matrix with 256 values is further divided into two halves, each

with 128 values. Then, a quantum circuit with seven qubits is used to encode the first 128

values, as shown in Fig. 5.12. The input data of 128 values are encoded as amplitudes of

128 quantum states in superposition.

An entanglement operation is performed in the next step between all the pairs of 7

qubits using the CNOT gate. Then, rotational gate Ry(θi), where i = {1, 2, . . . , 7}, is im-

plemented on the 7 qubits. The input data of 128 values are reduced to 126 values by

removing the last two values. Then, the 126 values are divided into seven sets of 18 values

each. Then, θi values are calculated as the average of 18 values in each set. Hence, we

obtain seven values as input to Ry(θi) gate, and each gate is applied on the seven qubits

of the circuit individually. Finally, Pauli-Z measurement (〈σz〉) is performed on qubits to

obtain quantum representations of the image. Thus, we obtain seven output values for the

128 input values. The same procedure is repeated for the next 128 values of the second

half of the first row (256 values). Hence, for each 256×256 image, 3584 (256 rows ( 7 + 7 )

output values) quantum measurement-based features are extracted using seven qubits.

5.4.1 Observations and Discussion

In this section, we describe in detail the experiments performed on ibm_santiago quantum

computer to obtain the quantum representations. Also, the details of performance evalua-

tion of the proposed hybrid quantum-classical model (HybridQC) in comparison with the

state-of-the-art models are given along with results and discussion.

Figure 5.13: Grayscale values of the image used to experiment on ibm_santiago.
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Experiment on ibm_santiago quantum computer

At present, a minimal number of qubits are available in NISQs for computation. As Hy-

bridQC requires less number of qubits for processing in the Level-2, the proposed quantum

processing is suitable to implement on NISQs. The details of the experiment performed

on NISQs to obtain quantum representations for the image in Figure 5.13 are given in the

following.

Table 5.3: Configuration details of ibm_santiago quantum computer

Type Value

Total Qubits 5
Processor Falcon r4L
Basic gates CX (CNOT), ID, RZ, SX, X
Avg. CNOT Error 6.192e-3
Avg. Readout Error 1.214e-2

The real quantum hardware ibm_santiago, provided online by IBM Q Experience [8], is

used to perform the experiment. Table 5.3 shows the configuration details of ibm_santiago

quantum computer.

pennylane−qiskit plugin provided by PennyLane is used to write python code to

perform the experiments. As the number of values in each row is four, as shown in Fig-

ure 5.13, we use only two qubits from ibm_santiago quantum computer for the experiment.

The following is the sample code to obtain quantum representations from the first row of

the image matrix.

# P e n n y L a n e c o d e f o r i m p l e m e n t a t i o n on i b m _ s a n t i a g o #

1 import numpy as np

2 import pennylane as qml

3 from pennylane.templates import AmplitudeEmbedding

4 dev = qml.device( ' qiskit.ibmq ' , wires=2,

backend= ' ibmq_santiago ' ,ibmqx_token="XXXX")

5 pixels = [155, 147, 65, 90]

6 @qml.qnode(dev)

7 def circuit(vals=None):

8 qml.templates.embeddings.AmplitudeEmbedding
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(vals,wires=[0, 1], normalize = True)

9 qml.RY(np.average([vals[0], vals[1]]), wires=0)

10 qml.RY(np.average([vals[1], vals[2]]), wires=1)

11 return [qml.expval(qml.PauliZ(0)),

qml.expval(qml.PauliZ(1))]

12 quantum_representations = circuit(pixels)

Figure 5.14: Quantum circuit for the experiment on ibm_santiago with the basic gates.

The description of the sample code is as follows.

• Line 1 to Line 3 is used to import the necessary packages to perform the experiments.

• In Line 4, the quantum computer to perform the quantum operations is declared.

For the experiment, ibm_santiago quantum computer is selected using backend and

accessed using the API token generated on IBM Q Experience. The token obtained

from IBM Q Experience is given as an input to ibmqx_token.

• The variable pixels in Line 5 is declared with the pixel values of the first row of the

image in Figure 5.13.

• @qml.qnode(dev) in Line 6 is a decorator used to indicate that the method circuit

in Line 7 is to be executed on the quantum device declared in dev.

• AmplitudeEmbeddingmethod declared in Line 8 is used to encode the input values

in pixels into qubits.

• The operations in Line 9 and Line 10 are used to input an average of pixel values into

Ry gate as described in Section 5.1.1.
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• Finally, in Line 11, PauliZmeasurement is performed on the qubits.

• quantum_representations in Line 12 contains the output values of the measure-

ment values from the circuitmethod.

The quantum operations from the method circuit in the above code are performed

on ibm_santiago quantum computer using the basic gates given in Table. 5.3. The corre-

sponding quantum circuit on ibm_santiago is given in Figure 5.14. The Pauli-Z measure-

ment values from the quantum circuit stored in the quantum_representations variable

are considered as the quantum representations of the input pixels. In a similar way,

quantum representations of different images can be obtained by using NISQs for process-

ing at Level-2 in the proposed architecture. The obtained quantum representations are used

to train the classical deep learning models.

Figure 5.15: Illustration of parameters of a neural network.

HybridQC Comparison

In this work, we used the Keras framework [94] to implement the classical deep learning

models using quantum representations of images for training. 80% of the data from the

.csv files is used for training and 20% is used for testing the models. The hyperparameters

such as nodes and the number of hidden layers are adjusted during the training process on

the three datasets to produce the best results. The stochastic gradient descent (SGD) opti-

mizer with Nesterov momentum is used to optimize the training weights with momentum

= 0.9 and learning rate = 0.001. The rectified linear unit (ReLU) activation function is used

at the hidden layers, and activation at the output layer is performed using the softmax

function. Data augmentation and Dropout regularizations are used to avoid overfitting of

the models. The models are trained until the categorical cross-entropy loss is converged.

All the quantum simulations to extract measurement-based quantum features and exper-
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iments for the proposed approach are performed on a computing node with CentOS 7.5

operating system, one 2.6 GHz 28-core Intel Xenon E5-2690 V4 CPU, and 128GB memory.

The trainable parameters of the classical deep learning models are the edge weights

of the deep neural network nodes, along with a bias added at each layer. Figure 5.15

represents a sample network to describe the parameters. The sample network consists

of only one input layer and an output layer. The input layer consists of four nodes, and

the output layer is with one node. The values x1, x2, x3, and x4 represents the input. The

output value y is calculated as

y = f(w1x1 + w2x2 + w3x3 + w4x4 + b) (5.12)

where f is an activation function and b is the bias. The trainable parameters are the weights

w1, w2, w3, w4, and b. The neural network is trained with the data until the weights are

optimized such that desired result y is obtained.
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Figure 5.16: Comparison of parameters and accuracy of different models with the pro-
posed HybridQC model on UC Merced Land-Use dataset.

Table 5.4: Comparison of overall accuracy (in %) and total trainable prameters (in millions
(M)) for the proposed hybrid QC apporach with the other state-of-the-art models

Method UC Merced
Land-Use

Trainable
parameters AID Trainable

parameters
NWPU

RESISC45
Trainable

parameters

GoogLeNet 94.29% ∼6.79M 86.34% ∼6.79M 78.74% ∼6.79M
ResNet50 95.73% ∼25M 91.83% ∼25M 79.42% ∼25M

SARS 95.70% ∼85M 87.74% ∼85M 78.92% ∼85M
VGG-16 95.28% ∼138M 89.57% ∼138M 79.58% ∼138M

HybridQC 95.89% ∼1.85M 86.13% ∼1.92M 79.32% ∼1.87M
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Figure 5.17: Comparison of parameters and accuracy of different models with the pro-
posed HybridQC model on AID Scene dataset.
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Figure 5.18: Comparison of parameters and accuracy of different models with the pro-
posed HybridQC model on NWPU-RESISC45.

The proposed hybrid quantum-classical model (HybridQC) is compared with the state-

of-the-art deep learning models [124, 125] for image classification. We compare HybridQC

with VGGNet [126], GoogleNet [127], ResNet [128], and semantic-aware scene recognition

model (SA) [129] to evaluate the performance and effectiveness. For NWPU-RESISC45

dataset and AID, 20% of the images from the original dataset are randomly selected for the

training purpose on state-of-the-art models.

Fig. 5.16 shows that the proposed HybridQC model outperforms all other models on

the UC Merced Land-Use dataset with an overall accuracy of 95.89%. Also, on the other

datasets, HybridQC competes well with the state-of-the-art models as shown in Fig. 5.17

and Fig. 5.18. The results also show that the proposed approach uses very less number of
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trainable parameters for the deep learning models.

The overall accuracy comparison of the proposed model with the state-of-the-art mod-

els is given in Table 5.4 along with a total number of trainable parameters for each model.

As the number of trainable parameters reduced with the proposed approach, the com-

putational requirement to implement the models is less compared to the state-of-the-art-

models. Hence, the difficulty of training the models reduces with the decrease in the num-

ber of trainable parameters. The proposed architecture is also considered to be compu-

tationally time-efficient, as the model building and experimentation using the proposed

approach can result in drastic time reduction. Thus, quantum enhancement can be per-

formed to the deep neural network architectures for image scene classification.

Quantum computing is gaining prominence due to a quantum computer’s ability to

handle huge amounts of data with exponential speed. In this thesis, we also propose a

hybrid quantum-classical computing architecture for satellite image scene classification.

Quantum representations of images are extracted using a quantum circuit, and the ex-

tracted representations are used to train the deep learning models. Quantum image repre-

sentations can be considered unique as the images are encoded into qubits to represent the

data in a high dimensional Hilbert space and processed using quantum gates. Our results

show that existing deep learning architectures for image scene classification can be en-

hanced using the proposed hybrid quantum-classical architecture. The performance of the

proposed hybrid quantum-classical approach is evaluated using three benchmark satellite

image datasets. The experimental results show that the proposed model achieves good

overall accuracy compared to the state-of-the-art models for scene classification. Also, the

proposed approach uses fewer trainable parameters than the state-of-the-art models.

5.5 Performance Analysis of HQCNN for Satellite Image

Scene Classification

This section presents the details of the experiments performed to study the impact of data

augmentation on different architectures. The experiments and simulations are performed

on multiple synthesized datasets obtained from the UC Merced land-use dataset. The ex-

periments and simulations to evaluate the performance of the proposed hybrid quantum-

classical model is also given in Section 5.5.2.
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5.5.1 Data preprocessing

The UC Merced land-use dataset is synthesized into multiple datasets with 3, 5, 10, and

21 scene classes, respectively. All the input images to the quantum circuit given in Sec-

tion 5.2.1 are converted to grayscale. Data augmentation is performed using the proposed

QDA to enlarge the volume of the dataset. The performance comparison of the proposed

quantum data augmentation (QDA) is performed with the two most widely used classical

image augmentation techniques on all the synthesized datasets. The first classical data

augmentation technique (CDA1) is performed using image rotation with rotation angle

90◦. The second technique (CDA2) is performed using salt and pepper noise where the

pixels are randomly replaced with 1 or 0.

5.5.2 Performance evaluation

This section presents the details of the performance evaluation of the proposed HQCNN in

comparison with VCNN and QNN on CDA1, CDA2, and QDA. CNN models in our exper-

iments are implemented using the TENSORFLOW library in Python. QNN and HQCNN

are implemented using PENNYLANE [89], a quantum machine learning library in Python.

PENNYLANE provides a QNN module that can be used to implement both QNNs and hy-

brid models. We also implemented the quantum circuit for data augmentation on IBMQX

using pennylane-qiskit plugin. The following is the sample code to execute quantum oper-

ations on ibm_santiago.

1 import pennylane as qml

2 dev = qml.device( ' qiskit.ibmq ' , wires=4,

backend= ' ibmq_santiago ' ,ibmqx_token="XXXX")

Line 1 is used to import the pennylane package, and Line 2 is to select the device on the

IBM QX via the pennylane-qiskit plugin. The token can be generated by creating a user

account on the IBM QX. The quantum operations are executed on the selected device.

Table 5.5: Comparison of training and validation accuracy of different models.

VCNN HQCNN QNN

Scenes
CDA1 CDA2 QDA CDA1 CDA2 QDA CDA1 CDA2 QDA

Train Val Train Val Train Val Train Val Train Val Train Val Train Val Train Val Train Val
3 classes 98.43 87.50 99.04 92.32 99.31 97.86 99.68 86.93 93.32 86.66 96.03 88.17 96.22 73.41 94.77 75.21 97.28 75.55
5 classes 97.82 81.45 97.24 90.14 98.12 95.06 98.24 82.29 93.96 85.35 98.83 86.98 86.66 63.02 86.25 62.15 89.02 65.14
10 classes 96.21 73.25 97.57 89.93 97.76 92.58 97.04 78.53 91.22 81.79 98.67 85.65 79.11 58.89 80.44 55.82 81.69 62.78
21 classes 89.97 70.64 96.73 81.71 95.56 86.29 88.19 78.52 89.54 80.11 97.36 86.55 72.68 52.87 76.58 53.42 80.27 55.98
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Figure 5.19: Quantum circuit for data augmentation on ibm_santiago.

Table 5.6: Experimental details of different models for 3 class labels

VCNN HQCNN QNN
Processor CPU+GPU CPU + GPU + QPU CPU + GPU + QPU
Software TENSORFLOW PENNYLANE PENNYLANE

Type of parameters Parameters
in CNN layers

Parameters in CNN layers
and Rotation angles
in Quantum layers

Rotation angles in
Quantum layers

Total parameters ≈800K ≈36K ≈560K

The standard ratio for the train-test split of the datasets, 80:20, is used in our study. In

turn, the training set is divided again into a train-validation group of 80:20. Training is

performed to converge the loss function (categorical cross-entropy loss).

Fig. 5.19 shows the quantum circuit from IBMQX implemented using basic gates of

ibm_santiago for the pixel values [155, 147, 65, 90]. Table 5.5 provides the comparison of

training accuracy and validation accuracy during the training process for all the models.

The results show a huge difference between the training and validation accuracy using

CDA1 and CDA2 in comparison with QDA. For example, the differences in the training ac-

curacy and validation accuracy of VCNN for 21 classes using CDA1 and CDA2 are 19.33%

and 15.02%, respectively. In comparison, the difference using the proposed DA is 9.27%.

Also, the training accuracy using the proposed DA is more (95.56%) when compared to

CDA1 and CDA2. Thus, the proposed data augmentation technique allows the models for

better generalization.

Also, the test results from Fig. 5.20 show that the proposed HQCNN model outper-

forms all the other models in terms of overall accuracy. HQCNN can classify all the 21

classes in the UC Merced Land-Use dataset with an accuracy of 85.28%. Also, the results

show that the proposed data augmentation technique gives better accuracy than the tradi-

tional and widely used classical image data augmentation techniques.

Quantum computation techniques can be used to enhance the existing machine learn-

ing models. The proposed data augmentation is a combination of quantum and classi-
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Figure 5.20: Test accuracy comparison of the models.

cal operations. Transformation of images using quantum circuit operations adds inherent

noise to the blended images. Hence, the performance of the models increased when trained

using the proposed augmentation technique.

As HQCNN processes data using both CNN layers and quantum layers, the model

outperformed the other models in terms of parameters used for training the models, as

shown in Table 5.6. The hybrid models can combine the efficiency of classical computa-

tion and quantum computation. The test accuracy of HQCNN using the proposed QDA

on datasets with class labels 3, 5, 10, and 21 is 92.13%, 90.67%, 89.45%, and 85.28%, re-

spectively. Hence the results show that the proposed quantum computation techniques

enhanced the performance of the models.

The rapid development of sensor technology and data generation requires new data

handling techniques. Deep learning models such as CNNs are efficient for the purpose

and also require large datasets with a good number of samples for each class label to avoid

overfitting. In this chapter, we proposed a data augmentation technique using quantum

computation to enhance the size of datasets. Data augmentation is performed by process-

ing classical images using a quantum circuit and blending the quantum output with the

original image. We also proposed a new hybrid model that combines the efficiency of

CNNs with the quantum computer’s ability to process data with exponential scaling. The

proposed model is suitable for future high-performance computing environments with

classical and quantum processors. Our proposed data augmentation technique performed

well in terms of accuracy on all the models. Also, the proposed hybrid quantum-classical

CNN model outperforms all the other models.
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Figure 5.21: Identified advantages of the proposed hybrid approaches.

5.6 General Observations

The following overall advantages as shown in Fig. 5.21are observed at each stage of our

research in big data processing using quantum machine learning.

1. Efficiency: Classical data can be encoded into qubits efficiently using quantum load-

ers. Encoding schemes such as amplitude encoding uses only n qubits to encode 2n

classical values as amplitudes of quantum states.

2. Interpretability: Quantum machine learning algorithms are interpretable as algorithm

is designed as a quantum circuit. The quantum operations in the circuit can be in-

terpreted to observe the information processing in the quantum machine learning

algorithm.

3. Accuracy: Classical machine learning algorithms can be enhanced using quantum

computational techniques to improve performance accuracy. Specifically, hybrid

computation can be used to improve the accuracy of the machine learning models

in real-time high-impact applications.

4. Energy (expected): As quantum computational hardware can provide exponential

scaling, overall energy utilization in solving a complex problem on a classical com-

puter can be reduced using a quantum computer. Critical problems can be partially

solved on a quantum computer, and the results can be postprocessed using classical

computations. Hence, performing huge computations on high-performance classical

hardware can be avoided, and energy can be saved.
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5.7 Summary

This chapter presented the details of different quantum machine learning techniques de-

signed for supervised learning on spatial data. We first developed quantum-enhanced

deep neural network architecture for satellite image scene classification. We observed that

data augmentation plays a crucial role in achieving good classification accuracy during the

experimentation. Hence we proposed a quantum data augmentation technique to increase

the size of the dataset. As CNNs consist of huge parameters for training, introducing

models such as HybridQC and HQCNN reduced the trainable parameters for scene clas-

sification on the spatial data. From the overall general observations, quantum computing

techniques can be used to enhance the machine learning models. In the next chapter, we

present the details of quantum processing techniques used to process SAR images for deep

learning.
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Chapter 6

Quantum Processing of Synthetic Aperture

Radar Images for Deep Learning

“What we usually consider are impossible are simply engineering problems . . .

there’s no law of physics preventing them.”

– MICHIO KAKU

Remote sensing applications generally require intense processing of satellite images for

analysis. Active remote sensing, such as Synthetic Aperture Radar (SAR), produces images

with higher spectral information when compared to optical sensors. Synthetic Aperture

Radar (SAR) images are difficult to comprehend as they look different compared to optical

Earth Observation images. SAR is a type of radar that is generally used to take 2D images

or reconstructions of 3D objects from their 2D images such as terrain surfaces and water

bodies [130]. SAR imagery comes under the category of active data collection because

the sensor produces energy waves to illuminate the target surface and then records the

amount of energy reflected after interacting with the target surface. Unlike optical image

sensors, the SAR signal is responsive to surface characteristics such as structure, moisture,

and depth.

SAR sensors are capable of producing images with microwave frequencies with the

help of a processing method that mimics a long antenna aperture [131]. SAR sensor is

generally fixed on a rigid platform that is in motion, such as a spacecraft or a high-altitude

aircraft, and the movement of a radar antenna is used over a target surface [132]. However,

the visual complexity in the case of SAR images leads to difficulty in comprehending and

processing the image data. Hence, deep learning models face difficulty in processing SAR

images for remote sensing applications [133]. This chapter presents the details of quantum

processing techniques developed to process SAR images for deep learning.
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6.1 Quantum Processing Techniques for SAR Images

Every ML system is a combination of code that consists of a model/algorithm and data.

Hence, two approaches are used to build an ML system. The first is a model-centric ap-

proach where a model is tuned to improve performance. The second is data-centric, an

approach where data used for training the models is systematically processed to improve

the model’s efficiency. For many years, model-centric approaches have been followed

where the model hyperparameters are tuned during training to improve the efficiency

of the models.

Figure 6.1: Comparison of SAR and OPT images from Google Earth Engine.

We used quantum computing for a data-centric approach and proposed new tech-

niques to process the SAR images. As shown in Fig. 6.1, SAR images are different from

optical (OPT) images. The visually observable features are more in OPT images than SAR

images. Hence, deep learning models such as CNNs face challenges in dealing with SAR

images [133]. We designed two quantum processing techniques (QPTs) where SAR im-

ages are systematically processed using quantum circuits. In the following sections, we

describe the quantum operations involved in the designed QPTs.
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6.1.1 Quantum Processing Technique-1

Figure 6.2: Illustration of QPT-1.

In the first quantum processing technique (QPT-1) given in Fig. 6.2, we resized the

images to 100×100 size before processing. In the next step, each pixel value of the SAR

image is given as input (θ) for the rotational angle of Ry(θ) gate as shown in the Fig. 6.3.

We used a four-qubit circuit to process the SAR images. The pixel values {a, b, c, d} are

given as input to the rotational gates of the quantum circuit. Iteratively, all the pixel values

of each image are processed using the same circuit.

Figure 6.3: Illustration of quantum circuit for QPT-1.

Figure 6.4: QSAR images using QPT-1.

After the rotational gate operation, we perform Pauli-Z measurement operation to ob-

tain the output values between [−1, 1]. The output values are rescaled to [0, 255] to obtain

a grayscale image from the measurement output values. Thus, a processed image is ob-

tained using quantum processing. Fig. 6.4 shows the quantum processed SAR (QSAR)

images using QPT-1.
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6.1.2 Quantum Processing Technique-2

Figure 6.5: Illustration of QPT-2.

As shown in Fig. 6.5, the second quantum processing technique is used to increase the

size of the image using quantum processing. Each pixel value of the image is repeated on

the four qubits using theRy operation as shown in Fig. 6.6. All the four output values from

the Pauli-Z are used to create a 2× 2 block for each input pixel. Hence, for an input size of

100× 100 image, we obtain a 200× 200 QSAR image.

Figure 6.6: Illustration of quantum circuit for QPT-2.

Figure 6.7: QSAR images using QPT-2.

As mentioned in the previous chapters, there exists a limited availability of the qubits

on QPUs. Hence, we used four qubit circuits for both QPT-1 and QPT-2. Fig. 6.7 shows the

QSAR images using QPT-2. The following section provides the details of the quality met-

rics of the images created using quantum processing techniques compared to the original

SAR images.
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6.1.3 Quality metrics of images using QPTs

Quantum processing of images is a novel approach where SAR images are processed using

a quantum circuit, thereby, obtaining a new image from the qubit measurement output

values. In the following, we calculate the quality metrics of QSAR images using the most

widely used metrics [134].

Relative Bias

The absolute difference between the mean of the original SAR image pixels and the QSAR

images divided by the mean of the original SAR image is considered as relative bias

(RB) [135]. The ideal value of RB is 0.

Relative Variance

Relative Variance (RV) is calculated by subtracting the variance of the QSAR image from

the variance of the original SAR image, divided by the variance of the original SAR im-

age [135]. The ideal value of RV is 0.

Universal Image Quality Index

A universal image quality index (UIQI) is also called a Q-index. In UIQI, QSAR image

distortion is modeled as a combination of loss of correlation, luminance distortion, and

contrast distortion [136]. The output value ranges from -1 to 1, and the value must be as

high as possible.

Entropy

The richness of information in the QSAR image data can be calculated using entropy [137].

Entropy is used to estimate the information contained in the image processed using QPTs.

The calculation of entropy (E) is given as

E = −
L−1∑
i=0

pi log pi (6.1)

where L represents the gray scale levels. The value pi represents the ratio of the pixels

with gray scale value equivalent to i to the total number of pixels in the image. The higher

the entropy value higher is the information in the QSAR image.
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Table 6.1: Quality metrics comparison of QPTs with original SAR images

Relative
Bias

Relative
Variance

Universal Image
Quality Index

Entropy
Spatial

Frequency

Original SAR 0.000 0.000 1.000 5.223 24.534
QPT-1 with Despeckling 0.137 1.610 0.686 5.324 16.635

QPT-1 without Despeckling 0.138 1.616 0.687 4.816 17.998
QPT-2 with Despeckling 0.137 1.610 0.667 5.324 28.752

QPT-2 without Despeckling 0.138 1.616 0.670 4.816 31.105

Spatial Frequency

Spatial frequency (SF) measures the overall activity level in the QSAR image. SF is ex-

pressed in terms of row frequency and column frequency [138]. The value of SF must be

as high as possible.

Table 6.1 shows the quality metrics calculated on the sample images collected from

Google Earth Engine. Despeckling refers to the process of removing speckle noise from

the images. Quality metrics of the QSAR images processed using QPT-2 techniques are

extremely well in terms of entropy and spatial frequency. In the next section, we present

the performance analysis of the deep learning models in terms of classification accuracy

using QSAR images.

6.2 Performance Analysis of DL models using QSAR Images

In this section, we evaluate the performance of DL models using the images obtained from

quantum processing (QPT-1 and QPT-2). We performed the experiments on the Open-

SARUrban collection [139, 140] that provides image patches of urban SAR scenes. We

synthesized the dataset into multiple datasets of two classes, four classes, six classes, and

ten classes. Fig. 6.8 shows the sample images from different classes in the OpenSARUrban

dataset.

Figure 6.8: SAR images from OpenSARUrban dataset.
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Table 6.2: Accuracy (%) of deep learning models on QPTs

Images

SAR QPT-1 SAR+QPT-1 QPT-2 SAR+QPT-2
2 classes 73.08 58.87 69.70 66.68 70.64
4 classes 69.55 58.64 61.13 61.89 68.04
6 classes 66.23 56.33 60.98 60.43 66.79
10 classes 63.59 54.77 59.65 59.07 64.17

All the deep learning models are implemented with CNN architecture using TensorFlow

package. Table 6.2 shows the accuracy of the deep learning models on different images for

the synthesized OpenSARUrban dataset. Using original SAR images along with QSAR

images from QPT-2 for training the DL models, outperformed all the other categories. We

used ibm_santiago quantum computer provided by IBM QX to check the compatibility of

circuits used for QPT-1 and QPT-2. Fig. 6.9 and Fig. 6.10 show the output of the quan-

tum circuits implemented using the basic quantum gates of ibm_santiago on sample pixel

values.

Figure 6.9: Quantum circuit for QPT-1 on ibm_santiago.

6.3 Summary

This chapter presented the importance of the data-centric approach to building machine

learning models. As DL models face many challenges in processing SAR images, we pro-

posed two quantum processing techniques that can enhance the performance of DL mod-

els by systematically processing SAR images. We observed that the quality metrics of the
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Figure 6.10: Quantum circuit for QPT-2 on ibm_santiago.

QSAR images improved after the quantum processing. Our results showed the improve-

ment in the overall classification accuracy of the DL models using both SAR and QSAR

images for training the models.
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Chapter 7

Conclusions and Future Directions

“Often when you think you‘re at the end of something,

you‘re at the beginning of something else.”

– FRED ROGERS

This thesis work investigated some of the open questions in the context of the evolution

of quantum machine learning for big data analytics. In particular, we observed the impact

of quantum computational techniques in handling big data for supervised learning. We

found that the hybrid quantum-classical approach can overcome some of the limitations

of existing quantum computers such as availability of qubits. Also, quantum and clas-

sical computations together can efficiently handle machine learning problems related to

classical spatial big data.

In the following, we summarize the major conclusions of the thesis. An ANN is pro-

posed with qubits as artificial neurons to study the impact of quantum computing in ma-

chine learning. The proposed quantum computing approach for ANN (QC ANN) effi-

ciently encoded data into a quantum state using the amplitude encoding method. QC

ANN can perform binary classification with more accuracy than classical ANN on the

benchmark dataset. Next, a quantum loader is proposed using single-qubit encoding to

encode each value of classical data into one qubit. A variational circuit with rotational

gates and CNOT gates is designed for multi-class classification (QMCC). We observed that

using more quantum operations in the circuit for processing also increased the accuracy of

the model. We observed that there is a lack of non-linearity in both QC ANN and QMCC.

Non-linearity is an important aspect that helps to construct a generalized model using

machine learning. Hence, we separated the feature extraction process from the quantum

machine learning algorithm and used the features to train a classical non-linear model in

the next step. Extracting quantum representation of the classical data helped the classi-

cal machine learning techniques to construct a generalized model with fewer parameters
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using HQCNN. The combined power of quantum computation to process data in a high-

dimensional Hilbert space with the efficiency of deep neural networks is used to construct

a generalized model for classification tasks. We then proposed a quantum circuit to add

noise into the data, and adding noise to enhance the dataset is a popular technique in data

augmentation. Further in the work, quantum operations are used in between CNN layers

to enhance the training process of CNNs. We also presented a detailed performance anal-

ysis and comparative study to prove the efficiency of the models designed in our research.

Finally, we proposed and evaluated a data-centric approach to building ML models using

quantum processing on SAR images.

7.1 Future Directions

In this section, a few possible future extensions of the work done in this thesis for different

models are discussed.

Data-specific qubit encoding Information encoding on qubits is a crucial step for any quan-

tum information processing method. Due to the rapid generation of big data, a lot

of scope exists to identify data-specific qubit encoding schemes. Most importantly,

qubit encoding schemes for images differ from qubit encoding schemes for numer-

ical data. There is a need to develop efficient qubit encoding schemes for different

data types.

Hybrid models for numerical data The future direction of the hybrid models for numeri-

cal data presented in the thesis includes a study of the advantages of quantum com-

puting on deep learning when working on datasets of large size and higher dimen-

sions. Further research can be carried out to improvise the quantum circuit or design

a new circuit suitable for large-scale data implementation on a quantum computer.

Also, identifying the application of hybrid models on numerical data is crucial.

Non-linear hybrid models for spatial data The future scope of the work presented in the

thesis is to study the impact of different quantum circuits on quantum representa-

tions of spatial data, such as images. The future direction of the work can be devel-

oping more complex hybrid quantum-classical models for sensor signal processing.

Also, information processing and the impact of the fusion of quantum-processed

SAR images and optical images can be performed using quality metrics for evalua-

tion. A study can also be performed on the accuracy improvements of DL models

using the fused images.
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Non-linear quantum models for big data There exist a lot of scope to develop and explore

the impact of non-linear quantum models for quantum machine learning on big data.

As the quantum computational power in the future increases, there is an immediate

scope to study and develop non-linear quantum models for large-scale data process-

ing. The future direction also includes identifying fixed circuits to solve a common

problem in specific applications.
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