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ABSTRACT 

 

The advent of neuromorphic technology marks a pivotal adaptation in modern 

computational hardware, addressing the evolving demands of artificial intelligence 

systems. This thesis underscores the importance of neuromorphic technologies in 

enhancing the interaction between software advancements and hardware capabilities, 

particularly how they can be immediately beneficial to society. The research presented 

here explores the use of Bismuth Iron Oxide (BFO), a multiferroic material, for 

developing neuromorphic devices due to its favourable material properties. A reactive 

pulsed laser deposition system, designed and assembled in our laboratory, was 

employed for the deposition of BFO thin films, which were then optimized for quality 

and consistency. 

The core of this thesis revolves around the fabrication of neuromorphic devices 

using a straightforward metal-insulator-metal configuration, with Fluorine-doped tin 

oxide as the bottom electrode and gold as the top electrode. Comprehensive studies 

were conducted on the neuromorphic properties of these devices, with a specific focus 

on the nonlinearity of synaptic weight updates, which is crucial for real-world 

applications such as pattern recognition. Additionally, we investigated the impact of 

varying oxygen vacancy levels on the synaptic responses, revealing significant 

implications for device performance. 

Furthermore, the practical applications of these neuromorphic devices were 

demonstrated through pattern recognition tasks, showcasing enhanced operational 

efficiency and accuracy when employing multiple devices simultaneously. This thesis 

not only presents the development and characterization of BFO-based neuromorphic 

devices but also exemplifies their potential integration into existing CMOS technology, 

offering a substantial leap towards advanced neuromorphic applications. 
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Chapter 1: 

Introduction 

1.1 Need for Neuromorphic Computing; Von Neumann 
bottleneck. 

 

Artificial Intelligence (AI) targets the replication of human cognitive abilities in 

machines. Today's supercomputers, while capable of complex calculations, fall short in 

efficiency compared to the human brain. Supercomputers, for instance, require about 

500 seconds and consume megawatts of power to simulate just 5 seconds of brain 

activity.[1,2] This inefficiency is largely due to the von Neumann architecture, which 

separates memory and processing units, connected by a limited bus system, causing 

data transfer delays and energy loss.[3,4] Additionally, transistor density on chips is 

maxing out, with advances in lithography pushing the limits of miniaturization and 

challenging Moore's Law.[5] 

 
Figure 1.1 General architecture of a computer; von Neumann architecture. 

The von Neumann architecture separates computing's brain and memory, causing 

inefficiency and high energy use.[6] This design has driven technological advances, 

shown in figure 1.1,  but struggles under growing computational demands. The 

neuromorphic model, processing data where it is stored, offers a solution through 

parallel, low power operations, setting a goal for computing evolution. 
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Neuromorphic computing, inspired by this brain like efficiency, aims to overcome 

von Neumann limitations. It focuses on artificial neurons capable of learning and 

memorizing, essential for mimicking brain functions. Current technology, however, 

falls short in replicating the brain's vast network of synapses due to the immense 

resources required for a single synapse, highlighting the gap between conventional 

computing and the desired brain like efficiency.[8]  

In addition to the Von Neumann bottleneck, other significant challenges include 

Amdahl’s law, which highlights the diminishing returns of parallel processing, 

limitations in lithography that restrict further miniaturization of transistors, and thermal 

management issues due to increased power density.[9–11] 

Advancing beyond the von Neumann architecture, neuromorphic computing 

seeks to emulate the brain's functionality and efficiency. By developing nano scale 

devices for neuromorphic functions, this approach aims to bridge the gap, pushing 

towards a future where computing can process information as efficiently and compactly 

as the human brain, transforming artificial intelligence's capabilities.[12] 

The gap between rapidly increasing data generation and the processing power of 

current computing systems is becoming more pronounced.   The need for neuromorphic 

technology due to the demand for computation is shown in figure 1.2. This discrepancy 

highlights the limitations of the Von Neumann architecture and the slowing momentum 

 
Figure 1.2 The need for neuromorphic technology due to the demand for the 

computation [7] 
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of Moore's Law.[13] As silicon-based technology approaches its physical limits, 

efficiency improvements, once predictable, are now stalling. This stagnation indicates 

we're hitting the ceiling of what our current computing technologies can achieve, 

emphasizing the urgent need for a shift in how we process information.[14] 

Emerging needs call for innovations beyond traditional computing architectures 

to address the growing gap between data creation and processing capability. The pursuit 

of new technologies, such as parallel processing, quantum computing, and 

neuromorphic computing, offers potential pathways to overcome these limitations.[15] 

These advancements are crucial for enhancing our ability to manage and utilize the big 

volumes of data efficiently. Without adopting new computing paradigms, our capacity 

to process information will increasingly lag behind the pace of data generation, 

hindering progress in a data driven world. Contrastingly, the human brain processes 

information through parallel computing with its roughly 100 billion neurons and 

quadrillion synaptic connections, enabling complex functions like learning and memory 

with only about 20 watts of power. Thus, AI strives to emulate the human brain's 

efficiency in processing information.[14,16] 

Efforts are increasing to create high density transistor interconnections on chips, 

leading to the development of neuromorphic chips such as IBM's TrueNorth, APT's 

SpiNNaker, and Intel's Loihi. Yet, these are still far from matching the brain's efficiency. 

Several software and hardware approaches have been proposed to enhance AI 

capabilities.[17] Software based platforms, like Alexa and Siri, incorporate algorithms 

capable of learning from experience. However, they require massive energy and data 

sets to function. Neuromorphic computing, combining non-volatile memory (NVM) 

devices with software like ANNs, shows improved performance but still relies on 

software, lacking the temporal dynamics necessary for emulating synaptic 

activities.[18,19] 

1.2. Neuromorphic Devices 
 

Neuromorphic devices can be designed to emulate various neural functions, 

including both neurons and synapses. While memristors are often used to replicate 

synaptic behavior due to their ability to retain memory states, other technologies like 

floating-gate transistors and ferroelectric capacitors can also function as synaptic 
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elements.[20,21] In the brain, synaptic junctions where neurons meet facilitate 

cognitive functions. Information from the senses triggers action potentials that travel 

through neurons. At synapses, neurotransmitter release and uptake alter synaptic 

junction currents, a process known as neuroplasticity, critical for memory 

formation.[22,23] 

Neuromorphic devices use conductance and stimulating pulses to represent 

synaptic behavior and learning signals, respectively. Various mechanisms, like filament 

bridging and ion migration, tune device conductance, though terms like memristors and 

synaptic devices are often used interchangeably.[24–26]  

 
Figure 1.3 Schematics of a biological synapse 

Neuromorphic computing also aims to emulate higher order cognition such as the 

sleep wake cycle and associative learning, often requiring complex CMOS circuits. 

Recent efforts focus on replicating human like behaviors in devices without external 

circuit support. [12] Neuromorphic computing aims at parallel information processing 

capability, real time processing, while it maintains the higher energy efficiency.[27] The 

fundamental hardware unit of this architecture can be termed as a neuromorphic device. 

A neuromorphic device is designed to emulate various aspects of neural activity, 

including the functions of synapses in biological systems. These devices replicate the 

dynamic processes of learning and memory by adjusting their conductance in response 

to electrical stimuli, similar to how synaptic strength is modulated in the brain. 
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While the structure can be conceived as a simple metal insulator metal capacitor 

structure, with top electrode represents the preneuron, bottom electrode represents the 

post neuron, while the thin film sandwiched between the two electrodes represents the 

synapse.[28] Synapse is where the ion dynamics takes place and the conductance 

modulation happens. Just like in the real neurons the memory formation largely depends 

on the strengthening of the synaptic connections and hence the conductance across the 

synapse, here also the memory formation is due to the conductance variation of the thin 

film.[29]  

 
Figure 1.5 Challenges and Future directions. 

When we look at the requirement for the neuromorphic devices, we understand 

that the key components like volatility, plasticity, and the availability of wide range of 

conductance states etcetera are factors to consider for the devices. The practicality of 

these devices in the real applications primarily depends on the performance of the 

devices, energy consumption, and finally scalability.[30,31] 

Volatility in neuromorphic devices is defined by their capability to maintain 

conductance states even when not powered, a critical feature for practical applications. 

 

 
Figure 1.4 Advantages of Neuromorphic computing. 
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This characteristic ensures that learned information and computational states are 

preserved, allowing for the continuation of processes and retention of data across power 

cycles. It's a cornerstone for devices aiming for long term operation and reliability in 

real world scenarios.[32,33] 

While nonvolatility is important for applications requiring long-term memory 

retention, volatility is equally critical in scenarios that mimic transient brain functions, 

such as short-term memory and dynamic learning processes. Volatile neuromorphic 

devices can offer significant advantages in energy efficiency and speed for certain 

computational tasks, highlighting the diverse approaches within neuromorphic 

computing. 

Plasticity, on the other hand, describes the adaptability of neuromorphic devices, 

allowing them to modify their internal connections in response to external stimuli.[27] 

This feature is inspired by the biological processes observed in the human brain, where 

synaptic connections strengthen or weaken based on experiences. This ability for self-

modification enables neuromorphic devices to learn from their environment, adapt to 

new situations, and evolve over time, making them highly effective for tasks requiring 

complex computation and decision-making processes. 

Together, volatility and plasticity form the foundation of neuromorphic devices, 

enabling them to function efficiently in a wide range of applications. By mimicking the 

brain's mechanisms for memory retention and learning, these devices offer a new 

paradigm in computing, characterized by resilience, adaptability, and the capacity for 

continuous learning.[34] 

Synaptic plasticity is central to this concept, where the strength of connections 

changes in response to activity patterns, facilitating learning. Hebbian learning 

reinforces this by strengthening connections when cells activate simultaneously, 

embodying the principle that "cells that fire together, wire together."[23,27,35,36] 

Spike Timing Dependent Plasticity (STDP) further refines this by adjusting connections 

based on the precise timing of signals, enabling more accurate learning from temporal 

patterns. Homeostatic plasticity maintains network stability, preventing overexcitation 

or inhibition, crucial for sustainable learning.[37,38] 

Lastly, structural plasticity allows for the dynamic reconfiguration of the network 

itself, forming new connections or pruning existing ones in response to learning 
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demands. This adaptability opens up broad applications, from adaptive sensors to 

advanced machine learning, highlighting neuromorphic devices' potential to 

revolutionize computing with efficient, real-time learning and decision-making 

capabilities. 

The ability of neuromorphic devices to operate across a wide range of 

conductance states is a vital attribute, significantly enhancing their dynamic range. This 

broad spectrum of conductance enables these devices to simulate the analog nature of 

biological synapses more accurately, where the strength of synaptic connections can 

vary greatly.[39] By capturing this variability, neuromorphic devices can implement 

more nuanced and flexible computational models, allowing for a richer representation 

of information.[40] This, in turn, facilitates the execution of complex cognitive tasks 

such as learning, pattern recognition, and sensory processing with greater efficiency 

and precision. The extended dynamic range afforded by variable conductance states 

thus plays a crucial role in advancing the capabilities and performance of neuromorphic 

computing systems.[41] 

Neuromorphic devices' practicality hinges on performance, energy use, and 

scalability. Performance wise, these devices need to process and store information 

quickly, accurately, and reliably to handle complex tasks like pattern recognition and 

decision making efficiently. This capability is crucial for their application in areas such 

as robotics and data analysis, where processing vast amounts of data quickly is 

essential.[42,43] 

Energy consumption is equally critical. Neuromorphic computing aims to 

significantly reduce the energy needed for computations, making these devices ideal 

for environments where power is limited, like in mobile and wearable tech. The 

challenge lies in designing devices that mimic the brain's energy efficiency, enabling 

powerful computing with minimal power use.[44,45] 

Lastly, scalability determines neuromorphic devices' widespread adoption. They 

must easily scale from small to large applications while maintaining performance and 

efficiency. Overcoming fabrication and integration challenges is key to achieving this, 

enabling their use across various sectors.[46] Scalability, performance, and low energy 

use are pivotal for neuromorphic devices' success in real world applications. 
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Neuromorphic devices face key challenges: material stability, device to device 

variation, and integration with existing CMOS technology. Material stability is vital as 

the long term performance of these devices heavily relies on the consistent behavior of 

their constituent materials.[30,47] Selecting materials that maintain their properties 

over time is critical to ensuring device reliability and functionality throughout their 

intended lifespan. 

Device to device variation presents another significant hurdle. Inconsistencies 

between individual neuromorphic devices can lead to complications in their operation 

and overall system performance. Achieving uniformity across devices is essential for 

their reliable application in complex computational tasks, where precision and 

predictability are paramount.[48] The final challenge lies in integrating neuromorphic 

devices with the well-established CMOS technology. For neuromorphic technologies 

to be practically applicable, they must seamlessly blend with existing semiconductor 

technologies. This integration is crucial for leveraging the strengths of both 

neuromorphic and CMOS technologies, facilitating their adoption in a wide range of 

applications.[49,50] While neuromorphic devices are not expected to replace CMOS 

technology entirely, their coexistence is anticipated to enhance computational 

capabilities, combining the best of both worlds for advanced technological solutions. 

1.2.1 Two-Terminal Neuromorphic Devices: Advances in Memory 
Technologies 

Two-terminal neuromorphic devices, typically leveraging memristive 

technology, are distinguished by their dual-contact configuration. These devices are 

valued for their straightforward design and efficacy in emulating synaptic functions. 

Functionally, they operate on the principle that input voltage or current induces a 

change in resistance across the terminals.[51] This change is akin to synaptic plasticity 

in biological systems—the fundamental process that allows synapses to strengthen or 

weaken over time, which is vital for learning and memory. 

- Key Features of Two-Terminal Neuromorphic Devices: Memristors: These are 

the most prevalent form of two-terminal neuromorphic devices. They remember past 

voltages or currents, reflecting this history as changes in resistance. This capability 

enables them to retain information, positioning them as suitable candidates for non-

volatile memory applications.[52] 
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• Simplicity: With only two contacts, these devices are easier to manufacture 

and incorporate into larger systems. 

• Energy Efficiency: These devices typically use less power, which is beneficial 

in energy-sensitive applications. 

These characteristics make two-terminal devices particularly valuable for 

creating compact, energy-efficient neural network architectures that mimic the 

operational speeds and efficiencies of biological systems.[53] 

Various Types of Two-Terminal Neuromorphic Devices: 

 Resistive Switching Random Access Memory (RRAM): This technology features a 

metal-insulator-metal (MIM) configuration where the insulating layer can switch 

between high and low resistance states. Initially, a 'forming' process creates a 

conductive filament within the insulator to lower resistance. Subsequent voltage pulses 

can toggle the device between these states, with variations like unipolar and bipolar 

RRAM offering different mechanisms for switching.[54,55]   

Phase Change Memory (PCM): PCM devices operate through a shift in the phase of 

the active material, typically a chalcogenide compound. Electrical pulses trigger 

transitions between crystalline and amorphous states, markedly changing the 

resistance.[56] 

Spin-Transfer Torque Magnetic Random Access Memory (STT-MRAM): These 

devices use a magnetic tunnel junction (MTJ) structure with ferromagnetic metal 

electrodes. Resistance changes depending on the alignment of magnetic polarizations 

within the electrodes, controlled by spin-transfer torque. This type is known for rapid 

switching and high durability but generally supports only binary resistance states.[57] 

Ferroelectric Random Access Memory (FeRAM): In FeRAM, a ferroelectric 

insulator is sandwiched in a MIM stack. External biases orient the electrical dipoles, 

with polarization state changes detectable via displacement currents generated during 

switching.[58,59] However, the reading process in FeRAM is destructive to the existing 

state, which can make it both time-consuming and energy demanding. 

These two-terminal devices each have unique structures and mechanisms that 

facilitate the modification and detection of memory states through electrical impulses, 

enhancing their scalability over traditional Flash memory. Their varied functionalities 
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and operational characteristics are making significant impacts in the field of 

neuromorphic computing, driving advancements in memory technology and beyond. 

1.2.2 Advanced Functionalities of Three-Terminal Neuromorphic 
Devices 

Three-terminal neuromorphic devices offer an enhancement over their two-

terminal counterparts by incorporating an additional terminal, which allows for more 

intricate functionality and control. These devices typically utilize transistor-like 

structures where one of the terminals is used to modulate the flow of current between 

the other two. This configuration enables precise control over the device’s conductive 

state, facilitating more sophisticated emulation of synaptic behaviors. 

Key Features of Three-Terminal Neuromorphic Devices are: 

Transistor-Based Architecture-: In devices like floating gate transistors, a terminal is 

dedicated to controlling the flow of electrons within the device, effectively altering the 

conductivity in response to input signals. This capability allows for dynamic 

adjustments in the device's operational state, closely mimicking synaptic activities. 

Enhanced Functionality-: The additional terminal introduces gating mechanisms, 

which can emulate complex synaptic functions such as facilitation and depression. This 

enhanced functionality supports the replication of more nuanced neural interactions, a 

key aspect of simulating brain-like capabilities. 

Circuit Design Flexibility-: With the extra terminal, designers can create more 

complex circuits that emulate larger portions of neural systems, including entire neural 

pathways. This flexibility is crucial for developing advanced neuromorphic systems 

that require dynamic reconfiguration and sophisticated network interactions. 

Applications and Implications 

These advanced features make three-terminal neuromorphic devices particularly 

suitable for sophisticated applications where adaptability and learning are essential. For 

instance, they play a pivotal role in developing dynamic neuromorphic systems capable 

of complex learning and memory tasks, significantly enhancing the capabilities of 

artificial neural networks. 

Examples of Three-Terminal Devices 
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Ferroelectric Field-Effect Transistors (FEFETs)-: These devices use a MOS 

structure with a ferroelectric layer as the gate dielectric. The gate voltage alters the 

polarization state of the ferroelectric material, adjusting the threshold voltage of the 

FEFET. This allows for non-destructive read operations and supports high-density 

configurations such as vertical 3D structures, making FEFETs highly suitable for 

compact and efficient memory arrays.[60] 

Electro-Chemical Random Access Memory (ECRAM)-: ECRAM devices feature a 

solid-state electrolyte as the gate dielectric which facilitates ion migration, notably Li+ 

ions, within a lithium phosphorous oxynitride electrolyte. The gate voltage direction 

influences the ions' movement, which modulates the device’s conductivity and 

effectively decouples the writing and reading pathways. This unique mechanism 

enhances conductance update linearity, making ECRAM devices highly promising for 

emulating synaptic connections.[61] 

Spin–Orbit Torque Magnetic Random Access Memory (SOT-MRAM)-: SOT-

MRAM operates similarly to STT-MRAM but utilizes a current through a heavy metal 

electrode to switch the magnetization state of the ferromagnetic layers via spin-

polarized electron accumulation induced by spin Hall or Rashba effects. This 

technology achieves fast switching times and improved endurance, making it suitable 

for high-performance memory applications.[62] 

Memristive Transistors (Memtransistors)-: These incorporate a polycrystalline 2D 

semiconductor as the channel in a MOS structure, where applying a voltage can trigger 

a resistance transition through mechanisms such as grain boundary or impurity 

migration. Memtransistors combine memory and processing capabilities, exhibiting 

neuromorphic features like spike accumulation and spike-timing plasticity.[63] 

In summary, three-terminal neuromorphic devices expand the boundaries of 

what's possible in simulating neural functions, offering enhanced control, functionality, 

and flexibility. Their ability to emulate complex synaptic behaviors and integrate into 

sophisticated circuits makes them a cornerstone in the ongoing evolution of 

neuromorphic technology. 
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1.3 Materials for Neuromorphic Technology 
 

Phase-Change Memory (PCM): PCM materials are crucial due to their ability to 

switch between different physical states, thus allowing the emulation of synaptic 

behaviors in neuromorphic systems. These changes in state can reliably represent the 

varying strength of synaptic connections. 

Memristive Oxide-Filament Resistive Devices: Utilizing the property of resistance 

change based on the history of applied voltage, these devices offer a way to mimic the 

plasticity of synapses, critical for learning and memory in the brain.[64] 

Electrochemical Metal-Filament Devices: These are designed to form and dissolve 

conductive filaments under electrical influence, replicating the dynamic nature of 

synaptic functions. 

Nonfilamentary RRAM Materials: As a variant of resistive random-access memory, 

nonfilamentary RRAM provides a scalable and reliable option for neuromorphic 

computing, avoiding the pitfalls of filament instability.[65] 

Topological Insulator Materials: These materials are noted for their unique electronic 

properties, which facilitate low-power and efficient computations akin to neural 

processes, potentially enhancing the computational efficiency of neuromorphic 

systems.[66] 

These materials form the backbone of developing dense, low-power, and highly 

connected arrays that mimic the brain's architecture, playing a pivotal role in 

overcoming the limitations of traditional computing, especially in processing complex, 

unstructured data.[67]  

Ferroelectric and Multiferroic Materials 

Ferroelectric and multiferroic materials stand out in the realm of neuromorphic 

computing for their distinctive ability to maintain and switch electrical polarization 

states, similar to binary states in digital memory but with the added flexibility and speed 

suited for analog processing.[68] 

Ferroelectric synapses utilize the shifting polarization within ferroelectric domains to 

modulate synaptic conductance, crucial for mimicking the learning and memory 
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functions of the brain. Materials like lead zirconate titanate (PZT) or Hf0.5Zr0.5O2 (HZO) 

are common, where their polarization orientation can be altered by external electric 

fields, affecting the resistance of the device.[69] 

Innovative designs, such as those studied by Boyn et al. and Guo et al., demonstrate the 

use of ferroelectric materials in complex stacked structures that allow for nuanced 

control of synaptic behaviors through electric fields.[70,71] These structures not only 

facilitate basic ON and OFF states but also enable intermediate states by adjusting the 

proportion of domains oriented upwards or downwards, thus enhancing the mimicking 

of time-dependent synaptic plasticity.[68,72,73] 

Challenges and Advances in Ferroelectric Technology 

Despite the promising functionalities of ferroelectric materials, they face challenges 

such as scalability, data retention, and integration with existing technologies.[74] 

Ferroelectric capacitors (FeCAPs), field-effect transistors (FeFETs), and tunneling 

junctions (FTJs) each bring specific advantages and hurdles: 

• FeCAPs and FeFETs are explored for their direct control over voltages 

and potential for high-density memory but struggle with issues related to 

endurance and scalability. 

• FTJs offer a method to measure current changes non-destructively 

through a ferroelectric barrier, although increasing current density 

remains a challenge for broader applications.[73] 

By better understanding ferroelectric phases and optimizing material structures, 

there is significant potential to enhance the performance and reliability of these devices, 

paving the way for their expanded use in complex computing applications.[75]  

In our quest for the ideal material for neuromorphic applications, we identified 

Bismuth Iron Oxide (BiFeO3, BFO) as a standout candidate. This ternary oxide 

perovskite, known as Bismuth Ferrite, boasts a complex ABO3 perovskite structure, 

classifying it as multiferroic material. BFO is distinguished by its simultaneous display 

of ferroelectricity and antiferromagnetism, making it a material of considerable interest 

in the field. One of its notable attributes is the ability to exhibit large polarization at 

room temperature, a characteristic that greatly enhances its applicability in various 

devices.[69,76–78] 
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Figure 1.6 BiFeO3 molecular structure. 

BFO thin films, crucial for device miniaturization and integration, can be 

fabricated through several methods, including the sol gel process and, more 

prominently, pulsed laser deposition (PLD). PLD, in particular, has been recognized for 

its capability to produce thin films of superior quality. This method allows for precise 

control over the film's composition and structure, ensuring the material's properties are 

optimized for the intended application.[53,77] 

Pulsed Laser Deposition (PLD) stands out as the preeminent technique for the 

deposition of Bismuth Iron Oxide (BiFeO3) due to its unparalleled ability to ensure 

controlled deposition and high film quality.[79] The precision afforded by PLD allows 

for meticulous control over the deposition process, which is critical for achieving 

uniformity and consistency in the thickness and composition of the deposited films. 

This level of control is essential for applications of BFO, where the functional 

properties of the material are highly dependent on the structural integrity and uniformity 

of the films.[80] Moreover, the enhanced film quality achievable with PLD is 

instrumental in realizing the desirable structural and functional properties of BFO, 

including its magnetic and ferroelectric characteristics, which are pivotal for its use in 

various advanced technological applications.[81] 
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Figure 1.7 Pulsed Laser Deposition 

Furthermore, PLD's versatility in accommodating a wide range of materials and 

its specific effectiveness for oxide deposition make it particularly suitable for complex 

oxide compounds like BiFeO3. The technique's ability to ensure thorough oxygenation 

of the films is crucial for optimizing the material's properties, as the oxygen content 

directly influences the phase composition and, consequently, the physical properties of 

BFO films.[82] The flexibility in adjusting deposition parameters, such as substrate 

temperature, further enhances PLD's suitability for tailoring the properties of BiFeO3 

films to meet specific application requirements. These attributes collectively 

underscore why PLD is considered the best choice for depositing BFO films, offering 

a unique blend of precision, quality, and versatility that is critical for harnessing the full 

potential of this complex oxide material.[83] 

During the fabrication of our neuromorphic devices, we paid special attention to 

ensuring that the processes were compatible with existing CMOS technology. 

Specifically, we optimized the substrate temperature during the pulsed laser deposition 

to approximately 400°C. This careful calibration was done to ensure that the 

temperature remained within a range that would not compromise CMOS technology's 

integrity. This integration strategy underscores our commitment to developing materials 

and processes that not only advance the capabilities of neuromorphic computing but 

also harmonize with established semiconductor manufacturing techniques, paving the 

way for broader application and adoption.[53,84] 
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1.4 Application Domains of Neuromorphic Technology and 
Research Challenges 

 

The ability of neuromorphic technology to process data efficiently and in a manner 

similar to the human brain has led to significant interest from various industries. 

1.4.1 Image and Pattern Recognition in AI Software 

One of the key areas where neuromorphic technology excels is in image and pattern 

recognition, particularly when paired with AI software. Deep neural networks (DNNs) 

and spiking neural networks (SNNs) that run on neuromorphic hardware can handle 

complex visual data with remarkable speed and accuracy. This capability makes them 

invaluable for applications such as facial recognition, automated surveillance systems, 

and autonomous vehicle navigation. The combination of neuromorphic technology with 

AI software enables real-time processing and decision-making, which is crucial for 

tasks that require immediate responses, such as recognizing and classifying objects in 

a camera feed.[19,49,85] 

1.4.2 Medical Applications 

Neuromorphic technology has a profound impact on the medical field. It 

facilitates the development of "lab on a chip" technologies, which combine sensors and 

processors into compact devices capable of performing complex analyses. This allows 

for rapid diagnostic testing, reducing the need for extensive lab work and enabling 

quick responses to health concerns. Additionally, neuromorphic technology can 

enhance pattern recognition for medical imaging, particularly in the detection of cancer 

and tumours. By mimicking the brain's pattern recognition capabilities, these 

technologies can sift through vast amounts of imaging data, highlighting anomalies, 

and facilitating early diagnosis, which is critical for effective treatment.[86,87] 

1.4.3 Big Data and the Internet of Things 

Neuromorphic technology is also making strides in the domains of Big Data and the 

Internet of Things (IoT). Neuromorphic processors can handle multiple data streams 

simultaneously, making them ideal for managing the extensive data generated by IoT 

devices. This capability is crucial for smart home systems, urban infrastructure 

management, and industrial automation, where real-time data processing from various 



41 
 

sources is necessary. The energy-efficient nature of neuromorphic chips also makes 

them well-suited for IoT applications, allowing devices to operate for extended periods 

in remote or challenging environments.[88,89] 

1.5 Research Challenges 
While neuromorphic technology has shown promise across these domains, there are 

several research challenges that must be addressed to fully realize its potential. 

1.5.1 Scalability 

One of the main challenges is scalability. As neuromorphic systems grow in complexity, 

managing larger networks of neurons and synapses becomes increasingly difficult. 

Researchers are working to develop scalable architectures that can handle these 

extensive networks while maintaining performance and functionality.[90] 

1.5.2 Material and Device Development 

Finding materials and devices that can accurately replicate biological neural 

functions is another major hurdle. Current materials may lack the durability or stability 

needed for long-term operation, prompting ongoing research into new materials that 

can fulfil these requirements.[48,91] 

1.5.3 Programming and Integration 

Neuromorphic systems require novel programming approaches that reflect their 

unique neural adaptation capabilities. Additionally, integrating these systems into 

existing computing infrastructures is complex, necessitating the development of new 

hardware interfaces and software platforms to facilitate seamless communication with 

traditional technologies.[92] 

1.5.4 Energy Efficiency 

While neuromorphic chips are inherently more energy-efficient than traditional 

processors, optimizing their energy consumption is crucial for practical deployment. 

Enhancing their energy efficiency is key to ensuring sustainability, particularly as they 

scale up.[44,93] 

In conclusion, neuromorphic technology offers significant promise across various 

domains, including AI software, medical applications, and Big Data. However, to fully 
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unlock its potential, research and development must continue to address challenges in 

scalability, materials, programming, integration, and energy efficiency.  

1.6 Challenges in Linear and Nonlinear Paired-Pulse 
Facilitation (PPF) and Prediction Accuracy in Neuromorphic 
Systems 
 

In the context of neuromorphic computing, achieving high linearity in the synaptic 

response—particularly during the potentiation and depression phases—is crucial for 

tasks like image and speech recognition, where precision is paramount. However, the 

inherent nonlinearity observed in many RRAM synapses poses significant challenges. 

Nonlinearities can distort the synaptic weight updates essential for learning and 

recognition, leading to decreased accuracy in these applications.[94] 

Nonlinearity is a fundamental feature in many computational processes, such as the 

operation of logic gates and the activation functions used in neural networks (e.g., 

sigmoid, ReLU). Nonlinearity is crucial for enabling complex behaviors and decision-

making capabilities in both biological and artificial neural networks. However, linearity 

is preferred in specific applications, such as certain types of analog signal processing 

and modeling tasks, where a predictable, proportional response is essential. This 

balance between linearity and nonlinearity is key to optimizing the performance of 

neuromorphic systems depending on the intended application.[95–97] 

To enhance synaptic linearity, increasing the structural complexity of synapses is a 

common approach. For example, employing a one-transistor/2-resistor (1T2R) 

configuration has shown to improve update linearity, despite the increased area due to 

the additional components.[98,99] Alternatively, devices like Li-based ECRAMs or 

organic-based memories often feature three-terminal structures that achieve enhanced 

linearity in potentiation and depression processes. These configurations maintain high 

linearity even within a narrow conductance window, demonstrating almost linear 

behavior as reflected in energy efficiency and the precision of synaptic updates. 

1.6.1 Complexity of Crossbar Arrays in Miniaturization 

The miniaturization of crossbar arrays introduces another layer of complexity and 

challenges. As these arrays become smaller, maintaining performance and reliability 
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without increasing the complexity of the system becomes more difficult. 

Miniaturization often requires precise control over material properties and device 

architecture to prevent issues such as signal crosstalk and interference, which can 

degrade the array's overall functionality.[100,101] 

The integration of advanced synaptic structures within a miniaturized crossbar array is 

crucial for enhancing the system's capability while addressing the limitations of 

scalability and manufacturability.[26] For instance, the implementation of complex 

synaptic designs, such as those involving multiple PCM devices in parallel, not only 

helps in increasing the dynamic range of synaptic weights but also reduces stochastic 

variability, which is vital for consistent performance during training phases.[102–104] 

1.6.2 Addressing Prediction Accuracy and System Complexity 

To tackle the issues of prediction accuracy and system complexity, several 

strategies have been proposed. Enhancing the granularity of conductance steps and 

reducing associated variability are key considerations. By structuring weight updates to 

diversify demands on resistive devices within different layers of the memory hierarchy, 

systems can balance requirements such as linearity, endurance, and retention.[45,105] 

This balance is crucial for optimizing performance and integration density, enabling the 

deployment of neuromorphic systems in practical applications.[42,106] Incorporating 

advanced weight structures, like differential pairs of PCM devices combined with 

capacitance-controlled transistors, further enhances the management of synaptic 

weights.[107] These structures support the use of conventional datasets for training, 

such as MNIST, achieving accuracy comparable to software-based approaches. This 

method not only addresses the challenges of prediction accuracy but also ensures that 

neuromorphic systems can be scaled effectively while maintaining high levels of energy 

efficiency.[108] 

In summary, addressing the challenges are critical for advancing neuromorphic 

technology towards real-world applicability, ensuring that devices not only mimic the 

human brain's capabilities but also achieve the necessary reliability and efficiency for 

widespread adoption.[109] 
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In this thesis we see how we fabricate the neuromorphic device with the material 

of our choice and use the device to recognise the patterns showing its ability to meet 

the challenges discussed here 

1.7 Scope of the Thesis 
This doctoral thesis delves into the cutting-edge field of neuromorphic 

computing, with a particular focus on the role of Bismuth Ferrite (BFO) in the 

development of memristor based neuromorphic systems. The research embarked upon 

a comprehensive journey starting from the exploration of memory and neuromorphic 

systems, underpinned by the pivotal role of memristors, to the detailed investigation of 

BFO's unique properties and its suitability for neuromorphic applications. A significant 

portion of the study involves PLD deposition and analysis of BFO thin films for 

neuromorphic devices, focusing on replicating specific synaptic functions like synaptic 

plasticity. While not mimicking the full complexity of the brain, these devices serve as 

essential building blocks for advanced neuromorphic computing systems. The thesis 

also ventures into practical applications, notably pattern recognition, thereby marking 

its contribution to the field. 

The scope of this thesis encompasses the development of a reactive PLD system, 

the optimization of deposition parameters for crafting high quality BFO thin films, and 

the in-depth analysis of their neuromorphic properties. This foundational work sets the 

stage for the exploration of BFO neuromorphic devices, their linearity, and the impact 

of oxygen vacancies on device performance. The research culminates in demonstrating 

the applicability of these devices in advanced computing tasks, including efficient 

pattern recognition using neural network models. By bridging materials science with 

neuromorphic engineering, this thesis outlines a forward-looking perspective on the use 

of BFO in neuromorphic systems, highlighting its potential to revolutionize computing 

and data management in an era increasingly defined by complex computational 

challenges. 

Content of the chapters are briefly discussed here: 

Chapter 1 discusses the challenges of future computing needs. It traces the 

development and significance of the neuromorphic systems, highlighting neuromorphic 

computing's evolution as a solution to the von Neumann bottleneck. The chapter 

underscores the importance of precise control and high-quality film deposition in 
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creating effective neuromorphic systems, with a special focus on Bismuth Iron Oxide 

(BFO) for its unique properties, laying the groundwork for exploring BFO based 

memristors. 

Chapter 2 delves into the specifics of constructing a reactive Pulsed Laser 

Deposition (PLD) system for the deposition and characterization of BFO thin films. It 

details the operational parameters of the PLD process, emphasizing the role of the Nd: 

YAG laser in achieving precision. The chapter covers the calibration and control 

mechanisms essential for maintaining film thickness and introduces Atomic Force 

Microscopy (AFM) as a tool for analysing the surface quality of deposited films, setting 

the stage for understanding the complexities of fabricating high quality BFO films for 

neuromorphic applications. 

Chapter 3 focuses on the deposition process of BFO thin films using PLD and 

their detailed characterization. It reviews the literature on BFO deposition, highlighting 

its importance for neuromorphic systems due to its ionic and polarization properties. 

The chapter explains the use of X ray photoelectron spectroscopy (XPS) and X ray 

diffraction (XRD) for material characterization, alongside AFM for surface analysis, 

providing insights into the quality and suitability of BFO films for neuromorphic 

computing. Chapter explores the fabrication and analysis of BFO Neuromorphic 

Devices, investigating their neuromorphic properties, such as response to electrical 

pulses and short-term plasticity (STP), which are essential for mimicking brain like 

functions. The chapter details the examination of key parameters like off current, duty 

cycle, and the impact of oxygen vacancies on device performance, contributing 

significantly to understanding BFO devices' potential in neuromorphic computing.  

Chapter 4 examines the linearity of BFO neuromorphic devices and its 

implications for real world applications. It discusses the importance of device linearity 

in neuromorphic systems and explores methods to enhance this characteristic by 

manipulating oxygen vacancies. The chapter highlights the correlation between oxygen 

vacancies, synaptic weights, and plasticity time constants, offering insights into 

customizing synaptic systems for specific applications based on linearity. 

Chapter 5 demonstrates the application of BFO neuromorphic devices in pattern 

recognition tasks, incorporating neural network models to leverage their computational 

efficiency. It emphasizes the use of Convolutional Neural Networks (CNNs) for their 
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pattern recognition capabilities and explores parallel processing to improve execution 

time. Through practical examples, such as handwritten digit recognition, the chapter 

showcases the potential of BFO devices in advanced computing applications, setting 

the stage for future research directions. 

Chapter 6, the concluding chapter, synthesizes the journey of discovery and 

innovation detailed in the thesis. It revisits the development of the PLD system, the 

exploration of BFO materials, and their application in neuromorphic devices. 

Highlighting the achievements and potential future research areas, such as multilayer 

structure optimization and the influence of magnetic fields, this chapter reflects on the 

broader implications of the research and envisions a dynamic future for BFO 

neuromorphic devices in advancing computing technologies. 
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Chapter 2: 

Construction of a reactive pulsed laser deposition 

system, deposition, and Characterization of BFO thin 

films 

2.1. Introduction 
 

Pulsed Laser Deposition (PLD) is a thin film deposition technique used in 

materials science and engineering. It works by directing a powerful pulsed laser beam 

at a material inside a vacuum chamber. In RPLD, high-energy laser pulses generate a 

plasma plume by ionizing the target material, which then deposits as a thin film on the 

substrate.[110,111] PLD allows precise control over factors like layer thickness, 

composition, and structure, thanks to its ability to adjust deposition parameters. This 

control, combined with the vacuum environment that prevents outside contamination, 

ensures the creation of high-quality, pure thin films suitable for many different 

uses.[112] PLD is versatile and works with a wide range of materials, from metals to 

ceramics. This flexibility allows for the creation of complex thin films with multiple 

components, layers, and structures. It's used in various fields such as electronics, optics, 

and energy devices, where precise thin film fabrication is crucial. Additionally, PLD 

can evenly deposit thin films across large surfaces, and real-time monitoring techniques 

help keep the process on track.[113,114] As the demand for customized thin films 

grows, PLD continues to play a vital role in driving innovation and developing 

advanced materials and technologies.[115] 

This chapter describes the construction of a reactive pulsed laser deposition 

(RPLD) system and its calibration. Using this home-built system, thin films of Bismuth 

iron oxide (BFO) were deposited. The films were characterized, and the deposition 

process was optimized. This chapter begins with the discussion on theoretical aspects 

of the process of PLD, then parameters of PLD, and the essential components the pulsed 

laser deposition system.[110,116] 

This chapter describes about the design and construction of the PLD system. 

While we discuss the processes, we delve into the laser's properties, such as the pulse 
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energy and wavelength, highlighting their roles in precise deposition control. To 

optimize the deposition process, we fine-tune individual parameters and establish a 

calibration curve based on varying deposition times while keeping other variables fixed. 

For the surface morphology analysis, we employ atomic force microscopy (AFM) to 

estimate the film roughness. Additionally, we rely on X-ray photoelectron spectroscopy 

(XPS) to understand the stoichiometry and X-ray diffraction (XRD) to analyse the 

crystallinity of the films.  

This chapter concludes with the complete design and working of the PLD system 

and the BiFeO3 films deposited using the system. These insights provide the foundation 

for subsequent chapters, where we explore BFO-based memristors for neuromorphic 

applications 

2.2. Construction of the Reactive Pulsed Laser Deposition 
System 

2.2.1 The process of pulsed laser deposition 

PLD is a versatile physical vapor deposition technique, which employs a high-

power laser for the ablation of the target materials, which leads to the film deposition 

on the desired substrates.[117] It consists mainly of a vacuum chamber with a 

transparent port for laser entry. The two main components inside the vacuum chamber 

are the target and the substrate holder. The target material and the substrate are oriented 

parallel, facing each other at a specific distance apart. The laser focused to the target 

ablates the target material creating a plasma plume, which moves normal to the surface 

of the target. A thin film of the target material is gradually developed on the substrate 

that is exposed to the plume. Substrate temperature is regulated by the substrate heater 

embedded in the substrate holder.  
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The process of pulsed laser deposition is composed of different stages.  

2.2.1.1 Laser ablation of target 

The essential processes of a Pulsed Laser Deposition (PLD) instrument, which 

are critical for fabricating thin films, include laser ablation, plasma formation and its 

expansion, and the nucleation and growth of materials on a substrate. 

Laser absorption 

Ultra-short laser pulses facilitate material removal through a combination of 

thermal and nonthermal processes, which are not exclusively dependent on the target 

material's ability to absorb light.[118] At the outset, non-thermal interactions are 

predominant, with photons inducing electron transitions within the material. 

Multiphoton excitation can occur when two photons simultaneously excite a molecule 

within picoseconds.[119] The Beer–Lambert law is used to calculate how deeply laser 

light penetrates the material, which is critical for estimating non-thermal effects. For 

thermal interactions, processes like Pulsed Laser Deposition (PLD) involve rapid 

heating of localized areas, potentially causing mechanical stress and other side effects. 

The ejection of material is a result of both electronic and thermal ejection mechanisms, 

where heat-induced bond cleavage can lead to molecule desorption and 

fragmentation.[120] 

 
Figure 2.1 Schematics of a Pulsed Laser Deposition System 



50 
 

2.2.1.2 Plasma plume dynamics 

 

Figure 2.2 Pulsed Laser Deposition 

Laser light is absorbed not just by the solid target but also by the vapor it creates, 

leading to complex reactions that eject electrons and energize the plasma. As the vapor 

gets denser, it forms a layer that propels the plasma's expansion. In the early stages of 

plasma formation, lighter elements and electrons race ahead while heavier one’s trail 

behind, creating a natural sorting effect. This separation sets up an electric field that 

further boosts the ions, shaping how the plasma expands and what will reach the 

substrate forming the film.[121,122] 

2.2.1.3 Film nucleation and growth 

The plasma plume gets to surface of the hot substrate. The plume species get 

absorbed into the surface of the substrate by either physisorption or chemisorption. Low 

coverage of the plume results in the diffusion, where atoms hop on energetically 

favourable positions while the high coverage can result in chemical diffusion due to 

chemical interactions between the atoms. A defect free surface helps in diffusion. 

Cluster formation on the surface is determined by the surface tension of the clusters and 

the surface free energy of the substrate.[123] 

 In thin films, atoms aggregate via heterogeneous nucleation to a critical size 

before stable growth. Different growth modes depend on the binding interactions within 

the film as well as between the film and the substrate.  
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Volmer-Weber (Island Growth): Characterized by the nucleation and growth of 

isolated islands of material on the substrate, this mode typically results in non-uniform 

films with rough surfaces due to the discontinuous nature of the film formation. 

Frank-van der Merwe (Layer-by-Layer Growth): This mode involves the 

deposition of material one atomic layer at a time, leading to the formation of smooth 

and continuous films. It is ideal for producing films with high uniformity and minimal 

surface roughness, though it may not always accommodate strain effectively. 

Stranski-Krastanov (Layer-plus-Island Growth): Initially follows the layer-by-

layer growth mode but transitions into island formation after a few monolayers. This 

mode offers a balance between achieving a smooth film surface and relieving strain 

within the film, making it advantageous for maintaining crystalline quality in materials 

that experience significant lattice mismatch with the substrate.[123,124] 

In this thesis, the Stranski-Krastanov growth mode is preferred for the deposition 

of BiFeO3 films. This mode is chosen because it effectively combines the smooth 

surface morphology typically achieved through layer-by-layer growth with the strain-

relief benefits of island formation. This balance is crucial for maintaining the film’s 

crystalline quality and minimizing defects that could impact the performance of 

neuromorphic devices. 

 

Evidence supporting the preference for the Stranski-Krastanov growth mode is 

drawn from X-ray Diffraction (XRD) and Atomic Force Microscopy (AFM) analyses. 

XRD results indicate a high degree of crystallinity and well-defined peaks 

corresponding to BiFeO3, suggesting that the film has maintained its structural integrity 

during growth. Additionally, AFM images reveal a smooth surface with occasional 

islands, consistent with the expected morphology of films grown via the Stranski-

Krastanov mode. These observations confirm that this growth mode is the most 

effective for achieving the desired properties in our BiFeO3 thin films.  

2.2.2 Parametric influences in pulsed laser deposition 

PLD is a versatile thin film deposition technique for depositing diverse materials 

with tailored properties. Stochiometric transfer of the material from the target to the 
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substrate is the key highlight. In PLD one can adjust the structure, composition, and the 

density of the thin film. Vapor species is dependent on different parameters. One can 

refer to the existing literature to start with deposition of a material initially, however, 

needs to optimize the parameters for different PLD systems. Main parameters to 

optimize include laser power, working gas environment, substrate, and target. 

Table 2.1 Laser parameters and influence on the deposition 

 

Laser Parameters 

 

Parameter Significance 

Wavelength For better absorption 

Fluence High enough to sustain ablation 

Pulse width Controls the laser-target interaction time 

Repetition rate Controls the deposition rate 

Spot size Controls the uniformity of ablation and hence film 

  

Deposition Conditions 

 

Background gas Act as reactant and controls the kinetics of the ablated species. 

Target substrate 

distance 

Trade-off between thickness and span of deposition on substrate 

Substrate 

temperature 

For optimal growth conditions 

2.2.2.1 Laser 

The following laser parameters are discussed in detail here: 

Wavelength selection 

The wavelength needs to be selected properly for pulsed laser deposition. Band 

gap of the material determines the laser wavelength required for pulsed laser deposition. 

Common lasers used for PLD include, ArF, KrF, XeCl, and Nd: YAG.[125] Deposition 

of metals by laser ablation is inefficient because of the reflection by conduction band 

electrons.[126] However, oxides absorb the UV well. Laser wavelength selection hence 
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allows to target specific bonds in the target material. Overall plume composition and 

hence the film quality can be determined by the wavelength of the laser.  

The decision to use an Nd laser (1064 nm) was based on its ability to match the 

bond energies in the BiFeO3 target, allowing for controlled ablation and deposition. If 

a KrF excimer laser (248 nm) were used, its higher photon energy could result in more 

aggressive ablation, potentially increasing the deposition rate but also introducing more 

defects in the film. This could compromise the film quality, particularly in terms of 

surface smoothness and crystalline integrity. A comparison from the literature supports 

that while KrF lasers can increase deposition efficiency, they may also lead to higher 

defect densities compared to Nd lasers, which offer more controlled growth 

conditions.[127–129] 

Here we have used UV (third harmonics of Nd: YAG laser with wavelength 355 

nm) for laser ablation of the Bismuth iron oxide target. 

Pulse width and pulse energy. 

In PLD, laser-target interactions are crucial in early stages of material ejections. 

Pulse energy density controls the plume ejection efficiency which in turn is determined 

by pulse width and energy of the laser pulse.[120] Ejection and plasma formation 

happens at an order of picoseconds. Femto-second pulses generate high electron 

densities, while nanosecond ablation is suitable for depositing complex films due to 

monoatomic species formation. Ablation threshold determines if the removal of a 

material is predominantly thermal or non-thermal.[130] In our experiments case, laser 

with pulse width of 8ns was used and the energy density of the beam was 4 J/cm2. 

Spot size 

The laser beam is focussed using a lens, effectively reducing the area of the beam 

to a spot. The size of the spot determines the plume size and material characteristics of 

the hence deposited thin film.[131] Intense plasma created by focussed laser affects the 

removal of the particles. The energy density of the laser determines the ablation of the 

target, which will be very high upon focusing.[120] 

We have focussed the laser beam to a spot size of 1 mm2, and all the deposition 

of the BFO films are done at an area energy density of 4 J/cm2. 



54 
 

2.2.2.2 Gaseous environment 

Inter-particle collisions happen as the ablated particles travel from target to 

substrate within the plasma plume. They occur at the plume's contact front with the 

surrounding gas and near the substrate surface. Usage of the background gas during 

deposition allows controlling film composition and reduce particle energy. Several 

factors like gas pressure and reactivity impact the extent of the collision and chemical 

reactions during travel, affecting the formation and thus the properties of the films. 

The vacuum chamber is initially evacuated and then the background gas is filled 

to provide the deposition atmosphere. Initial vacuum is set to 10-6 mBar and with 

background gas filled to chamber, the working pressure becomes 10-2 mBar. The 

atmosphere inside the vacuum chamber affects the ions in the plasma plume that is 

ejected towards the substrate. The energy of the ions reaching the substrate surface 

hence is affected by the background gas. With the use of background gas one can add 

elements to contribute to the thin film deposition as, usage of oxygen as background 

gas will ensure oxygen in thin films. Hence, oxygen hence is while depositing the oxide 

thin films. Gas type as well as the pressure while deposition causes its effect in the film 

properties like crystallinity as well as the film thickness. [132] In this pulsed laser 

deposition system, we have used oxygen when depositing bismuth iron oxide as to 

ensure the proper incorporation of the oxygen element to the BFO thin films. 

Pressure of the background gas plays important role in plasma kinetics and hence 

do control the collision of the particles to the surface of the substrate.[133] Usage of a 

reactive gas like oxygen will also influence the elemental composition of the depositing 

thin film. During the deposition there exists three different pressure regions inside the 

vacuum chamber. These are 1) low pressure regime 2) transition regime and 3) diffusion 

like regime. In low pressure regime, there exists the minimal gas interaction, resulting 

in comparatively thicker film. In transition regime, plume interacts with the gas 

resulting in the variation in the elements across the film. This happens on a range of 10-

3 to 10-2 mBar. Diffusion like region happens in the range of 10-2 to 1 mBar. This is 

where the species gets slow down, and the film get even distribution. While deposition 

of the BFO thin films, we have kept the pressure around 3 x 10-1 mBar and are giving 

uniform even films over an area of 1 inch2. 
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2.2.2.3 Substrate 

From the plume generated by the laser, the thin films grow on the substrate. The 

substate will be already in an elevated temperature to ensure the proper diffusion and 

reaction of the atomic species. The ionic species arriving at the substrate surface diffuse 

and reacted with each other to form the film. This results in the layer-by-layer growth 

of the thin film on substrate surface. Highly ordered monolayers need high diffusion. 

Also, the substrates lattice compatibility is essential for better nucleation of the film to 

the surface. High temperature depositions usually result in better crystalline thin films. 

Optimal temperatures are crucial for the optimal deposition of the thin films. The 

crystallinity of the film is affected by the substate temperature, is a common 

observation.  Also, the substrate needs to be chosen as it affects the strain/ defects 

develops in the film during the growth. Surface stability will be determined by this 

factor. And finally, the choice of substrate dependents on the type of measurements or 

the structure of the device to be fabricated. 

We have used Fluorine doped tin oxide (FTO)coated glass as the substrate. The 

main reason for selecting FTO is that it is a highly conducting material with high-

temperature stability, and it is a standard substrate for device fabrication. The substrate 

temperature of the deposition was deliberately brought down to comparatively lower 

temperatures of 400o C, to make sure that the process temperature is in range of existing 

CMOS processes, because finally, these neuromorphic devices will have to be 

integrated to the existing CMOS technology. 

2.2.2.4 Target 

Pulsed Laser Deposition (PLD) being the technique that enables the transfer of 

complex stoichiometries from a target to a substrate, with the target's composition being 

critical for the stoichiometry of the resulting thin films. However, there are challenges 

in achieving the desired compositions due to the material's properties and atomic 

composition. The physical properties of the target such as its crystallinity and density 

are also key to producing high-quality films. 

Material and composition 

The composition of a thin film may not always be the same as in the target, but 

variations are possible in the exact composition and stoichiometry. Lighter elements are 

prone to scattering, leading to their faster depletion from the substrate. The difference 
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in atomic mass can cause more pronounced compositional deviations. The 

stoichiometry of the film is also affected by the volatility of the elements, which tends 

to reduce the presence of light or volatile elements. To counter these issues, deposition 

parameters can be adjusted to ensure the film composition aligns with the target. The 

energy required for ablation is determined by the target material's band gap, dictating 

the laser wavelength used. However, using high laser fluence can lead to droplet 

formation on metallic targets, which compromises the quality of the film. Finally, the 

composition of both the target and the film can evolve during the deposition process 

because of melting and vaporization. 

Surface quality 

Target density dictates the thin film characteristics and finish quality. For optimal 

deposition in PLD, material density must exceed 90%. Ablation causes surface 

degradation and thus the plume features as well, which eventually alters the film content 

and uniformity. Clean surfaces require pre-ablation polishing. Bidirectional ablation 

lessens particulate directionality. Secure storage and target pre-ablation preserve optical 

traits. 

Target to substrate distance 

In PLD deposition, the ablated material is mostly confined within a 30° range in 

the solid angle of the plume. The distance from the target to the substrate dictates the 

angle and density of the plume, influencing film thickness and composition. Larger 

distances yield thinner films; conversely, shorter distances amplify species rebound due 

to high kinetic energies. Interactions between plume species and background gases are 

critical for the distribution of the elements in the film, particularly below the mean free 

path distance and with reactive gases. 

2.2.3 Components and design of the PLD System 

In this section, we are examining the components of the PLD system individually. 

All these components have been customized to work together for the development of 

the PLD system. With the PLD process in mind, we have designed, modified, and 

integrated these components. 
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2.2.3.1 Laser: 

 One of the essential components of a Pulsed Laser Deposition System is the laser. 

Solid state lasers are usually preferred with the PLD systems. Primarily the lasers are 

chosen depending on the wavelength, suitable for a particular choice of material 

ablation. Pulse length can affect the ablation and film growth. In this PLD, we used 355 

nm wavelength laser, which is the third harmonic of ns and an Nd: YAG solid state 

laser. The pulse width and repetition rate of the pulses were 8 ns and 10 Hz respectively.  

2.2.3.2 Vacuum chamber: 

A high vacuum is required in the deposition chamber to control the behavior of 

particles and plasmas. The rate at which particles deposit on surfaces and the mean free 

path—the average distance particles travel before colliding—can be calculated with 

specific equations. As the pressure decreases, particle deposition slows down, and that 

mean free path increases, significantly influencing the plasma's activity within the 

chamber. 

 
Figure 2.3 PLD System 
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Figure 2.4 Deposition system 

The vacuum chamber diameter was 30 cm and height were 40 cm. There were 

two vacuum pumps to facilitate the evacuation process. The rotary vane pump was used 

to take the internal pressure close to 0.01mBar and then the high vacuum pump takes 

the pressure to 10-5 mBar. We employed the diffusion pump as the high vacuum pump. 

 
Figure 2.5 Deposition chamber 

After reaching the high vacuum, we allow a regulated flow of working gas inside 

the chamber at a required pressure by letting the gas through a Mass flow controller. 

Ones the required pressure is reached, the deposition can be done. 
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2.2.3.3 Target holder.  

Ablation experiments utilize targets that are typically rod-shaped or disk-shaped, 

each with distinct advantages. To prevent surface cratering, the target's position must 

be continually adjusted during the laser ablation process. Rod-shaped targets are 

mechanically simpler and allow for the construction of layered structures, yet they 

demand precise alignment to ensure consistent ablation. On the other hand, disk-shaped 

targets are more straightforward to manufacture and feature customizable movements 

that facilitate even ablation across the target surface.  We are using disk shaped targets 

with a diameter of 1 inch, 0.25-inch thickness in this PLD system. The BFO targets are 

99.9% pure and are bought from ACI Alloys, Inc. (SanJose, USA). The target is set to 

rotate while deposition to ensure uniformity in target consumption. We designed the 

target carousal and finally realized it resourcing it externally to integrate with the 

deposition chamber.[112]  

 
Figure 2.6 Lens adjuster designed 

Figure 2.6 shows the design of a crucial component, the lens adjuster, which plays 

a pivotal role in focussing the laser beam to the target. Figure 2.7 highlights the 

successful integration of this lens adjuster into the system. In Figure 2.8, we see a 

substrate holder equipped with a heater, ensuring precise temperature control during 

experiments. Lastly, Figure 2.9 presents a multi-target carrousel, a key element that 

efficiently manages and selects multiple targets within the system, for various 

experiments and applications. The target holders were specifically designed for one-
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inch diameter targets. The chosen target is positioned in front of the laser to intercept 

the laser beam and create the plume. 

 
Figure 2.7 Lens adjuster integrated into the system 

 

2.2.3.4 Heater and substrate holder.  

 
Figure 2.8 Substrate holder with Heater 

. 
The growth of crystalline materials requires high substrate temperatures, which 

is achievable by resistive or laser-based heaters that can reach up to 1000°C. The 

geometry of these heaters influences the volume of the chamber that is heated and the 

density of the plasma, which in turn affects the growth of the material. Here we have 

the heater which can go up to 1000° C, however for the deposition we have used a 
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substrate temperature of 400° C to make sure that the process is compatible with the 

existing CMOS technology. 

 
Figure 2.9 The multi-target Carrousel 

Heater and substrate holder is designed according to the chamber and 

specifications are made to sure that the heater goes over 1000o C for most of the PLD 

depositions. Finally, then realized using a company to later be integrated to the 

deposition chamber.  

 
Figure 2.10 A pictorial representation of plume ablation when laser pulses strike the 

target 

Figure 2.10 illustrates the plume ablation phenomenon generated by laser pulses 

impacting the target. In Figure 2.11 captures the photograph of the deposition. 
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Figure 2.11 Photograph of the plume 

2.3. Deposition of BFO Thin Films 
 

We have developed the reactive pulsed laser deposition system. Having many 

parameters influence in deposition, it is crucial to optimize the parameters to have a 

controlled thin film deposition. After going through many iterations of varied 

parameters we arrived at the following optimised parameters values. We can have 

different thickness of the BFO film by changing the duration of deposition. 

 
Figure 2.8  Reactive Pulsed Laser Deposition System 
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Figure 2.13 Deposition 

Figure 2.12 illustrates the setup of the Reactive Pulsed Laser Deposition System 

used for the deposition process. In Figure 2.13, we present a photograph of the actual 

deposition process itself. 

Table 2.2 Deposition parameters 

Laser Parameters 

1 Wavelength 355 nm 

2 Fluence 4 J/cm2 

3 Pulse width 8 ns 

4 Repetition rate 10 Hz 

5 Spot size 1 mm2 

Vacuum Parameters 

6 Base pressure 10-5 mBar 

7 Target- Substrate 

distance 

40 mm 

8 Substrate 

temperature 

400 C 

 

Table 2.2 presents the deposition parameters used in our study. The laser 

parameters included a wavelength of 355 nm, fluence of 4 J/cm², pulse width of 8 ns, 

repetition rate of 10 Hz, and a spot size of 1 mm². In the vacuum chamber, the base 
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pressure was 10-5 mBar, however, later get filled with gas to a deposition pressure of 

0.3 mBar, with a target-substrate distance of 40 mm and a substrate temperature of 

400°C. 

We have deposited multiple BFO thin films with different deposition duration 

such as 2, 5, 10, 20, and 40 minutes to get different thickness. A step-profile was made 

in the film to measure the film thickness for this variation in deposition duration. 

Analysis of multiple measurements gave us the calibration curve, shown in figure 2.14. 

We estimated the rate of deposition of the deposition for particular set of parameters 

and duration of deposition hence can be decided for a desired thickness of BFO film. 

 
Figure 2.14 The calibration curve of BFO deposition for the other parameters 

remains constant 

To establish a calibration curve, we maintained all other parameters constant 

while varying the deposition time. This allowed us to correlate deposition duration with 

thickness accurately. Our analysis revealed that the deposition rate was approximately 

3.5 nm per minute, which enables us to estimate the film's thickness at specific 

deposition durations with precision. 

2.4. Characterization of BFO Thin Films 
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The films' material characteristics have undergone a comprehensive examination 

to assess their suitability for use in the development of neuromorphic devices. This 

detailed analysis involved the application of various techniques. 

Firstly, Atomic Force Microscopy (AFM) was employed using instruments such 

as Naio Nanosurf AFM. AFM allowed us to explore the surface morphology of the films 

and obtain precise measurements of their thickness. These insights are crucial in 

understanding the physical properties of the material. Secondly, X-ray Diffraction 

(XRD) was conducted using the advanced Bruker D8 ADVANCE Diffractometer. This 

technique provided a thorough investigation of the films' structural characteristics. By 

analysing diffraction patterns, we gained valuable information about the crystalline 

phases and grain orientation within the material. Lastly, X-ray Photoelectron 

Spectroscopy (XPS) was utilized with the Thermo Scientific ESCALAB instrument. 

XPS played a significant role in the analysis of the film's chemical composition and 

elemental properties. This technique allowed us to identify the types of atoms present 

and the nature of their chemical bonds. 

2.4.1 Atomic Force Microscopy (AFM) 

 
Figure 2.15 The surface morphology of the films was studied by AFM operating in the 

tapping mode (NaioAFM, Nanosurf) 

We examined the surface structure of the films using Atomic Force Microscopy 

(AFM) with a specific technique called tapping mode. This was done using the Naio 
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Nanosurf AFM instrument. In the provided figure 2.15, you can see the AFM 

topography image of the film, which gives us a visual representation of its surface. 

To quantify the surface roughness of the films, we calculated the root-mean-

square (RMS) roughness, which turned out to be approximately 4.38 nanometers with 

a small margin of error, around ± 0.1 nm. This measurement helps us understand the 

surface roughness variation of the film's surface. The result ensures that the film is apt 

for device fabrication purposes. Additionally, we used AFM to estimate the thickness 

of the film. By analysing the height profile of the film obtained from the AFM data, we 

determined that the film's thickness is approximately 71± 5 nm. This information is 

crucial in characterizing the film's physical properties and understanding its 

dimensions. 

 

2.4.2 X-ray photoelectron Spectroscopy (XPS) 

We utilized X-ray electron spectroscopy (XPS) as a powerful analytical tool to 

investigate the elemental composition of the film. XPS proves to be the optimal choice 

for comprehending the film's composition, enabling us to scrutinize both the broad and 

narrow spectra of its constituent elements. Our analysis encompassed the examination 

of the broad XPS spectra, and the subsequent narrow scans dedicated to the elements 

Bi, Fe, and O. To establish the chemical states of each element, we set a carbon peak at 

284.83 eV as our reference point.[134] 

 
Figure 2. 16 Height profile of the film measured with AFM. 
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Figure 2.17 XPS analysis of the sample showing the spectra of Bi–4f, 

The narrow-scan XPS spectra of Bi 4f, Fe 2p, and O 1s are depicted in Figure 

2.17-2.19, respectively. Notably, the characteristic peak profiles in Figure 2.17 indicate 

that the bismuth within the film exists primarily in the Bi 3+ valence state. Additionally, 

the difference between the bismuth 4f states' peaks, amounting to 5.3 eV, corresponds 

to the 4f5/2 and 4f7/2 states of Bi in its oxide phase,[135] with a slight shift of 

approximately 2 eV observed. 

 

Figure 2.18 XPS analysis of the sample showing the spectra of Fe–2p 
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Figure 2.19 XPS analysis of the sample showing the spectra of O–1s. 

Further evidence for the iron's valence state is revealed by satellite peaks, situated 

approximately 8 eV above the 711-eV peak, confirming the prevalence of Fe 3+ in the 

film[136]. We observe that the peaks for both bismuth and iron exhibit shift towards 

higher binding energies, which we attribute to the formation of oxygen vacancies. It 

has been documented that the creation of oxygen vacancies leads to an increase in the 

equilibrium electron density within the system,[137] consequently raising the binding 

energy of the elements.  The existence of oxygen vacancies is discerned by examining 

the ratio of the areas under the curve of the dangling bond to the adsorbed oxygen in 

the O 1s spectrum.[138] In the context of perovskite oxides, this ratio is estimated to be 

1.95. XPS analysis revealed a Bi ratio of 1:1. The oxygen content appeared higher due 

to the presence of adsorbed oxygen. By isolating the contributions of adsorbed and 

lattice oxygen, we determined the film composition to be BiFeO₂.₉₋₃, accounting for the 

presence of oxygen vacancies. 

2.4.3 X-ray diffraction (XRD) 

To understand the structural characteristics of the thin film, we carried out X-ray 

diffraction (XRD) analysis. The XRD pattern of the BFO thin films deposited using the 

Pulsed Laser Deposition (PLD) method was obtained using the Cu Kα line with a 

wavelength of 1.54 Å. In the resulting XRD spectrum, a prominent peak at 32.5° 

dominates.[139,140] This peak corresponds to the (110) plane of the rhombohedral 

distorted perovskite structure, characterized by a space group of R3c (JCPDS 72-2035). 
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Importantly, this finding suggests the presence of a single-phase structure, with no 

detectable secondary phases. Additionally, we observe minor diffraction peaks 

indicating the (200) and (210) planes. 

The figure 2.21 represents the molecular structure of bismuth iron oxide (BFO) 

using BURAI software. Simulating the rhombohedral perovskite structure within the 

software, we observed that the XRD simulation yielded a dominant peak at 

approximately 32 degrees.  

 

Figure 2.20 XRD pattern of BFO film 

One can calculate the average crystallite size (D) in the direction of diffraction 

using the Scherrer equation [141] with the given values: 2𝜃𝜃 = 32.5°, FWHM of the peak 

(β) = 0.0339 radians, Wavelength of X-ray (𝜆𝜆 )= 1.542 Å (angstroms) and Scherrer 

constant (𝚱𝚱) = 0.9  

Using the Scherrer equation: 

𝐷𝐷 =
Κ𝜆𝜆

𝛽𝛽 cos (𝜃𝜃)
 

Now, calculating 𝐷𝐷,  we get around 42.4  Å.  

So, the average crystallite size D in the direction of diffraction is calculated to be 

approximately 42.4 angstroms. Remarkably, this estimation aligns well with the grain 

size we observed during our atomic force microscopy analysis. This convergence 

underscores the consistency of our findings across different analytical techniques. 
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Figure 2.21 Rhombohedral distorted perovskite structure - software: BURAI. 

2.5. Conclusions 
 

PLD is a versatile technique that allows for precise control during thin film 

deposition, maintaining target stoichiometry. This chapter extensively details the 

establishment of a reactive pulsed laser deposition system for Bismuth Ferrite (BFO) 

thin film deposition, emphasizing thorough parameter optimization for efficient, high-

quality film production. We commenced by introducing the deposition method, delving 

into the theoretical aspects, and exploring the factors influencing PLD. Subsequently, 

we discussed the design and construction of the PLD system, highlighting its tailored 

components. 

With the developed system, we conducted depositions to optimize parameters, 

achieving good-quality films. We determined a deposition rate of 3.5 nm per minute for 

fixed parameters and conducted extensive film quality analyses using AFM, XRD, and 

XPS methods, revealing a roughness of approximately 4.38 nm and a thickness of 

roughly 71 nm for 20 minutes of deposition. The XRD spectrum indicated a single-

phase (110) rhombohedral perovskite structure without secondary phases, confirming 

the film's composition as BiFeO3. 

Having successfully deposited high-quality BFO thin films using the self-built 

reactive PLD system, we proceeded to employ these films in the fabrication of BFO 

neuromorphic devices in the subsequent chapters.  
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Chapter 3: 

Fabrication and Characterization of a BFO 

Neuromorphic Device 

 
3.1. Introduction 

The development and progression of neuromorphic technology find their roots in 

the intricate functionalities of synaptic networks inherent to biological neural networks. 

These networks exhibit a remarkable capability for the parallel processing of numerous 

information streams concurrently.[13,142] Such an ability, when translated into 

electronic systems, presents unprecedented opportunities to navigate and potentially 

circumvent the limitations imposed by the von Neumann architecture that characterizes 

contemporary computing systems.[4,143] The fundamental inspiration behind this 

technological evolution stems from the human brain's complex structure, comprising 

approximately 10 billion neurons interconnected by around 100 trillion synaptic 

connections.[14,144] This intricate network facilitates the simultaneous processing of 

information, with the energy efficiency of processing a single bit of information in the 

brain being significantly superior to its electronic counterpart—about 10 femtojoules 

in the brain versus 10 picojoules in electronic circuits.[44,45] 

Recent scholarly investigations have illuminated the capacity of a single synaptic 

terminal to store information up to 4.7 bits. This discovery extrapolates to an astounding 

capacity for information transmission across the brain, reaching volumes of one 

petabyte per second. Such insights advocate for the integration of neuromorphic 

engineering principles into modern information technology systems. By doing so, we 

stand on the cusp of achieving parallel processing capabilities with minimal energy 

requirements.[12] Additionally, the potential for miniaturization inherent in electronic 

systems promises significantly enhanced 'neural' densities, offering speeds that far 

surpass biological counterparts. Recent advancements have seen the implementation of 

two-terminal capacitor-like devices and three-terminal transistor configurations in 

crafting artificial neural network circuits.[33,51,52] These developments have paved 

the way for realizing arrays of neural devices, with several applications in artificial 

intelligence already coming to fruition. 
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Delving into the biological paradigms that inspire these technological 

advancements, we observe that communication within real biological neurons is 

facilitated through synapses, which serve as bridges between neurons.[22] These 

synaptic connections involve a complex process whereby an action potential in one 

neuron triggers the release of neurotransmitters, which then bind to receptors in a 

neighbouring neuron, prompting the transmission of the signal. Emulating this 

biological phenomenon, simple electronic synapses are conceptualized as capacitors, 

with electrodes representing the pre and postsynaptic terminals separated by a dielectric 

material acting as the synaptic cleft.[45,51,70] Among the neuromorphic devices, two-

terminal memristors stand out as particularly effective analogues for artificial synapses. 

Neuromorphic devices are characterized by their response to voltage pulse inputs, 

mirroring the action potentials in biological neurons. The memory response of these 

devices, differentiated into short-term and long-term plasticity, is critical for mimicking 

the adaptive learning and memory retention capabilities of biological systems.[145–

147] The exploration of various materials and configurations for neuromorphic devices 

has led to significant discoveries and innovations, particularly in the development of 

memristive devices that offer simpler fabrication processes and mechanisms.[63,65,67] 

A noteworthy contribution to this field is the development of BiFeO3 (BFO)-based thin 

electronic synapses, which exhibit high reproducibility, synaptic responses, and 

linearity essential for neuromorphic applications.[53,81,82] The BFO thin films, 

prepared via pulsed laser deposition on fluorine-doped tin oxide glass, demonstrate 

promising neuromorphic functions such as long-term potentiation and depression, 

standing out for their linear response to voltage pulses—a critical feature for their 

integration into functional circuits.[80] 

In summary, the journey towards neuromorphic technology is marked by an 

interdisciplinary effort to replicate the unparalleled efficiency and parallel processing 

capabilities of biological neural networks in electronic systems. Through the 

development of novel materials and device configurations, this field promises to 

revolutionize our computational capabilities, paving the way for more efficient, 

scalable, and intelligent computing architectures.[44,144,145] 

In Chapter 2, the details of the construction and optimization of the Pulsed Laser 

Deposition (PLD) system and the deposition of the Bismuth Ferrite BiFeO3 (BFO) were 
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discussed in detail. This Chapter is an exploration of (BFO) Neuromorphic Devices, 

which represent a promising avenue in the field of neuromorphic computing due to their 

unique properties that emulate certain aspects of the human brain. This chapter delves 

into the fabrication processes and conducts an in-depth study of BFO Neuromorphic 

devices, unravelling their distinct characteristics. 

The investigation commences with a meticulous examination of how BFO 

devices respond to electrical pulses, revealing the remarkable neuromorphic properties 

that set them apart from other materials. This distinctive behavior underscores the 

potential utility of BFO in neuromorphic computing, as it offers a platform for 

mimicking neural processing within artificial systems. 

To gain deeper insights into the neuromorphic properties of these devices, a 

detailed analysis of parameters such as off-current, duty cycle, and paired pulse 

facilitation is conducted.[33] This analysis not only elucidates the nuances of BFO 

device behavior but also paves the way for fine-tuning their performance to cater to 

specific neuromorphic applications. The meticulous examination of these parameters 

enhances our understanding of how BFO devices can be harnessed effectively within 

neuromorphic systems. 

 
Figure 3.1 Representation of a biological synapse 

An important aspect of this chapter is the investigation into spike timing 

dependent plasticity (STDP) in BFO devices, a fundamental concept in neuromorphic 

systems that elucidate the type of plasticity associated with the devices. STDP governs 
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the strength of synaptic connections based on the timing of neural signals, a mechanism 

that plays a crucial role in learning and memory processes. Understanding the STDP 

characteristics of BFO devices sheds light on their adaptability and dynamic behavior. 

The findings regarding STDP within BFO devices contribute significantly to the 

broader understanding of neuromorphic computing and offer valuable insights for 

future advancements in the field.[37,38] 

 
Figure 3.2 Sketch of the neuromorphic device with BFO layer sandwiched between 

the top layer (Gold) and Bottom layer (FTO) 

In the biological neurons, communication takes place through synapses, which 

are the connecting links between two neurons. A synapse is a junction between two 

neurons, where the presynaptic neuron releases neurotransmitters that influence the 

activity of the postsynaptic neuron. When an action potential arrives at the neurons 

through the dendrites, it triggers the release of neurotransmitters from synaptic vesicles 

of the pre-synapse into the synaptic cleft. These neurotransmitters then bind to specific 

receptors on the postsynaptic neuron, potentially initiating an action potential in the 

postsynaptic neuron, facilitating signal transmission between neurons. This electrical 

signal in the postsynaptic neuron is known as the excitatory postsynaptic current 

(EPSC).[16,22] 

To emulate this synaptic behavior in neuromorphic devices, a simple electronic 

synapse model is proposed. In this model, one electrode represents the presynapse, the 

other electrode acts as the post synapse, and the medium between them mimics the 

synaptic cleft. Typically, a dielectric material is used as the synaptic medium that 

emulates the synaptic behavior of biological neurons.  
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Figure 3.3 An array of neuromorphic devices fabricated for testing 

The film has a thickness of 70 nm, with gold contacts measuring 1 mm² in area 

and 150 nm in thickness. Within this framework, two-terminal memristors emerge as 

excellent candidates for artificial synapses due to their ability to modulate electric 

current responses in response to voltage pulse inputs with specific duty cycles or 

frequencies. 

 
Figure 3.4 An array of neuromorphic devices fabricated in crossbar architecture 

 

The foundation laid in this chapter, both in terms of understanding BFO 

neuromorphic devices and the emulation of synaptic behavior, sets the stage for the 

practical implementation of artificial neural networks and neuromorphic systems in the 

subsequent chapters of this thesis. The response of neuromorphic devices to external 

voltage triggers bears a striking resemblance to the way biological neurons react to 

action potentials. These voltage pulses effectively mimic the action potentials elicited 

within the complex neural networks of biological systems. Depending on the speed at 

which the neuromorphic system responds to input signals and the duration for which it 
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retains the information, the memory response can be classified into two distinct 

categories: short-term plasticity (STP) and long-term plasticity (LTP).[27,148] An 

important parameter for quantifying the performance of neuromorphic devices is the 

variation in the output function in response to successive action potentials, a 

phenomenon known as paired-pulse facilitation (PPF). 

In neuromorphic engineering, researchers have explored various materials and 

their combinations for the development of two-terminal neuromorphic devices. These 

materials encompass a wide range, including two-dimensional materials, perovskites, 

and both doped and undoped metal oxides and semiconductors. Within this landscape 

of materials and device configurations, the focus of much research has gravitated 

towards two-terminal memristive devices as the preferred electronic element for 

numerous applications. These devices offer simplicity in fabrication and exhibit 

relatively straightforward mechanisms underlying their neuromorphic characteristics. 

The core mechanisms in two-terminal memristive systems often involve partial 

conductive filament formation, oxygen vacancy migration, charge trapping, or interface 

modulation.[24,25,149] However, the inherent variability in these transport 

mechanisms can result in cycle-to-cycle variations due to their uncontrollable nature. 

Thus, the quest for materials that reliably retain neuromorphic responses remains a 

fundamental issue in constructing reproducible neuromorphic elements. 

3.2 Neuromorphic Device fabrication and electrical 
characterisation 

 

This study introduces a novel approach by utilizing thin electronic synapses based 

on BiFeO3 (BFO) that has exceptional qualities such as high reproducibility, robust 

synaptic responses, and modest linearity, all of which are indispensable for the 

realization of efficient neuromorphic elements. BFO stands out as a well-established 

material characterized by its ferroelectric and antiferromagnetic properties. It can be 

seamlessly transformed into thin-film form through the pulsed laser deposition (PLD) 

technique, ensuring that the elemental ratios closely resemble those of the target 

material.  
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The neuromorphic devices constructed using BFO thin films exhibit substantial 

synaptic responses to input voltage pulses, with their conduction mechanisms explored 

in greater detail within this study.  

The deposition of BFO thin films onto fluorine-doped tin oxide (FTO) glass plates 

via pulsed laser deposition (PLD) serves as the foundation for this investigation. A 

comprehensive analysis of the neuromorphic functions of these devices, including long-

term potentiation (LTP), long-term depression (LTD), and spike-timing-dependent 

plasticity (STDP), has been diligently conducted. A crucial property for the utility of 

neuromorphic devices in circuits is the linear response of the excitatory postsynaptic 

current (EPSC) to voltage pulses. Noticeably, most of the materials reported in the 

literature display nonlinear behavior in their synaptic responses (potentiation and 

depression). However, the PPF of PLD-BFO thin films has been scrutinized extensively 

in this manuscript, revealing that the potentiation in BFO devices leading to LTP 

exhibits remarkable linearity, rendering them exceptionally suitable for a wide range of 

neuromorphic applications.[28,48] 

3.2.1 Paired pulse facilitation (PPF) 

The specific synaptic device structure employed in this study consists of a layered 

configuration comprising Fluorine-doped Tin Oxide (FTO) as the bottom layer, a 

central (active) layer of Bismuth Ferrite (BiFeO3), and an upper layer of Gold (Au) as 

electrodes. Subsequently, the electrical characteristics of these devices were carefully 

examined through a series of measurements conducted using a four-point probe-station 

linked to a Keysight 2912A measurement unit. 

To stimulate and record the electrical responses of the devices, carefully tailored 

pulse trains were generated within the measurement unit, aligning with the 

experimental requirements. From figures 3.1-3.3 we get a visual comparison between 

the structural elements of the fabricated device and the biological synaptic connection, 

highlighting the striking resemblance between the two. In this analogy, the BiFeO3 layer 

within the device takes on the role of the synaptic cleft, serving as the interface where 

critical ionic movements crucial for synaptic functionality transpire. Meanwhile, the Au 

layer functions as the pre synapse, while the FTO layer serves as the post synapse. 
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Figure 3.5 Potentiation and Depression 

 

 
Figure 3.6 Increment in the conductance state of the neuromorphic device with series 

of voltage input trains 

In Figure 3.5, the normalized current profiles during the potentiation and 

depression phases, induced by a train of action potentials, are depicted. These action 

potentials are characterized by a 500 ms on-time and a 50 ms off-time, with voltage 

ranging from 0 to ± 2.5 V. As evident from the EPSC plot, the device's response to the 

potentiating voltage pulses adheres to the desired linear behavior, a critical feature for 

neuromorphic circuit designs.  
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In contrast, the depression curve exhibits an exponential decay pattern, 

representing the relaxation of ions back to their original state within the system. This 

decay can be effectively fitted using a double exponential function,  

y = A1 exp (−t/τ1) + A2 exp (−t/τ2), 

where τ1 and τ2 are the time constants.[94] The calculated values reveal τ1 to be 

approximately 14.52 ± 0.91 s and τ2 to be approximately 1.55 ± 0.04 s, implying the 

involvement of two distinct relaxation mechanisms contributing to plasticity 

degradation. The rapid process, characterized by τ2, can be attributed to the swift 

diffusion of ions back to their initial states, while the slower timescale, indicated by τ1, 

may be associated with the polarization and relaxation of electric dipoles within the 

BiFeO3 film. 

In the figure 3.6, we see that the baseline of the conductance for the device with 

consecutive applied voltage inputs are gradually getting higher. With the application of 

the successive pulses, the conduction of the film gets modified due to the redistribution 

of the ions with every voltage pulse. Figure 3.7 shows the mechanism proposed for the 

neuromorphic responses of the BFO films under the application of constant voltage 

pulses.  

 
Figure 3.7 band diagram changes of the BFO device while application of the pulses 

The behavior of the FTO/BFO/Au device when voltage pulses are applied, along 

with the band diagram is shown in the figure 3.7. When a positive voltage pulse is 

applied, the Schottky barrier is reduced, causing oxygen vacancies to drift into the bulk 

of the BFO film, as seen in Fig. 7b. Since the applied voltage (2.5 V) is higher than the 

Schottky barrier (1.7 eV), it causes a downward bend in the BFO band, and the Fermi 
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level of gold (Au) lines up with BFO's conduction band. This alignment allows 

electrons to move across the interface during the positive pulse. 

 
Figure 3.8 PPF for on-time variation 

When the pulse returns to zero, the Schottky barrier returns, and the ions move 

back to the interface, as shown in Fig. 7c. However, applying repeated voltage pulses 

causes a cycle of releasing and partially pulling back the oxygen vacancies. The release 

of vacancies is mostly due to diffusion and the repulsion between ions, while their 

movement back to the interface is driven by the internal electric field from the work 

function difference. Thus, potentiation happens more slowly than depression 

 

Figure 3.9 PPF for pulse amplitude variation. 
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The memory retention time in the device depends on how long it takes for the ions to 

move back to their stable positions. The movement of ions back to the interface is also 

affected by the repulsion between the ions. Here in figure 3.8, we see the increased 

conductance of the device for the increased pulse width. With the on time increasing 

the conductance baseline is increased respectively. 

In Figure 3.9, the conductance for the device when the device with larger pulse 

amplitude is shown. We see that the conductance baseline and paired pulse facilitation 

are increased in correspondence with the increase in the voltage amplitude. Figure 3.10 

illustrates the mean value of the excitatory postsynaptic current (EPSC) exhibited by 

five distinct FTO/BiFeO3/Au devices in response to a voltage pulse train stimulus. This 

stimulus possesses a pulse amplitude ranging from 0 V to 2.5 V, an on-time duration of 

500 ms, and an off-time interval of 50 ms. The EPSC response is notably linear, and it 

demonstrates a remarkable relative enhancement factor, exceeding 650% concerning 

the current generated by the initial pulse. It is noteworthy that all BiFeO3-based devices 

exhibit a similar, if not more substantial, potentiation enhancement with successive 

action potentials. 

 
Figure 3.10 Spike number dependent plasticity (SNDP) 
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Figure 3. 11 Polarization characteristics of the BFO film 

To delve further into the influence of polarization, dielectric polarization 

measurements were conducted on Au/BiFeO3/Au devices, as depicted in Figure 3.11. 

Given the limited film thickness of only 70 nm, the electric field was carefully restricted 

to ±15 kV/cm to prevent field-induced defect generation and Fowler−Nordheim 

tunneling.[75,78] Nonetheless, the film still exhibited a remarkable polarization of 1.5 

μC/cm2. It is important to note that although BiFeO3 is renowned for its multiferroic 

properties and giant polarization, the observed values in this study appeared to be 

significantly lower, mainly attributed to the presence of oxygen vacancies within the 

BiFeO3 films, which in turn contributed to higher conductivity levels. This discrepancy 

highlights the complex interplay of material properties in these neuromorphic devices, 

warranting further investigation and analysis.[78,150] 

3.2.2 Spike timing dependent plasticity (STDP) 

The foundational concept of Hebb's postulate underlines the fundamental 

principle governing synaptic plasticity within neural connections. According to this 

postulate, synaptic plasticity arises as a consequence of the persistent and repetitive 

interaction between postsynaptic neurons and presynaptic neurons. This enduring 

stimulation leads to the reinforcement and strengthening of synaptic connections, 

ultimately resulting in a phenomenon known as long-term plasticity (LTP). In practice, 

the plasticity of a synaptic connection is a complex interplay of all the incoming spikes 

arriving at a neuron. Depending on the precise timing of these potentiating and 
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inhibitory pulses, synaptic plasticity can either be potentiated or depressed. This 

nuanced process gives rise to spike-time-dependent plasticity (STDP) in synaptic 

connections.[38] 

 
Figure 3.12 Spike timing dependent plasticity (STDP) of a biological neuron 

(ref.[151]) 

While STDP primarily hinges on the timing of spikes in biological neurons, an 

intriguing parallel can be drawn to electronic synapses. In electronic synapses, a similar 

effect can be induced by employing opposite voltage pulses separated by a time interval 

Δt. This phenomenon bridges the gap between biological neural systems and their 

electronic counterparts.  

 

Figure 3.13 STDP of the BFO neuromorphic devices. a) Voltage pulses b) Characteristics 
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By applying pre- and post-neural pulses with varying time delays, as illustrated 

in Figure 3.13a, we measured the STDP of the FTO/BiFeO3/Au device, as shown in 

Figure 3.13b. 

 
Figure 3.14 Spike number dependent plasticity of the FTO/BFO/Au devices 

In cases where Δt assumes a positive value, the system exhibits potentiation 

characterized by a relatively short timescale of 19.5 ms, indicative of short-term 

plasticity. Conversely, when Δt is negative, the system undergoes short-term 

depression, with a timescale of 15.6 ms. These distinct characteristics bear a striking 

resemblance to the STDP patterns observed in biological neural systems. Notably, these 

findings are pivotal in understanding Hebbian learning and associative learning in 

biological neural systems. This understanding extends beyond biology and finds 

application in the realm of machine learning, where unsupervised learning processes 

are grounded in similar principles.[151] 

Associative learning, a cognitive feature typically attributed to the collective 

activities of several neurons converging on a single synapse in biological systems, can 

be effectively replicated in electronic synapses using a single device.[152] This 

noteworthy development has profound implications for the integration of neural 

functions at a large scale within integrated circuits, all within the constraints of 

nanoscale device dimensions. The ability to mimic such essential learning mechanisms 

in electronic synapses paves the way for more advanced and efficient neuromorphic 

computing systems. 
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Figure 3.15 Linearity diagram 

The concept of plasticity in learning, especially when subjected to repeated 

cycles, plays a fundamental role in comprehending how both human and artificial brains 

adapt to various stimuli. Within the context of this chapter, we delve into a specific 

methodology known as spike-number-dependent plasticity (SNDP) as a means to 

investigate and elucidate this phenomenon. SNDP is a technique that enables us to 

observe alterations in the base-current of a device before and after applying a series of 

action potentials. In essence, it provides us with insights into how the frequency and 

quantity of spikes can modulate the effectiveness of synaptic connections, thus drawing 

a parallel to the process of learning in human brain.[153] 

The significance of SNDP becomes particularly evident in artificial synapse. Our 

research reveals that as we apply more electrical pulses to an artificial synapse, its 

conductivity improves. This observation holds substantial implications for the 

development of devices designed to emulate human synapses. As Figure 3.14 visually 

demonstrates, we illustrate this phenomenon using square wave potential spikes, 

effectively showcasing SNDP in action. Furthermore, we employ this data to 

quantitatively measure the changes occurring within the synapses of our device, thereby 

providing a concrete basis for our findings. 

Beyond SNDP, the role of pulse frequency emerges as a critical factor in the 

behavior of these artificial synapses. This is where spike-frequency-dependent 

plasticity (SFDP) comes into play. SFDP considers the rate at which action potentials 
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are fired, adding an important temporal dimension to the learning and memory 

processes of artificial systems. Our exploration of SFDP offers valuable insights into 

how the precise timing of neural signals influences synaptic strength. This 

understanding holds paramount importance when designing advanced neuromorphic 

systems that aim to replicate not only the structural characteristics of human synapses 

but also their remarkable capacity for learning and retaining information.[149,154] 

In summary, the meticulous examination of SNDP and SFDP in artificial synapses 

stands as a cornerstone in the comprehension of synaptic plasticity. This knowledge is 

of utmost importance in the field of neuromorphic engineering, as it empowers us to 

advance the development of devices that not only mimic the intricate architecture of 

human synapses but also replicate their unparalleled ability to learn and remember 

information, heralding a new era of artificial intelligence. 

3.2.3 Linearity of the synaptic response 

Incorporating electronic synapses into real circuits requires meeting certain 

critical criteria, and among these, the linearity of synaptic weight updates emerges as a 

pivotal factor. This characteristic ensures the precision and reliability of information 

processing in artificial neural networks.[155]  In Figure 3.5, we can discern the inherent 

linearity in the synaptic weight update, particularly in the context of Long-Term 

Potentiation (LTP), where the Excitatory Postsynaptic Current (EPSC) exhibits a linear 

relationship with the number of applied voltage pulses. To rigorously assess the 

linearity of this synaptic weight update, we followed a previously established 

methodology. The resultant theoretical fit, based on experimental data, is presented in 

Figure 3.16. 
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Where Ip, Imin, Imax, Pmax, Id, are Potentiation current, minimum current, maximum 

current, maximum number of pulses to reach that current change, and depression 

current respectively. 
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Figure 3.16 Linearity of the device for potentiation and depression is 0.01 and 5.1 

respectively. 

Our analysis reveals that the nonlinearity factor (NLF) associated with LTP is 

astonishingly low, measuring less than 0.01, while that of Long-Term Depression (LTD) 

stands at 5.1. This stark contrast in NLF values between potentiation and depression 

originates from the underlying physical mechanisms governing these two 

processes.[155] LTP is primarily an electric field-assisted, drift-driven phenomenon, 

wherein the applied voltage pulses play a critical role in facilitating synaptic 

strengthening. Conversely, LTD occurs either in the absence of an electric field, which 

is dominated by diffusion, or when the voltage polarity is reversed. In the latter 

scenario, a complex interplay between drift and diffusion forces prompts the ions to 

return to their original equilibrium distribution. Consequently, the ion migration 

mechanisms in these two cases differ significantly. 

Notably, the NLF values reported in this study are comparable to those of recently 

reported synaptic devices based on materials like MoS2 and graphene. However, our 

devices exhibit superior linearity, particularly in the context of LTP. This enhanced 

linearity bodes well for the practicality of these synapses in applications such as pattern 

recognition, where a high degree of learning accuracy is paramount. To put this into 

perspective, the NLF reported here indicates a learning accuracy exceeding 

95%.[19,94] 
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Figure 3.17 Linearity of the device when compared with other reported devices. 

For a comprehensive assessment of our devices, Figure 3.17 provides a 

comparative chart displaying NLF factors reported in the existing literature, serving as 

a benchmark for the performance of our electronic synapses. This comparative analysis 

reaffirms the exceptional linearity and precision of our synaptic weight updates, 

underscoring their potential significance in the field of artificial neural networks and 

advanced computing systems. 

3.3. Conclusion 
 

In this section, we present a comprehensive summary of the key findings and 

implications of our research on the construction of synaptic devices through the pulsed 

laser deposition of BiFeO3 thin films. The results of our study demonstrate remarkable 

synaptic properties, holding significant promise for advancing the field of 

neuromorphic engineering. Our investigation has successfully yielded synaptic devices 

capable of generating an exceptional excitatory postsynaptic current in response to 

input voltage stimuli. This observed electrical behavior underscores the proficiency of 

BiFeO3 thin films as a promising material for the development of synaptic devices. 

Moreover, the depression curve associated with these devices has revealed the presence 

of two distinct relaxation processes. We have attributed these processes to ionic 

relaxation with a fast timescale and the dielectric polarization component with a slower 
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timescale, shedding light on the complex dynamics underlying the functionality of these 

devices. 

Of particular significance is the observation that our BiFeO3-based synaptic 

devices exhibit remarkable spike-time-dependent plasticity (STDP), a phenomenon 

reminiscent of Hebbian-type associative learning observed in biological neurons. This 

characteristic is of paramount importance for the field of artificial intelligence as it 

opens the door to unsupervised learning mechanisms. Our findings have also 

demonstrated the ability of these devices to engage in repetitive learning, characterized 

by spike number-dependent plasticity (SNDP), further showcasing their potential for 

practical application in neuromorphic systems. 

One critical aspect of our research pertains to the nonlinearity of synaptic weight 

updates. We have calculated the nonlinearity factor for Long-Term Potentiation (LTP) 

to be less than 0.01, equating to a learning accuracy exceeding 95%. This exceptional 

accuracy in synaptic weight modulation underscores the robustness and reliability of 

our devices. 

Looking forward, the potential for further enhancements in device linearity 

through material modifications is a promising avenue of research. By refining the 

properties of BiFeO3-based devices, we can optimize their overall linearity, thereby 

expanding their compatibility with Complementary Metal-Oxide-Semiconductor 

(CMOS) technology. The versatility and adaptability of BiFeO3-based devices hold 

tremendous potential for shaping the future of neuromorphic engineering, providing a 

solid foundation for continued advancements in artificial intelligence and cognitive 

computing. 
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Chapter 4: 

Tuning the neuromorphic properties of BFO Devices 

for Application 

4.1. Introduction 
 

The well-known von Neumann bottleneck of current computer architecture arises 

due to the latency of fetching the data through stringent bus-lines in the conventional 

computers.[156–158] Recent developments in the technology demands an 

exponentially increasing digital data to be administered in the near future. Be it the large 

set of unstructured data from Internet of Things (IoT) sensors or various devices, 

handling them is beyond the capability of conventional computers.[159] Administering 

such large volume of data requires fast and energy-efficient computational techniques 

that goes beyond the von Neumann architecture. Though Artificial Neural Networks 

(ANN) has been widely employed in daily life, the hardware base to perform artificial 

intelligence operations is still the conventional Complementary Metal-Oxide-

Semiconductor (CMOS) platform, which is highly power consuming.[160] Evidently, 

a novel technology that is compatible with the ANN system is the need of the hour to 

replace the von Neumann architecture. Among the various options, Neuromorphic 

technology is a promising emerging technology that emulates the functioning of the 

neurons in biological brain, where multitudes of neurons are interconnected through 

synaptic terminals to form an enormous neural network.[161]  

Several device schemes have been proposed to create neuromorphic 

characteristics, which mainly include memristors, [162–165] and memtransistors.[166] 

Memtransistors is memristive transistors with the advantage that it inherently has the 

1T-1R configuration in a single device, however, at the expense of three terminals per 

device. Memristive neuromorphic devices are simpler in the sense that it has only two 

terminals and the operation and device stacking is comparatively simpler than 

memtransistors. Memristors are faster than the floating gate (flash) memory in write 

and read process and have larger endurance.[166] In memristive neuromorphic devices, 

the history of the previous measurements manifest either as hysteresis in the current-

voltage sweeps, or as successive increase in current for voltage pulses of constant 
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amplitude. While the strengthening of a neural path leads to memory in biological 

neural networks, strengthening of electrical conductivity is emulated in electronic 

synapse by means of manipulating the traps, moving charges, polarizations etc. The 

kinetics of these charges and polarizations will lead to long-range or short-range 

plasticity. Since ions and free charges move swiftly, neuromorphic systems based on 

those generally exhibit short-range memory. In this perspective, several material 

combinations have been examined to enhance the memory per pulse, which is known 

as paired pulse facilitation (PPF), and to increase the memory retention time per pulse, 

which gives the long-term plasticity. A combination of ion kinetics and polarization is 

useful to enhance the memory.[167]  Multiferroic materials are particularly interesting 

candidates for memristive neuromorphic devices due to their large polarizations in 

addition to the inherent oxygen vacancies in the sample. 

Among various multiferroic materials investigated for neuromorphic 

applications, Bismuth ferrite (BiFeO3, BFO) is a ferroelectric material with a large 

ferromagnetic phase transition Curie temperature (1103 K) and antiferromagnetic phase 

transition Neel temperature (643 K) [168] which makes it an important material for 

wide range of applications that range from photovoltaics[134] to optoelectronics, 

spintronics, ferroelectric memory, and magnetic memory applications.[169–171] 

Recently, we have reported BFO as a material with large neuromorphic memory .[167] 

In this work, we show that the linear weight update of the neuromorphic device 

is directly related to the oxygen vacancies present in the film. Researchers have used 

many ways to change the oxygen vacancies in the BFO film they used, some include 

change the concentration of bismuth, hence manipulating the oxygen vacancies.[138] 

Doping is another way to tune the oxygen vacancies in BFO.[172] In this work, we 

changed the oxygen vacancies in the film by changing the oxygen percentage during 

the pulsed laser deposition (PLD) of the film. After deposition the film at different 

oxygen percentage, we confirmed the change in oxygen vacancies in the films using X-

ray Photoelectron Spectroscopy (XPS), and the impact of the oxygen vacancies in the 

paired pulse facilitation (PPF), spike-time dependent plasticity (STDP) and the 

nonlinearity of the PPF has been studied.  
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4.2 Fabrication of the Synaptic Devices:  
 

The BFO synaptic devices were fabricated with a metal−insulator−metal (MIM) 

structure. Device structure is shown in figure 4.4 (b). Bismuth Iron Oxide (BiFeO3) 

films were deposited on the Fluorine doped Tin Oxide (FTO)/ glass substrate using 

pulsed laser deposition (PLD) technique. The BFO target (99.9% pure) was procured 

from ACI Alloys, Inc. (San Jose, USA). BFO thin film neuromorphic devices were 

made in a metal-insulator-metal (MIM) capacitor structure with FTO as bottom 

electrode and gold as top electrode. Gold top electrodes were deposited by thermal 

evaporation. An array of thin film devices is fabricated with a shadow mask of 1 mm2 

area for top electrode.  For pulsed laser deposition, a Nd-YAG solid-state high-power 

laser is used, at a power density of 4J/cm2. Third harmonics of a Q-switched solid-state 

Nd: YAG laser (Quanta Ray, Spectra-Physics) of wavelength 355 nm with a repetition 

rate of 10 Hz and a pulse width of 8 ns was used to ablate the target materials.  Substrate 

temperature of 400 o C is used. The base pressure of the deposition chamber was 10-6 

mbar, but the working pressure during the deposition was maintained at 0.2 mbar.  For 

reactive PLD, oxygen was fed to the system mixed with argon during the deposition, 

maintaining a total 40 sccm gas flow into the chamber. Three sets of samples were 

deposited varying oxygen content as 0% oxygen and 100% Ar (0 sccm oxygen and 40 

sccm Ar), 50% oxygen and 50% argon (20 sccm oxygen and 20 sccm argon) and 100% 

oxygen and 0% Ar (40 sccm oxygen and 0 sccm argon). 

An extensive material analyses of the pulsed-laser-deposited BFO films has been 

reported in our earlier work.[167] Since we are varying the oxygen content in the film 

to examine the linear weight update of the devices, X-ray photoelectron spectroscopy 

(XPS, Thermo Scientific ESCALAB) was employed to analyse the chemical and 

elemental properties of the film. The electrical and neuromorphic properties were 

recorded by a precise source/measure unit (Keysight B2912a). 

4.3 Material Characterization: 
 

We have reported earlier that the BFO films deposited are polycrystalline as the 

XRD patterns indicate and were matching to the space group of R3c, showing a 

distorted perovskite crystal structure. Sharpness of the peak at 32 shows the high 
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crystallinity. It is important to see that the crystalline nature of the films is not changed 

with variation of the oxygen vacancies in the films. XPS was used to find the elemental 

composition of the film. Regardless of the oxygen pressure used, the composition of 

the film is nearly same as the molecular formula BiFeO3, while noticeable changes are 

there with the oxygen vacancies as will be discussed later in this manuscript.  The 

narrow range scan of the bismuth, iron and oxygen are taken for each film and the 

detailed comparison has been done. Figure 4.1 (a) shows the broad-scan spectrum of 

the BFO sample. Figure 4.1 (b) and (c) show the narrow range scan spectra for the Bi 

4f and Fe2p. Similarly, we have details of the element iron, Fe 2p spectra in figure 

4.1(b). Deconvoluted spectra shows binding energies corresponding to Fe 2p1/2 and 

2p3/2, which is due to the spin orbit effect.  Presence of satellite peak at 718 which is 8 

eV to the 2p2/3 shows that the valence state of the iron in the film is 3+.  

 
Figure 4.1 XPS spectra of samples. (a) shows a broad scan of the sample (b)bismuth 4f; (c) 

spectra of Fe 2p electronic binding energy; (d) oxygen 1s spectrum of BiFeO3 deposited with O: Ar = 
1:0, (e) O: Ar = 1:1 and (f) O: Ar = 0:1. The peak at 530.7eV corresponds to oxygen vacancies and the 

peak at 532.6 eV corresponds to the adsorbed oxygen. These relative intensity ratios (RIR) of oxygen 
vacancies to the adsorbed oxygen are 0.101, 0.111, and 0.145 respectively. 

The figure 4.1 (c)-(e) shows the detailed spectra of the oxygen O 1s spectra in 

details. (c), (d), and (e) are in decreasing order of oxygen vacancy concentration in the 

films. We see three peaks for the oxygen spectra given here. Peaks at 530 eV 

corresponds to the metal bonded oxygen atoms. Peaks at 531eV corresponds to the 
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dangling bonds, mainly the oxygen vacancies. Peaks at 532 eV is the presence of the 

adsorbed oxygen. The prominent peak of oxygen is due to adsorption of OH- groups at 

the surface forming the lower energy peak component in the spectra.[173,174]   

Relative intensity ratio (RIR) of the oxygen peaks can help us to determine the relative 

quantity of the oxygen vacancies in the films. Relative peak intensity ratio of the film 

is determined by ratio between the relative intensity of the oxygen-metal bond peak and 

the sum of the peak intensities of the dangling bond and the adsorbed oxygen. Here 

onwards, we refer to the devices as Device 1, Device 2 and Device 3 with RIR in 

increasing order. Assigning the values, we refer Device 1 is with minimum RIR of 

10.2%, Device 2 is with RIR value of 11.05% and Device 3 is with the RIR of 14.51%. 

Figure 4.3 (a) shows the diagram of a biological synapse, through which the 

neurons are interconnected. Fig. 4.3(b) explains the configuration of the device 

fabricated, with FTO as the bottom electrode, BFO as the active medium and gold as 

the top electrode, which decides the device area. Figure 4.3(c) shows the current-

voltage curves plotted as log(I) versus log(V) at the high resistive state (HRS) for 

devices 1,2 and 3. This figure shows that the leakage current through the device depends 

upon the defect density in the films, due to larger space-charge limited conduction. 

Leakage current of the films show a trend that is expected from the defect assisted 

leakage. Figure 4.3 (c) shows the leakage current measured at the high-resistive state. 

The log(I)-log(V) plots have two linear sections, one with slope 1 and another with 

slope 2, which correspond to Ohmic and space-charge-limited current (SCLC) 

conduction regimes. With increasing oxygen content, less oxygen vacancies will be 

present in the film, which in turn reduces the (oxygen-vacancy-related) trap states in 

the material. The first indication of this comes from the lowering of leakage current as 

the oxygen pressure increases. Trap density (Nt) can be calculated from the Ohmic-

SCLC transition voltage (VT) using the expression [175] 

𝑁𝑁𝑡𝑡 = 2𝜀𝜀𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇
𝑞𝑞𝑑𝑑2

       (1) 

where, VTFL is known as the trap-filled-limited voltage, d is the thickness of the 

film and ε is the dielectric constant of BFO. Figure 4.3(d) is a plot between Nt and RIR, 

which shows that the trap density reduces with increasing oxygen pressure during the 

deposition. Comparing with the conclusions made from the XPS data, this result 

confirms that the oxygen vacancies increase with reducing oxygen pressure during the 
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deposition of the BFO films, and they influence the overall conduction mechanisms of 

the BFO layers. 

 
Figure 4.2 X-ray diffraction of the different films shows that despite the oxygen 

vacancy variations among the films, the crystallography remains similar. (a) RIR: 0.101 (b) 
RIR: 0.111 and (c) RIR: 0.145 

Further, we examined the influence of the oxygen vacancies in the neuromorphic 

properties of the BFO devices. This allows us tuning the neuromorphic properties of 

the device as per the application needs. Oxygen vacancies are a key player in the 

conduction mechanisms in dielectric materials and have been extensively studied using 

various techniques.[176] For studying the effect of oxygen vacancies in the 

neuromorphic properties of BFO neuromorphic device, we applied a series of voltage 

pulses and examined the electrical responses from the device. From these responses, 

the main neuromorphic responses such as paired pulse facilitation (PPF), spike-timing-

dependent plasticity (STDP) and linearity of the response have been studied. 

With the series of positive voltage pulses an increase in current is observed, which 

is termed as potentiation and when a reverse voltage pulse is applied, the synaptic 

current diminishes in an exponential way, which is termed as depression.[177]  

Potentiation corresponds to an increased synaptic weightage, while depression 

corresponds to a memory decay. The possibility of electrically activated depression is 

an advantage of the electronic synapse compared to the biological synapse, where 

memory degradation is gradual and occurs over longer timescales.  Normally the time 

constant of the exponential function fitted to the depression curve, one can identify 

whether the system has long range potentiation (LTP) or short-range potentiation (STP). 
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Figure 4.3 (a) A pictorial representation of synaptic connections. The inset image 

shows the representation of a single synapse. (b) A simple BFO neuromorphic device, (c) 
The log (I) versus log(V) plot to explore the conduction regimes of the currents (d) shows 

the trap density in the material (Nt) determined using Equation (1) 

Figure 4.4 (a) shows the potentiation and depression behaviour of Device 1, 

Device 2, and Device 3, where each curve is an average over 5 consecutive 

measurements. For measuring the synaptic weight, a series of voltage train with a peak 

voltage of 2.5 V was applied to the device and its current output was monitored. A 

similar voltage pulse series of peak voltage -2.5V was applied to study the depression 

behaviour.   
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Figure 4.4 The potentiation and depression curves of Device 1, Device 2 and Device 

3 plotted together 

 
Figure 4.5 The synaptic weight as a function of Relative Intensity Ratios of oxygen 

peaks in XPS. 

Figure 4.5 illustrates the synaptic weight of three samples deposited at varying oxygen 

ratios, resulting in different densities of oxygen vacancies, as indicated by their 

respective RIR values. The graph clearly shows that the synaptic current response 

becomes more linear with an increase in oxygen vacancies. Additionally, Figure 4.5 

demonstrates that as the RIR increases (indicating fewer oxygen vacancies), the 

synaptic weight also increases. Synaptic weight, or Paired Pulse Facilitation (PPF), was 

calculated by measuring the percentage change in the output amplitude of the device 
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compared to the preceding pulse.[178] This is a clear indication that neuromorphic 

characteristics are heavily influenced by the oxygen vacancies in the material. 

Neuromorphic devices emulate the basic ion kinetics of biological neurons. Here 

it is achieved by the manipulation of oxygen vacancies in the BFO films. The only 

difference is that the spiking of a neuron in biological neural systems may be caused by 

multiple factors – not only by the neurotransmitters released by the pre-neuron, but due 

to the influence of other neurons connected to it as well. While the coherence of the 

release of neurotransmitters and their entry to the post-neuron gives the highest 

memory, any time delay in releasing the neurotransmitters or receiving them in the post-

synapse considerably affects the memory of the network. This introduces a spike-time 

dependent plasticity (STDP), which determine the Hebbian associative learning 

behaviour of the neural system.[179] In electronic synapse, STDP is estimated by 

measuring the synaptic weight update for pulses when a deliberate time difference 

between the pulses is provided. These pulses represent the voltage spike from a pre-

neuron to post-neuron. One pulse corresponding the release of the chemical from 

preneuron, while the opposite pulse corresponds to the binding of the chemical to the 

post neuron. When the supply (from preneuron) and demand (to post neuron) are 

delayed by a time factor, the probability of quality transaction have an exponential 

impact. If the timing between the two are lesser, the transaction happens with more 

probability and for larger intervals, the transaction probability and hence the quality of 

synaptic weight update reduces considerably. Figure 4.6 shows the STDP measured for 

the devices with different oxygen vacancies. 

Figure 4.6 (a)-(c) show the STDP measured for the devices with different oxygen 

vacancies. All these curves show Hebbian pattern of associative learning, but with 

different potentiation and depression timescales. By fitting exponential functions to the 

data (shown as the solid curves in the figures (a) to (c)), their timescales can be 

extracted.  Figure 4.6 (d) shows the potentiation and depression timescales of the 

devices with various oxygen vacancies, which shows a clear trend of increasing the 

time constant with reducing the number of oxygen vacancies (larger RIR means lower 

density of oxygen vacancies). This can be explained by considering the simple ion 

kinetics in the system. 
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Figure 4.6 STDP measured for (a) Device 1, (b) Device 2, and (c) Device 3. The data 
given is an average of 10 measurements. (d) the time-constants associated with potentiation 

and depression in the Hebbian learning curves shown in (a) to (c). 

Figure 4.7 (a) shows the band diagram of the Au/BFO/FTO device. Since Au has 

a larger work function (5.1 eV) as compared to the electron affinity of BiFeO3 (3.4 

eV),[180] a sudden electron depletion occurs at the Au/BFO interface, which gives rise 

to the BFO bands bending up, introducing a Schottky barrier of 1.7eV at this junction. 

This Schottky barrier separates the electrons in Au and the positive charges (oxygen 

vacancies) in the BFO film.  Thus, a high-density layer of the oxygen vacancies arises 

in BFO layer close to the junction. When a positive voltage pulse of peak voltage V is 

applied, the Schottky barrier lowers by eV, thus releasing the oxygen vacancies into the 

bulk of the BFO film as Fig. 4.7 (b) shows. Since the applied voltage (2.5V) is larger 

than the Schottky barrier (1.7 eV), the band bending is downward in BFO, and the 

quasi-static Fermi level of Au will match with the conduction band of BFO. This makes 

electron pumping across the interface possible during the positive cycle of the pulse. 
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Figure 4.7 The band diagram modulation of the Au/BFO/FTO device explaining the 

mechanism when voltage pulses are applied. (a) Band diagram of the Au/BFO/FTO device 
forming the Schottky junction between Au and BFO. (b) when the voltage pulse is applied, 
the oxygen vacancies diffuse into the bulk of BFO; (c) when the voltage pulse goes back to 
zero, the barrier is restored, and the ions undergo drift and diffusion back to the interface. 

When the voltage pulse comes back to zero, the Schottky barrier is set again, and 

the released ions are driven back to the interface (Fig. 4.7 (c)). However, by applying 

successive voltage pulses of certain duty cycle, continuous release and partial 

withdrawal of oxygen vacancies occur. Due to this dispersion of the oxygen vacancies, 

the conductivity of the medium increases with successive pulses, which manifests as 

the PPF (Fig. 4.4 The release of oxygen vacancies is driven mostly by diffusion and 

inter-ionic Coulomb repulsion, while the withdrawal back to the interface is driven by 

drift due to internal electric field set up by the work function difference. Therefore, the 

potentiation will be slower than depression, as seen in Figure 4.4 (a). How long the 

memory is retained will be decided by the drift and diffusion of the ions back to their 

equilibrium positions, where they are thermodynamically and electrostatically stable. 

The transport of the ions back to the interface can be enhanced or slowed down by the 

Coulomb repulsion between ions. Figure 4.6 (d) suggests that the dynamics of the 

system is slower when the defect density is larger, which is understandable from the 

time taken for the defects to return to their equilibrium positions once they are disturbed 

by an action potential. ∆t in STDP is the timescale between the release of ions from 

their equilibrium positions and their return to equilibrium positions. Similar to the larger 

timescales of electron-hole dynamics in a defective medium, due to the inter-ionic 

Coulomb repulsion, the ions disturbed from equilibrium takes more time to come back 

when the defect density is larger. This trend is evident in the depression curve as well, 
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shown in Figure 4.6, where the exponential decay of the curve is faster for low-defect 

density samples.   

As evident from Figure 4.4 (a), the response of the neuromorphic device to the 

voltage pulses is more linear for the samples with low RIR (larger defect density). 

Nonlinearity in weight update is a topic of wide discussion in the application point of 

view, where a linear circuit will be simpler than a circuit for nonlinear functions. A 

nonlinear synaptic weight saturates as the number of pulses increases, which leads to a 

smaller number of accessible states, while linear weight update has increasing number 

of states.[181] Therefore, for neuromorphic applications, the conductance of   the 

memristor should be linearly tuned with the voltage pulses. If the  conductance 

modulation is not linear, a peripheral circuit should be added to change the   amplitude 

or width of the applied pulse to obtain the linear modulation of conductivity.[182]  

 

Figure 4.8 The nonlinearity of the potentiation and depression of the different devices 
with different oxygen vacancy concentrations: (a) for the highest oxygen vacancies (Device 

1), (b) for lower oxygen vacancies (Device 2) and (c) for the lowest density of oxygen 
vacancies (Device 3). (d) plot between the nonlinearity factors for potentiation and 

depression for these three sets of devices. 
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Nonlinearity factors (NLF) of the potentiation (α)and depression (β) of these 

devices were calculated by exponentially fitting the function using the previously 

reported method.[183] We have taken the potentiation and depression values of series 

of pulses and normalized those. Theoretical fitting to the experimental data for different 

devices is shown in figure 4.8. As figure 4.8 shows, the devices with highest amount of 

oxygen vacancies are having the better linearity than those with less oxygen vacancies. 

Figure 4.8 (d) shows the plot between the NLF of potentiation (α) and depression (β), 

for the three sets of devices with different oxygen vacancies. Device 1 has the highest 

oxygen vacancy density, in the decreasing order to Device 3. Figure 4.8 is a generic 

representation popularly used for neuromorphic pattern recognition, where the 

prediction accuracy is highest when the synaptic weight is linear. Maximum 

nonlinearity for this application is 6 for both potentiation and depression, shown as the 

shaded area in the figure. As evident from the figure, Device-3 with the lowest defect 

density does not satisfy the condition for pattern recognition applications since it is 

highly nonlinear.  

Figure 4.8 (a)-(d) show that the nonlinearity of the devices has an interesting 

correlation with the defect density in it. Further, the potentiation of the devices is more 

linear than the depression part of the corresponding devices. This could be because the 

potentiation is caused by the drift-driven mechanism, while the depression is facilitated 

by drift, diffusion as well as the Coulombic repulsion between the ions. Similar to the 

STDP measurements shown in Fig. 4 (d), the linearity is simply determined by the 

response of the ions to the applied voltage pulses. In a medium of relatively large defect 

density, the system does not reach saturation in potentiation, which is manifested as the 

linear synaptic response.   
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4.4 Conclusion   
 

Here we have studied the synaptic responses of the neuromorphic devices 

comprising BFO with different oxygen concentrations. As the oxygen vacancies 

increase, the mean leakage current is increasing for devices. The devices with larger 

defect density exhibit larger synaptic weight, and the STDP shows larger plasticity time 

constant when the density of the oxygen vacancies is larger. However, when it comes 

to the linearity of the devices, devices with lower defect densities exhibit high 

nonlinearity, which could adversely affect the usage of such devices in applications for 

which linear weight update is required. However, our experiments suggest that the 

linearity of the devices could be tuned by controlling the oxygen vacancies in the 

material. This observation could be of importance for a large span of applications of 

artificial synaptic systems to tune their properties as per the requirements of the 

applications. 
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Chapter 5: 

Pattern recognition using BFO neuromorphic 

devices for advanced artificial intelligence. 

 

5.1 Introduction 
 

Chapter 5 delves into Bismuth Ferrite (BFO) neuromorphic devices and their role 

in pattern recognition. We apply these devices to address practical pattern recognition 

challenges. Our primary aim in this chapter is to leverage BFO devices for pattern 

recognition tasks. We employ neural network models, with BFO neuromorphic devices 

as crucial components in our data processing pipeline. We start by using artificial neural 

networks (ANNs) to achieve high pattern recognition accuracies. Later, we introduce 

Convolutional Neural Networks (CNNs), known for their precise pattern extraction and 

efficiency through fewer training iterations. Our decision to utilize both ANNs and 

CNNs are of interest in efficiency. CNNs, with their exceptional feature extraction 

capabilities, hit a balance between pattern recognition accuracy and resource 

conservation. 

Additionally, we explore parallel processing by combining the computational 

power of multiple neuromorphic devices. This approach enhances efficiency, 

improving the overall effectiveness of our pattern recognition techniques. Throughout 

this chapter, we use schematic diagrams to illustrate the hierarchical structure of neural 

networks and data flow within them. We demonstrate the practicality of BFO-based 

neuromorphic devices in pattern recognition through an example involving handwritten 

digit recognition. 

Chapter 5 represents a significant milestone in our research journey, highlighting 

the potential of BFO devices in real-world applications and their contribution to pattern 

recognition technology.  
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5.2 Applications of pattern recognition  
 

Applications of pattern recognition in daily life are intervened with gadgets we 

use, especially with the mobile phone. Advanced applications of artificial intelligence 

necessitate that intelligent systems have the capability to discern real-world patterns, 

enabling them to address issues in real-time effectively. When we observe our 

environment, it becomes evident that AI technologies like face unlock, smart speakers 

and assistants, AI traffic cameras, and face tagging are increasingly integrated into our 

daily lives. These innovations rely on pattern recognition to operate effectively in the 

modern world. We explore the use of pattern recognition to highlight the potential of 

neuromorphic devices in advanced artificial intelligence.  

  In this chapter, our primary focus is on training and testing neuromorphic 

devices for digit recognition tasks. These devices, integrated with electrical circuits and 

managed by neural networks, are trained using an extensive dataset of numerical digits. 

Subsequently, they are tasked with recognizing these digits. For both training and 

testing, we utilized the Modified National Institute of Standards and Technology 

(MNIST) datasets. This chapter highlights the specific training and testing processes of 

BFO neuromorphic devices, emphasizing their potential for solving real-world 

problems. 

5.2.1 Recognition of Handwritten digits using the BFO neuromorphic 
devices.  

Recognizing handwritten digits is within the realm of pattern recognition tasks. 

To accomplish this, one must choose patterns for both training and testing. The MNIST 

database, an abbreviation for Modified National Institute of Standards and Technology 

database, serves as a resource of handwritten digits for training and testing image 

processing systems.[184] This database comprises thousands of distinct handwritten 

digits. These digits are utilized to train and test machine learning systems. The whole 

data set contains a total of 70,000 digits among which 60,000 digits were used for 

training and 10,000 were used for testing. Each digit being a representation of a digit 

from zero to nine, these digits hence are labelled accordingly. Every digit was 

standardized into a 28x28 pixel box, with intensity levels ranging from 0 to 256, 

following a grayscale format. 
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Figure 5.1 A few handwritten digits from MNIST database 

 

MNIST database is generally used to train neural networks. In real world projects 

that involve machine learning, like digit recognition, a critical process is the training 

and testing of data sets.[161] This helps in evaluating the learning effectiveness of the 

system by comparing the accuracy of the output with expected results. MNIST being 

the benchmark for testing the neural networks, here we use a neural network on the 

neuromorphic device and test the efficiency of the pattern recognition of the system.  

The core of this implementation involves a neuromorphic device, which is connected 

to a source meter unit. This setup is further interfaced with a computer. The computer 

runs the specialized neural network code, which is responsible for controlling the 

operations of the neuromorphic device.   

Data input is a crucial step in this procedure. Here, relevant data is fed into the 

neuromorphic device as voltage pulses that mimic the action potentials in biological 

neurons. The output from this device is measured as an electrical current, which is a 

direct indicator of the device processing the input data. This output is then analysed for 

its accuracy and relevance. The neural network, which plays a pivotal role in this 

process, is structured into three main layers: the input layer, the hidden layer, and the 

output layer.   The input layer is where the data enters into the network. This data is 

then passed to the hidden layer, which is the computational heart of the network. In the 

hidden layer, the network assigns different weights to the various input values. These 

weights are crucial as they determine how much influence each input will have on the 

final output. The output layer is where the results of the processing are generated. This 

layer interprets the weighted inputs from the hidden layer and produces an outcome, 

which is then compared against the expected result.[106]    
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Figure 5.2 The neural network architecture 

An iterative process is central to refining the accuracy of the neural network. Each 

time an input is processed, the network adjusts the weights in an attempt to match the 

desired outcome. This is done through numerous iterations. If the network's output is 

not as expected, a loss function is calculated. This function quantifies the difference 

between the expected result and the actual output.[185]    The value derived from the 

loss function is then used to make adjustments in the initial layers, particularly in the 

input layer, for subsequent iterations.[186] 

This feedback mechanism is critical in neural networks. It allows the system to 

learn from its errors and gradually improve its accuracy. The goal is to reduce the 

number of iterations, or epochs, required to achieve a high level of accuracy.    Fewer 

epochs indicate a more efficient learning process, where the network quickly adapts to 

produce the desired outcomes with minimal data input and processing time. This 

efficiency is vital in practical applications, where speed and accuracy are essential.[187]  

 
5.3 Artificial Neural Network  

 

Artificial neural network outline has to have feedback. We first discuss how to 

train and test the device with the artificial neural network, and later we do discuss the 

convolutional network which has more feature extraction capabilities. [188] 
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The training and testing of a neuromorphic device using the MNIST dataset for 

handwritten digit recognition involve several detailed steps: 

 
Figure 5.3 ANN distribution diagram 

 

Dataset Overview: The MNIST dataset, a cornerstone in the machine 

learning field, comprises a vast collection of handwritten digits.[19]   Each digit 

is presented as a 28x28 pixel grayscale image, which, for processing purposes, 

is converted into a 784-element vector. This transformation facilitates the 

feeding of these images into a neural network as input.[189] 

 
Figure 5.4 MNIST sample data digit 1 
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Figure 5.5 MNIST digit 1 intensity. 

 

 
Figure 5.6 MNIST digit 1 pulse intensity. 

 

Neuromorphic Device Set-up: In this specific setup, the neuromorphic 

device features a layer with 10 hidden nodes, representing a simplified model of neural 

interactions.   

5.3.1 Training Phase: 

Input Layer: The training begins with feeding the 784-element vector, 

representing each digit, into the neuromorphic device. This step is similar to sensory 

neurons receiving external stimuli in the human brain. 

Hidden Layer Processing: These inputs then pass through the 10 nodes in the 

hidden layer. These nodes act as intermediate neurons, applying various 
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transformations to the inputs using weights and activation functions. This process 

determines the extent of influence one neuron has on another.[190]  

Learning: The device adjusts the synaptic weights—the connections between 

neurons—based on the input data.   The objective is to minimize the error between the 

network’s output and the desired output (the correct digit label). This learning is 

typically achieved using backpropagation algorithms and optimization techniques like 

gradient descent.[181] 

 

Figure 5.7 Schematics of the Pattern recognition set up 
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Figure 5.8 Confusion Matrix for testing (ANN) 

 

 
Figure 5.9 Confusion Matrix for training (ANN) 
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5.3.2 Testing Phase: 

After training, the device is exposed to new, unseen images from the MNIST 

dataset. This phase mirrors the training process, except that the synaptic weights are no 

longer adjusted. The network makes predictions by processing the input through the 

trained network and identifying which output neuron is most activated.[191] 

5.3.3 Evaluation: 

 The effectiveness of the neuromorphic device is measured by its accuracy in 

recognizing digits during the testing phase. The device's performance is compared to 

the known labels of the test images. 

This entire process demonstrates the impressive capabilities of neuromorphic 

devices in tasks like pattern recognition.   By mimicking the brain's architecture, these 

devices offer enhanced computational efficiency and reduced power consumption, 

making them highly suitable for complex tasks in machine learning and artificial 

intelligence.[112] 

5.4 Convolutional Neural Network (CNN) 
 

Convolutional Neural Network (CNN) is used to train and recognize digits from 

the MNIST dataset. When we understand CNN, these are specialized for processing 

data with a grid-like topology, like images. They are particularly effective for image 

recognition tasks.[192] CNN can automatically and adaptively learn spatial hierarchies 

of features.[108] Hence, CNN are better options as they can extract features because of 

this. MNIST Dataset is the dataset that consists of grayscale images of handwritten 

digits, each 28x28 pixels. For CNN, each image is input as a 28x28 matrix of pixel 

values. 

The CNN Architecture for MNIST digit recognition contains a few layers. The 

first layer is the input layer. The input layer takes the 28x28 pixel image. Next, we have 

Convolutional Layers, which apply a number of filters to the input. Each filter detects 

different features like edges, corners, etc. The result is a feature map that gives the 

network spatial information about the image.[193] 
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Rectified linear unit (ReLU) introduces nonlinearity, allowing the network to 

handle complex patterns.  

 
Figure 5.11 A digit 3 as input 

 

Pooling Layer reduces the spatial size of the representation, lowering the amount 

of computation and weights. It also helps in making the detection of features invariant 

to scale and orientation changes.  

 
Figure 5.10 Pictorial representation of the CNN Architecture 
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Fully Connected Layer: After several convolutional and pooling layers, the high-

level reasoning is done through fully connected layers. The final layer's output size 

corresponds to the number of classes in this case, four (one for each digit).  

Training Convolutional Neural Networks (CNNs) involves a process of learning 

that can be broken down into two main phases: forward propagation and 

backpropagation. 

 

Figure 5.12 Feature Maps Extracted by 2D-Convolution 

 
Figure 5.13 Feature Maps after max-pooling layer 
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Forward Propagation: This is the initial phase where CNN starts the learning 

process. It begins with the network taking an input, which is typically an image in the 

case of CNNs. This image is then fed through various layers of the network. Each layer 

consists of filters and performs specific operations, such as identifying edges, textures, 

or patterns in the image. As the image data passes through these layers, the network 

extracts, and processes features, gradually building a more abstract representation of 

the input. This process continues until the network makes a prediction based on the 

cumulative analysis of the data by all these layers.  

Back propagation: Once the network has made a prediction, the next step is to 

evaluate the accuracy of this prediction. This is done by comparing the predicted output 

of the network against the actual label or ground truth associated with the input image. 

The difference between the prediction and the actual label is quantified as an error or 

loss. Backpropagation is the process where the CNN adjusts its internal parameters to 

minimize this error. It involves computing the gradient of the loss function with respect 

to each weight in the network using calculus and then updating the weights in a 

direction that reduces the loss. Optimization algorithms, such as stochastic gradient 

descent, are employed to perform these updates efficiently. This process of adjusting 

the weights continues iteratively, with the network repeatedly going through cycles of 

forward propagation and backpropagation, each time learning from the errors made in 

the previous cycle, until the network's predictions are sufficiently accurate or other 

stopping criteria are met.  

Figure 5.14 shows the training of the neuromorphic device with the CNN. Neural 

network controls the electronics which are connected to the BFO neuromorphic device. 

The feature of the digit is extracted and prepared for flattening. [194] Flattened data are 

fed into the neural network through the input layer. The hidden layer adjusts the 

conductivity of the device for different patterns and hence the features. The final output 

layer directs to the element of the set. 
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Testing the CNN involves a critical evaluation phase after its training. During this 

phase, the CNN is exposed to images from the MNIST dataset that it has not 

encountered during the training process. This step is crucial as it aims to assess CNN’s 

ability to apply its learned knowledge from the training data to new, unseen data. 

Essentially, this testing phase is designed to evaluate the network's capacity for 

generalization.[186] 

In the context of evaluation, the performance of CNN is primarily measured using 

specific metrics, with accuracy being a key indicator. Accuracy in this scenario refers 

 

Figure 5.14 Sketch of training with Convolutional neural network 

 
Figure 5.15 Accuracy of training and testing in CNN model 
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to the proportion of digits from the MNIST dataset that the CNN correctly identifies. A 

high accuracy rate would indicate that the network has effectively learned from the 

training data and is capable of accurately recognizing and classifying new images that 

it wasn't explicitly trained on. This metric is essential for understanding the 

effectiveness and reliability of CNN in practical applications. CNNs are powerful for 

tasks like digit recognition because they can learn and identify spatial hierarchies in 

images, making them competent at understanding the complex patterns in handwritten 

digits. 

 

5.5 Parallel Processing of Devices 
 

The creation of a neuromorphic device is the foundational step in the development 

of neuromorphic technology. This initial stage focuses on constructing an individual 

unit, which is a critical component of the broader system. However, the real challenge 

and the key factor lye in the architecture: specifically, how to efficiently assemble 

millions of these units together. This architectural design is pivotal because it enables 

the distribution of computational tasks across multiple devices, thereby enhancing 

processing speed and efficiency.[195] 

In neuromorphic technology, one of our primary objectives is to facilitate parallel 

processing – a method where multiple tasks are processed simultaneously, as opposed 

to sequentially. This approach significantly accelerates computational processes and is 

more akin to the functioning of the human brain. By employing multiple neuromorphic 

devices in tandem, we can divide the workload among them, thereby achieving this goal 

of parallel processing. [196] 

Here we demonstrate this concept of parallel processing by integrating two 

neuromorphic devices simultaneously. To achieve this, we utilized two force channels, 

one on each of the two devices, while maintaining a common gate. This setup of 

keeping a shared gate and probing the two devices independently is effectively 

equivalent to connecting two identical devices in parallel. Such a configuration 

enhances the overall processing capabilities of the system.[184]  
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The method of probing these devices and their parallel configuration is visually 

illustrated in the figure 5.16. This pictorial representation provides a clear 

understanding of how the devices are interconnected and operate in unison, thereby 

showcasing the practical application of parallel processing in neuromorphic technology. 

 
Figure 5.16 Sketch showing the parallel processing using two identical neuromorphic 

devices 

Since the neuromorphic devices are closely adjacent, it's reasonable to assume 

that any variations between them are minimal and can largely be disregarded. This 

similarity allows for an effective strategy when combining, or "clubbing," two 

neuromorphic devices: the goal is to decrease processing duration while maintaining 

high efficiency. Upon integrating these devices, we observed that their efficiency 

remained consistent, and notably, the accuracy of the tasks they performed was almost 

unchanged. 

To further explore this synergy, we divided a single task between the two devices. 
This division resulted in a significant reduction in overall processing time—halving it, 

in fact—since each device handled a part of the task simultaneously. This outcome 

highlights the primary advantage of using multiple devices: by employing parallel 

processing, where tasks are distributed and processed concurrently, we can achieve a 

substantial decrease in the time required to complete complex operations, enhancing 

overall productivity without sacrificing performance quality.[197] 
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Figure 5.17 Confusion matrix for the parallel processing doublet 

In the provided figure 5.17, we present a detailed confusion matrix for a pair of 

neuromorphic devices operating in a parallel processing configuration. This setup is 

instrumental in illustrating the integration capabilities of these devices. Confusion 

matrix is read with true label in the rows against the predicted label of the columns in 

the matrix. That is when a true label is one, then the most accurate prediction is when 

the predicted label also is one, for all the test data. Similarly, across the other true values, 

predicted label should give total number of test labels corresponding to the true values. 

However, we see that the predicted labels and true values are not matching every time. 

That shows that the variation in prediction from the true values for the device.[198]   

When tested using a Convolutional Neural Network (CNN), the accuracy of the 

system reaches approximately 85%. This high level of accuracy underscores the 

effectiveness of parallel processing with two neuromorphic devices, highlighting their 

potential for collaborative operations. [199] 

The significance of parallel processing in this context cannot be overstated.  It 
not only demonstrates the current capabilities of neuromorphic devices but also points 

towards a promising future where such devices can be seamlessly integrated to tackle 

complex computational problems. The figure 5.18 further compares the testing and 

training accuracy of these neuromorphic devices when they are linked in a parallel 

processing arrangement. Our observations indicate that the devices exhibit 

commendable efficiency in this setup. This efficiency is a crucial indicator of the 



121 
 

potential advancements in the field of neuromorphic computing, suggesting an 

optimistic outlook for the integration and performance of these devices in solving 

advanced computational tasks. 

 
Figure 5.18 Accuracy curve for the pair in parallel processing 

Here in figure 5.18, we see that the accuracy of recognition of the MNIST digits 

when processed with two identical devices are depicted. The training accuracy is around 

92%, while the testing accuracy is 90%. The accuracy of the recognition is concerned 

with the fact that there could be existence of individual dissimilarities among the 

devices, the total work is divided to both devices, so that allocation of the process can 

also be question of deep study for proper understanding. 

 

5.6 Conclusions 
 

In Chapter 5 of our thesis, we explored the use of Bismuth Ferrite (BFO) 

neuromorphic devices for pattern recognition. This chapter is critical as it applies the 

theoretical concepts and material properties from earlier chapters to real-world 

problems. Our approach focused on the full potential of BFO devices in pattern 

recognition, integrating neural network models with BFO devices at the core of our data 

processing.  
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We began with artificial neural networks (ANNs) for high accuracy in pattern 

recognition tasks and then moved to Convolutional Neural Networks (CNNs) for their 

efficiency in complex pattern extraction with less training. We chose ANNs and CNNs 

for their balance of efficiency and effectiveness.  

CNNs showed strength in feature extraction, optimizing computational resources 

and time. We also employed parallel processing with multiple neuromorphic devices, 

reducing execution time and increasing efficiency. Overall, Chapter 5 highlights the 

potential of BFO devices in pattern recognition, setting the stage for the final chapter 

of the thesis, where we explore wider implications and future directions of our research. 
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Chapter 6: 

Conclusion and Future Scope 

 

This dissertation has taken a profound journey into the realm of neuromorphic 

technology, a field poised at the intersection of hardware development and artificial 

intelligence. At the outset, it recognized the urgent need for hardware that could evolve 

in tandem with the rapidly advancing algorithms of AI, a need that neuromorphic 

technology is uniquely positioned to fulfil. The focus on Bismuth Iron Oxide (BiFeO3 

or BFO) emerged from its intriguing multifunctional ferroic properties, which were 

hypothesized to contribute significantly to neuromorphic applications.  

The cornerstone of this research was the development of a novel reactive Pulsed 

Laser Deposition (PLD) system, which I personally engineered and optimized in our 

laboratory. This system was critical for the deposition of high-quality BFO thin films, 

which are essential for the reliable performance of neuromorphic devices. The choice 

of a simple metal-insulator-metal (MIM) structure for the devices, utilizing Fluorine-

doped tin oxide (FTO) as the bottom electrode and gold as the top electrode, was driven 

by the aim to streamline fabrication while ensuring optimal functional characteristics. 

Throughout this research, the neuromorphic properties of these devices were 

thoroughly investigated. Special attention was given to the nonlinearity of synaptic 

weight updates—a crucial aspect for mimicking the human brain’s ability to learn from 

variable inputs. We explored how different parameters, such as oxygen vacancies, 

influenced these synaptic dynamics. It was found that varying oxygen vacancy levels 

not only affected the device's response curve but also enhanced its application in 

complex pattern recognition tasks, such as those involving the MNIST dataset for 

handwritten digits. 

Moreover, the integration of multiple neuromorphic devices demonstrated a 

potential reduction in operational times, suggesting that parallel processing in 

neuromorphic hardware could mimic the brain's efficiency. This capability was 

exemplified in experiments where combining two devices halved the time required for 

pattern recognition tasks, thereby increasing computational efficiency significantly. 
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As we look to the future, several avenues for further research and development 

present themselves. First, the integration of BFO-based neuromorphic devices with 

conventional CMOS technology stands out as a promising direction. This integration 

could potentially lead to the creation of more compact, efficient, and powerful 

neuromorphic systems. Exploring this possibility would involve addressing the 

challenges of material compatibility and interface optimization to ensure seamless 

functionality across different technological platforms. 

Additionally, there is substantial scope for enhancing the material properties and 

device architectures based on BFO. Future studies could focus on refining the 

deposition processes to achieve even higher quality thin films or experimenting with 

different electrode materials to optimize performance and durability. Such 

advancements could pave the way for BFO devices that not only excel in pattern 

recognition but are also capable of performing more diverse cognitive tasks such as 

real-time decision-making and complex problem-solving. 

Beyond the technical enhancements, the broader implications of this technology 

for AI and cognitive computing are immense. As neuromorphic devices become more 

sophisticated, they could increasingly contribute to areas such as autonomous systems, 

robotics, and personalized medicine, where adaptive and efficient processing of vast 

amounts of data is crucial. 

In conclusion, this thesis has not only demonstrated the practical capabilities of 

BFO in neuromorphic applications but also highlighted the extensive potential for 

future innovations in this exciting area. The groundwork laid by this research is 

expected to inspire continued advancements that will push the boundaries of what 

neuromorphic technology can achieve, shaping the future of artificial intelligence and 

computing technology. 
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