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Abstract

Elastic or piezoelectric structures are three dimensional structres. They are very much used
in various applications(eg: aerospace, biomechanics etc). Often when the thickness of the
elastic or piezoelectric structure is "very small" when compare to other dimensions lower
dimensional models are preferred to the actual three dimensional model.

Lower dimensional approximation of elastic and piezoelectric plates and shells with
"uniform thickness" have been extensively studied. In this thesis we study the correspond-
ing problems for "non-uniform thickness". More precisely, we study the two dimensional
approximation of eigenvalue problem for piezoelectric shallow shells and flexural shells
with non-uniform thickness and dynamic problem for elastic shallow shells with non-
uniform thickness. We show that the solution of the three dimensional problem converge
to the solutions of two dimensional model when the thickness of the shell (denoted by ε)
goes to zero.

In the second chapter we consider eigenvalue problem for thin piezoelectric shallow
shells (i.e, the curvature goes to zero as the thickness of the shell goes to zero) with non-
uniform thickness. The technique used here for proving convergence rely on those used by
J.Raja and N.Sabu [70] for two dimensional approximation of boundary value problem for
piezoelectric shallow shells with non-uniform thickness. We first transform the problem to
a domain independent of the thickness parameter ε and show that the scaled eigenvalues
are o(ε2) and the corresponding scaled eigensolutions converge to the eigensolutions of a
two dimensional model. We also show that all the eigensolutions of the two dimensional
problem occur this way, i.e, each eigensolution of the two dimensional model is the limit
of a sequence of eigensolutions of the three dimensional problem as the thickness of the
shell goes to zero.

In the third chapter we consider eigenvalue problem for flexural shells (i.e, the space
of inextensional displacement is non zero) with non-uniform thickness. Here also we first
transform the problem to a domain independent of ε and show that the eigenvalues are
o(ε2) and the corresponding scaled eigensolutions converge to the eigensolutions of a two
dimensional model. We also show that all the eigenvalues of the limit problem are limit of
sequence of eigensolutions of the three dimensional problem as the thickness of the shell
goes to zero.
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In the fourth chapter we consider a dynamic problem for elastic shallow shells with
non-uniform thickness and we show that under suitable scalings on the applied forces and
unknowns the solutions of the three dimensional model converge to the solution of two
dimensional model as the thickness of the shell goes to zero.
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Nomenclature

Ω domain in IR3 (open, bounded, connected subset with a Lipschitz-
continuous boundary, the set Ω being “locally on one side of
its boundary”).

x = (xi) generic point in Ω.

dx volume element in Ω.

Γ boundary of Ω.

(ni) unit normal vector along Γ.

Φ : Ω ⊂ IR3 −→ IR3 injective and smooth enough mapping such that the three vectors
∂iΦ are linearly independent at each point x ∈ Ω.

gi = ∂iΦ vectors of the covariant bases in the set Φ(Ω).
gi vectors of the contravariant bases in the set Φ(Ω). The vectors

are defined at each x ∈ Ω̄ by the relations gi(x) · gj(x) = δij.

gij = gi · gj covariant components of the metric tensor of the Φ(Ω).
g = det(gij)

Γpij = gp · ∂jgi Christoffel symbols.
vi||j = ∂jvi − Γpijvp covariant derivatives of a vector field vigi with covariant components

vi : Ω −→ IR.

ω domain in IR2 (open, bounded, connected subset with a Lipschitz-
continuous boundary, the set ω being “locally on one side
of its boundary”).

γ or ∂ω boundary of the set ω.
dγ length element along γ .
γ0 measurable subset of γ with length γ0 > 0.
x′ = (xα) generic point in the set ω, sometimes also denoted y.
∂α = ∂

∂xα
, ∂αβ = ∂2

∂xαxβ

Ω = ω × (−1, 1).

(ni) : ∂Ω→ IR3 unit outer normal vector along the boundary ∂Ω of Ω.

xi



dΓ area element along ∂Ω.

γ × [−ε, ε] lateral face of the set Ω̄ε .
Γε0 = γ0 × [−ε, ε] portion of the lateral face where a shell is clamped.
Γε+ = γ0 × ε upper face of the set Ω̄ε .
Γε− = γ0 ×−ε lower face of the set Ω̄ε .
∆ = ∂αα Laplacian.
Aijkl = λgijgkl + µ(gikgjl + gilgjk).

contravariant components of the three- dimensional elasticity tensor.
P̂ ijk,ε denote the piezoelectric tensors.
∈̂ij,ε denote the dielectric tensors.
D(Ω) the space of functions in C∞(Ω) with compact support in Ω.

H1(Ω) = {v ∈ L2(Ω); ∂iv ∈ L2(Ω)}.
H1

0 (Ω) = {v ∈ L2(Ω); v = 0 on ∂Ω}.
H1

Γ(Ω) = {v ∈ L2(Ω); v = 0 on ∂Γ}.

GENERAL CONVENTIONS

1. Latin indices and exponents: i, j, p, . . . , take their values in the set {1, 2, 3}, unless
otherwise indicated, as when they are used for indexing sequences.

2. Greek indices and exponents: α, β, σ, . . . except ε, take their values in the set {1,2}.

3. The symbol “ε” designates a parameter that is > 0 and approaches zero.
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Chapter 1

Introduction

Elastic or piezoelectric structures have wide range of applications. However for problems
involving thin elatic or piezoelectric structures lower dimensional models are proposed
by A.L Cauchy, von Karman etc, depending on a priori assumptions of mechanical or
geometrical nature, as approximation to the actual three dimensional models. The main
reason is that the lower dimensional models are more suitable for numerical computations.

But given a thin elastic or piezoelectric body with specific loading and boundary condi-
tions how to choose between numerous lower dimensional models available? Hence before
devising numerical methods to approximate a lower dimensional model we should first
know whether this lower dimensional model is indeed an approximation of the given three
dimensional problem. Thus one needs to justify mathematically that the solutions of the
three dimensional problem converge to the solution of the two dimensional problem.

The first approach consists of directly estimating the difference between three dimen-
sional solution and the solution of two dimensional model. For linearly elastic plates first
such estimate was given by Morgenstein[63].This approach nevertheless rely on some a
priori assumptions of mechanical and geometrical nature.

A second approach is by formal asymptotic method. In this method the three dimen-
sional solution is first scaled in an appropriate manner so as to be defined on a fixed do-
main, then expanded as a formal series expansion in terms of the thickness parameter ε.
The formal series expansion of the scaled three dimensional solution is then inserted into
the three dimensional problem and sufficiently many factors of the successive powers of
ε found are equated to zero until the leading term of the expansion can be computed and
identified with the solution of a known lower dimensional model. This approach was used
by P.G.Ciarlet([22],[23]) to derive plates and junctions in elastic structures and nonlinear
plate models. P.G.Ciarlet and J.C.Paumier[21] used this method to derive Marguerre-von
Karman equations for shallow shells. D.Fox, A.Raoult, J.C.Simo[32] used this method to
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derive nonlinear properly invariant plate theories. V.Lods and Miara [51] derived nonlinear
flexural shell model and B.Miara [59] derived nonlinear membrane shell model. Asymp-
totic modelling of signorini problem of generalized von Karman equation for shallow shells
were studied by Bensayah et al [7],[19]. They also studied the asymptotic modelling of
signorini problem with coulomb friction for linearly elastostatic shallow shells and without
friction of linear thin plates([6],[8]).

The scalings made in the formal asymptotic expansion method to derive two dimen-
sional linear plate model is justified by B.Miara [57] and in nonlinear case by B.Miara
[58]. In the case of linear elastic rods and shallow shells the scalings are justified by Raja
and Sabu ([69], [71]).

Third approach is using asymptotic analysis. Here the basic idea is to get a bound for
the solutions of the three dimensional problem in a suitable Hilbert space using Korn’s type
inequalities. This would imply the weak convergence of the solutions in that Hilbert space
to some function and then one identifies the limit as solution of a lower dimensional prob-
lem. Using this method two dimensional models of boundary value problem for plates,
shallow shells, membrane shells, flexural shells with uniform thickness were derived by
Ciarlet et al ([18],[26],[27]) and the corresponding eigenvalue problem for plates was de-
rived by Ciarlet and Kesavan [25]. Eigenvalue problem for linearly elastic shells and rods
were derived by Kesavan and Sabu ([44], [45],[46]). Le Dret [47] derived the one dimen-
sional model of rods. Y.Ji [40] has derived the two dimensional model for dynamic problem
for generalized elastic membrane and L.Xiao ([89],[90]) has derived the dynamic problem
for membrane and flexural shells. Rao [72] has studied asymptotic analysis for spherical
shells. Bunoiu et al([14],[15]) studied junctions of rods and plates.

The boundary value problem for linearly elastic shells with non-uniform thickness was
derived by Busse [17].Sabu [73] has studied the asymptotic analysis for elastic shallow
shells with variable thickness. Jimbo et al [41] have studied the asymptotic behaviour of
thin elastic rod with non-uniform thickness.

The error estimate between the three dimensional and two dimensional solutions for
plate was derived by Destuynder ([30],[31]) and for flexural and membrane shells were de-
rived by C.Mardare ([54],[55]). Simmonds [87] has studied the error estimates for Koiter’s
model.

Another approach to derive lower dimensional linear and nonlinear models is by using
gamma convergence. In this method the solution(s) of the three dimensional problem is
characterised as minimizer of some energy functionals and then one shows that the energy
functionals gamma converge to some energy functional whose minimiser is the limit of
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the solutions of the three dimensional problems. This theory was developed in G. Dal
Maso[29].

Using this method, Bourquin et al [13] derived linear plate model, Genevey ([37], [38])
has derived linear membrane and flexural shell model, Sabu([77],[78]) has derived one
dimensional model of rod and two dimensional model of piezoelectric shallow shells. Le
Dret and Raoult ([48],[49]) have derived the nonlinear membrane model for plates and
shells. Friesecke et al ([33],[34]) have derived nonlinear plate models. Mora et al ([61],
[62]) have shown the convergence of equilibria for thin elastic beams. Muller et al ([50],
[60], [64],[65]) have derived the rod model for multiphase materials and von Karman plates.
Acerbi et al [1] have studied the strain energy for elastic string.

Piezoelectricity is an electromechanical phenomenon, i.e, piezoelectric materials re-
spond to mechanical forces and induce electric field and they induce mechanical stress or
strain when subjected to electric field. They are used as sensors and actuators. They are
also used in shape controlling for plane propellers as well as in manufacturing artificial
organs in biomechanics. When the thickness of piezoelectric shell is very small, lower
dimensional models are used as approximation. In this direction Bernadou and Haenel
([9],[10],[11]) have derived the two dimensional model for membrane and flexural shells.
Piezoelectric plate models are studied by Rahmoune et al [68] and Sene [82]. N. Sabu
([74],[75],[79]) has studied the eigenvalue problem problem for shallow and flexural shells
with uniform thickness and asymptotic analysis of piezoelectric shells with variable thick-
ness was studied in [76]. Bantsuri et.al ([3]) have studied the boundary value problem for
electroelasticity for a plate with thin inclusion. C. Collard and B. Miara [28] have studied
the two dimensional models for geometrically nonlinear piezoelectric shells. Theory of
piezoelectricity is well developed in IKeda [39] and Tzou [88]

Homogenization is an approach to study the macro behaviour of a medium by its micro
properties. Homogenization of eigenvalue problem is studied by S.Kesavan([42],[43]).
Homogenization of a class of nonlinear eigenvalue problem is studied by Baffico et al [2].
Bouchitte et al [12] have studied homogenization of second order energies on periodic
structres. S.Ganesh et al ([35],[36]) have used blochwave method for homogenization of
a class of problems. R. Mahadevan et al ([52],[53]) have studied the homogenization of
some cheap control problems and and homogenization of elliptic equation in a doamin
with oscillating boundary, with nonhomogenous nonlinear boundary conditions. Bunoio
et al ([16]) have studied the asymptotic behaviour of bingham fluid in thin layers. An
eigenvalue optimization for p-laplacian has been studied by Chorwadwala et al [20] and B.
Miara [56] studied the optimal spectral approximation in plates.
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Bauer et.al ([4],[5]) have studied stability of plates with circular inclusion, under ten-
sion and three dimensional problem of the axisymmetric deformation of an orthotropic
sperical layer. Nazarov et al ([66],[67]) have studied thin elastic plates supported over
small areas. Sachan et al [81] have studied indentation of a periodically layered planar
elastic half space. Shavlakadze et al ([83]- [86]) have studied the boundary value problem
for piezoelectric plates.
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Chapter 2

Lower Dimensional Approximation of Eigen-
value Problem For Piezoelectric Shallow
Shells with Nonuniform Thickness

2.1 Introduction

Piezoelectricity is an electromechanical phenomena: these materials generates deformation
on application of electric field and conversely they induce electric field on application of
mechanical deformation. Often, when the thickness of the material is very small, lower
dimensional approximations of the three dimensional models are preferred, especially in
numerical computations.

In this connection lower dimensional approximation of thin piezoelectric plates and
shells with uniform thickness has been studied in static cases(cf: [9], [10], [11],[82] ) and
the corresponding eigenvalue problems has been studied for uniform thickness(cf. [74],
[75], [80]). Contact problem for piezoelectric materials has been studied in ([3], [83],[84],
[85] , [86]). Asymptotic analysis of static problem for piezoelectric shells with nonuniform
thickness has been studied in ([70], [76]).

In this chapter we consider the eigenvalue problem for thin piezoelectric shallow shells
with nonuniform thickness and study their limiting behaviour. In particular starting with
the assumptions made for stationary problems we wish to derive the limiting model for
vibrations of shells. We briefly outline the problem studied in this chapter and the results
obtained.

We consider a bounded domain, Ωε = ω×(−ε, ε), ω ⊂ IR2 and let xε = (x1, x2, x
ε
3) be

a generic point on Ωε. Let φε : ω → IR3 be an injective mapping and a3(x1, x2) denotes unit
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normal vector to the surface φε(ω). For each ε > 0, we define the mapping Φε : Ωε → IR3

by
Φε(xε) = φε(x1, x2) + xε3χ(x1, x2)a3(x1, x2) for all xε ∈ Ωε.

where χ ∈ W 2,∞(ω), 0 < χ0 < χ(x1, x2), and Φε(Ωε) denotes the reference configuration
of the shell. Note that when χ(x1, x2) = 1, we get shell with uniform thickness ε.

We assume that the shell is a shallow shell, ie φε(x1, x2) = (x1, x2, εθ(x1, x2)).We then
consider the eigenvalue problem and show that as the thickness of the shell goes to zero
the eigensolutions of the three dimensional problem converge to the eigensolutions of two
dimensional problem.

This chapter is organised as follows. In section 2.2, we describe the three dimensional
problem. In section 2.3, we state the scaled problem, in section 2.4, we derive the a priori
estimate for eigenvalues and in section 2.5, we study the limiting problem for shallow
shells.

2.2 The Three-dimensional Problem

Let ω ⊂ IR2 be a bounded domain with a Lipschitz continuous boundary γ and let ω lie
locally on one side of γ. Let γ0, γe ⊂ ∂ω with meas(γ0) > 0 and meas(γe) > 0. Let
γ1 = ∂ω\γ0 and γs = ∂ω\γe. For each ε > 0, we define the sets

Ωε = ω × (−ε, ε), Γ±,ε = ω × {±ε}, Γε0 = γ0 × (−ε, ε), Γε1 = γ1 × (−ε, ε),

Γεe = γe × (−ε, ε),Γεs = γs × (−ε, ε).

Let xε = (x1, x2, x
ε
3) be a generic point on Ωε and let ∂α = ∂εα = ∂

∂xα
and ∂ε3 = ∂

∂xε3
. Let

φε : ω → IR3 be an injective mapping of class C3(ω) such that the two vectors

aα(y) = ∂αφ
ε

are linearly independent for all y ∈ ω. We define aα to be the vectors satisfying the relation

aα(y).aβ(y) = δαβ .

We define

a3(y) = a3(y) =
a1 × a2

|a1 × a2|
,
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and
aαβ := aα.aβ aαβ := aα.aβ

bαβ := a3.∂βaα bβα := aβσbσα

Γσαβ := aσ.∂βaα

 (2.2.1)

where aα.aβ denotes usual dot product. These verify the usual symmetry relations. The
area element along S is

√
ady, where

a := det(aαβ). (2.2.2)

By the continuity of the functions defined above, there exists a0 > 0 such that

0 < a0 ≤ a(y) for all y ∈ ω.

For each ε > 0, we define the mapping Φε : Ωε → IR3 by

Φε(xε) = φε(x1, x2) + xε3χ(x1, x2)a3(x1, x2) for all xε ∈ Ωε, (2.2.3)

where χ ∈ W 2,∞(ω), 0 < χ0 < χ(x1, x2). We define vectors gεi and gi,ε by the relations

gεi = ∂εiΦ
ε and gj,ε.gεi = δji .

which form the covariant and contravariant basis respectively of the tangent plane of Φε(Ωε)

at Φε(xε). The covariant and contravariant metric tensors are given respectively by

gεij = gεi .g
ε
j and gij,ε = gi,ε.gj,ε.

The Christoffel symbols are defined by

Γp,εij = gp,ε.∂εjg
ε
i .

The volume element is given by
√
gεdxε where

gε = det(gεij).

The set ¯̂
Ωε = Φε(Ω̄ε) is the reference configuration of the shell and we denote a generic

point of the shell by x̂ε. For 0 < ε ≤ ε0, we define the sets

Γ̂±,ε = Φε(Γ±,ε), Γ̂ε0 = Φε(Γε0), Γ̂ε1 = Φ(Γε1), Γ̂εN = Γ̂1
ε
∪ Γ̂±ε,

Γ̂εe = Φε(Γεe), Γ̂
ε
s = Φε(Γεs), Γ̂

ε
eD = Γ̂εe ∪ Γ̂±ε
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We assume that the material is mechanically isotropic so that the elasticity tensor Âijkl,ε is
given by

Âijkl,ε = λδijδkl + µ(δikδjl + δilδjk) (2.2.4)

where λ and µ are Lamé constants. Clearly this tensor satisfy the symmetry relations

Âijkl,ε = Âjikl,ε = Âklij,ε (2.2.5)

and the inequality
Âijkl,εtijtkl ≥ C

∑
i,j

|tij|2 (2.2.6)

for all symmetric tensor (tij). Let P̂ ijk,ε and ∈̂ij,ε denote the piezoelectric and dielectric
tensors respectively. We assume that they are symmetric and there exists C > 0 such that

∈̂ij,εtitj ≥ C
∑
i

|ti|2 (2.2.7)

for all (ti) ∈ IR3. Then the eigenvalue problem consists of finding (ûε, ϕ̂ε, ξε), such that

−divσ̂ε(ûε, ϕ̂ε) = ξεûε in Ω̂ε,

σ̂ε(ûε, ϕ̂ε)ν = 0 on Γ̂εN ,

ûε = 0 on Γ̂ε0.

 (2.2.8)

divD̂ε(ûε, ϕ̂ε) = 0 in Ω̂ε,

D̂ε(ûε, ϕ̂ε)ν = 0 on Γ̂εs,

ϕ̂ε = 0 on Γ̂εeD.

 (2.2.9)

where

σ̂εij = Âijkl,εêεij − P̂ kij,εÊε
k, (2.2.10)

D̂ε
k = P̂ kij,εêεij + ∈̂kl,εÊε

l , (2.2.11)

êεij(û
ε) =

1

2
(∂̂εi û

ε
j + ∂̂εj û

ε
i ), ∂̂

ε
i =

∂

∂x̂εi
and Êε

k(ϕ̂
ε) = −5̂

ε
(ϕ̂ε).

We define the spaces
V̂ ε = {v̂ε ∈ (H1(Ω̂ε))3, v̂|Γ̂ε0 = 0}, (2.2.12)
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Ψ̂ε = {ψ̂ε ∈ H1(Ω̂ε), ψ̂|Γ̂εeD = 0}. (2.2.13)

The variational form of the system (2.2.8)-(2.2.9) is to find (ûε, ϕ̂ε, ξε) ∈ V̂ ε×Ψ̂ε×R such
that

âεχ((ûε, ϕ̂ε), (v̂ε, ψ̂ε)) = ξεl̂ε(v̂ε, ψ̂ε) for all (v̂ε, ψ̂ε) ∈ V̂ ε × Ψ̂ε (2.2.14)

where

âεχ((ûε, ϕ̂ε), (v̂ε, ψ̂ε)) =

∫
Ω̂ε
Âijkl,εêεkl(û

ε)êεij(v̂
ε)dx̂ε +

∫
Ω̂ε
∈̂ij,ε∂̂εi ϕ̂ε∂̂εj ψ̂εdx̂ε

+

∫
Ω̂ε
P̂mij,ε

(
∂̂εmϕ̂

εêεij(v̂
ε)− ∂̂εmψ̂εêεij(ûε)

)
dx̂ε (2.2.15)

l̂ε(v̂ε, ψ̂ε) =

∫
Ω̂ε
ûεv̂εdx̂ε (2.2.16)

Since the mappings Φε : Ω
ε → Ω̂

ε

are assumed to be C1 diffeomorphism, the correspon-
dence that associates with every vector v̂ε = (v̂εi ) ∈ V̂ ε (note that (v̂εi ) are the components
of the vector v̂ε = v̂εi ê

i, where (êi)3
i=1 is the standard basis in IR3) the vector vε = (vεi )

defined by
v̂εi (x̂

ε)êi = vεi (x
ε)gi(xε)

induces a bijection between the spaces V̂ ε and V ε, where

V ε = {vε ∈ (H1(Ωε))3|vε = 0 on Γε0}. (2.2.17)

Then we have (cf. [24])

∂̂εj v̂
ε
i (x̂

ε) = (∂εl v
ε
k − Γq,εlk v

ε
q)(g

k,ε)i(g
l,ε)j, (2.2.18)

êij(v̂
ε)(x̂ε) = eεk||l(v

ε)(gk,ε)i(g
l,ε)j, (2.2.19)

where
eεi||j(v

ε) =
1

2
(∂εi v

ε
j + ∂εjv

ε
i )− Γp,εij v

ε
p. (2.2.20)

Also with any scalar function ϕ̂ε ∈ Ψ̂ε, the correspondence ϕ̂ε(x̂ε) = ϕε(xε) induces a
bijection between the spaces Ψ̂ε and Ψε where

Ψε = {ψε ∈ H1(Ωε)|ψε = 0 on ΓεeD}. (2.2.21)
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Then
∂̂jϕ̂

ε = ∂̂jϕ
ε(xε) = ∂̂jϕ

ε((Φε)−1(x̂ε)) = ∂lϕ
ε(xε)(gl(xε))j. (2.2.22)

Then the variational problem consists of finding (uε, ϕε, ξε), (uε, ϕε) 6= (0, 0) such that

aεχ((uε, ϕε), (vε, ψε)) = ξεlε(vε, ψε) for all (vε, ψε) ∈ V ε ×Ψε (2.2.23)

where

aεχ((uε, ϕε), (vε, ψε)) =

∫
Ωε
Aijkl,εeεk||l(v

ε)eεi||j(v
ε)
√
gεdxε +

∫
Ωε
∈ij,ε ∂εiϕε∂εjψε

√
gεdxε

+

∫
Ωε
Pmij,ε

(
∂εmϕ

εeεi||j(v
ε)− ∂εmψεeεi||j(uε)

)√
gεdxε, (2.2.24)

lε(vε, ψε) =

∫
Ωε
uεvε
√
gεdxε, (2.2.25)

.
Aijkl,ε = λgij,εgkl,ε + µ(gik,εgjl,ε + gil,εgjk,ε), (2.2.26)

P pqr,ε = P̂ ijk,ε.(gp,ε)i(g
q,ε)j(g

r,ε)k, (2.2.27)

∈pq,ε = ∈̂ij,ε(gp,ε)i(gq,ε)j. (2.2.28)

It can be shown that there exists a constant C > 0 such that for all symmetric tensors (tij)

Aijkl,εtkltij ≥ C
3∑

i,j=1

(tij)
2. (2.2.29)

Using (2.2.7) and that (gj,ε) forms contravariant basis, it follows that for any vector (ti) ∈
IR3

∈kl,εtktl ≥ C

3∑
j=1

t2j . (2.2.30)

Moreover from the symmetry of Âijkl,ε, P̂ ijk,ε, ∈̂ij,ε we have the symmetries

Aijkl,ε = Aklij,ε = Ajikl,ε,∈kl,ε = ∈lk,ε, P ijk,ε = P kij,ε. (2.2.31)
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Using (2.2.29) and (2.2.30) we have

aεχ((uε, ϕε), (uε, ϕε)) =

∫
Ωε
Aijkl,εeεk||l(u

ε)eεi||j(u
ε)
√
gεdxε +

∫
Ωε
∈ij,ε ∂εiϕε∂εjϕε

√
gεdxε

≥ C(||uε||21,Ωε + ||ϕε||21,Ωε). (2.2.32)

Clearly the bilinear form associated with the left-hand side of (2.2.23) is elliptic. Hence by
Lax-Milgram theorem, given f ε ∈ (H−1(Ωε))3 and hε ∈ H−1(Ωε), there exists a unique
(uε, ϕε) such that

aεχ((uε, ϕε), (vε, ψε)) = 〈(f ε, hε), (vε, ψε)〉. (2.2.33)

In particular, for each f ε ∈ (L2(Ωε))3, there exists a unique solution (uε, ϕε) such that

aεχ((uε, ϕε), (vε, ψε)) = 〈f ε, vε〉0,Ωε . (2.2.34)

This is equivalent to the following equations.∫
Ωε
Aijkl,εeεk||l(u

ε)eεi||j(v
ε)
√
gεdxε +

∫
Ωε
Pmij,ε∂εm(ϕε)eεi||j(v

ε)
√
gεdxε

=

∫
Ωε
f εvε
√
gεdxε ∀ vε ∈ V ε (2.2.35)

and ∫
Ωε
∈ij,ε∂εiϕε∂εjψε

√
gεdxε =

∫
Ωε
Pmij,ε∂εmψ

εeεi||j(u
ε)
√
gεdxε ∀ ψε ∈ Ψε. (2.2.36)

For each hε ∈ V ε, it follows from (2.2.30) that there exists a unique T εχ(hε) ∈ Ψε such that∫
Ωε
∈ij,ε∂εiT εχ(hε)∂εjψ

ε√gεdxε =

∫
Ωε
Pmij,ε∂εmψ

εeεi||j(h
ε)
√
gεdxε ∀ ψε ∈ Ψε. (2.2.37)

and that the map T εχ : V ε → Ψε is continuous. In particular ϕε = T εχ(uε) and the equations
(2.2.35)-(2.2.36) becomes∫

Ωε
Aijkl,εeεk||l(u

ε)eεi||j(v
ε)
√
gεdxε +

∫
Ωε
Pmij,ε∂εm(T εχ(uε))eεi||j(v

ε)
√
gεdxε

=

∫
Ωε
f εvε
√
gεdxε ∀ vε ∈ V ε (2.2.38)∫

Ωε
∈ij,ε∂εi (T εχ(uε))∂εjψ

ε√gεdxε =

∫
Ωε
Pmij,ε∂εmψ

εeεi||j(u
ε)
√
gεdxε ∀ ψε ∈ Ψε. (2.2.39)
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For each hε ∈ (L2(Ωε))3, it follows from (2.2.39) and (2.2.37) that there exists a unique
Gε
χ(hε) ∈ V ε such that∫

Ωε
Aijkl,εeεk||l(G

ε
χ(hε))eεi||j(v

ε)
√
gεdxε +

∫
Ωε
Pmij,ε∂εm(T εχ(Gε

χ(hε)))eεi||j(v
ε)
√
gεdxε

=

∫
Ωε
hεvε
√
gεdxε ∀ vε ∈ V ε (2.2.40)

and that Gε
χ : (L2(Ωε))3 → V ε is continuous. Then the eigenvalue problem consists in

finding pairs (ξε, uε) ∈ R× V (Ωε) such that∫
Ωε
Aijkl,εeεk||l(u

ε)eεi||j(v
ε)
√
gεdxε +

∫
Ωε
Pmij,ε∂εm(T εχ(uε))eεi||j(v

ε)
√
gεdxε

= ξε
∫

Ωε
uεvε
√
gεdxε ∀ vε ∈ V ε (2.2.41)∫

Ωε
∈ij,ε∂εi (T εχ(uε))∂εjψ

ε√gεdxε =

∫
Ωε
Pmij,ε∂εmψ

εeεi||j(u
ε)
√
gεdxε ∀ ψε ∈ Ψε. (2.2.42)

By classical arguments, we can show that there exists a sequence of eigenvalues

0 < ξ1,ε ≤ ξ2,ε ≤ ... ≤ ξl,ε ≤ ...∞ (2.2.43)

and we can choose a corresponding eigenfunctions {ul,ε} such that∫
Ωε
ul,εi u

m,ε
i

√
gdxε = δlm. (2.2.44)

The sequence forms an orthonormal basis in the weighted space

L2(gε,Ω
ε) = {uε|

∫
Ωε
uεiu

ε
i

√
gεdxε <∞}. (2.2.45)

These eigenvalues can be charecterised as

ξm,ε = min
W ε∈V εm

max
vε∈W ε

Rε(vε) (2.2.46)

where V ε
m denote the collection of all m−dimensional subspaces of V ε and

Rε(vε) =

∫
Ωε
Aijkl,εeεk||l(v

ε)eεi||j(v
ε)
√
gεdxε +

∫
Ωε
Pmij,ε∂εm(T εχ(vε))eεi||j(v

ε)
√
gεdxε∫

Ωε
vεvε
√
gεdxε

(2.2.47)
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2.3 The Scaled Problem

We now perform a change of variable so that the domain no longer depends on ε. With
x = (x1, x2, x3) ∈ Ω = ω × (−1, 1), we associate xε = (x1, x2, εx3) ∈ Ωε. Let

Γ0 = γ0 × (−1, 1), Γ1 = γ1 × (−1, 1), Γ± = ω × {±1}, Γe = γe × (−1, 1)

Γs = γs × (−1, 1), ΓN = Γ1 ∪ Γ+ ∪ Γ−, ΓeD = Γ+ ∪ Γ− ∪ Γe.

With the functions Γp,ε, gε, Aijkl,ε, P ijk,ε,∈ij,ε: Ωε → IR, we associate the functions Γp(ε),

gε, Aijkl(ε), P ijk(ε),∈ij (ε) : Ω→ IR defined by

Γp(ε)(x) := Γp,ε(xε), g(ε)(x) = gε(xε), Aijkl(ε)(x) = Aijkl,ε(xε), (2.3.1)

P ijk(ε)(x) = P ijk,ε(xε), ∈ij (ε)(x) =∈ij,ε (xε) (2.3.2)

Since the shell is a shallow shell there exists a function θ ∈ C3(ω) such that

φε(x1, x2) = (x1, x2, εθ(x1, x2)), for all (x1, x2) ∈ ω (2.3.3)

In this case, we make the following scalings on the eigensolutions.

um,εα (xε) = ε2umα (ε)(x), vα(xε) = ε2vα(x), (2.3.4)

um,ε3 (xε) = εum3 (ε)(x), v3(xε) = εv3(x), (2.3.5)

T ε(um,ε(xε)) = ε3T (ε)(um(ε)(x)), T ε(v(xε)) = ε3T (ε)(v(x)), (2.3.6)

ξm,ε = ε2ξm(ε). (2.3.7)

With the tensors eεi||j , we associate the tensors ei||j(ε) through the relation

eεi||j(v
ε)(xε) = ε2ei||j(ε; v)(x). (2.3.8)
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We define the spaces

V (Ω) = {v ∈ (H1(Ω))3, v|Γ0 = 0}, (2.3.9)

Ψ(Ω) = {ψ ∈ H1(Ω), ψ|ΓeD = 0}. (2.3.10)

We denoteϕm(ε) = Tχ(ε)(um(ε)). Then the variational equations (2.2.41)-(2.2.43) become∫
Ω

Aijkl(ε)ek||l(ε, u
m(ε))ei||j(ε, v)

√
g(ε)dx+

∫
Ω

P 3kl∂3ϕ
m(ε)ek||l(ε, v)

√
g(ε)dx

+ε

∫
Ω

Pαkl(ε)∂αϕ
m(ε)ek||l(ε, v)

√
g(ε)dx

= ξm(ε)

∫
Ω

[ε2umα (ε)vα + um3 (ε)v3]
√
g(ε)dx for all v ∈ V (Ω). (2.3.11)

∫
Ω

∈33 (ε)∂3ϕ
m(ε)∂3ψ

√
g(ε)dx+ ε

∫
Ω

[∈3α (ε)(∂αϕ
m(ε)∂3ψ + ∂3ϕ

m(ε)∂αψ)]
√
g(ε)dx

+ε2
∫

Ω

∈αβ (ε)∂αϕ
m(ε)∂βψ

√
g(ε)dx

=

∫
Ω

P 3kl(ε)∂3ψek||l(ε, u
m(ε))

√
g(ε)dx

+ε

∫
Ω

[Pαkl(ε)∂αψek||l(ε, u
m(ε))]

√
g(ε)dx for all ψ ∈ Ψ(Ω), (2.3.12)

∫
Ω

[ε2umα (ε)unα(ε) + um3 (ε)un3 (ε)]
√
g(ε)dx = δmn. (2.3.13)

Based on the above scalings, we have the following lemma.

Lemma 2.3.1. The functions eα||β(ε; v) defined in (2.3.8) are of the form

eα||β(ε; v) = ẽαβ(v) + ε2e]α||β(ε; v),

eα||3(ε; v) = 1
ε
{ẽα3(v) + ε2e]α||3(ε; v)},

e3||3(ε; v) = 1
ε2
ẽ33(v),

 (2.3.14)

where
ẽαβ(v) = 1

2
(∂αvβ + ∂βvα)− v3

χ
(∂αβθ + x3∂αβχ)

ẽα3(v) = 1
2
(∂αv3 + ∂3vα),

ẽ33(v) = ∂3v3,

 (2.3.15)
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Also there exists constant C such that

sup0<ε≤ε0 maxα,j ||e]α,j(ε; v)||0,Ω ≤ C||v||1,Ω for all v ∈ V,
sup0<ε≤ε0 maxx∈Ω |g(ε)(x)− χ2| ≤ Cε2,

sup0<ε≤ε0 maxx∈Ω |Aijkl(ε)− Aijkl| ≤ Cε2,

 (2.3.16)

where

Aαβγτ = λδαβδγτ + µ(δαγδβτ + δατδβγ)

Aαβγ3(0) = 0, Aαβ33(0) = 1
χ2λδ

αβ, Aα3γ3(0) = 1
χ2µδ

αγ

Aα333(0) = 0, A3333(0) = 1
χ4 (λ+ 2µ),

 (2.3.17)

Aijkl(ε)tkltij ≥ Ctijtij, (2.3.18)

for 0 < ε ≤ ε0 and for all symmetric tensors (tij).

Proof. Using the assumption (2.3.3) we have

gα(ε) =

 δα1 − ε2x3[χ∂α1θ + ∂1θ∂αχ] +O(ε2)

δα2 − ε2x3[χ∂α2θ + ∂2θ∂αχ] +O(ε2)

ε[∂αθ + x3∂αχ] +O(ε3)

 (2.3.19)

g3(ε) =

 −εχ∂1θ +O(ε3)

−εχ∂2θ +O(ε3)

χ+O(ε2)

 , (2.3.20)

gα(ε) =

 δα1 +O(ε2)

δα2 +O(ε2)

ε∂αθ +O(ε2)

 , g3(ε) =

 −ε∂1θ +O(ε3)

−ε∂2θ +O(ε3)

1 +O(ε2)

 , (2.3.21)

gαβ(ε) = δαβ + ε2[∂αθ∂βθ − 2x3[∂αβθ + ∂αθ∂βχ] +O(ε4) (2.3.22)

gα3(ε) = O(ε), g33(ε) = χ2 +O(ε2), (2.3.23)

Γσαβ(ε) = O(ε2), Γ3
αβ(ε) =

ε

χ
[∂αβθ + x3∂αβχ] +O(ε3), Γσα3 = O(ε). (2.3.24)

The announced results follows from the above relations.

15



Lemma 2.3.2. Let θ ∈ C3(ω) be a given function and let the functions ẽij(υ) be defined as
in (2.3.15). Then there exists a constant C such that

‖υ‖1,Ω ≤ C

{∑
i,j

‖ẽij(υ)‖2

} 1
2

∀ v ∈ V (Ω) (2.3.25)

Proof. See the proof of Lemma 4.2 in [73].
We assume that there exists P kij and ∈ij such that

sup
0<ε≤ε0

max
x∈Ω
|P kij(ε)− P kij| ≤ Cε (2.3.26)

sup
0<ε≤ε0

max
x∈Ω
| ∈ij (ε)− ∈ij | ≤ Cε (2.3.27)

2.4 A priori estimates

In this section, we show that for each positive integer m, the scaled eigenvalues {ξm(ε)}
are bounded uniformly with respect to ε.
Let ϕ ∈ H2

0 (ω). Then

vϕ := (−x3∂1ϕ,−x3∂2ϕ, ϕ) ∈ V (Ω) (2.4.1)

and
ẽαβ(vϕ) = −x3∂αβϕ−

ϕ

χ
(∂αβθ + x3∂αβχ), ẽi3(vϕ) = 0. (2.4.2)

Hence
eα||β(ε, vϕ) = −x3∂αβϕ−

ϕ

χ
(∂αβθ + x3∂αβχ) +O(ε2), (2.4.3)

eα||3(ε, vϕ) = O(ε), e3||3(ε, vϕ) = 0. (2.4.4)

Lemma 2.4.1. There exists a constant C > 0 such that

|ε∂α(Tχ(ε)(vϕ))|0,Ω ≤ C|ϕ|2,ω. (2.4.5)

|∂3(Tχ(ε)(vϕ))|0,Ω ≤ C|ϕ|2,ω. (2.4.6)

Proof. With the scalings (2.3.3)-(2.3.7), the variational equation (2.2.37) posed on the
domain Ω reads as follows. For each h ∈ (H1(Ω))3, there exists a unique solution
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Tχ(ε)(h) ∈ (H1(Ω))3 such that∫
Ω

∈33 (ε)∂3Tχ(ε)(h)∂3ψ
√
g(ε)dx

+ ε

∫
Ω

[∈α3 (ε)(∂αTχ(ε)(h)∂3ψ + ∂3Tχ(ε)(h)∂αψ)]
√
g(ε)dx

+ ε2
∫

Ω

∈αβ (ε)∂αTχ(ε)(h)∂βψ
√
g(ε)dx

=

∫
Ω

P 3kl(ε)∂3ψek||l(ε, h)
√
g(ε)dx+ ε

∫
Ω

Pαkl(ε)∂αψek||l(ε, h)
√
g(ε)dx. (2.4.7)

for all ψ ∈ Ψ.Taking h = vϕ and ψ = Tχ(ε)(vϕ) in the above equation, we have∫
Ω

∈33 (ε)∂3Tχ(ε)(vϕ)∂3Tχ(ε)(vϕ)
√
g(ε)dx

+ ε

∫
Ω

[∈α3 (ε)(∂αTχ(ε)(vϕ)∂3Tχ(ε)(vϕ) + ∂3Tχ(ε)(vϕ)∂αTχ(ε)(vϕ))]
√
g(ε)dx

+ ε2
∫

Ω

∈αβ (ε)∂αTχ(ε)(vϕ)∂βTχ(ε)(vϕ)
√
g(ε)dx

=

∫
Ω

P 3kl(ε)∂3Tχ(ε)(vϕ)ek||l(ε, vϕ)
√
g(ε)dx

+ ε

∫
Ω

Pαkl(ε)∂αTχ(ε)(vϕ)ek||l(ε, vϕ)
√
g(ε)dx. (2.4.8)

Using the relations (2.2.30) and (2.4.2)-(2.4.4), it follows that there exists a constant C > 0

such that

|∂3(Tχ(ε)(vϕ))|20,Ω + |ε∂α(Tχ(ε)(vϕ))|20,Ω
≤ C{|∂3Tχ(ε)(vϕ)|0,Ω|ϕ|2,ω + |ε∂αTχ(ε)(vϕ)|0,Ω|ϕ|2,ω} (2.4.9)

and hence the result follows.

Theorem 2.4.2. For each positive integer m, there exists a constant C(m) > 0 such that

ξm(ε) ≤ C(m) (2.4.10)

where the constant C(m) depends only on m.

Proof. Let Vm denote the collection of all m-dimensional subspaces of V . Then the mth
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eigenvalue can be characterised by

ξm(ε) = min
W∈Vm

max
v∈W

Nχ(ε)(v, v))

D(ε)(v, v)
(2.4.11)

where

Nχ(ε)(v, v) =

∫
Ω

Aijkl(ε)ek||l(ε, v)ei||j(ε, v)
√
g(ε)dx+

∫
Ω

P 3kl(ε)∂3Tχ(ε)(v)ek||l(ε, v)
√
g(ε)dx

+ ε

∫
Ω

Pαkl(ε)∂αTχ(ε)(v)ek||l(ε, v)
√
g(ε)dx. (2.4.12)

D(ε)(v, v) =

∫
Ω

[
ε2vαvα + v3v3

]√
g(ε)dx. (2.4.13)

Let Wm denote the collection of all m− dimensional subspaces of H2
0 (ω). Let W ∈ Wm.

For ϕ ∈ W , define
vϕ = (−x1∂2ϕ,−x2∂3ϕ, ϕ) (2.4.14)

and
U = {vϕ : ϕ ∈ W}. (2.4.15)

It follows that U ∈ Vm. Hence

ξm(ε) ≤ min
U∈Vm

max
ϕ∈W−{0}

Nχ(ε)(vϕ, vϕ)

D(ε)(vϕ, vϕ)
. (2.4.16)

From the definition of Aijkl(ε) we have∫
Ω

Aijkl(ε)ei||j(ε, vϕ)ek||l(ε, vϕ)
√
g(ε)dx ≤ CΣi,j||ei||j(ε, vϕ)||20,Ω. (2.4.17)

But

‖eα‖β(ε, vϕ)‖2
0,Ω ≤ C||ẽαβ(vϕ)||2 + Cε2||e]α||β(ε; vϕ)||20,Ω
≤ C||4ϕ||20,ω, (2.4.18)

||eα||3(ε, vϕ)||20,Ω ≤ C||ẽα3(vϕ)||2+ ≤ Cε2||e]α||3(ε; vϕ)||20,Ω
≤ C||4ϕ||20,ω, (2.4.19)

||e3||3(ε, vϕ)||20,Ω = 0. (2.4.20)
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It follows from the definition of vϕ that there exists a constant C such that∫
Ω

[ε2(vϕ)2
α + (vϕ)2

3]
√
g(ε)dx ≥ C

∫
ω

ϕ2dω. (2.4.21)

Combining relations (2.4.5)-(2.4.6) and (2.4.16)-(2.4.20) we get

ξm(ε) ≤ C min
U∈Wm

max
ϕ∈W−{0}

∫
ω
|4ϕ|2dω∫
ω
ϕ2dω

. (2.4.22)

But the expression on the right hand side of the above relation gives the m-th eigenvalue of
the two dimensional problem

42u = λu in ω

u = ∂νu = 0 on ∂ω

}
(2.4.23)

This completes the proof by setting C(m) = Cλm.

2.5 Limit Problem

Theorem 2.5.1. a) For each positive integer m, there exists um ∈ H1(Ω), ϕm ∈ L2(Ω) and
ξm ∈ IR such that

um(ε)→ um strongly in (H1(Ω))3, ϕm(ε)→ ϕm strongly in L2(Ω), (2.5.1)

(ε∂1ϕ
m(ε), ε∂2ϕ

m(ε), ∂3ϕ
m(ε))→ (0, 0, ∂3ϕ

m) strongly in (L2(Ω))3, (2.5.2)

ξm(ε)→ ξm. (2.5.3)

b) Define the spaces

VH(ω) = {(ηα) ∈ (H1(ω))2; ηα = 0 on γ0}, (2.5.4)

V3(ω) = {η3 ∈ H2(ω); η3 = ∂νη3 = 0 on γ0}, (2.5.5)

VKL =
{
v ∈ H1(Ω)|v = ηα − x3∂αη3, (ηi) ∈ VH(ω)× V3(ω)

}
. (2.5.6)
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Then there exists (ζmα , ζ
m
3 ) ∈ VH × V3(ω) such that

umα = ζmα − x3∂αζ
m
3 and um3 = ζm3 . (2.5.7)

ϕm = (1− x2)
p3αβ

p33
∂αβζ

m
3 , (2.5.8)

and (ζm, ξm) ∈ VH × V3 × IR satisfies

−
∫
ω

mαβ(ζm)∂αβη3χdω +

∫
ω

[nθαβ(ζm)∂αβθ +mαβ(ζm)∂αβχ]η3χdω

+
2

3

∫
ω

p3αβp3ρτ

p33
∂ρτζ

m
3 ∂αβη3χdω = ξm

∫
ω

ζm3 η3χdω ∀ η3 ∈ V3, (2.5.9)

∫
ω

nθαβ∂βηαχdω = 0 ∀ ηα ∈ VH , (2.5.10)

where

mαβ(ζ) = −
{

4λµ

3(λ+ 4µ)
4ζ3δαβ +

4µ

3

(
∂αβζ3 + ζ3

∂αβχ

χ

)}
, (2.5.11)

nθαβ(ζ) =
4λµ

λ+ 2µ
ẽσσ(ζ)δαβ + 4µẽαβ(ζ), (2.5.12)

p33 =
1

µ
P 3α3P 3α3 +

1

λ+ 2µ
P 333P 333+ ∈33, (2.5.13)

p3αβ = P 3αβ − λ

λ+ 2µ
P 333δαβ. (2.5.14)

Proof. For the sake of clarity, the proof is divided into several steps.
Step (i): Define the vector ϕ̃mi (ε) and the tensor K̃m(ε) = (K̃m

ij (ε)) by

ϕ̃mi (ε) = (ε∂1ϕ
m(ε), ε∂2ϕ

m(ε), ∂3ϕ
m(ε)). (2.5.15)

,

K̃m
αβ(ε) = ẽαβ(um(ε)), K̃m

α3(ε) =
1

ε
ẽα3(um(ε)), K̃m

33(ε) =
1

ε2
ẽ33(um(ε)). (2.5.16)
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Claim: There exists constant C > 0 and ε0 such that for 0 < ε ≤ ε0,

||um(ε)||1,Ω ≤ C, |K̃m
ij (ε)|0,Ω ≤ C, |ϕ̃mi (ε)| ≤ C (2.5.17)

for all 0 < ε ≤ ε0. Letting (v, ψ) = (um(ε), ϕm(ε)) in (2.3.11), we have∫
Ω

Aijkl(ε)ek||l(ε, u
m(ε))ei||j(ε, u

m(ε))
√
g(ε)dx+

∫
Ω

∈ij (ε)ϕ̃mi (ε)ϕ̃mj (ε)
√
g(ε)dx

= ξm(ε)

∫
Ω

[ε2umα (ε).umα (ε) + um3 (ε)um3 (ε)]
√
g(ε)dx. (2.5.18)

Also, using the coerciveness properties (2.2.29),(2.2.30), and the inequality (2.3.25) we
have for 0 < ε < {min ε0, 1},∫

Ω

Aijkl(ε)ek||l(ε, u
m(ε))ei||j(ε, u

m(ε))
√
g(ε)dx+

∫
Ω

∈ij (ε)ϕ̃mi (ε)ϕ̃mj (ε)
√
g(ε)dx

≥ C
∑
i,j

∥∥ei||j(ε, um(ε))
∥∥2

0,Ω
+ C

∑
i

‖ϕ̃mi (ε)‖2
0,Ω

= C
∑
α,β

∥∥∥ẽαβ(um(ε)) + ε2e]αβ(ε, um(ε))
∥∥∥2

0,Ω

+ C1

∑
α

∥∥∥∥1

ε
ẽα3(um(ε)) + εe]α3(ε, um(ε))

∥∥∥∥2

0,Ω

+ C

∥∥∥∥ 1

ε2
ẽ33(um(ε))

∥∥∥∥2

0,Ω

+ C
∑
i

‖ϕ̃mi (ε)‖2
0,Ω

≥ C

{
1

2

∑
i,j

‖ẽij(um(ε))|20,Ω − 3ε3C2‖um(ε)‖2
1,Ω

}
+ C

∑
i

‖ϕ̃mi (ε)‖2
0,Ω

≥ C3‖um(ε)‖2
1,Ω + C4

∑
i

‖ϕ̃mi (ε)‖2
0,Ω

≥ C5

(
‖um(ε)‖2

0Ω + ‖ϕ̃m(ε)‖2
0,Ω

)
. (2.5.19)

Combining equations (2.5.19) with the relations (2.3.14) we get the relation (2.5.17).
Step (ii): Claim: There exists functions ϕm ∈ L2(Ω) such that

(ε∂1ϕ
m(ε), ε∂2ϕ

m(ε), ∂3ϕ
m(ε)) ⇀ (0, 0, ∂3ϕ

m) weakly in (L2(Ω))3 as ε→ 0.

(2.5.20)
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Since ϕ̃m(ε) = (ε∂1ϕ
m(ε), ε∂2ϕ

m(ε), ∂3ϕ
m(ε)) is bounded, there exists ϕ̃m such that

ϕ̃m(ε) = (ε∂1ϕ
m(ε), ε∂2ϕ

m(ε), ∂3ϕ
m(ε)) ⇀ ϕ̃m = (ϕ̃m1 , ϕ̃

m
2 , ϕ̃

m
3 ) weakly in (L2(Ω))3.

(2.5.21)
Now

ϕm(ε)(x1, x2, x3) =

∫ x3

−1

∂3ϕ
m(ε)(x1, x2, x3)ds (2.5.22)

and hence
‖ϕm(ε)‖0,Ω ≤

√
2‖∂3ϕ

m(ε)‖0,Ω ≤ C. (2.5.23)

Hence there exists ϕm in L2(Ω) such that ϕm(ε) ⇀ ϕm weakly and therefore

(ε∂1ϕ
m(ε), ε∂2ϕ

m(ε), ∂3ϕ
m(ε)) ⇀ (0, 0, ∂3ϕ

m) weakly in (L2(Ω))3 as ε→ 0.

(2.5.24)
Step (iii): From step (i) it follows that there exists a subsequence, indexed by ε for nota-
tional convenience, and functions um ∈ V (Ω) and K̃m

ij ∈ (L2(Ω))9 such that

um(ε) ⇀ um weakly in H1(Ω), K̃m(ε) ⇀ K̃m weakly in L2(Ω), as ε→ 0, (2.5.25)

Claim: There exist functions (ζmα ) ∈ H1(ω) and ζm3 ∈ H2(ω) satisfying ζmi = ∂νζ
m
3 = 0

on γ0 such that
umα = ζmα − x3∂αζ

m
3 , um3 = ζm3 , (2.5.26)

and

K̃m
αβ = ẽαβ(um), K̃m

α3 = −χ
µ
P 3α3∂3ϕ

m, K̃m
33 = − χ2

λ+ 2µ
(χ2P 333∂3ϕ

m + λK̃m
ββ).

(2.5.27)
Since u(ε) ⇀ u weakly in H1(Ω), the definition (2.3.15) of the functions ẽαβ(v) shows
that the function K̃αβ(ε) = ẽαβ(u(ε)) converges weakly in L2(Ω) to the function ẽαβ(u).

We next recall the following result(cf. [22]). Let w ∈ L2(Ω) be given then∫
Ω

w∂3vdx = 0 for all v ∈ H1(Ω) with v = 0 on Γ0, then w = 0. (2.5.28)

The equation (2.3.11) - (2.3.13) can be written as∫
Ω

({[
Aαβστ (0) + ε2Aαβστ] (ε)

] [
K̃m
στ (ε) + ε2e]στ (ε;u(ε))

]
+
[
Aαβ33(0) + ε2Aαβ33

] (ε)
]
k̃m33(ε)

}
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{
1

2
∂αvβ +

1

2
∂βvα −

v3

χ
(∂αβθ + x3∂αβχ) + ε2e]αβ(ε; v)

}
+ {4[Aα3σ3(0) + ε2Aα3σ3

] (ε)][K̃m(ε)σ3 + εe]σ3(ε;u(ε))]}{
1

2ε
∂αv3 +

1

2ε
∂3vα + εe]α3(ε; v)

}
+
{[
A33στ (0) + ε2A33στ

] (ε)
] [
K̃m
στ (ε) + ε2e]στ (ε;u(ε))

]
+
[
A3333(0) + ε2A3333

] (ε)
]
K̃m

33(ε)
}{ 1

ε2
∂3v3

})√
χ2 + ε2g](ε) dx

+

∫
Ω

∈33 (ε)∂3ϕ
m(ε)∂3ψ

√
g(ε)dx+

∫
Ω

P 3kl
[
∂3ϕ

m(ε)ek||l(ε, v)− ∂3ψek||l(ε, u(ε))
]√

g(ε)dx

+ ε

∫
Ω

∈3α (ε) [∂αϕ
m(ε)∂3ψ + ∂3ϕ

m(ε)∂αψ)]
√
g(ε)dx+ ε2

∫
Ω

∈αβ (ε)∂αϕ
m(ε)∂βψ

√
g(ε)dx

+ ε

∫
Ω

[
Pαkl(ε)∂αϕ

m(ε)ek||l(ε, u(ε))− ∂αψek||l(ε, v)
]√

g(ε)dx

= ξm(ε)

∫
Ω

umi vi
√
χ2 + ε2g](ε) dx ∀ v ∈ V (Ω). (2.5.29)

Multiplying the above equation by ε2, taking vα = 0 and letting ε→ 0, we get∫
Ω

[
λ

χ2
K̃σσ +

(λ+ 2µ)

χ4
K̃33 + P 333∂3ϕ

]
∂3v3χdx = 0 ∀ v3 ∈ H1(Ω), v3 = 0 in Γ0.

(2.5.30)
which implies χ2λK̃σσ + (λ + 2µ)K̃33 + χ4P 333∂3ϕ = 0 and hence the third relation in
(2.5.27) follows. Again, multiplying equation (2.5.29) by ε, taking v3 = 0 and letting
ε→ 0, we get∫

Ω

[
µ

χ
K̃α3 + P 3α3∂3ϕ

]
∂3vαdx = 0 ∀ vα ∈ (H1(Ω))2, vα = 0 in Γ0. (2.5.31)

which implies (µK̃α3 + χP 3α3∂3ϕ) = 0 and hence the second relation in (2.5.27) follows.
Step iv: The function ϕm is of the form,

ϕm = (1− x2)
p3αβ

p33
∂αβξ

m
3 . (2.5.32)

Letting ε→ 0 in (2.3.12), we get∫
Ω

(
P 3klK̃m

kl− ∈33 ∂3ϕ
m
)
∂3ψχdw = 0 ∀ ψ ∈ Ψ (2.5.33)

This implies
∂3(P 3klK̃m

kl− ∈33 ∂3ϕ
m) = 0 in D′(Ω) (2.5.34)
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Hence
P 3klK̃m

kl− ∈33 ∂3ϕ
m = d1 with d1 ∈ D′(ω). (2.5.35)

Using the expression for K̃m
ij given by (2.5.27) the above rquation reduces to

p3αβK̃m
αβ − p33∂3ϕ

m = d1 (2.5.36)

which implies

∂3ϕ
m =

p3αβ

p33
K̃m
αβ −

d1

p33
(2.5.37)

Then

∂3ϕ
m =

p3αβ

p33

[
êαβ(ζ )− x3

(
∂αβζ3 +

∂αβχ

χ
ζ3

)]
− 1

p33
d1. (2.5.38)

which gives

ϕm =
p3αβ

p33

[
x3êαβ(ζ )− x2

3

(
∂αβζ3 +

∂αβχ

χ
ζ3

)]
− x3

p33
d1 + d0. (2.5.39)

Since ϕ satisfies the boundary conditions ϕ|Γ+ = 0, ϕ|Γ− = 0, it follows that ϕm is of the
form (2.5.32).
Step (v): The function (ζmi ) satisfies (2.5.9)- (2.5.10).

Taking v ∈ VKL and letting ε→ 0 in equation (2.3.11) we have∫
Ω

AαβklK̃m
kl K̃

m
αβ(v)χdx+

∫
Ω

∈33 ∂3ϕ
m∂3ψχdx+

∫
Ω

P 3αβ∂3ϕ
mK̃m

αβ(v)χdx

−
∫

Ω

P 3kl∂3ψK̃
m
klχdx = ξm

∫
Ω

um3 v3χdx. (2.5.40)

Replacing um and K̃m
ij by the expressions obtained in (2.5.26) and (2.5.27), and taking v of

the form
vα = ηα − x3∂αη3 and v3 = η3 (2.5.41)

with (ηi) ∈ VH × V3, it is verified that equation (2.5.40) coincide with equation (2.5.9)-
(2.5.10). It can be proved as in [76] that the convergences um(ε) ⇀ um in H1(Ω) and
ϕm(ε) ⇀ ϕm in L2(Ω) are strong.

Lemma 2.5.2. For a given ζ3 ∈ H2
0 (ω) there exists a unique vector ζα ∈ (H1

0 (ω))2 such
that ∫

ω

nθαβ(ζ)∂βηαχdω = 0 ∀ (ηα) ∈ (H1
0 (ω))2 (2.5.42)
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Proof. The equation (2.5.42) can be written as∫
ω

[
2λµ

λ+ 2µ
eρρ(ζ)δαβ + 2µeαβ(ζ)

]
∂βηαχdω =

∫
ω

[
2λµ

λ+ 2µ
(∂σσθ)δαβ + µ∂αβθζ3

]
∂βηαχdω.

Clearly, the bilinear form

b̃(ζα, ηα) =

∫
ω

[
2λµ

λ+ 2µ
eρρ(ζ)δαβ + 2µeαβ(ζ)]∂βηαχdω (2.5.43)

is VH elliptic and symmetric. Hence by Lax- Milgram lemma given fα ∈ (H−1(ω))2 there
exists a unique ζα ∈ (H1

0 (ω))2 such that b̃(ζα, ηα) = 〈fα, ηα〉. The result follows by setting

〈ζα, ηα〉 =

∫
ω

[
2λµ

λ+ 2µ
(∂σσθ)δαβ + µ∂αβθζ3]∂βηαχdω (2.5.44)

Thus, given ζ3 ∈ V3, we denote by Tχζ3 the vector (ζα, ζ3), where (ζα) is the solution
of (2.5.43). In particular, Tχζm3 = (ζmα , ζ

m
3 ). Substituting this in equation (2.5.9), we have

b(ζm3 , η3) = ξm
∫
ω

ζmη3χdω for all η3 ∈ V3 (2.5.45)

where

b(ζ3, η3) = −
∫
ω

mαβ∂αβη3χdω +

∫
ω

[
nθαβ(Tζ3)∂αβθ +mαβ(ζ)∂αβχ

]
η3χdω

+
2

3

∫
ω

p3αβp3ρτ

p33
∂ρτζ3∂αβη3χdω. (2.5.46)

The bilinear form b(., .) defined by (2.5.46) is VH-elliptic and symmetric (cf. [73]) Hence
there exists sequence of eigensolutions for the problem (2.5.45) . The injection H2

0 (ω) ↪→
L2(ω) is compact and so we have a sequence of eigenvalues tending to infinity and eigen-
vectors which form an orthonormal basis of L2(ω).

Theorem 2.5.3. Let ξl(ε) → ξl and let ul(ε) → ul in V . Then ξl is the l - th eigenvalue of
the problem(2.5.46) and {u3

l} is an orthogonal basis for L2(ω). Thus, all the eigenvalues

and eigenvectors of the limit problem are obtained as limits of {(ξl(ε), ul(ε))}∞l=1.

Proof. From (2.2.43 ) we have

0 < ξ1(ε) ≤ ξ2(ε) ≤ · · · ≤ ξl(ε) ≤ ξl+1(ε) ≤ · · · → ∞ as l→∞
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and since b(., .) is elliptic, it follows that

0 < ξ1 ≤ ξ2 ≤ · · · ≤ ξl ≤ ξl+1 ≤ · · · → ∞ as l→

Further passing to the limit in relation (2.3.13) gives∫
Ω

u3
lu3

mχdx = δlm

. That is ∫
ω

u3
lu3

mχ dω =
1

2
δlm. (2.5.47)

Claim: There are no other eigenvalues of the limit problem.
Assume the contrary. Let ξ ∈ be an eigenvalue such that ξ 6= ξl for all l. Then there exists
an eigenfunction ζ3 such that∫

ω

ζ3
2χdω =

1

2
and

∫
ω

ζ3ζ
l
3χ dω = 0. (2.5.48)

For each ε > 0, let w(ε) ∈ V be the unique solution of the problem

Nχ(ε)(w(ε), v) = ξ

∫
Ω

ζ3v3χdx (2.5.49)

for all v ∈ V. Then proceeding as in Theorem 2.5.1, we can show that w(ε)→ w in V and
that wα = zα − x3∂αz3 and that w3 = z3 ∈ H0

2(ω). Further, if z = (zα, z3), then z = Tχz3

and z3 will be the solution of

b(z3, η3) = ξ

∫
ω

ζ3η3χdω (2.5.50)

for all η3 ∈ H0
2(ω). By the uniqueness of the solution if follows that z3 = ζ3. Since the

sequence {ξl} is unbounded, we can choose l such that

ξ < ξl. (2.5.51)

Consider the vector

v(ε) = w(ε)−
l∑

k=1

D(ε)(w(ε), uk(ε))uk(ε).
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Since D(ε)(v(ε), uk(ε)) = 0 for 1 ≤ k ≤ l, it follows from the variational characterization
of the eigenvalues, that

ξl+1(ε) ≤ Nχε(v(ε), v(ε))

D(ε)(v(ε), v(ε))
. (2.5.52)

Now

Nχ(ε)(w(ε), w(ε)) = ξ

∫
Ω

ζ3ω3(ε)
√
g(ε)dx

→ 2ξ

∫
ω

ζ2
3χdω. (2.5.53)

Nχ(ε)(w(ε), uk(ε)) = ξk(ε)D(ε)(w(k), uk(ε))

→ 0 (2.5.54)

Nχ(ε)(uk(ε), um(ε)) = ξk(ε)δkm = 0 for k 6= m. (2.5.55)

D(ε)(w(k), uk(ε)) =

∫
Ω

[
ε2wα(ε)ukα(ε) + w3(ε)uk3(ε)

]√
g(ε)dx

→ 2

∫
ω

ζ3ζ
k
3χdω = 0 (2.5.56)

Thus we get

Nχ(ε)(v(ε), v(ε))→ 2ξ

∫
ω

ζ2
3dω. (2.5.57)

Also
v(ε)− w(ε)→ 0 in V (Ω) (2.5.58)

Hence
lim
ε→0

D(ε)(v(ε), v(ε))) = 2

∫
ω

ζ2
3dω (2.5.59)

Passing to the limit in (2.5.52) we get

ξl+1 ≤ ξ

which is a contradiction.
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2.6 Conclusion

Starting with the three dimensional model of eigenvalue problem for piezoelectric shal-
low shell with non-uniform thickness, we obtained a two dimensional model involving the
nonuniform function χ.

One difference between the two dimensional static model and eigenvalue problem is
that in the latter case it is possible to express it involving only the third component of the
eigenvector.
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Chapter 3

Lower Dimensional Approximation of Eigen-
value Problem For Piezoelectric Flexural
Shells with Nonuniform Thickness

3.1 Introduction

In this chapter, we study the limiting behaviour of eigensolutions, describing the vibrations
of a thin piezoelectric flexural shell (ie. the space of inextensional displacements is non-
trivial), clamped along a portion of its lateral surface, as thickness of the shell approaches
to zero.
For all η = (ηi) ∈ (H1(ω))2 ×H2(ω), define

γαβ(η) =
1

2
(∂αηβ + ∂βηα)− Γσαβησ −

1

χ
bαβη3. (3.1.1)

Define the space of inextensional displacements by

VF (ω) = {η = (ηi) ∈ (H1(ω))2×H2(ω)|ηi = ∂νη3 = 0 on γ0, γαβ(η) = 0 in ω}. (3.1.2)

We assume henceforth that VF (ω) is infinite dimensional. For instance if the middle surface
is a plate or if it is flat in a small region ω′ ⊂ ω so that bαβ=0 in that region and hence
functions of the form (0, 0, ϕ) ∈ VF (ω) where φ ∈ D(ω) and hence the space is infinite
dimensional.

We show that the eigenvalues are of order o(ε2) and the corresponding scaled eigenso-
lutions converge to the eigensolutions of the limit problem occur this way.

This chapter is organized as follows. In section 3.2 we transform the problem to a
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scaled domain, in section 3.3 we derive a priori estimates for eigenvalues and in section 3.4
we study the limiting behaviour of the eigensolutions.

3.2 The Scaled Three Dimensional Problem

We now make a change of variable so that the domain no longer depends on ε. With x =

(x1, x2, x3) ∈ Ω = ω × (−1, 1) we associate xε = (x1, x2, εx3) ∈ ω × (−ε, ε). We make
the following assumptions on the unknowns.

um,εi (xε) = umi (ε)(x), vi(x
ε) = vi(x), (3.2.3)

ξm,ε = ε2ξm(ε). (3.2.4)

Then the eigenvalue problem (2.2.41)-(2.2.42) becomes: find (um(ε), ξm(ε)) ∈ V (Ω)× R
such that∫

Ω

Aijkl(ε)ek||l(ε)(u
m(ε))ei||j(ε)(v)

√
g(ε)dx+

1

ε

∫
Ω

P 3kl(ε)∂3ϕ
m(ε)ek||l(ε)(v)

√
g(ε)dx

+

∫
Ω

Pαkl(ε)∂αϕ
m(ε)ek||l(ε)(v)

√
g(ε)dx = ε2ξm(ε)

∫
Ω

umi (ε)vi
√
g(ε)dx ∀ v ∈ V.

(3.2.5)

1

ε2

∫
Ω

∈33 (ε)∂3ϕ
m(ε)∂3ψ

√
g(ε)dx+

1

ε

∫
Ω

[∈3α (ε)(∂αϕ
m(ε)∂3ψ + ∂3ϕ

m(ε)∂αψ)]
√
g(ε)dx

+

∫
Ω

∈αβ (ε)∂αϕ
m(ε)∂βψ

√
g(ε)dx =

1

ε

∫
Ω

P 3kl(ε)∂3ψek||l(ε)(u
m(ε))

√
g(ε)dx

+

∫
Ω

Pαkl(ε)∂αψek||l(ε)(u
m(ε))

√
g(ε)dx ∀ψ ∈ Ψ, (3.2.6)

∫
Ω

umi (ε)uni (ε)
√
g(ε)dx = δmn. (3.2.7)

For v ∈ V (Ω), define

ραβ(v) = v3|αβ + χbσαvσ|β + χbσβvσ|α + χbσα|βvσ −
(
cαβ +

1

χ
e|αβ

)
v3

+
2

χ2
∂αχ∂βχv3 −

1

χ
∂σχ∂βv3 −

1

χ
∂βχ∂αv3 (3.2.8)
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where
vα|β = ∂αvβ − Γρσαvρ, v|αβ = ∂αβv − Γραβ∂ρv. (3.2.9)

and

e1
α||β(ε)(v) =

1

2ε
(∂αvβ + ∂βvα)− 1

ε
Γσαβvσ −

1

εχ
bαβv3

+ x3(χbσβ|α + ∂βχb
σ
α + ∂αχb

σ
3 )vσ + x3(cαβ −

1

χ
e|αβ)v3. (3.2.10)

We need the following lemma (cf. lemma 5.1 in [17]) for proving a priori estimates and to
identify the limit problem.

Lemma 3.2.1. The functions Γσαβ(ε), g(ε), eα||β(ε) satisfy the following relations.

∥∥Γσαβ(ε)− Γσαβ
∥∥

0,∞+

∥∥∥∥Γ3
αβ(ε)− 1

χ
bαβ

∥∥∥∥
0,∞

+‖Γσα3(ε) + χbσα‖0,∞+

∥∥∥∥Γ3
α3(ε)− 1

χ
∂αχ

∥∥∥∥
0,∞
≤ Cε,

(3.2.11)

||g(ε)− χ2a||0,∞ ≤ Cε, (3.2.12)

||Aijkl(ε)− Aijkl(0)||0,∞ ≤ Cε, (3.2.13)

with

Aαβστ (0) = λaαβaστ + µ(aασaβτ + aατaβσ), Aαβσ3(0) = 0,

Aαβ33(0) = 1
χ2λa

αβ, Aα3σ3(0) = 1
χ2µa

ασ,

||Γσαβ(ε)− {Γσαβ + εx3[−χbσβ|α)− ∂βχbσα − ∂αχbσβ]}||0,∞,Ω ≤ Cε2,

||Γ3
αβ(ε)− { 1

χ
bαβ + εx3[ 1

χ
e|αβ − cαβ]}||0,∞,Ω ≤ Cε2,

||Γσα3(ε)− {χbσα − εx3χ
2bστ b

τ
α}||0,∞,Ω ≤ Cε2,

||Γ3
α3(ε)− { 1

χ
∂αχ+ εx3∂βχb

β
α}||0,∞,Ω ≤ Cε2

 (3.2.14)

||1
ε
eα||β(ε)(v)− e1

α||β(ε)(v)||0,Ω ≤ CεΣi||vi||0,Ω, (3.2.15)

||1
ε
∂3eα||β(ε)(v) + ραβ(v)||−1,Ω ≤ C{Σi||ei||3(ε)(v)||0,Ω + εΣα||vα||0,Ω + ε||v3||1,Ω}.

(3.2.16)
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Lemma 3.2.2. Let (u(ε))ε>0 be a sequence of functions (u(ε)) ∈ V (Ω) such that

u(ε)→ u weakly in
(
H1(Ω)

)3 and u(ε)→ u weakly in
(
L2(Ω)

)3
, (3.2.17)

1

ε
ei‖j(ε)(u(ε))→ e1

i‖j weakly in L2(Ω), (3.2.18)

as ε→ 0. Then
u = (ui) is independent of the variable x3, (3.2.19)

u = (ui) =
1

2

∫ 1

−1

udx3 ∈ H1(ω)×H1(ω)×H2(ω), ui = ∂υu3 = 0 on γ, (3.2.20)

γαβ(u) = 0, (3.2.21)

ραβ(u) ∈ L2(Ω) and ραβ(u) = −∂3e
1
α‖β. (3.2.22)

If in addition, there exists a function Ψαβ ∈ H−1(Ω) such that

ραβ(u(ε))→ Ψαβ in H−1(Ω) as ε→ 0, (3.2.23)

then
u(ε)→ u strongly in (H1(Ω))3 as ε→ 0, (3.2.24)

ραβ(u) = Ψαβ and Ψαβ ∈ L2(Ω). (3.2.25)

Proof. See the proof of Lemma 5.3 in [17].

Lemma 3.2.3. For all η = (ηi) ∈ H1(ω) ×H1(ω) ×H2(ω), we let γαβ(η) and ραβ(η) be
defined as in (3.1.1) and (3.2.8) We assume that

γαβ(η) = ραβ(η) = 0 in L2(ω), (3.2.26)

ηi = ∂υη3 = 0 on γ0 ⊂ γ = ∂ω with length γ0 > 0. (3.2.27)
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Then η = 0.

Proof. See the proof of Lemma 5.4 of [17].

3.3 A priori estimates

In this section we show that for each positive integer m the scaled eigenvalues ξm(ε) are
bounded uniformly with respect to ε. Let η = (ηi) ∈ VF (ω). Define υε(η) ∈ V (Ω) by

(υε(η))α = ηα − εx3

(
∂αη3 + 2χbσαησ −

2

χ
∂αχη3

)
, (3.3.1)

(υε(η))3 = η3. (3.3.2)

Setting θα = ∂αη3 + 2χbσαησ − 2
χ
∂αχη3 we can write (υε(η))α = ηα − εx3θα. Since

γαβ(η) = 0 we have

e1
α||β(ε)(v(ε)) = −x3{

1

2
(∂αθβ)− Γσαβθ − (χbσβ|α + ∂βχb

σα + ∂αχb
σ
β)ησ − (cαβ −

1

χ
e|αβ)η3

−εx2
3(χbσβ|α + ∂βχb

σ
α + ∂αχb

σ
β)θσ. (3.3.3)

But

1

2
(∂αθβ) − Γσαβθσ − (χbσβ|α + ∂βχb

σα + ∂αχb
σ
β)ησ − (cαβ −

1

χ
e|αβ)η3

= ∂αβη3 + χbσα∂βηα + χbσβ∂βηα + χ(∂βb
σ
α + ∂αb

σ
β − 2Γταβb

σ
τ )ησ

− Γσαβ∂ση3 +
2

χ
Γσαβ∂ση3 − χbσβ|αησ − cαβη3 +

1

χ
e|αβη3

+
2

χ2
∂αχ∂βη3 −

2

χ
∂αβχη3

1

χ
∂αχ∂βχη3 −

1

χ
∂βχ∂αη3

= η3|αβ + χbσαησ|β + χbσβησ|α + χbσα|βησ −
(
cαβ +

1

χ
e|αβ

)
η3

+
2

χ2
∂αχ∂βχη3 −

1

χ
∂σχ∂βη3 −

1

χ
∂βχ∂αη3

= ραβ(η). (3.3.4)

Thus
e1
α||β(ε)(v(ε)) = −x3ραβ(η)− εx2

3(χbσβ|α + ∂βχb
σ
α + ∂αχb

σ
β)θσ. (3.3.5)

Hence
ε−1eα||β(ε)(υε(η))→ −x3ραβ(η) in L2(Ω) as ε→ 0, (3.3.6)
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Also

ε−1eα||3(ε)(v(ε)) =
1

ε
[(Γσα3(ε)+εbσα)ηα+(Γ3

α3(ε)− 1

χ
∂αχ)η3−εx3Γσα3(ε)θσ] ≤ C. (3.3.7)

Lemma 3.3.1. Let η ∈ VF (ω). Then there exists a constant C > 0 such that

1

ε2
|∂3(Tχ(ε)(vε(η)))|0,Ω ≤ C||ραβ(η)||0,ω, (3.3.8)

1

ε
|∂α(Tχ(ε)(vε(η)))|0,Ω ≤ C||ραβ(η)||0,ω. (3.3.9)

Proof. The variational equation (3.2.5)- (3.2.6) posed on the domain Ω reads as follows.
For each h ∈ (H1(Ω))3, there exists a unique solution Tχ(ε)(h) ∈ (H1(Ω))3 such that

1

ε2

∫
Ω

∈33 (ε)∂3Tχ(ε)(h)∂3ψ
√
g(ε)dx

+
1

ε

∫
Ω

[∈α3 (ε)(∂αTχ(ε)(h)∂3ψ + ∂3Tχ(ε)(h)∂αψ)]
√
g(ε)dx

+

∫
Ω

∈αβ (ε)∂αTχ(ε)(h)∂βψ
√
g(ε)dx

=
1

ε

∫
Ω

P 3kl(ε)∂3ψek||l(ε)(h)
√
g(ε)dx

= +

∫
Ω

Pαkl(ε)∂αψek||l(ε)(h)
√
g(ε)dx∀ψ ∈ Ψ. (3.3.10)

Taking h = vε(η) and ψ = Tχ(ε)(vε(η)) in the above equation, we have

1

ε2

∫
Ω

∈33 (ε)∂3Tχ(ε)(vε(η))∂3Tχ(ε)(vε(η))
√
g(ε)dx

+
1

ε

∫
Ω

[∈α3 (ε)(∂αTχ(ε)(vε(η))∂3Tχ(ε)(vε(η)) + ∂3Tχ(ε)(vε(η))∂αTχ(ε)(vε(η))]
√
g(ε)dx

+

∫
Ω

∈αβ (ε)∂αTχ(ε)(vε(η))∂βTχ(ε)(vε(η))
√
g(ε)dx

=
1

ε

∫
Ω

P 3kl(ε)∂3Tχ(ε)(vε(η))ek||l(ε)(vε(η))
√
g(ε)dx

+

∫
Ω

Pαkl(ε)∂αTχ(ε)(vε(η))ek||l(ε)(vε(η))
√
g(ε)dx. (3.3.11)

Using the relations (2.2.30) and (3.3.3)-(3.3.7) it follows that there exists a constant C > 0
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such that

1

ε2
|∂3(Tχ(ε)(vε(η)))|20,Ω + |∂α(Tχ(ε)(vε(η)))|20,Ω

≤ C{|∂3Tχ(ε)(vε(η))|0,Ω||ραβ(η)||0,ω + |ε∂αTχ(ε)(vε(η))|0,Ω||ραβ(η)||0,ω} (3.3.12)

and hence the result follows.

Theorem 3.3.2. Assume that VF (ω) is an infinite dimensional subspace of V (Ω). Then for
each l ≥ 1, the sequence ξl(ε) is bounded uniformly with respect to ε.

Proof. Let Vm denote the collection of all m-dimensional subspaces of V . Then

ξm(ε) = min
W∈Vm

max
v∈W

Ñχ(ε)(v, v)

D̃(ε)(v, v)
(3.3.13)

where

Ñχ(ε)(v, v) =
1

ε2

∫
Ω

Aijkl(ε)ek||l(ε)(v)ei||j(ε)(v)
√
g(ε)dx

+
1

ε3

∫
Ω

P 3kl(ε)∂3Tχ(ε)(v)ek||l(ε)(v)
√
g(ε)dx

+
1

ε2

∫
Ω

Pαkl(ε)∂αTχ(ε)(v)ek||l(ε)(v)
√
g(ε)dx, (3.3.14)

D̃(ε)(v, v) =

∫
Ω

vivi
√
g(ε)dx. (3.3.15)

LetWm denotes the collection of allm-dimensional subspaces of VF (ω). Consider the map
Sε : VF (ω)→ V (Ω) defined by

Sε(η) = vε(η). (3.3.16)

For sufficiently small ε, Sε is one-one. Thus ifW ∈ Wm, then Sε(W ) ∈ Vm. Consequently,
we have

ξm(ε) ≤ min
W∈Wm

max
η∈W\{0}

Ñχ(ε)(vε(η), vε(η))

D̃(ε)(vε(η), vε(η))
. (3.3.17)

On one hand ∫
Ω

(vε(η))i(vε(η))i
√
g(ε)dx ≥ χ

√
a0

∫
Ω

(vε(η))i(vε(η))idx

≥ 2χ
√
a0

∫
ω

ηiηidω. (3.3.18)

35



On the other hand, using the symmetries ofAijkl(ε), the fact thatAαβσ3(ε) = Aα333(ε) = 0,
and the relations (3.3.3)-(3.3.7) and the Cauchy-Schwarz inequality, we get

1

ε2

∫
Ω

Aijkl(ε)ek||l(ε)(vε(η))ei||j(ε)(vε(η))
√
g(ε)dx

≤ C

{∫
Ω

Aαβστ (ε)

[
1

ε
eστ (ε)(vε(η))

] [
1

ε
eα||β(ε)(vε(η))

]
dx

+4

∫
Ω

Aα3σ3(ε)

[
1

ε
eσ||3(ε)(vε(η))

] [
1

ε
eα||3(ε)(vε(η))

]
dx

}
≤ C

∑
α,β

||ραβ(η)||20,ω (3.3.19)

for ε ≤ 1. Also, from the relations (3.3.6)-(3.3.9) it follows that

1

ε3

∫
Ω

P 3kl(ε)∂3Tχ(ε)(vε(η))ek||l(ε)(vε(η))
√
g(ε)dx

=

∫
Ω

P 3kl(ε)

{
1

ε2
∂3Tχ(ε)(vε(η))

}{
1

ε
ek||l(ε)(vε(η))

}√
g(ε)dx

≤ C
∑
α,β

||ραβ(η)||20,ω (3.3.20)

and

1

ε2

∫
Ω

Pαkl(ε)∂3Tχ(ε)(vε(η))ek||l(ε)(vε(η))
√
g(ε)dx

=

∫
Ω

Pαkl(ε)

{
1

ε
∂αTχ(ε)(vε(η))

}{
1

ε
ek||l(ε)(vε(η))

}√
g(ε)dx

≤ C
∑
α,β

||ραβ(η)||20,ω. (3.3.21)

Hence
Ñχ(ε)(vε(η), vε(η))

D̃(ε)(vε(η), vε(η))
≤ C

∑
α,β ||ραβ(η)||20,ω∑

i ||ηi||20,ω
. (3.3.22)

Let us define the two-dimensional elasticity tensor aαβστ by

aαβστ =
4λµ

λ+ 2µ
aαβaστ + 2µ(aασaβτ + aατaβσ). (3.3.23)
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It is known that (cf. [24]), there exists C > 0 such that∫
ω

aαβστραβ(η)ρστ (η)χ
√
ady ≥ C

∑
α

||ραβ(η)||20,ω (3.3.24)

for all η ∈ VF (ω). Thus, we have

Ñχ(ε)(vε(η), vε(η))

D̃(ε)(vε(η), vε(η))
≤ C

∫
ω
aαβστραβ(η)ρστ (η)χ

√
adω∫

ω
ηiηiχ

√
adω

(3.3.25)

and hence, from (3.3.17) and (3.3.25) it follows that

ξm(ε) ≤ CΛm. (3.3.26)

where Λm is the mth-eigenvalue of the two-dimensional problem: Find (Λ, ζ) ∈ IR ×
VF (ω)\{0} such that∫

ω

aαβστρστ (ζ)ραβ(η)χ
√
adω = Λ

∫
ω

ηiζiχ
√
adω (3.3.27)

for all η ∈ VF (ω). This completes the proof.

3.4 Limit Problem

In this section we show that the scaled eigensolutions of the three dimensional problem
converge to the eigensolutions of the two dimensional problem.

Theorem 3.4.1. Assume that the space VF (ω) is infinite dimensional. Then a) For each
integer m ≥ 1, there exists a subsequence (still indexed by ε) such that

um(ε)→ um strongly in (H1(Ω))3, (3.4.1)

(
1

ε
∂1ϕ

m(ε),
1

ε
∂2ϕ

m(ε),
1

ε2
∂3ϕ

m(ε))→ (0, 0, ∂3ϕ
m) strongly in (L2(Ω))3, (3.4.2)

ϕm =
p3αβ

p33
(1− x2

3)ραβ(um). (3.4.3)

ξm(ε)→ ξm. (3.4.4)

37



b) um is independent of x3, um = 1
2

∫ 1

−1
umdx ∈ VF (ω) and the pair (ξm, um) solves

the two-dimensional eigenvalue problem for piezoelectric flexural shell, viz; find (ξ, ζ) ∈
IR× VF (ω)\{0} such that

1

6

∫
ω

Cαβστρστ (ζ)ραβ(η)χ
√
ady = ξ

∫
ω

ζiηiχ
√
ady for all η = ηi ∈ VF (ω) (3.4.5)

where

Cαβστ =

(
aαβστ +

4p3αβp3στ

p33

)
, (3.4.6)

p3αβ = P 3αβ − λ

λ+ 2µ
P 333aαβ, (3.4.7)

p33 =
1

µ
P 3α3P 3α3 +

1

λ+ 2µ
P 333P 333+ ∈33 . (3.4.8)

Proof. :The proof is divided into several steps.
Step (i): There exists constant C and ε0 > 0 such that

||um(ε)||1,Ω ≤ C, (3.4.9)

|1
ε
∂1ϕ

m(ε)|20 + |1
ε
∂2ϕ

m(ε)|20 + | 1
ε2
∂3ϕ

m(ε)|20 ≤ C (3.4.10)

for all 0 < ε ≤ ε0. Define the vector

ϕ̃m(ε) = (
1

ε
∂1ϕ

m(ε),
1

ε
∂2ϕ

m(ε),
1

ε2
∂3ϕ

m(ε)). (3.4.11)

Letting (v, ψ) = (um(ε), ϕm(ε)) in (3.2.5), we have∫
Ω

Aijkl(ε)ek||l(ε)(u
m(ε))ei||j(ε)(u

m(ε))
√
g(ε)dx+

1

ε

∫
Ω

P 3kl(ε)∂3ϕ
m(ε)ek||l(ε)(u

m(ε))
√
g(ε)dx

+

∫
Ω

Pαkl(ε)∂αϕ
m(ε)ek||l(ε)(u

m(ε))
√
g(ε)dx = ε2ξm(ε)

∫
Ω

umi (ε).umi (ε)
√
g(ε)dx. (3.4.12)

Using (3.2.6), the above equation becomes

1

ε2

∫
Ω

Aijkl(ε)ek||l(ε)(u
m(ε))ei||j(ε)(u

m(ε))
√
g(ε)dx+

∫
Ω

∈ij (ε)ϕ̃mi (ε)ϕ̃mj (ε)
√
g(ε)dx

= ξm(ε)

∫
Ω

umi (ε).umi (ε)
√
g(ε)dx (3.4.13)
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Using the generalized Korn’s inequality (cf.[17]),

‖υ‖2
1,Ω ≤ Σi,j||

1

ε
ei||j(ε)(u)||2 ∀ v ∈ V (3.4.14)

the relation (2.2.29), the orthogonality relation (3.2.7) and the boundedness of the eigen-
values, we have

C{||um(ε)||21,Ω + ||ϕ̃mi (ε)||20,Ω} ≤
∑
i,j

||1
ε
ei||j(ε)(u

m(ε))||20,Ω + ||ϕ̃mi (ε)||20,Ω}

≤ C

ε2

∫
Ω

Aijkl(ε)ek||l(ε)(u
m(ε))ei||j(ε)(u

m(ε))
√
g(ε)dx

+

∫
Ω

∈ij (ε)ϕ̃mi (ε)ϕ̃mj (ε)
√
g(ε)dx

= Cξm(ε)

∫
Ω

umi (ε).umi (ε)
√
g(ε)dx

≤ Cξm(ε). (3.4.15)

Step (ii): From step (i) it follows that there exists a subsequence (ϕ̃m(ε)) and ϕ̃m ∈
(L2(Ω))3 such that

ϕ̃m =

(
1

ε
∂1ϕ

m(ε),
1

ε
∂2ϕ

m(ε),
1

ε2
∂3ϕ

m(ε)

)
→ (ϕ̃m1 , ϕ̃

m
2 , ϕ̃

m
3 ) weakly in (L2(Ω))3.

Now,
1

ε2
ϕm(ε)(x1, x2, x3) =

∫ x3

−1

1

ε2
∂3ϕ

m(ε)(x1, x2, x3)ds

This implies ∥∥∥∥ 1

ε2
ϕm(ε)

∥∥∥∥ ≤ √2

∥∥∥∥ 1

ε2
∂3ϕ

m(ε)

∥∥∥∥ ≤ C.

Hence there exists a ϕm ∈ L2(Ω) such that(
1

ε
∂1ϕ

m(ε),
1

ε
∂2ϕ

m(ε),
1

ε2
∂3ϕ

m(ε)

)
→ (0, 0, ∂3ϕ

m) weakly in (L2(Ω))3.

Step (iii): It follows from Step (i) that um(ε) ⇀ um weakly in H1(Ω) (hence strongly in
L2(Ω)), 1

ε
ei||j(ε)(u

m(ε)) ⇀ e1,m
i||j weakly in L2(Ω) and ϕm(ε)→ ϕm. Then it follows from

lemma (3.2.2 ) that um is independent of x3, γαβ(um) = 0, i.e.um ∈ VF (ω) and the limit
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functions e1,m
i||j are related to the limit function um by

−∂3e
1,m
α||β = ραβ(um). (3.4.16)

Step (iv): The limit functions e1
i‖j are related to the limit functions u = (ui) by

e1,m
α‖3 = − 1

4µ
P 3α3∂3ϕ

m (3.4.17)

e1,m
3‖3 = − 1

λ+ 2µ
(P 333∂3ϕ

m + λχ2aαβe1,m
αβ ) (3.4.18)

Let υ = (υi) be an arbitrary function in the space V (Ω). Then

εeα‖β(ε)(υ)→ 0 strongly in L2(Ω), (3.4.19)

εeα‖3(ε)(υ)→ 1

2
∂3υα strongly in L2(Ω), (3.4.20)

εe3‖3(ε)(υ) = ∂3υ3 for all ε > 0. (3.4.21)

Equation (3.2.5) can be written as∫
Ω

Aijkl(ε)ek|‖l(ε)ei|‖j(ε)(υ)
√
g(ε)dx

=

∫
Ω

(
Aαβρσ(ε)

[
1

ε
eα|‖β(ε)

] [
εeρ|‖σ(ε)(υ)

]
+ 2Aαβρ3(ε)

[
1

ε
eα|‖β(ε)

] [
εeρ|‖3(ε)(υ)

])√
g(ε)dx

+

∫
Ω

(
Aαβ33(ε)

[
1

ε
eα|‖β(ε)

] [
εe3|‖3(ε)(υ)

]
+ 2Aα3ρσ(ε)

[
1

ε
eα|‖3(ε)

] [
εeρ|‖σ(ε)(υ)

])√
g(ε)dx

+

∫
Ω

(
4Aα3ρ3(ε)

[
1

ε
eα|‖3(ε)

] [
εeρ|‖3(ε)(υ)

]
+ 2Aα333(ε)

[
1

ε
eα|‖3(ε)

] [
εe3|‖3(ε)(υ)

])√
g(ε)dx

+

∫
Ω

(
A33ρσ(ε)

[
1

ε
e3|‖3(ε)

] [
εeρ|‖σ(ε)(υ)

]
+ 2A33ρ3(ε)

[
1

ε
e3|‖3(ε)

] [
εeρ|‖3(ε)(υ)

])√
g(ε)dx

+

∫
Ω

(A3333(ε)

[
1

ε
e3|‖3(ε)

] [
εe3|‖3(ε)(υ)

]√
g(ε)dx+

1

ε

∫
Ω

P 3kl(ε)∂3ϕ
m(ε)ek||l(ε)(v)

√
g(ε)dx

+

∫
Ω

Pαkl(ε)∂αϕ
m(ε)ek||l(ε)(v)

√
g(ε)dx = ε2ξm(ε)

∫
Ω

umi vi
√
χ2 + ε2g(ε).dx (3.4.22)
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Keep v ∈ V fixed in and let ε→ 0. we obtain∫
Ω

{
2µaασ e1,m

σ||3∂3vα +
[
λaστ e1,m

σ||τ + (λ+ 2µ)e1,m
3||3

]
∂3v3

}
χ
√
a dx

+

∫
Ω

{
P 3α3

2
∂3ϕ

m∂3vα + P 333∂3ϕ
m∂3v3

}
χ
√
a dx = 0(3.4.23)

Letting v vary in V gives relations (3.4.17) - (3.4.18).
Step (v): The function ϕm is of the form

ϕm =
p3αβ

p33
(1− x2

3)ραβ(um). (3.4.24)

Passing to the limit as ε→ 0 in (3.2.6), we get∫
Ω

ε33∂3ϕ
m∂3ψχ

√
a dx−

∫
Ω

P 3kl∂3ψe
1,m
k||l χ
√
adx = 0 ∀ ψ ∈ Ψ. (3.4.25)

i.e,
∫

Ω

(
P 3kle1,m

k||l − ε
33∂3ϕ

m
)
∂3ψχ

√
adx = 0 ∀ ψ ∈ Ψ. (3.4.26)

This is equivalent to

∂3

(
P 3kle1,m

k||l − ε
33∂3ϕ

m
)

= 0 in D′(Ω) (3.4.27)

which implies that
(
P 3kle1,m

k||l − ε33∂3ϕ
m
)

= d1 with d1 ∈ D′(Ω). Then

∂3ϕ
m =

1

∈33

(
p3kle1,m

k||l − d
1
)

(3.4.28)

Using the expression for e1,m
k||l , we have

∂3ϕ
m =

p3αβ

p33
e1,m
α||β(um)− 1

p33
d1, (3.4.29)

Which gives

ϕm =
p3αβ

p33

[
x3e

1,m
α||β(um)

]
− x3

1

p33
d1 + d0. (3.4.30)

Since the function umi is independent of x3 (cf. step (ii)), relation (3.4.16) implies

e1,m
α||β = θαβ − x3ραβ(um), θαβ ∈ L2(Ω) (3.4.31)
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Hence

ϕm =
p3αβ

p33
[x3θαβ − x3ραβ(um)]− x3

p33
d1 + d0. (3.4.32)

Using ϕ|Γ− = ϕ|Γ+ = 0 it follows that ϕm is of the form (3.4.24)
Step (vi): Keep the function η ∈ VF (ω) fixed, let v = vε(η) in the variational equation
(3.2.5), where (vε(η)) is defined in (3.3.1)-(3.3.2) and let ε → 0. Using the relations
(3.2.11) and (3.2.14), we get

lim
ε→0

1

ε2

(∫
Ω

Aijkl(ε)emk||l(ε)ei||j(ε)(vε(η))
√
g(ε)dx

+
1

ε

∫
Ω

P 3kl(ε)∂3ϕ
m(ε)ek||l(ε)(vε(η))

√
g(ε)dx+

∫
Ω

Pαkl(ε)∂αϕ
m(ε)ek||l(ε)(vε(η))

√
g(ε)dx

)
=

∫
Ω

{Aαβστ (0)e1,m
σ||τ + Aαβ33(0)e1,m

3||3}{−x3ραβ(η)}χ
√
adx

+

∫
Ω

P 3αβ∂3ϕ
m{−x3ραβ(η)}χ

√
adx

= lim
ε→0

∫
Ω

umi (ε)vi(ε)
√
g(ε)dx =

1

2

∫
ω

umi ηiχ
√
ady. (3.4.33)

Replacing e1,m
i||j and ϕm by their values found in (3.4.16)-(3.4.18) ,it can be verified that

equation (3.4.33) coincides with (3.2.5).

The strong convergence of um(ε) to um inH1(Ω) and (1
ε
∂1ϕ

m(ε), 1
ε
∂2ϕ

m(ε), 1
ε2
∂3ϕ

m(ε))

to (0, 0, ∂3ϕ
m) in L2(Ω) can be proved as in [74].

Lemma 3.4.2. Let (ξm, um),m ≥ 1, be the eigensolutions of problem (3.4.5) found as
limits of the subsequence (ξm(ε), um(ε))ε>0,m ≥ 1 of eigensolutions, orthonormalized
as in (3.2.7) of problem (3.2.5). Then the sequence (ξm)∞m=1 comprises all the eigenval-
ues, counting multiplicities, of problem (3.4.5) and the associated sequence (um)∞m=1 of
eigenfunctions forms a complete orthonormal set in the space VF (ω).

Proof. The proof is similar to the proof of theorem 2.5.3.

3.5 Conclusion

We considered the eigenvalue problem for piezoelectric flexural shells with non-uniform
thickness and we have shown that if dim(VF )(ω) = ∞, the eigensolutions of the three di-
mensional problem converge to eigensolutions of two dimensional flexural shell involving
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the non-uniform function χ.
If dim(VF )(ω) is finite, say N , then one can prove that only the first N eigenvalues

are of o(ε2) and the corresponding eigensolutions converge to N eigensolutions of two
dimensional flexural problem.

To the best of our knowledge, we donot know of any example of shells for which VF (ω)

is finite dimensional.
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Chapter 4

Asymptotic Analysis of Dynamic Problem
for Shallow Shells with Nonuniform Thick-
ness

4.1 Introduction

In this chapter we consider the dynamic problem, concerning propagation of vibration,
for shallow shells with nonuniform thickness. We then transfer the problem to a domain
independent of ε by making suitable scalings on the unknowns and data and show that the
scaled solutions converge to the solution of a two dimensional dynamic model.

This chapter is organised as follows. Section 4.2 describes the three dimensional prob-
lem. In section 4.3 we study the existence and uniqueness of the three dimensional problem.
In section 4.4 we transfer the problem to a scaled domain and in section 4.5 we study the
asymptotic behaviour of the scaled solutions.

4.2 The Three-dimensional Problem

Let ω ⊂ IR2 be a bounded domain with a Lipschitz continuous boundary γ and let ω lie
locally on one side of γ. For each ε > 0, we define the sets

Ωε = ω × (−ε, ε), Γ±,ε = ω × {±ε}, Γε = γ × (−ε, ε)

Let xε = (x1, x2, x
ε
3) be a generic point on Ωε and let ∂α = ∂εα = ∂

∂xα
and ∂ε3 = ∂

∂xε3
. We

assume that for each ε, we are given a function θε : ω → IR of class C3. We then define the
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map ϕε : ω → IR3 by

ϕε(x1, x2) = (x1, x2, θ
ε(x1, x2)) for all (x1, x2) ∈ ω. (4.2.1)

At each point of the surface Sε = ϕε(ω), we define the normal vector

aε = (|∂1θ
ε|2 + |∂2θ

ε|2 + 1)−
1
2 (−∂1θ

ε,−∂2θ
ε, 1). (4.2.2)

For each ε > 0, we define the mapping Φε : Ωε → IR3 by

Φε(xε) = ϕε(x1, x2) + xε3χ(x1, x2)aε(x1, x2) for all xε ∈ Ωε. (4.2.3)

where χ ∈ W 2,∞, 0 < χ0 < χ(x1, x2) denotes the thickness function. We define the space

V (Ω̂ε) = {v̂ε ∈ (H1(Ω̂ε))3; v̂ε|Γ̂ε = 0}. (4.2.4)

For v̂ε ∈ V (Ω̂ε), we define

êij(v̂
ε) =

1

2

(
∂ûεi
∂xj

+
∂ûεj
∂xi

)
. (4.2.5)

Then the variational form of the dynamic problem is to find ûε(t) ∈ V (Ω̂ε) almost every-
where (a.e) ∀ t ∈ [0, T ] such that

ρε
∫

Ω̂ε

¨̂uεv̂εdx̂ε +

∫
Ω̂ε
Âijkl,εeεkl(û

ε)eεij(v̂
ε)dx̂ε =

∫
Ω̂ε
f̂ ε.v̂εdx̂ε, ∀ v̂ε ∈ V (Ω̂ε), 0 < t < T

(4.2.6)
and

ûε(0, x̂ε) = φ̂ε, ˙̂uε(0, x̂ε) = ψ̂ε (4.2.7)

Âijkl,ε = λεδijδkl + µε(δikδjl + δilδjk) (4.2.8)

where ˙̂uε and ¨̂uε denote
dûε

dt
and

d2ûε

dt2
respectively and ρε denotes the density of the mate-

rial.
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4.3 Existence and uniqueness of solutions to the three di-
mensional equation

Theorem 4.3.1. Assume that f̂ ε ∈ W 1,∞(0, T ;L2(Ω̂ε)), φ̂ε ∈ V (Ω̂ε) and ψ̂ε ∈ L2(Ω̂ε).
Then there exists a unique solution to the problem (4.2.6) - (4.2.7).

Proof. : Since V (Ω̂ε) is separable, we can choose a basis {ŵεi}∞i=1 ∈ V (Ω̂ε). We define the
approximate solution ûε,m(t, x̂ε) of orderm of the problem (4.2.6)- (4.2.7) in the following
way.

ûε,m(t, x̂ε) =
m∑
p=1

αε,mp (t)ŵεp(x̂
ε) (4.3.1)

where αε,mp (t) are determined by

ρε
∫

Ω̂ε

¨̂uε,mŵεpdx̂
ε+

∫
Ω̂ε
Âijkl(ε)eεkl(û

ε,m)eεij(ŵ
ε
p)dx̂

ε =

∫
Ω̂ε
f̂ ε.ŵεpdx̂

ε ∀ 0 ≤ t ≤ T (4.3.2)

for p = 1, 2, ...,m.

ûε,m(0, x̂ε) = ûε,m0 (x̂ε), ˙̂uε,m(0, x̂ε) = ûε,m1 (x̂ε), (4.3.3)

where, as m→∞

ûε,m0 (x̂ε) =
m∑
p=1

αε,mp (0)ŵεp(x̂
ε)→ φ̂ε(x̂ε) strongly in V (Ω̂ε), (4.3.4)

ûε,m1 (x̂ε) =
m∑
p=1

α̇ε,mp (0)ŵεp(x̂
ε)→ ψ̂ε(x̂ε) strongly in L2(Ω̂ε). (4.3.5)

From the theory of ordinary differential equations, it follows that there exists a unique
solution {αmp (t), p = 1, 2, ..,m} on [0, T ] to the equations (4.3.2)- (4.3.3). Multiplying
both sides of (4.3.2) by α̇ε,mp and summing up from p = 1, 2, ...,m, we get

ρε
1

2

d

dt

∫
Ω̂ε

( ˙̂uε,m)2dx̂ε +
1

2

d

dt

∫
Ω̂ε
Aijkl(ε)eεkl(û

ε,m)eεij(û
ε,m)dx̂ε =

∫
Ω̂ε
f̂ ε. ˙̂uε,mdx̂ε. (4.3.6)
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Integrating the above inequality from 0 to t, t ∈ [0, T ], we get

ρε
1

2

∫
Ω̂ε

( ˙̂uε,m)2dx̂ε +
1

2

∫
Ω̂ε
Âijkl(ε)eεkl(û

ε,m)eεij(û
ε,m)dx̂ε

=
1

2

∫
Ω̂ε

( ˙̂uε,m1 )2dx̂ε +
1

2

∫
Ω̂ε
Aijkl(ε)eεkl(û

ε,m
0 )eεij(û

ε,m
0 )dx̂ε

+

∫ t

0

∫
Ω̂ε
f̂ ε ˙̂uε,mdx̂εdt. (4.3.7)

Using the Korn’s inequality

||ûε,m||2
1,Ω̂ε
≤ C1||eij(ûε,m)||2

0,Ω̂ε
∀ûε,m ∈ V (Ω̂ε), (4.3.8)

the coerciveness of Âijkl,ε and the boundedness of the function ˙̂uε,m0 , ûε,m0 , f̂ ε in L2(Ω̂ε) and
V (Ω̂ε) respectively, we get

|| ˙̂uε,m||2
0,Ω̂ε

+ ||ûε,m||2
1,Ω̂ε
≤ C2

(
1 +

∫ t

0

∫
Ω̂ε

( ˙̂uε,m)2dx̂εdt

)
. (4.3.9)

Hence by Gronwall’s inequality we get

|| ˙̂uε,m||2
0,Ω̂ε

+ ||ûε,m||2
1,Ω̂ε
≤ C3. (4.3.10)

Differentiating both sides of (4.3.2) with respect to t we have

ρε
∫

Ω̂ε

...
û
ε,m
ŵεpdx̂

ε +

∫
Ω̂

Âijkl(ε)eεkl(
˙̂uε,m)eεij(ŵ

ε
p)dx̂

ε =

∫
Ω̂ε

˙̂
f ε.ŵεpdx̂

ε ∀ 0 ≤ t ≤ T.

(4.3.11)
Multiplying by α̈mp on both sides of (4.3.11) and summing from p = 1, 2, . . . ,m we get in
a similar way,

||¨̂uε,m||2
0,Ω̂ε

+ || ˙̂uε,m||2
1,Ω̂ε
≤ C, 0 < t < T (4.3.12)

From (4.3.10) and (4.3.11), we notice that there exists a subsequence (ûε,m) and a function
ûε(t) such that as m→∞

ûε,m→ ûε weak∗ in L∞(0, T ;V (Ω̂ε)) (4.3.13)

˙̂uε,m→ ˙̂uε weak∗ in L∞(0, T ;V (Ω̂ε)) (4.3.14)
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¨̂uε,m → ¨̂uε weak∗ in L∞(0, T ;L2(Ω̂ε)) (4.3.15)

Letting m→∞ in (4.3.2), we get

ρε
∫

Ω̂ε

¨̂uεŵεpdx̂
ε +

∫
Ω̂ε
Âijkl(ε)eεkl(û

ε)eεij(ŵ
ε
p)dx̂

ε =

∫
Ω̂ε
f̂ ε.ŵεpdx̂

ε (4.3.16)

Since {ŵεp} is a basis for V (Ω̂ε) we get

ρε
∫

Ω̂ε

¨̂uεvεdx̂ε +

∫
Ω̂ε
Âijkl(ε)eεkl(û

ε)eεij(v̂
ε)dx̂ε =

∫
Ω̂ε
f̂ ε.v̂εdx̂ε ∀v̂ε ∈ V (Ω̂ε) (4.3.17)

Since ûε(t) ∈ L∞(0, T ;V (Ω̂ε)), ˙̂uε(t) ∈ L∞(0, T ;V (Ω̂ε)) and ¨̂uε(t) ∈ L∞(0, T ;L2(Ω̂ε)),
after an eventual modification on a set of measure zero, ûε(t) ∈ C([0, T ];V (Ω̂ε)), ˙̂uε(t) ∈
C([0, T ];L2(Ω̂ε)). The relation (4.3.12) implies

||¨̂um,ε(t)||V ∗(Ω̂ε) ≤ C (4.3.18)

where V ∗(Ω̂ε) denotes the dual of V (Ω̂ε). This together with (4.3.10) implies that the se-
quence of functions (ûm,ε(t))∞m=1 and ( ˙̂um,ε(t))∞m=1 are equicontinuous inC([0, T ];L2(Ω̂ε))

and C([0, T ];V ∗(Ω̂ε)) respectively. Hence by Arzela-Ascoli theorem, there exists a subse-
quence such that as m→∞,

ûε,m → ûε strongly in C([0, T ];L2(Ω̂ε)),

˙̂uε,m → ˙̂uε strongly in C([0, T ];V ∗(Ω̂ε)).

By (4.3.4), (4.3.5) and the above convergences, we deduce that as t→ 0

ûε(t, x̂ε)→ φ̂ε(x̂ε) in L2(Ω̂ε),

˙̂uε(t, x̂ε)→ ψ̂ε(x̂ε) in V ∗(Ω̂ε).

Thus ûε(t, xε) is a solution of problem (4.2.6) - (4.2.7).

4.4 The Scaled Problem

To study the asymptotic behaviour of the solution as the thickness of the shell goes to zero,
we first transform the problem (4.2.6) - (4.2.7) to Ωε = ω × (−ε, ε) and then to a domain
Ω = ω × (−1, 1) which is independent of ε.
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Since the mappings Φε : Ωε → Ω̂ε are assumed to be diffeomorphisms, the correspon-
dence

vεi (t, x
ε)gi,ε = v̂εi (t, x̂

ε)êi

where {êi}3
i=1 denotes basis vectors, induces a bijection between V (Ω̂ε) and V (Ωε) where

V (Ωε) = {vε ∈ (H1(Ωε))3; vε = 0 on Γε0}.

Then we have (cf.[18])

∂̂εj v̂
ε
i = vεk||l(g

k,ε)i(g
l,ε)j, vεk||l = ∂εl v

ε
k − Γq,εlk (xε)vεq,

êεij(v̂
ε) = eεk||l(v

ε)(gk,ε)i(g
l,ε)j, eεi||j(v

ε) = eεij(v
ε)− Γp,εij v

ε
p.

We define

Aijkl,ε = λgij,εgkl,ε + µ(gik,εgkl,ε + gil,εgjk,ε).

Then the problem (4.2.6) posed over Ωε becomes: find uε(t) ∈ V (Ωε) a.e ∀t ∈ [0, T ]

such that

ρε
∫

Ωε
üεiv

ε
jg
ij(ε)
√
gεdxε+

∫
Ωε
Aijkl,εeεk||l(u

ε)eεi||j(v
ε)
√
gεdxε =

∫
Ωε
f i,εvεi

√
gεdxε ∀vε ∈ V (Ωε).

(4.4.1)
and

uε(0) = φε, u̇ε(0) = ψε. (4.4.2)

To transform the above problem from the domain Ωε to the domain Ω = ω × (−1, 1)

independent of ε, we make the following scalings.

uεα(t, xε) = ε2uα(ε)(t, x), vα(t, xε) = ε2vα(t, x), (4.4.3)

uε3(t, xε) = εu3(ε)(t, x), v3(t, xε) = εv3(t, x) (4.4.4)

With the applied body forces f ε, and the initial conditions φε and ψε, we associate the
functions f(ε), φ(ε) and ψ(ε) through the relation

f εi (t, x
ε) = ε3fi(ε)(t, x), ρε = ε2ρ, (4.4.5)

φεα = ε2φα(ε), φε3 = εφ3(ε), (4.4.6)
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ψεα = ε2ψα(ε), ψε3 = εψ3(ε) (4.4.7)

Note that the scalings made on the applied forces are different from the scaling made
on the applied forces in the static case (cf.[18]).

With the tensors eεi||j , we associate the tensors ei||j(ε) through the relation

eεi||j(v
ε)(xε) = ε2ei||j(ε; v)(x). (4.4.8)

We define the space

V = {v ∈ (H1(Ω))3; v|Γ0 = 0}. (4.4.9)

Assumption: We assume that the shell is a shallow shell; i.e. there exists a function
θ ∈ C3(ω) such that θε = εθ

i.e. ϕε(x1, x2) = (x1, x2, εθ(x1, x2)), for all (x1, x2) ∈ ω. (4.4.10)

Then the scaled solution u(ε)(t, x) satisfies

ρ

[∫
Ω

ε2üα(ε)vβg
αβ(ε)

√
g(ε)dx+

∫
Ω

εüα(ε)v3g
α3(ε)

√
g(ε)dx

+

∫
Ω

εü3(ε)vβg
3β(ε)

√
g(ε)dx+

∫
Ω

ü3(ε)v3g
33(ε)dx

]
+

∫
Ω

Aijkl(ε)ek||l(ε;u(ε))ei||j(ε; v))
√
g(ε)dx

=

∫
Ω

εfα.vα(ε)
√
g(ε)dx+

∫
Ω

f3v3

√
g(ε)dx ∀ v ∈ V (4.4.11)

u(ε)(0, x) = φ(ε), u̇(ε)(0, x) = ψ(ε) (4.4.12)

Then the functions ei||j(ε, v) defined in (4.4.8) are of the form(cf. lemma 2.3.1)

eα||β(ε; v) = ẽαβ(v) + ε2e]α||β(ε; v),

eα||3(ε; v) = 1
ε
{ẽα3(v) + ε2e]α||3(ε; v)},

e3||3(ε; v) = 1
ε2
ẽ33(v),

 (4.4.13)
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where
ẽαβ(v) = 1

2
(∂αvβ + ∂βvα)− v3

χ
(∂αβθ + x3∂αβχ)

ẽα3(v) = 1
2
(∂αv3 + ∂3vα),

ẽ33(v) = ∂3v3,

 (4.4.14)

Also there exists constant C such that

sup0<ε≤ε0 maxα,j ||e]α,j(ε; v)||0,Ω ≤ C||v||1,Ω for all v ∈ V,
sup0<ε≤ε0 maxx∈Ω |g(ε)(x)− χ2| ≤ Cε2,

sup0<ε≤ε0 maxx∈Ω |Aijkl(ε)− Aijkl| ≤ Cε2,

 (4.4.15)

where

Aαβγτ = λδαβδγτ + µ(δαγδβτ + δατδβγ)

Aαβγ3(0) = 0, Aαβ33(0) = 1
χ2λδ

αβ, Aα3γ3(0) = 1
χ2µδ

αγ

Aα333(0) = 0, A3333(0) = 1
χ4 (λ+ 2µ),

 (4.4.16)

Aijkl(ε)tkltij ≥ Ctijtij, (4.4.17)

for 0 < ε ≤ ε0 and for all symmetric tensors (tij).

4.5 Asymptotic Analysis

In this section we show that the solution of the three dimensional dynamic problem con-
verges to the solution of two dimensional dynamic problem.

Theorem 4.5.1. Assume that the scaled initial data {φ(ε), ψ(ε)}ε>0 ∈ V (Ω) × [L2(Ω)]3 of
the problem (4.4.11)- (4.4.12) satisfy

φ(ε)→ φ strongly in V (Ω), (4.5.1)

ψ(ε)→ ψ strongly in L2(Ω), (4.5.2)

fi(ε)→ fi strongly in W 1,∞(0, T ;L2(Ω)). (4.5.3)

Then there exists a subsequence (u(ε))ε>0 (still indexed by ε for notational convenience)
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and a function u ∈ L∞(0, T ;V (Ω)) satisfying

u(ε)→ u weak∗ in L∞(0, T ;V (Ω)),

u̇3(ε)→ u̇3 weak
∗ in L∞(0, T ;L2(Ω)),

u̇α(ε)→ 0 weak∗ in L∞(0, T ;L2(Ω)).

 (4.5.4)

Also the limit function u = {uα, u3} is a Kirchhoff-Love displacement, that is

uα = ζα − x3∂αζ3, u3 = ζ3, ζi is independent of x3. (4.5.5)

and ζ = (ζα, ζ3) satisfies

ρ

∫
ω

ü3η3χdω −
∫
ω

mαβ(ζ3)∂αβη3χdω −
∫
ω

(nαβ(ζ)∂αβθη3 +mαβ(ζ3)∂αβχ)η3χdω

=

∫
ω

f3η3χdω ∀η3 ∈ H2
0 (ω), (4.5.6)

∫
ω

nαβ(ζ)∂αηβχdω = 0∀(ηα) ∈
(
H1

0 (ω)
)2 (4.5.7)

where

mαβ(ζ3) = − 2λµ

3(λ+ 2µ)
(∆ζ3 + ζ3

∆χ

χ
)δαβ +

4µ

3
(∂αβζ3 + ζ3

∂αβχ

χ
), (4.5.8)

nαβ(ζ) =
2λµ

λ+ 2µ
êσσ(ζ)δαβ + 2µêαβ(ζ), (4.5.9)

where

êαβ(ζ) =
1

2
(∂αζβ + ∂βζα)− ζ3

∂αβθ

χ
=

1

2

∫ 1

−1

ẽαβ(ζ)dx3 (4.5.10)

u(0, x) = φ, u̇(0, x) = ψ (4.5.11)

and {φ, ψ} is the weak limit of {φ(ε), ψ(ε)}ε>0 in V (Ω)× L2(Ω).
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Proof. Taking v = u̇(ε)(t, x) in (4.4.11), we get

1

2

d

dt

∫
Ω

ρ
[
ε2u̇α(ε)u̇β(ε)gαβ(ε) + 2εu̇α(ε)u̇3(ε)gα3(ε) + u̇3(ε)u̇3(ε)g33(ε)

]√
g(ε)dx

+
1

2

d

dt

∫
Ω

Aijkl(ε)ek||l(ε;u(ε))ei||j(ε;u(ε))
√
g(ε)dx

=

∫
Ω

εfα(ε)u̇α(ε)
√
g(ε)dx+

∫
Ω

f3(ε)u̇3(ε)
√
g(ε)dx (4.5.12)

Using the positive definiteness of (gij(ε)) and integrating from 0 to t, 0 < t ≤ T , we get

1

2

∫
Ω

(εu̇α(ε))2
√
g(ε)dx+

1

2

∫
Ω

(u̇3(ε))2
√
g(ε)dx

+
1

2

∫
Ω

Aijkl(ε)ek||l(ε;u(ε))ei||j(ε;u(ε))
√
g(ε)dx

≤ 1

2

∫
Ω

(εψα(ε))2
√
g(ε)dx+

1

2

∫
Ω

(ψ3(ε))2
√
g(ε)dx

+
1

2

∫
Ω

Aijkl(ε)ek||l(ε;φ(ε))ei||j(ε;φ(ε))
√
g(ε)dx

+

∫ t

0

∫
Ω

εfα(ε)u̇α(ε)
√
g(ε)dxdt+

∫ t

0

∫
Ω

f3(ε)u̇3(ε)
√
g(ε)dxdt (4.5.13)

Using the inequality (cf. lemma 2.3.2)

‖υ‖1,Ω ≤ C

{∑
i,j

‖ẽij(υ)‖2

} 1
2

∀υ ∈ V (Ω) (4.5.14)

the relations (4.4.13) - (4.4.16) and the boundedness of the functions φ(ε) and ψ(ε), we
have

||εu̇α(ε)||20,Ω + ||u̇3(ε)||20,Ω + ||ui(ε)||21,Ω
≤ ||εu̇α(ε)||20,Ω + ||u̇3(ε)||20,Ω +

∑
i,j

||ei||j(u(ε))||20,Ω

≤ 1

2

∫
Ω

(εu̇α(ε))2
√
g(ε)dx+

1

2

∫
Ω

(u̇3(ε))2
√
g(ε)dx

+
1

2

∫
Ω

Aijkl(ε)ek||l(ε;u(ε))ei||j(ε;u(ε))
√
g(ε)dx

≤ C1

(
1 +

∫ t

0

∫
Ω

εfα(ε)dxdt+

∫ t

0

∫
Ω

f3(ε)dxdt+

∫ t

0

∫
Ω

(u̇(ε))2dxdt

)
(4.5.15)
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Therefore by Gronwall’s inequality there exists a constant C such that

||εu̇α(ε)||0,Ω ≤ C, ||u̇3(ε)||0,Ω ≤ C, ||ui(ε)||1,Ω ≤ C, ||ei||j(ε;u(ε))||0,Ω ≤ C. (4.5.16)

Hence there exists a subsequence and a function u ∈ L∞(0, T, V (Ω)) such that

u(ε)→ u weak∗ in L∞(0, T ;V (Ω)), (4.5.17)

ei||j(ε;u(ε))→ ei||j(u) weak∗ in L∞(0, T ;L2(Ω)), (4.5.18)

εu̇α(ε)→ 0 weak∗ in L∞(0, T ;L2(Ω)), (4.5.19)

u̇3(ε)→ u̇3 weak∗ in L∞(0, T ;L2(Ω)). (4.5.20)

For fixed t ∈ [0, T ], define

Kαβ(ε) = ẽαβ(u(ε)), Kα3(ε) =
1

ε
ẽα3(u(ε)), K33(ε) =

1

ε2
ẽ33(u(ε)) (4.5.21)

and
Kαβ = ẽαβ(u), Kα3 = 0, K33 = −χ2 λ

λ+ 2µ
ẽαα(u). (4.5.22)

Claim: K(ε) = (Kij(ε)) ⇀ K = (Kij) weakly in L2(Ω).
From the definition (4.5.21) and relations (4.4.13),(4.4.14), we have

||K(ε)||20,Ω ≤ 2Σi,j||ei||j(ε;u(ε))||20,Ω + 2ε4Σαβ||ẽ](ε;u(ε))||20,Ω
+ 4ε2Σα||ẽ](ε;u(ε))||20,Ω (4.5.23)

From the boundedness of (ei||j(ε, u(ε))) and the relation (4.4.15) it follows that (K(ε)) is
bounded and hence K(ε) ⇀ K in (L2(Ω))9 weakly. We next note the following result:∫

Ω

u∂3vdx = 0 for all v ∈ H1(Ω) with v = 0 on Γ0 ⇒ u = 0. (4.5.24)

Clearly Kαβ = ẽαβ(u). Multiplying (4.4.11) by ε and taking v3 = 0 we get

2

∫
Ω

Aα3σ3(0)Kα3(ε)∂3vαχdx = εR(ε,K(ε), u(ε), v), (4.5.25)
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where R(ε,K(ε), u(ε), v) is bounded independent of ε. Letting ε→ 0 we get∫
Ω

Kα3∂3vαχdx = 0 for all vα. (4.5.26)

Hence Kα3 = 0. Multiplying (4.4.11) by ε2 and letting vα = 0 we get∫
Ω

{A33στ (0)Kστ (ε) + A3333(0)K33(ε)}∂3v3χdx (4.5.27)

=

∫
Ω

{
λ

χ2
Kσσ(ε) +

(λ+ 2µ)

χ4
K33(ε)

}
∂3v3χdx

= εS(ε,K(ε), u(ε), v) (4.5.28)

where S(ε,K(ε), u(ε), v) is independent of ε. Letting ε→ 0, we get∫
Ω

{
λ

χ2
Kσσ +

(λ+ 2µ)

χ4
K33

}
χdx = 0. (4.5.29)

Hence K33 = −χ2 λ
λ+2µ

ẽαα(u).
Define

VKL(Ω) = {v ∈ V (Ω) : ei3(v) = 0}. (4.5.30)

Using the relation (4.5.22) it follows that for v = (ηα − x3∂αη3, η3) ∈ VKL(Ω)∫
Ω

Aijkl(ε)ek||l(ε;u(ε))ei||j(ε)(v)
√
g(ε)dx

→ −
∫
ω

mαβ(ζ3)∂αβη3χdω −
∫
ω

(nαβ(ζ)∂αβθη3 +mαβ(ζ3)∂αβχ)η3χdω

+

∫
ω

nαβ(ζ)∂αηβχdω (4.5.31)

Since (εu̇α(ε), u̇3(ε)) → (0, u̇3) weak* in L∞(0, T ;L2(Ω)), it follows that for fixed v =

(vi) = (ηα − x3∂αη3, η3) ∈ VKL(Ω),∫
Ω

εu̇α(ε)vβ
√
g(ε)dx→ 0 weak* in L∞(0, T )

and ∫
Ω

u̇3(ε)v3

√
g(ε)dx→

∫
Ω

u̇3v3dx weak* in L∞(0, T ).
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This gives∫ T

0

∫
Ω

εüα(ε)vβζ
√
g(ε)dxdt = −

∫ T

0

∫
Ω

εu̇α(ε)vβ ζ̇
√
g(ε)dxdt→ 0 ∀ζ ∈ D(0, T )

(4.5.32)
and∫ T

0

∫
Ω

ü3(ε)v3ζ
√
g(ε)dxdt = −

∫ T

0

∫
Ω

u̇3(ε)v3ζ̇
√
g(ε)dxdt

→ −
∫

Ω

u̇3v3ζ̇χdxdt =

∫
Ω

ü3v3ζχdxdt ∀ζ ∈ D(0, T ).

(4.5.33)

i.e.,

∫
Ω

εüα(ε)vβ
√
g(ε)dx→ 0, and

∫
Ω

ü3(ε)v3

√
g(ε)dx→

∫
Ω

ü3v3χdx in D′(0, T )

(4.5.34)
Hence passing to the limit in (4.4.11) by taking v = (ηα − x3∂αη3, η3) ∈ VKL(Ω), we get

ρ

∫
ω

ü3η3dω −
∫
ω

mαβ(ζ3)∂αβη3χdω −
∫
ω

(nαβ(ζ)∂αβθη3 +mαβ(ζ3)∂αβχ)η3χdω

+

∫
om

nαβ(ζ)∂αηβχdω =

∫
ω

f3η3χdω (4.5.35)

for all v = (ηα − x3∂αη3, η3) ∈ VKL(Ω).

From Lemma (2.5.2) it follows that for a given ζ3 ∈ H2
0 (ω) there exists a unique vector

(ζα) ∈ (H1
0 (ω))2 such that∫

ω

nαβ(ζ)∂βηαχdw = 0 for all (ηα) ∈ (H1
0 (ω))2 (4.5.36)

where ζ = (ζα, ζ3). Given ζ3 ∈ H2
0 (ω), we denote by Tχζ3 ∈ (H1

0 (ω))2×H2
0 (ω) the vector

(ζα, ζ3) where (ζα) ∈ (H1
0 (ω))2 is the solution of (4.5.36). Hence (4.5.6) can be written as

ρ

∫
ω

ü3η3 χdω + b(ζ3, η3) =

∫
ω

f3η3 χdω∀η3 ∈ H2
0 (ω), (4.5.37)

where

b(ζ3, η3) = −
∫
ω

mαβ(ζ3)∂αβη3 χdω−
∫
ω

mαβ(ζ3)(∂αβχ)η3 χdω

∫
ω

nαβ(Tχζ3)∂αβθη3 χdω

(4.5.38)
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It has been shown in [73] that b(·, ·) is (H1
0 (ω))2 × H2

0 (ω) elliptic and symmetric. Hence
the problem (4.5.37) has a unique solution.

4.6 Conclusion

We have started with dynamic problem for shallow shells with non-uniform thickness and
have shown that the solutions of the three dimensional model converges to the soutions of
a two dimensional model involving the non-uniform parameter.
The difference between the two dimensional static model and dynamic model is that in the
dynamic model we are able to express it involving only the third component of the limit.
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