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Abstract

Nacre, bone, spider silk, and antlers are some examples of biological composites which
exhibit a great combination of mechanical properties such as high strength, stiffness, and
toughness when compared to that of their constituents using which they made up of. This
has inspired many researchers to investigate bio-inspired composites to explore the pos-
sibilities of making synthetic composites with superior mechanical properties using rela-
tively weaker constituents. There are many reasons behind the achievement of a biological
composite’s superior mechanical properties, which range from the selection of constituents
to its final arrangement. The basic structure of above mentioned biological composites
is a kind of brick-and-mortar structure in which platelets with a defined configuration are
dispersed in a pool of matrix. Here, the parameters that significantly influence the final
mechanical properties are Young’s moduli ratio of platelet to the matrix, the platelet aspect
ratio, and the arrangement of platelets, especially the hierarchy.

In this thesis, we investigate the mechanical properties of hierarchical bio-inspired
composites in which the two mostly observed staggering types found in nature: regular
and stairwise staggerings are used. A preliminary failure study is conducted for one-
hierarchical composites with regular and stairwise staggered configurations to get a clear
idea of the failure sequence of different regions inside the composite such as the platelets
and platelet-matrix interfaces. The influence of the failure sequence on the mechanical
properties of the bio-inspired composite with a single hierarchy is also studied in detail. It
is found that the inclusion of the first failure in the computation of the composite’s tough-
ness has a significant contribution, and we were able to quantify the same through our
study. To obtain a more realistic approach, we conduct a case study using some material-
set combinations used in the industries and recent research works. The results from the
case study also reported the major contribution of the inclusion of the first failure towards
the toughness of both regular and stairwise staggered composites.

Analytical models for predicting the properties of two hierarchical composites with
different configurations at different levels of hierarchy (non-self-similar) are formulated
and compared with the finite element analysis results. The results show a good agreement
with the proposed model. We also generalize the two hierarchical analytical model to
predict its mechanical properties. The optimized model of a generalized two hierarchical
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composite enables the user to get the relevant design elements, like the platelet aspect ratio
and number of platelets in a period, for a given input of material properties and strength,
stiffness, and toughness requirements. This study could greatly help to simplify the design
procedure in a hierarchical composite and to get an initial estimation of the mechanical
properties of the final hierarchical composites before fabricating a full-scale model.
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Chapter 1

Background

Nature has perfected the art of designing and synthesizing materials with exceptional me-

chanical properties, often surpassing those of traditional synthetic materials. Bio-inspired

hierarchical composites, mimicking the structural arrangements found in biological sys-

tems, offer a promising avenue for the development of advanced materials. This Chapter

aims to provide a comprehensive overview of the mechanical properties exhibited by biolog-

ical as well as bio-inspired composites, exploring their unique structural features, mechan-

ical behavior, and potential applications. By studying and understanding these remarkable

materials, we can unlock new insights that can pave the way for innovative engineering

solutions in various industries, ranging from aerospace and automotive to biomedical and

beyond.

1.1 Introduction

The stunning and sublime self-defense mechanisms observed in nature greatly inspired the
invention of new materials. For example, the horns of a sheep can withstand an impact
force as high as 3400 N, in the time of collisions for competing territory and hunting for
food (Kitchener, 1988). Not only animals but various plants and fruits also exhibit excellent
strength and energy absorption characteristics. For example, the energy dissipation of the
mesocarp spongy layer of a pomelo fruit is around 80 J, which is obtained from free-fall
tests for no visible outer damage on the peel (Fischer et al., 2010).

Biological composites refer to a wide range of natural materials such as nacre, antler,
bone, spider silk, bamboo, and fish skin which possess superior mechanical properties
(Fratzl et al., 2004; San Ha and Lu, 2020; Wegst et al., 2015). They possess exceptionally
high strength and stiffness compared to that of their basic building blocks (Currey, 1977;
Fratzl et al., 2004; Meyers et al., 2008). This makes them more special as well as useful
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for developing synthetic materials. Even though the fundamental function of a biological
material is serving as an armor for the body, they may also act as ion reservoirs in bones,
as a chemical barrier in a cell membrane, as an energy converter in muscles, etc (Fratzl and
Weinkamer, 2007).

Figure 1.1 shows the inner nacreous layer of a red abalone shell and the typical shells
arrangement observed in nacre at different scales (Barthelat et al., 2007). The nacre, made
up of about 95 volume percent of aragonite (stiff phase), and the remaining volume per-
centage of protein (soft phase) is claimed to have a tensile strength of the order of 300
MPa, an order of magnitude higher than that of the aragonite in pure monolithic form (a
CaCO3 form closer to calcite). The stiffness of nacre varies from 60 to 80 GPa, keeping
up a reasonably high toughness of the order of 1000 times compared to the toughness of
aragonite (Barthelat et al., 2007; Ji and Gao, 2004a).

Figure 1.1: (a) The inner nacreous layer of a red abalone shell (b) Typical shells arrange-
ment in nacre (c) transmission electron micrograph (TEM) of nacre from red abalone show-
ing regular staggered arrangement of platelets (d) optical micrograph of nacre from fresh
water mussel Lampsilis Cardium (Barthelat et al., 2007)

Biological materials have helped human society to learn from and improve in many
ways. They played an indispensable role in shaping the world the one as we see today.
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Most of the artificial materials/instruments were invented from inspirations by its natural
counterpart. For example, the hook and pile fasteners developed by the company Velcro
was inspired by the burdock plant (Luke and Vukusic, 2011).

Various pieces of research have reported the possible reasons behind the outstanding
mechanical properties of biological composites. The pattern of arrangement of constituents
at the elemental level of the composite is one of the major factors responsible for the ex-
cellent mechanical properties of biological composites (Ji, 2008; Mathiazhagan and Anup,
2016a; Melaibari et al., 2021; Wu et al., 2019). For example, the toughness of nacre in
terms of energy is three orders of magnitude higher than that of the platelets of which it
is composed of, which is chiefly attributed to its peculiar staggering structure (Espinosa
et al., 2009). Fig. 1.1 (c) shows the brick and mortar arrangement observed in biological
composites. In the brick and mortar structure of nacre or mother of pearl, the bricks are
aragonite platelets and mortar is a protein matrix, with a platelet volume fraction of 95-99%
(Barthelat and Espinosa, 2007; Ji and Gao, 2004a). For bones, the basic constituents are
mineral platelets and collagen matrix, with a platelet volume fraction of around 40-45%
(Ji and Gao, 2004a). The other factors which impart the superior mechanical properties to
biological composites include the high Young’s moduli ratio between platelet and matrix,
optimum length to width ratio (aspect ratio) of platelet, the interface properties, and the
nanoscale size and hierarchical arrangement of the constituents (Gao et al., 2003; Henry,
2018; Lei et al., 2013; Ma et al., 2018, 2016; Maghsoudi-Ganjeh et al., 2021; Mathiazhagan
and Anup, 2016a,a, 2019; Wiener et al., 2020; Yao et al., 2011).

A good balance between high toughness and stiffness can be seen in nacre and bone-
like biological composites rather than an inverse relationship between two properties as
in other conventional materials (Barthelat and Espinosa, 2007; Ji and Gao, 2004a; Murali
et al., 2011; Wilmers and Bargmann, 2020). Figure 1.2 shows the toughness and modu-
lus comparison of various materials through an Ashby plot (Porter and McKittrick, 2014;
Wegst and Ashby, 2004). It can be seen that the bone and nacre has high toughness as well
as excellent stiffness.

Artificial composites derived from the inspiration of biological composites are collec-
tively called bio-inspired composites. Bio-inspired composites are often considered as an
ideal candidate in the field of light and innovative structures which the world is in need
for. The matchless properties possessed by a biological composite such as nacre, bone or
spider silk are mimicked to simulate a synthetic so-called bio-inspired composite (Barthe-
lat et al., 2013; Guo and Gao, 2006; Valashani and Barthelat, 2014). In order to develop a
bio-inspired composite with fine mechanical properties, it is required to study all the afore-
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mentioned possible factors which are responsible for the superior mechanical properties of
a biological composite (Singh et al., 2019; Yang et al., 2019).

Figure 1.2: Comparison of toughness and modulus through Ashby plot. Despite of their
low density, bone and nacre are having high toughness along with high stiffness. (Repro-
duced from Porter and McKittrick (2014))

In nature, there is always an endless competition for the survival of the fittest. This
competition has played a significant role in the evolution of biological materials on their
way to achieving superb mechanical properties such as strength, toughness, and impact
resistance, also with light weights (Carreño et al., 2022). In contrast to the traditional ma-
terials, the ones from nature use very few constituents; yet possess amazing mechanical
properties (Peng et al., 2022; Wegst et al., 2015). The utilization of the aforementioned
strategies in the manufacturing of bio-inspired composites sets them apart from other exist-
ing composite materials, making them inherently distinctive. However, despite the recent
advances reported in the manufacturing and materials, the existing biomimetic materials
are found to be much to be improved to get the actual performance of the natural materials
which they are inspired from (Libonati and Buehler, 2017).
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Several pieces of research have reported that the alignment or staggering of platelets
in the nano/microstructures plays an important role in biological materials attaining these
superior mechanical properties (Anup et al., 2007; Bosia et al., 2012; Currey, 1984; Weiner
and Wagner, 1998). There exist different kinds of staggering such as regular, stairwise,
uniform, and random; of which the mostly observed in nature are the regular and stairwise,
due to their most balanced mechanical properties (Zhang et al., 2010).

Figure 1.3 shows a regular staggered composite with an overlapping length of L/2
where L is the length of the platelet, in which the concept of a tension-shear chain (TSC)
model is also illustrated (Ji and Gao, 2004a). The tension-shear chain model was developed
by Ji and Gao (2004a) to demonstrate how the staggered alignment in the natural biological
materials helps them to attain exceptional mechanical properties compared to that of their
constituents. In a TSC model, it is assumed that the matrix at the vertical interfaces fails as
the composite is stressed, and such portions are removed for simplifying the analysis.

Figure 1.3: Schematic illustration of regular staggered composite with tension shear chain
(TSC) model. T, S, and L represent tension inside the platelet, shear in the matrix, and the
length of the platelet respectively.

Many underlying mechanisms in biological composites can be interpreted by a regular
staggered model. However, there exist other patterns in biological composites such as
stairwise staggering in which each platelet in the very next row is shifted up from the left
platelet in the preceding row by a distance of L/n, as shown in Figure 1.4 where n is the
number of platelets in each period.
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Figure 1.4: Schematic illustration of a stairwise staggered composite with tension shear
chain (TSC) model. L and n represent the length of the platelet and number of platelets in
a period, respectively. For the model shown in the figure, n = 5.

Mechanical properties of unidirectional biological and bio-inspired composites signifi-
cantly depend on the type of staggered arrangement of platelets in the matrix (Zhang et al.,
2010). The variation of mechanical properties of composite structures with the aspect ratio
of platelet was compared for different types of staggering including regular and stairwise
by Zhang et al. (2010) and it was found that the regular staggered composites possess very
high toughness (at lower aspect ratios) whereas the stairwise staggered composites were
seen to possess better strength properties.

A hierarchical composite refers to one which is composed of elements that themselves
are composites. Several biological composites are hierarchical, including bamboo, bone,
and nacre (Rho et al., 1998; Wegst et al., 2015). The hierarchical structure of bone and
bamboo is shown in Figure 1.5, bone has a 7-layered hierarchy, where as bamboo has a
6-layered one (Wegst et al., 2015). Hierarchical structures have been shown to be useful to
natural materials in obtaining desired mechanical properties. These can be broadly divided
into self-similar and non-self-similar depending on whether the structure at each level of
the hierarchy is exactly the same or not. If the staggering pattern of platelets is the same
in all levels of hierarchy, it is referred to as a self-similar-hierarchical arrangement and
vice-versa.

In studies based on quasi-self-similar hierarchical models, it is shown that there exist
an optimal hierarchical structure (with an optimal number of hierarchical levels) and an
optimal aspect ratio for achieving the maximum material toughness and damping capacity
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respectively (Qwamizadeh et al., 2016; Zhang et al., 2011). For example, the modeling
of dental enamel which is a hierarchical graded structure was done by Bargmann et al.
(2013) and it was found that the fracture energy and fracture strength optimization can be
controlled by the hard platelet aspect ratio. Both self-similar and non-self-similar hierar-
chical structures can be observed in nature, but there are some clear-cut advantages such
as penetration resistance and fracture toughness in implementing non-self-similar designs
(An et al., 2014).

Figure 1.5: Hierarchical structure of bone and bamboo. (a) In bone, there is compact bone
at the surface and spongy bone in the interior at macroscale. Compact bone is composed of
Osteons and Harvesian Canals. Osteons possess a lamellar structure with fibres arranged
in geometrical pattern. These fibres are comprised of several mineralized collagen fibrils
which are composed of collagen protein molecules (b) Bamboo is made up of cellulose
fibres embedded in a lignin-hemicellulose matrix shaped into hollow prismatic cells of
varying thickness. (Reproduced from Wegst et al. (2015))

Bone, nacre, and antler are examples of biological composites that are formed from
a bounded selection of components in such a manner that there is a hard and soft phase
designed in a hierarchical network with suitable dimensions (Barthelat et al., 2006; Fratzl
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and Weinkamer, 2007). The hierarchical arrangement present in the biological materials
can be regarded as an attribute through which the properties at different length scales (from
atomic scale) are bridged together to contribute to the overall properties at the macro-
scale level (Huang et al., 2019). The biological composites so formed have comparatively
improved mechanical properties than that of their constituents (Meyers et al., 2008; Raj and
Murali, 2020).

Research reveal that the inclusion of hierarchy in structures results in an enormously in-
creased defect-tolerance and toughness, which enables stable crack propagation for a broad
domain of crack sizes (Dimas and Buehler, 2012; Sen and Buehler, 2011). It was shown
in Dimas and Buehler (2012) that in a silica-based nanocomposite tensile specimen with a
single-edged notch, the hierarchical arrangements of silica nanostructures notably changed
the stress and strain transfer in the samples. In Mirzaeifar et al. (2015), computational mod-
eling, as well as advanced multi-material 3D printing were used to examine the mechanics
of defect-tolerant bio-inspired hierarchical composites. It was found out that the presence
of a hierarchical design leads to superior defect-tolerant properties when compared to the
brittle base constituents of the composites. Moreover, choosing hierarchical materials with
weaker constituents over available synthetic materials can reduce pollution to a great ex-
tent thereby lending a helping hand to move a step closer towards a greener and sustainable
environment (Meyers et al., 2013; Zhang et al., 2011).

In bio-inspired composites, the geometry plays an important role in achieving the strength
required to fulfill their intended structural purposes. The experimental study conducted by
Ghimire et al. (2021) on nacre-inspired one hierarchical bio-inspired composites shows
that the variation of overlapping length through change in aspect ratio could enhance the
hardening, and amplify the mechanical properties. Manno et al. (2019) investigated the ef-
fect of slight micro-structural modifications on materials inspired by biological materials,
and found that the modification can enhance the properties of the materials by arresting
crack propagation. Besides, the structurally inferior building blocks when arranged in a
multilevel hierarchy can generate a composite with significantly improved strength com-
pared to that of the constituents (Munch et al., 2008). Several composites and technologies
mimicking biological structures have been conceived, designed, and realized (Bai et al.,
2016; Carosio et al., 2016; Dutta and Tekalur, 2014; Ingrole et al., 2021; Lei et al., 2012a;
Malik and Barthelat, 2016; Saroj et al., 2019; Wilkerson et al., 2018). Some of these were
inspired by the hierarchical structural arrangements of biological composites.

A vital and decisive aspect in designing any material is its failure. It is essential to look
upon the failure modes and its related influence over the mechanical properties during the
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design process of a composite. The geometrical as well as the constituent material fea-
tures, and the failure mechanisms in a bio-inspired composite governs its final properties.
For example, the defect tolerant property observed in a bio-inspired composite is achieved
through branching out the cracks through the hierarchical arrangements and letting them to
absorb more energy by toughening mechanisms (Mirzaeifar et al., 2015; Shao et al., 2012).

The astounding fracture patterns and deformations in the nacre from pearl oyster were
observed by Rabiei et al. (2010) using in situ optical as well as atomic force microscopy.
They observed the deformation bands which looked "stair-like", forming an angle with
the loading direction and resembling to a tree-like, dense network. The damage study
on steel-polyurea nacre-inspired composite plates with nacre-like structure by Wu et al.
(2022) analyses the failure toughening mechanisms in which an improved ballistic limit of
the conceived composite material was reported. Also, the comprehensive review of various
strategies practiced for obtaining composites with excellent mechanical properties by Peng
et al. (2022) discusses the lack of theoretical grounds and guidance in the design and opti-
mization in the field of composite materials. The outcomes from the aforementioned and
many other studies confirm that the failure patterns and its transition indeed affect the me-
chanical properties, specially the toughness of the composites (Ghimire et al., 2021; Rabiei
et al., 2010; Singh et al., 2019; Tran et al., 2017).

1.2 Objectives, Approach, and Scope of the work

A number of studies elucidating the superior mechanical properties of bio-inspired com-
posites are available in literature (Cheng et al., 2023; Li et al., 2012; Lu et al., 2023; Shu
et al., 2020; Wang et al., 2023). When it comes to the case of hierarchical composites, only
a few number of studies are available, of which a very limited number of works are done
on non-self-similar composites (An et al., 2014; Deng et al., 2023; Henry and Pimenta,
2021; Mazzotti et al., 2023; Song et al., 2023; Yulong et al., 2022; Zhang et al., 2016). The
present work is aimed to study the mechanical properties of bio-inspired non-self-similar
hierarchical composites, particularly involving the mostly observed staggering patterns in
nature: regular and stairwise staggerings. We analyse the different types of failures that
can occur in a one hierarchical staggered composite first, so as to get an idea about the
failure mechanisms and its influence on the mechanical properties, and quantifying the im-
provement in the properties. The failure studies are done on one hierarchical models for
ease in computation, since in the higher levels of hierarchy models, the analytical equations
corresponding to failure mechanisms become more complex.
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Optimization is a powerful tool that enables users to configure a composite, according to
the requisites. When we looked over the active research, only a very few works probe into
optimizing the properties of staggered composites (Barthelat, 2014; Zhang et al., 2011). In
our thesis, we generalize and optimize the analytical model of the 2H composites.

The objectives of the present study can be summarized as follows:

• Analyse the failure mechanisms and the influence of failure sequence over the me-
chanical properties of staggered composites with a single hierarchy.

• Formulation of analytical model to predict the mechanical properties of two hierar-
chical (2H) non-self-similar bio-inspired staggered composites.

• Analysis of stress variations in 2H non-self-similar staggered composites using finite
element analysis (FEA).

• Generalization and optimization of mechanical properties for two hierarchical bio-
inspired non-self-similar staggered composites.

We start from analysing the failure mechanisms and their sequence in a one hierarchical
staggered composite since only a narrow area of research has been done in the available
literature, on the failure mechanisms and associated mechanical properties in a staggered
composite (Kim et al., 2018, 2019). The influence of failure modes and their sequence of
occurrence over the mechanical properties of the staggered composites is investigated in
the present study.

The failure of a composite can occur at different regions such as the vertical or horizon-
tal matrix interface, and the platelet. In Chapter 2, the various failure modes that can occur
in a staggered composite and their sequence is analysed. To analyse the stairwise staggered
model, we introduce a modified shear lag model (model in which the vertical matrix inter-
face is included in the analysis, unlike the TSC model) capable of predicting the various
properties such as the stiffness, strength, and the toughness. The proposed model can also
be used to analyse the results from TSC model by altering certain variables in the equations.

Once the failure modes and sequences are studied in detail for a single hierarchical
(1H) staggered composite, we develop the equations to compute the mechanical properties
of two hierarchical (2H) composites with stairwise and regular patterns’ non-self-similar
combinations. These particular configurations are chosen, owing to their fine mechanical
properties and their distinguishable presence in most of the biological composites (Zhang
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et al., 2010). We formulate analytical equations to predict the mechanical properties and an-
alyze them in detail for two hierarchical non-self-similar bio-inspired composites in Chap-
ter 3. The model is then generalized later so that it can be used to find the mechanical
properties for a wide range of inputs. The variation of stress inside a 2H non-self-similar
model is examined using FEA in Chapter 4. The FEA is done for two different configura-
tions of 2H non-self-similar staggered models.

The analytical model to evaluate the different mechanical properties for a 2H non-self-
similar model is generalized for various parameters, in Chapter 5. The generalized model
is then optimized with the help of ternary diagrams using MATLAB (The Mathworks,
2020). Finally, we conclude our study in Chapter 6, where the future scope of the work is
also looked into. The results obtained seem to be promising and helpful in the design and
analysis of two hierarchical bio-inspired composites.
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Chapter 2

Effect of Failure Sequence on Mechanical
Properties of Staggered Composites

In order to deal with the optimization of the mechanical properties of a bio-inspired com-

posite, a study about the possible modes of failure in the composite is required. This Chap-

ter is focused on the influence of failure modes over the mechanical properties such as

stiffness, strength, and toughness after the failure of different interfaces in single hierarchi-

cal staggered bio-inspired structures such as regular and stairwise staggered arrangements

where stiff platelets are embedded in a pliant matrix. In order to find these properties, a

novel analytical model for stress transfer and effective Young’s modulus of a stairwise

staggered composite is developed based on composite micro-mechanics principles. The re-

sults indicate that the failure sequence influences mechanical properties such as stiffness,

strength, and toughness. It is also found that the vertical interface joining the short end

of platelets is more susceptible to fail first, rather than the more extensive matrix-platelet

interface, and a major contribution of toughness is obtained from the vertical interface

failure, which is ignored in previous studies for estimating the toughness. The influence

of significant parameters like Young’s moduli ratio of platelet and matrix (Ep/Em) over

the strength at different modes of failure showed that the strength at first and second fail-

ures increases as the Ep/Em ratio increases. Also, the results from the case study show a

good agreement with the parametric studies and reveal that the contribution of toughness

from vertical interface failure is significant for the selected materials at higher platelet

aspect ratios. The findings of this study hold significant potential for predicting the fail-

ure sequences with their quantified contributions towards the mechanical properties of a

bio-inspired staggered composite.
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2.1 Introduction

The development of exceptionally strong structural materials with lightweight, which can
outperform the existing realized materials, is a trending area in the field of material science
as well as engineering (Hao et al., 2020; Mirkhalaf et al., 2016; San Ha and Lu, 2020; Yang
et al., 2018). As we discussed in the previous Chapter, naturally occurring materials such
as nacre - the inner layer of a sea shell, bone, and bamboo are regarded as ideal candidates;
they have markedly superior mechanical properties compared to that of their elemental
constituents from which they are made up of (Abid et al., 2018; Anup et al., 2007; Ji and
Gao, 2004a; Meyers et al., 2008, 2013; Wegst et al., 2015).

Failures are inevitable in all materials, which makes it essential to study the possible
modes of failure in a material before using it for its intended purposes. The various failure
modes that can occur in biological as well as bio-inspired structures shall be thoroughly
analyzed in order to estimate their mechanical properties. Several researchers have come
up with failures analysis of biological and bio-inspired structures (Barthelat et al., 2013;
Häsä and Pinho, 2019; Khaderi et al., 2014; Slesarenko et al., 2017). The failure crite-
rion developed by Barthelat et al. (2013) considers the initial defects and complex field of
stresses inside the platelet; and two criteria, namely ‘optimum criterion’ and ‘conservative
criterion,’ were developed. These analyses consider the shear traction occurring on the in-
clusions as uniform and point forces, respectively, and enabled a wide range of applicability
of the criteria for different interface materials.

Figure 2.1: Schematic illustration of a regularly staggered composite in which vertical
(between end sides of two platelets) and horizontal (between the longitudinal sides of two
platelets) interfaces are shown. The stress transfer through the vertical and horizontal in-
terface occurs through normal and shear stresses, respectively.

Kim et al. (2019) proposed a fracture map that could capture the transition of failure
mechanisms spotted in the crack phase field simulations. In the study by Kim et al. (2019),
three distinct failure mechanisms were identified according to the sequence of failure: the
soft tip or the vertical interface, the soft shear zone or the horizontal interface, and the
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platelet. Figure 2.1 shows the vertical and horizontal interfaces and platelets which are the
regions in a brick-and-mortar structure where failure may occur.

The mechanical behavior of composite samples with different shapes of platelets was
analyzed using damage mechanics by finite element simulations in the study conducted
by Askarinejad et al. (2018). Here, the results indicated that the vertical interface failed
first, after which the horizontal interface failed (Askarinejad et al., 2018). The numerical
study using the Continuous Damage Random Threshold Fuse Network Model (CDRFM)
by Nukala and Simunovic (2005) could effectively capture the B-and-M architecture as
well as the damage unfolding in the matrix interface between the platelets in a nacre-like
model. Moreover, the numerical response obtained by Nukala and Simunovic (2005) agrees
well with the experimental responses of nacre, such as its stiffness, strength, and toughness.
The aforementioned research works as well as several other studies, investigate either the
failure mechanisms or the mechanical properties of bio-inspired composites (Askarinejad
et al., 2018; Greco et al., 2020; Khaderi et al., 2014; Kim et al., 2018, 2019; Zhang et al.,
2010; Zhou et al., 2021).

There exist only a few papers that have taken into account the failure modes as well
as the mechanical properties of bio-inspired composites. In the work done by Askarine-
jad and Rahbar (2018), the closed-form solutions for layer displacements were formulated
by developing a new imperfect interface shear-lag theory for regularly staggered models.
They found that the interfacial properties hold a key role in controlling the mechanical
properties of the lamellar structure. The importance of vertical interfaces over the stiffness
and strength of the regularly staggered bio-inspired composites was investigated by Beg-
ley et al. (2012). Their work has also optimized peak strength, stiffness, and toughness by
varying the brick geometry and mortar phase’s strength. However, a detailed analysis of the
effect of the failures on the mechanical properties of the bio-inspired composite is an area
that is yet to be explored. The present study delves into the influence of different stages of
failures occurring in bio-inspired composite and the formulation of mechanical properties
considering these stages of failures.

In order to examine the failure process and, consequently, the mechanical properties, we
need to use models depicting stress transfer in biological structures. There exist many such
models for analyzing the stress transfer mechanism in biological composites, of which the
tension shear chain (TSC) model by Ji and Gao (2004a) and the shear lag model by Kotha
et al. (2000) are popular. The major difference between these models is that in the TSC
model, the normal stresses at the ends of platelets are ignored (Ji and Gao, 2004a). In
the TSC model, there is no stress transfer from one platelet to another through the vertical
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interfaces at the ends of platelets. The stress transfer through the matrix at the vertical
interfaces is also considered to predict the elastic properties of staggered composites in the
improved analytical model proposed by Kim et al. (2018). In the present study, for regu-
larly staggered arrangement, a modified version of the shear lag model put forward by Kim
et al. (2018) is used for the failure criterion and estimation of mechanical properties. Even
though a few pieces of research on which bio-inspired stairwise staggered models con-
ceived using the Tension Shear Chain (TSC) model are available (Mathiazhagan and Anup,
2016a; Zhang et al., 2010), the formulation for mechanical properties for a stairwise stag-
gered composite using the shear lag model is not available in the open literature. Here, we
develop a novel analytical model to compute the stress transfer and composite modulus in
stairwise staggered composites based on composite mechanics principles. The mechanical
properties of regular and stairwise staggered composites are analyzed with varying signif-
icant parameters such as Young’s moduli ratio of platelet and matrix (Ep/Em) and normal
strength of platelet (σpcritical), for a range of platelet aspect ratios. A case study is also done
with the material-sets chosen from recent research papers (Askarinejad et al., 2018; Nukala
and Simunovic, 2005; Yang et al., 2019), so that realistic and reliable data of mechanical
properties could be generated.

Section 5.2 describes the methodology adopted for determining the possibility for dif-
ferent sequences of failure of vertical and horizontal interfaces and platelets. The study
is done for two different staggerings, namely regularly and stairwise in Sections 2.2.1 and
2.2.2, respectively. The effect of the relevant sequence of failures on the mechanical prop-
erties such as stiffness, strength, and toughness is investigated in Sections 2.4.1, 2.4.2 and
2.4.3. A case study is included in Section 2.5 using different realistic material-sets from re-
cent research works. We conclude the study in Section 2.6 where the significant outcomes
and future scope of the study is summarized.

2.2 Methodology

Three possible modes of failure exist in a brick-and-mortar structure: failure of vertical and
horizontal interfaces and the platelet (see Figure 2.1). These failure modes are examined for
two different types of arrangement: regularly staggered and stairwise staggered composite.
In order to undertake this analysis, we consider the modified shear lag model put forward
by Kim et al. (2018) since it is the most recent model and it considers the horizontal as well
as the vertical matrix thickness between two platelets.

16



The representative volume element (RVE) for a regularly staggered composite by Kim
et al. (2018) is shown in Figure 2.2, with platelets of length (Lp), width (2b), the thickness
of matrix along the horizontal and vertical direction, 2Lb and h respectively. In this figure,
regions 1 and 2 represent platelets; the normal stress varies along the horizontal direction
of the platelet. Moreover, the shear stress in region 3 is formulated as a function of the
distance along the length of the platelet, which is discussed in detail in Section 2.2.1.

Figure 2.2: (a) Schematic diagram of a regularly staggered composite with length and
width of platelet Lp and h respectively (b) Representative Volume Element (RVE) for a
regularly staggered composite, proposed by Kim et al. (2018); Ep and Em are Young’s
moduli of platelet and matrix respectively, and Gm is the Shear modulus of the matrix.

The normal stress at matrix region 4 is assumed to be equivalent to the normal stress at
the end of the platelet owing to the compatibility requirements of the model. It is assumed
that the stresses in regions 4 and 5 are under uniform tensile stress (Kim et al., 2018). For
the analysis of the stairwise staggered model (SSM), we develop the analytical formulation
using the existing representative volume element (RVE) proposed by Kim et al. (2018).

2.2.1 Regularly Staggered Composite

Figure 2.3 shows a full platelet in a regularly staggered composite, which is divided into
3 regions for defining the normal and shear stresses along the platelet and platelet matrix
interface respectively, as a function of distance measured along the platelet (x). The expres-
sions for the normal stress along a full platelet and the shear stress along the full platelet
matrix interface with their maximum values and locations developed using the formulations
by Kim et al. (2018) are given in Appendix A.
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Figure 2.3: Regions defined for the formulation of variation of normal stress along a
platelet in a regularly staggered composite. Region I ranges from x = 0 to x = La,
Region II from x = La to x = La + 2Lb and Region III from x = La + 2Lb to x = Lp,
where 2Lb is the thickness of vertical matrix interface, La is the overlapping length in a
half platelet and Lp is the length of a full platelet.

In the following section, the equations for the stress distributions in platelet and matrix
for a stairwise staggered model are developed using the RVE shown in Figure 2.2 (b).

2.2.2 Stairwise Staggered Composite

Here, we develop the expressions for the normal and shear stresses along a platelet and
matrix interface, respectively, in a stairwise staggered model. The maximum stress values
(both normal and shear) would be used to determine the modes of failure. To develop these
expressions, a model of stairwise staggered composite is considered as shown in Figure 2.4
(a), in which a single full platelet is chosen with the adjacent rows up to half the widths
of the platelets in the adjacent rows. It can be noticed that any full platelet in the stairwise
staggered composite shown in Figure 2.4 (a) can be represented using Figure 2.4 (b). This is
done so as to identify the RVEs as shown in Figure 2.1(b), thereby making the computation
easier. Four numbers of RVEs ( a©, b©, c© and d© ) as shown in Figure 2.4 (c) are obtained
of which the RVEs represented by same colors have identical geometry.

The variation of stresses along a platelet in a stairwise staggered composite is found
by taking the average stresses at the top ( c©& d©) and bottom ( a©& b©) sections according
to the location of the point from the origin as shown in Figure 2.4 (c); using the available
equations for the RVEs (See Figure 2.1 (b) ). For defining the variation of stresses along a
platelet, the coordinate axes of the different RVEs are shifted such that the left end of the
chosen full platelet is set to the origin. This enables us to find out the stresses at any section
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of a platelet in a stairwise staggered composite using a single function. It also offers a
smoother computation procedure for finding the average stress at any section in a staggered
composite when the strength is to be found out.

Figure 2.4: (a) Schematic diagram of a stairwise staggered composite in which a full
platelet is chosen for formulating the variation of stress (b) The selected full platelet with
the top and bottom rows (c) Identification of four RVEs a©, b©, c© and d© as shown in
Figure 2.1 (b)

When the x-axis is set as shown in Figure 2.4 (c), the equations for RVE a© and c©
can directly be obtained using the available equations for regular staggered composites by
whereas for the RVE b©, X = x− (La1 + 2Lb) and for the RVE d©, X = x− (La2 + 2Lb)

where X and x represent the x-coordinates of the regular staggered RVE (as shown in
Figure 2.1 (b) ) and in the present study, respectively.

On applying the above conditions and simplifying, the expressions for stresses in RVEs
a©, b©, c© and d© along the center platelet shown in Figure 2.4 (c) as a function of the

uniform stress in region 5 (refer Figure 2.1(b)) of the platelet (σpu) are obtained as follows:

σa(x) = σpu

γA1 sinh(A1) +B1 cosh(A1) + λA1 sinh
(
A1

[
2n(x+Lb)−L
L−2nLb

])
2A1 sinh(A1) +B1 cosh(A1)

 (2.1)
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σb(x) = σpu

γA2 sinh(A2) +B2 cosh(A2) + λA2 sinh
(
A2

[
L(n+1)−2n(x+Lb)

(n−1)L−2nLb

])
2A2 sinh(A2) +B2 cosh(A2)

 (2.2)

σc(x) = σpu

γA2 sinh(A2) +B2 cosh(A2) + λA2 sinh
(
A2

[
2n(x+Lb)−L(n−1)

(n−1)L−2nLb

])
2A2 sinh(A2) +B2 cosh(A2)

 (2.3)

σd(x) = σpu

γA1 sinh(A1) +B1 cosh(A1) + λA1 sinh
(
A1

[
L(2n−1)−2n(x+Lb)

L−2nLb

])
2A1 sinh(A1) +B1 cosh(A1)


(2.4)

Thus, the normal stress along a platelet in a stairwise staggered composite, σpsw(x) can
be written as,

σpsw(x) =
σp,topsw (x) + σp,botsw (x)

2
(2.5)

where,

σp,topsw (x) =


σc if 0 ≤ x < La2

σpu if La2 ≤ x < La2 + 2Lb

σd if La2 + 2Lb ≤ x ≤ Lp

(2.6)

σp,botsw (x) =


σa if 0 ≤ x < La1

σpu if La1 ≤ x < La1 + 2Lb

σb if La1 + 2Lb ≤ x ≤ Lp

(2.7)

where,

σpu =
2σpcritical (2A2 sinh(A2) +B2 cosh(A2))

2 [γA2 sinh(A2) +B2 cosh(A2)] + A2λ [sinh (A2 C1) + sinh (A2 C2)]
(2.8)

The terms used in the above the expressions are provided in Appendix B.
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It is seen that the maximum normal stress in the platelet (σpmax) in a stairwise staggered
composite occurs at x = La1 + 2Lb and is equal to σpu. Also, the shear stress at the top
interface is maximum at x = La1, and at the bottom, it is maximum at x = La2.

2.2.2.1 Formulation of equations for modulus of elasticity of stairwise staggered
composites

There are a number of papers available in open literature for the evaluation of the me-
chanical properties of regularly staggered composites. However, for the case of stairwise
staggered composites, only limited researches have taken place so far. The modified shear
lag model by Kim et al. (2018) for regularly staggered composites which gives analytical
results closer to Finite Element results is chosen to extend for obtaining the results for a
stairwise staggered composite. Inorder to accomplish this, a Representative Volume Ele-
ment (RVE) of a stairwise staggered composite with n = 5 as shown in Figure 2.5 is con-
sidered and is divided into several parts such that each part resembles to a regular staggered
RVE. The modulus of elasticity for each part is then calculated, after which an integration
for the whole volume is done to arrive at the corresponding equation for the stairwise stag-
gered model. Here, we have considered n = 5 as an example, but the equations could be
formulated for any other values of n along similar lines.

Figure 2.5: Representative Volume Element (RVE) of a Stairwise Staggered Composite
with a period, n=5

Figure 2.6 shows the division of RVE of the stairwise staggered model. It can be seen
that only for the first and last rows, complete unit cells are obtained. To obtain a complete
unit cell for the remaining rows, the RVE is extended towards the right, and it can be seen
that the left part matches with that of the extended right parts, and it forms a complete unit
cell.
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Figure 2.6: Division of Representative Volume Element of a Stairwise Staggered Compos-
ite with n=5

Figure 2.7 shows the zoomed view of parts 1 and 2. Young’s modulus of part 1 and part
2 can be found using equation (23) or (24).

Figure 2.7: zoomed view of parts 1 and 2 forming Kim’s model

The effective elastic modulus ĒR for a regularly staggered composite as shown in Fig-
ure 2.2 (b), is given by Kim et al. (2018) in terms of non dimensionalized parameters as,

ĒR = Ep
(B + (1− β + β/2φ)A tanh(A))(φ+ (1− φ)β + 2ξφ)

(1− β + β/2φ+ 4ξ)A tanh(A) + 1 + β +B
(2.9)

For limiting cases where α, β, ξ << 1, the above equation becomes, (Kim et al., 2018)

Ē =
[A sinh(A)] + [B cosh(A)]φ

cosh(A) + A sinh(A) +B cosh(A)
(2.10)

Please refer to Appendix A for the abbreviations used.
For computing the Young’s modulus of the stairwise staggered composite, we observe

that parts 1 and 2 are in series. Therefore, the forces experienced by the parts are the same,
while they share the total deformation.
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This gives the effective Young’s modulus as (Gibson, 2016),

ĒS =

[
A11

AE1

+
A22

AE2

]−1

(2.11)

which is similar to that of the inverse rule of mixture. In the above equation, A11 and A22

represent the respective areas of part 1 and 2 (see Figure 2.7), A = A11 + A22. Also, E1

and E2 are the Young’s moduli of part 1 and 2, respectively which are given by,

E1 = Ep
(B1 + (1− β + 2β/φ)A1 tanh(A1))(φ+ (1− φ)β + 2ξ1φ)

(1− β + 2β/φ+ 4ξ1)A1 tanh(A1) + 1 + β +B1

(2.12)

E2 = Ep
(B2 + (1− β + 2β/φ)A2 tanh(A2))(φ+ (1− φ)β + 2ξ2φ)

(1− β + 2β/φ+ 4ξ2)A1 tanh(A2) + 1 + β +B2

(2.13)

2.2.3 Comparison of Analytical results with Finite Element Results
for the Stairwise Staggered Model

In this subsection, we compare the results of the developed expressions for normal stress
along a stairwise staggered composite (Equation B.5) with that of the finite element anal-
ysis (FEA). For this, a stairwise staggered model (SSM) with a platelet volume fraction
of 0.8 and platelet aspect ratio of 12 is modeled using the FEA software suite ABAQUS
(SIMULIA, 2022). The material properties chosen for carrying out the FE analysis and
subsequent comparison are Young’s modulus of platelet, Ep = 100 GPa, Young’s modulus
of the matrix, Em = 4 GPa, normal strength of the matrix, σmcritical = 35 MPa, normal
strength of platelet, σpcritical = 1400 MPa, and shear strength of the matrix, τmcritical = 20.16

MPa.

For the comparison of the developed analytical model of SSM, a displacement of 0.01
magnitude is applied on the right edge along with periodic boundary conditions (PBC) on
the four edges of the FE model of SSM. PBCs are applied since the stairwise staggered
configuration is a periodic structure in which the staggering repeats after n number of rows
of platelets. We take n = 5 for the analyses in the present study. The periodic boundary
condition is applied by using python script, which is given in the Appendix.

The model is meshed with plane stress (CPS4R) elements (a total of 25,002 elements).
The normalized stress (stress/average stress) along a platelet from the FEA is compared
with the values obtained using the developed Equation 2.5 as shown in Figure 2.8.

23



Figure 2.8: Comparison of normalized stress along a platelet in an SSM using analytical
(Equation 2.5) and FE results (Note that the y-axis starts from 1; The link to the Python
and Matlab scripts for reproducing this figure can be found here)

Figure 2.8 shows a very good match between analytical and FE results (maximum vari-
ation of 2.4%) except at the ends of the platelet, where there is a mismatch. This could be
due to the fact that the equations of the modified shear lag model do not account for the
stress concentration at the sharp ends of the rectangular platelets (Kim et al., 2018).

The strength of a staggered composite depends on the sequence and mode of failure.
Here, mode represents the type of failure, i.e., whether it is a vertical interface failure (VIF)
or horizontal interface failure (HIF), or platelet failure (PF) that occurs. Sequence refers
to the order of the above-mentioned modes of failure. In order to examine the mode and
sequence of failures, we compute the maximum values of stresses in the vertical interface,
matrix, and platelet and then normalize with the corresponding strength of the materials at
the respective regions to define three different non-dimensional numbers σmcritical

σmmax
, τmcritical

τmmax
,

and σpcritical
σpmax

; comparing these ratios, the mode of failure can be ascertained. These three
non-dimensional numbers are analyzed by varying the platelet aspect ratios for the regular
and stairwise staggering types of composites in the following sections.

The non-dimensional parameters σmcritical
σmmax

, τ
m
critical

τmmax
, and σpcritical

σpmax
indicate the state of stress

at the different regions (vertical interface, horizontal interface, and platelet) with respect to
the corresponding strengths. The region with the least value of the parameter will reach
its strength with minimum increase in stress, leading to failure of that particular region.
Once the vertical interface failure (VIF) has occurred, the parameter B in the equations
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for calculating stresses is set to zero since the load transfer through the vertical interface
is absent. Figure 2.9 shows the classification of failure modes in which the possibility of
occurrence of different types of failures and the sequence in which they can occur in a
regular or stairwise staggered composite are indicated as a flow chart.

Figure 2.9: Flowchart showing Classification of Failure Modes, the sequences shown in
dashed boxes represent the ones identified by Kim et al. (2019)

The first two sequences begin with the vertical interface failure, where the stress in the
vertical interface reaches the normal strength of the matrix at the vertical interface. Once
the VIF has occurred, either the matrix at the horizontal interface or the platelet may fail,
which gives two sequences of failure starting with VIF. The third and fourth failure se-
quences are commenced by HIF in which the stress in the horizontal interface of the matrix
reaches the shear strength of the matrix at that region. After HIF, it is assumed that the
stress transfer in the composite takes place through only normal stresses. The last sequence
of failure corresponds to a single-step failure where the stress in the platelet reaches the
platelet strength. The composite will no longer be able to transfer the stresses if the platelet
fails first since a significant amount of stress is transferred through the platelets before
platelet failure. Of the five sequences of failures shown in Figure 2.9, the sequences iden-
tified by Kim et al. (2018) are represented in dashed boxes. The sequence in which the
primary failure of the horizontal interface occurs is mainly influenced by the lesser thick-
ness of the horizontal interface. i.e., in staggering structures with a horizontal interface
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having considerably higher thickness than that of the vertical interface, the horizontal in-
terface is more likely to fail first.

The strength of a bio-inspired composite increase with an increase in overlap length
(La), but after a critical value, it decreases (Gao, 2006). One critical parameter which could
influence the stress transfer in these composites is the half non-overlap length to overlap
length ratio (ξ = Lb

La
, see Figure 2.2) (Kim et al., 2018). In this study, the half non-overlap

length to overlap length ratio (ξ) is kept constant (1/50) to ensure this parameter does not
influence the results.

2.3 Results and Discussion

The three modes of failure, as described in Figure 2.9 could affect the mechanical prop-
erties of composites in different ways. For example, if the first mode of failure is platelet
failure, the composite is considered to be failed; it will no longer be able to carry any fur-
ther load. However, if the first model of failure is vertical interface failure, the composite
would be able to carry the load through the horizontal interface and platelets. The analysis
of the composite in which VIF has occurred first can be done by ignoring the vertical inter-
face. The variation of mechanical properties such as stiffness, strength, and toughness are
analyzed in the following sections by considering the failure modes as a major parameter.
In order to accomplish this, we compute the mechanical properties for the following cases:
(a) structure with no failure, (b) structure which has undergone failure, and corresponding
stress transfer element removed from the equations.

2.4 Mechanical Properties

The mechanical properties obtained for bio-inspired structures depend on the modes and
sequence of failures. To find the sequence and mode of failure, the ratios σmcritical

σmmax
, τmcritical

τmmax
,

and σpcritical
σpmax

are drawn against the platelet aspect ratio (ρ) varying from 1 to 120. Here as
an example, we show the failure ratios in Figure 2.10 drawn with representative mechan-
ical properties values similar to that of nacre with aragonite platelets and organic matrix
(Askarinejad et al., 2018). These values are further used for case studies in section 2.2.3
(See material set-5, Table 2.1).

It can be seen from Figure 2.10 (a) that the VIF occurs first for aspect ratios less than 65,
beyond which PF occurs first. Similarly, for the stairwise staggered composites (see Figure
2.10 (b)), it is seen that the VIF occurs first for aspect ratios less than 31, beyond which HIF
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Figure 2.10: Variation of σmmax
σmcritical

, τmcritical
τmmax

and σpcritical
σpmax

with aspect ratio ρ, for (a) regularly
staggered composites and (b) stairwise staggered composites, with material properties Set-
1 (The link to the Matlab scripts for reproducing this figure can be found here)

occurs first. (VIF was observed to occur first at lower aspect ratios for all the material-sets
in Table 2.1). In order to analyze the sequence of failures and their influence on mechanical
properties, we take up the stress-strain curve depicting such a sequence of failures. Here,
the sequence of failures is VIF followed by either HIF or PF. Wherever these sequences
differ, we explicitly state that and compute mechanical properties accordingly. Consider
a representative stress-strain plot for a regular staggered model with stress transfer even
through the vertical interface as shown in Figure 2.11. In Figure 2.11, σ′ is the maximum
stress at the first failure (VIF). The strain corresponding to this point is obtained by dividing
the strength by the Young’s modulus of the composite (EB 6=0). The strength at the first
failure (σ′B=0 ) can be obtained by multiplying the strain at the first failure with the Young’s
modulus of composite with vertical interface removed (EB=0). The first failure is observed
to be VIF for most of the cases. Once VIF has occurred, the parameter B in the equations
for calculating stresses is set to zero since the load transfer through the vertical interface
region is absent. Thus, the strength at the second mode of failure (σ′′) is computed using
equations with the parameter B = 0.

The toughness is found in terms of the work of fracture-area under the stress-strain
curves and is plotted against the aspect ratio. The toughness so obtained is compared with
that of the tension shear chain (TSC) model put forward by Zhang et al. (2010) and is found
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to match except at a few points in the initial region. For plotting the toughness graphs, the
parameters were set such that Ep/Gm = 1000, σpcritical/τ

m
critical = 10 and ξ = 1/50 in the

equations for stresses (Eq. A.8 & 2.5).

Figure 2.11: Stress (σ) vs strain (ε) for a regularly staggered model, σ′ and σ′′ denotes the
strengths at the first and second failures, σ′B=0 is the strength after VIF.

The area under the stress-strain curve is computed to obtain the toughness of a staggered
composite as,

w =
σ′2

2EB 6=0

+
σ′′2

2EB=0

− σ′2EB=0

2E2
B 6=0

(2.14)

where σ′ is the strength at the first failure, EB 6=0 is the corresponding Young’s modulus
at the first failure, σ′B=0 is the strength after the first failure, and σ′′ is the strength at the
second failure.

The most important material parameters that could be responsible for the overall me-
chanical properties of a composite are the Young’s moduli ratio between the platelet and
matrix (Ep/Em) and the normal strength of the platelet. So, for analyzing the effect of
failure modes on the mechanical properties of the composite, we consider the variation
in the aforementioned parameters. First, we choose a model with Young’s modulus of
platelet (Ep) and matrix (Em) as 220 GPa and 1.1 GPa, respectively. Keeping the normal
(σmcritical = 30 MPa) and shear strength (τmcritical = 17.3 MPa) of the matrix as a constant,
the normal strength of the platelet (σpcritical) is varied from 10 to 200 times that of τmcritical,
to study the effect of change of platelet strength in the mechanical properties. In the sec-
ond case, keeping σpcritical = 2500 MPa, σmcritical = 43.4 MPa, τmcritical = 25 MPa, and
Em = 4000 MPa, Ep is varied from 10 to 1000 times that of Em to study the effect of the
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Ep/Em ratio over the failure modes and the mechanical properties. The material properties
are selected so as to represent a range of material combinations used in realistic studies.
Here, we examine how the mechanical properties of the regularly and stairwise staggered
models vary with aspect ratio for these variations in parameters. We also look at the effect
of failure on these properties. For the case of stairwise staggered composites, we consider
a period (n) of 5.

2.4.1 Stiffness of the staggered composites

Here, we discuss cases where the first failure is VIF. An essential aspect of the stiffness is
the values before and after the first failure. Even after the failure of the vertical interface,
the composite is still able to transfer load, albeit with lower stiffness. Of the two mate-
rial parameters we considered, only the Ep/Em ratio affects the stiffness of the composite,
whereas the normal strength of the platelet does not affect this stiffness in any way. There-
fore, we discuss only the effect of Ep/Em on the stiffness ratio in this section. Figure 2.12
shows the effect of Ep/Em on the stiffness ratio of regular and stairwise staggered models.
Here, the x-axis is plotted in log-scale to comprehend the difference between the curves at
lower aspect ratios.

Figure 2.12: Variation of the ratio between stiffness before and after the first failure of
(a) regularly and (b) stairwise staggered composite; w.r.t the platelet aspect ratio (ρ) for
different values of Ep/Em. Note that here, the first failure is found to be VIF in most cases.
(The link to the Matlab scripts for reproducing this figure can be found here)
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For both types of staggering, a decreasing trend of the stiffness ratio is observed with
increasing aspect ratios from Figure 2.12. It is also observed that the stiffness ratio in-
creases and the plots converge as Ep/Em ratio is increased. Moreover, comparing Figure
2.12 (a) and (b), it can be seen that for the same material properties, the ratio of stiffness
before to that after the first failure is greater for a stairwise staggered type composite than
a regularly staggered composite, at lower aspect ratios. However, at higher aspect ratio, the
effect of Ep/Em is very small, and the stiffness ratio converges to 1, which is obtained for
the limiting case as ρ→∞ for both stairwise staggered and regular staggered models.

Here, it is seen that as the aspect ratio decreases, stiffness ratio increases. The maxi-
mum values of stiffness ratio,

(
E

EB=0

)
max

for regular and stairwise staggered models can
be obtained using Equation 2.15 given below (see Appendix C for more details) where(

E
EB=0

)
max

= f(ρ, νm, vf , b, ξ, n).

(
E

EB=0

)
reg

=
(A sinh(A) +B cosh(A))(cosh(A) + A sinh(A))

(cosh(A) + A sinh(A) +B cosh(A))A sinh(A)
(2.15)

For example, for a realistic small aspect ratio (say, ρ = 4), Ep/Em = 100 in the present
model with the given values of parameters in Section 2.4, the

(
E

EB=0

)
values are found out

to be 7 and 11 respectively for regular and stairwise staggered models; which implies that
the stiffness after vertical interface failure in the regular staggered model is around 36%
higher than the stairwise staggered model.

2.4.2 Strength

The strength of a composite is referred to as the average stress in a composite section when
the stresses in either of the components (i.e, platelet or matrix) reaches their respective
material strengths (Zhang et al., 2010). Here, the matrix possesses two kinds of strength:
tension and shear. The expressions for the stress variation along a platelet in a staggered
structure is used to compute the average stress in a representative volume element (RVE).
It is assumed that the stress at the vertical interface (which is composed of the matrix) is
equal to the stress in the platelet at its ends.

The strength for regular and stairwise staggered composites is computed as the max-
imum of the stresses at the first and second failures. The model proposed by Kim et al.
(2018) is used to estimate the stresses before the first failure. For the second failure, the
model for stress computation shall comply with the first failure; if the first failure is a VIF,
we set the parameterB = 0 both in the equation for the regular staggered model in the orig-
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inal Kim’s model as well as in the developed equations of the present study. This means
that we ignore the stress transfer through the vertical interface for determining the second
failure. If HIF occurs first, we consider the model as a combination of vertical interfaces
and platelets (ignoring the horizontal interface) for computing the stress at the second fail-
ure. For all the studies, we consider regularly staggered models with an overlap ratio equal
to 1/2 since this would provide the most beneficial mechanical properties (Zhang et al.,
2010). In the case of stairwise staggered composites, we consider a period (n) of 5.

The strength at the first failure of the regular and stairwises staggered composites are
analyzed by varying aspect ratio (ρ) as shown in Figure 2.13. The strength is seen to
increase with an increase in aspect ratio. For the regular staggered model (Figure 2.13 (a))
with σpcritical

τmcritical
= 10, the first failure is observed to be VIF at lower aspect ratios (ρ < 23),

and for ρ ≥ 23, PF is found to occur first. Here, ρ = 23 is a critical aspect ratio, after
which the failure mode changes from VIF to PF. This critical aspect ratio can be observed
as a kink in the graph (point k1).

Figure 2.13: Variation of normalized strength of (a) Regularly and (b) Stairwise Staggered
Composite, at first failure; with platelet aspect ratio (ρ), for different values of σpcritical

τmcritical
.

Here, k1, k2 represent the points of kinks and ψ (ψreg = 23.6, ψsw = 17.3) represents the
limiting value of σpcritical

τmcritical
for the model, beyond which the plots converge. (The link to the

Matlab scripts for reproducing this figure can be found here.)

It can be seen from Figure 2.13 that the strength at the first failure remains the same
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for a critical value, ψ ≥ σpcritical
τmcritical

. This value of ψ = ψ(Ep, Em, νm, vf , b, ξ, n) is obtained
by comparison of strength ratios (as illustrated by Figure 2.9) and solving associated non-
linear equations (See Eq. A.11 and Eq. A.12 in Appendix A) using a search algorithm
in MATLAB (The Mathworks, 2020). For the geometrical and material parameters used,
the value of ψ for regular and stairwise staggered models are obtained as 23.6, and 17.3,
respectively.

From Figure 2.13 (b) also, it can be seen that the normalized strength values are the
same for σpcritical

τmcritical
≥ ψsw, which is attributed to the limiting value of σpcritical

τmcritical
as explained

above. The critical aspect ratio for the stairwise staggered model with σpcritical
τmcritical

= 10, is
found at the point of kink (k1, Figure 2.13 (b)) at ρ = 37; from where the first failure
changes from VIF to PF.

Figure 2.14: Variation of normalized strength of (a) Regularly and (b) Stairwise Staggered
Composite, at second failure (VIF); with platelet aspect ratio (ρ), for different values of
σpcritical
τmcritical

. The plots are drawn for aspect ratios up to which platelet or horizontal interface
failure does not occur first. Here, ψ (ψreg = 23.6, ψsw = 17.3) represents the limiting
value of σpcritical

τmcritical
for the model, beyond which the plots converge. (The link to the Matlab

scripts for reproducing this figure can be found here)

Figure 2.14 shows the variation of normalized strength at the second failure with platelet
aspect ratio for different values of σ

p
critical

τmcritical
. The plots for strength at second failure are drawn

up to aspect ratio beyond which the platelet or horizontal interface fails first; since a second
failure is not possible for such cases. Also, the strength at second failure is observed to be
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the same for stairwise staggered models in the selected range of σpcritical
τmcritical

values, but the
aspect ratio at which platelet failure occurs first, is seen to be different for some cases. For
example, for models with σpcritical

τmcritical
= 10, platelet failure is seen to occur beyond ρ = 36.

Similarly, for stairwise staggered models with σpcritical
τmcritical

values of ψsw and greater, the platelet
failure was seen to occur first, beyond an aspect ratio value of 38. The normalized strength
at second failure is also compared with the analytical solution by Zhang et al. (2010) and a
good agreement is observed.

Figure 2.15 shows the variation of strength at first failure with platelet aspect ratio (ρ),
for different Ep/Em ratios. It can be seen that the strength values at first failure increases
with increase in Ep/Em ratio.

Figure 2.15: Variation of normalized strength of (a) Regularly and (b) Stairwise Staggered
Composite, at first failure; with platelet aspect ratio (ρ), for different values of Ep/Em.
(The link to the Matlab scripts for reproducing this figure can be found here)

The variation of strength at the second failure with platelet aspect ratio (ρ), for different
Ep/Em ratios is shown in Figure 2.16. The strength values at second failure also increases
with increase in Ep/Em. Moreover, at higher aspect ratios, the rate of increase of strength
decreases. Here also, the stairwise staggered models are seen to have a lower range of
second failure strength values.
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Figure 2.16: Variation of normalized strength of (a) Regularly and (b) Stairwise Staggered
Composite, at second failure (VIF); with platelet aspect ratio (ρ), for different values of
Ep/Em. The plots are drawn for aspect ratios up to which platelet or horizontal interface
failure does not occur first. (The link to the Matlab scripts for reproducing this figure can
be found here)

Comparing the two graphs (Figure 2.15 and 2.16), we find that the strength at second
failure is higher than that at first failure for the range of parameters considered. Therefore,
for calculation of strengths, a model without the vertical interface could be sufficient.

2.4.3 Toughness

The normalized toughness for a regular and stairwise staggered composites with respect to
the platelet aspect ratio is drawn using equation 2.14 and compared with the TSC model
(Zhang et al., 2010) and is shown in Figure 2.17 (a) and (b) respectively. In order to
compare the results of the present study with the TSC model (Zhang et al., 2010), we select
properies same as that used in Zhang et al. (2010). Here Ep = 700 GPa, Em = 1.96 GPa,
σmcritical = 243.05 MPa, σpcritical = 1400 MPa, and τmcritical = 140 MPa.

It can be seen from Figure 2.17 (a) that the analysis matches with the results of TSC
model except for a few points in the initial region. Moreover, the toughness at the initial
points seems to be higher for the TSC model in the case of the regular staggered struc-
ture where as the TSC model show comparatively lower values for stairwise staggered
arrangement. Figure 2.17 (b) shows the comparison of normalized toughness in a stairwise
staggered model in which it can be seen that there is a marginal difference between the
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peak points of the toughness predicted using Zhang’s model and the present study (Kim
et al., 2018; Zhang et al., 2010). The models with ‘VI ignored’ refer to the model in which
it is assumed that VIF has taken place and the parameter B is set to zero in Equation A.8
and B.5.

Figure 2.17: Comparison of normalized toughness in (a) regular staggered model (b) stair-
wise staggered model; the VI ignored models denote those in which VIF has already oc-
curred so that there is no stress transfer across the vertical interfaces. (The link to the
Matlab scripts for reproducing this figure can be found here)

There is a difference in the critical aspect ratio (aspect ratio which separates matrix fail-
ure and platelet failure) predicted by the three models. The critical aspect ratio depends on
the stress distribution in platelet and matrix, which differs for the three models considered.
The critical aspect ratio for the three models: Zhang, present study with and without VI are
observed to be 40, 42 and 42 respectively. Also, there is a dip at an aspect ratio of 95 for
the stairwise staggered model developed in the present study, which is due to the change in
sequence of failure modes. For aspect ratios upto 42, the failure sequence is observed to be
HIF followed by PF. For aspect ratios from 43 to 95, the sequence of failure is observed to
be VIF followed by PF. However, for aspect ratio values beyond 95, PF occurs first. This
creates a kink in the toughness plot (Figure 2.17 (b)) at an aspect ratio of 42 and 95 for the
present study.

In Figure 2.18, the curves OABD and OBD show representative graphs illustrating a
typical stress-strain curves for models with and without VI. Here, A1 represents the area
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enclosed by the triangle OAB and A2 represents the area enclosed by the triangle ODE.
A1 can be physically interpreted as a measure of the toughness contribution from the first
failure and A2 is the toughness of the composite when the vertical interface (VI) is ignored
in the computation. Note that in literature, the contribution from A1 is usually ignored
(Zhang et al., 2010).

Figure 2.18: Schematic diagram of stress (σ) vs strain (ε) showing areas contributing to
the toughness in the first and second modes of failure, A1 and A2 represents the areas of
triangles OAB and ODE respectively.

Figure 2.18 is drawn for typical cases where the second mode strength (σ′′) is higher
than the first mode strength (σ′) (refer Figure 2.11). There can be cases where the strength
and/or strain at second failure is less than the corresponding values at first failure. In all
cases, A1 would be the additional toughness due to consideration of VI.

Figure 2.19a and 2.19b shows a representative graph of the stress strain variation for a
regularly and stairwise staggered model respectively, composed of the material-set adopted
in section 2.2.3 (material-set-1, refer Table 2.1) with a platelet aspect ratio of 10. From
these figures, it can be seen that a major portion of the toughness is contributed by the area
A1 (see Figure 2.18) which is obtained as a result considering the first failure which is a
VIF. The ratio of the areas depicted as A1 and A2 (see Figure 2.18) is found out to analyze
the influence of VIF in the computation of toughness. Note that the equations for stress and
Young’s modulus by Kim et al. (2018) is used for computing the stress and strain values in
a regular staggered model.
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(a) Regularly staggered (b) Stairwise staggered

Figure 2.19: Comparison of stress (σ) - strain (ε) variation in TSC and modified shear lag
models with a platelet aspect ratio ρ = 10, with material properties Set-1

Figure 2.20: Variation of toughness contribution from the first failure expressed as A1/A2

(increase in toughness while considering the first failure and toughness due to the second
failure ignoring vertical interface) for materials with different σpcritical in (a) regular stag-
gered model (b) a stairwise staggered model. Here, ψ (ψreg = 23.6, ψsw = 17.3) represents
the limiting value of σpcritical

τmcritical
for the model, beyond which the plots converge. (The link to

the Matlab scripts for reproducing this figure can be found here)

Here, we examine the influence of various parameters on the ratio A1/A2. First, we
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look at how the strength ratio of platelet to matrix (σ
p
critical

τmcritical
) influence this ratio. Here we

vary σpcritical
τmcritical

from 10 to 200 while keeping other parameters at values Ep= 220 GPa, Em
= 1.1 GPa, σmcritical = 30 MPa and shear strength τmcritical = 17.3 MPa; as done in the
previous analysis. Figure 2.20 shows the variation of the toughness contribution from the
first failure expressed as the area ratio A1/A2 (see Figure 2.18 for the definition of A1 and
A2) for regular and stairwise staggered models with different σ

p
critical

τmcritical
.

It is also seen that for σpcritical
τmcritical

≥ ψ, the variation of σpcritical, the toughness contribution
from the first failure is observed to be the same and the plots overlap. This is so because the
failure sequence is VIF followed by HIF in the aspect ratio range considered, which is in-
dependent of σpcritical. Moreover, the toughness contribution from the first failure compared
to that without considering it is observed to be greater for a stairwise staggered model. For
example, the A1/A2 ratio for a regular and stairwise staggered model with σpcritical

τmcritical
= 200

for an aspect ratio ρ = 4 is observed to be 9.7 % and 41.34 %, respectively.

2.4.4 Physical mechanisms affecting the toughness

Here, we discuss the physical mechanisms responsible for the variation in toughness with
the geometrical and material parameters. For instance, in Figure 2.20, the plot of A1/A2

decreases initially, reaches a lowest point and thereafter increases. Why is such a behaviour
observed? To explore the reason for this response, we look at the stress-strain curves cor-
responding to a set of chosen values of aspect ratios. Toughness being the area under the
stress-strain curve, the information obtained can provide insights in to the physical mech-
anisms behind the variations in the toughness contribution with the aspect ratio. Here, we
consider the regular staggered and stairwise staggered models separately, for which the
observations obtained are discussed as follows:

2.4.4.1 Regular staggered models

Consider the A1/A2 plot for regular staggered composite with σpcritical
τmcritical

= 10, shown in
Figure 2.20 (a). The toughness contribution from the first failure is observed to decrease
up to an aspect ratio value of 10, after which it is seen to increase. The decreasing and
increasing trends are checked one by one as follows. Consider Figure 2.21 in which the
stress strain graphs for regular staggered composite with σpcritical

τmcritical
= 10, for aspect ratios

of ρ = 8, 10, 11, 12, 22,& 23 are shown; the corresponding sequence of failures are also
illustrated.
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To explain the decreasing trend of A1/A2 upto ρ = 10 in Figure 2.20 (a), we refer to
the stress strain plots of ρ = 8 & 10 shown in Figure 2.21 (a) and (b). We see that although
the area A1 increases with aspect ratio, the total toughness A2 also increases. This makes
the ratio A1/A2 lesser than the preceding value (see Figure 2.18 to find the definition of A1

and A2).

Now, we look at why there is an increasing trend in A1/A2 plot from ρ = 11. Let us
consider the failure sequence for the aspect ratios ρ = 10 & 11. It can be seen from Figure
2.21 (b) and (c) that the failure sequence changes to ‘PF after VIF’ from ‘HIF after VIF’ at
ρ = 11. This makes a kink in the A1/A2 plot (Figure 2.20 (a)) at ρ = 11. Moreover, it can
be found that the kinks in the A1/A2 plot occur at the same aspect ratio of the kinks in the
plots of strength at the second failure (See Figure 2.14 (a)), since the toughness depends on
the strength.

The plot of A1/A2 is found to end at an aspect ratio of 22, indicating no contribution
from the first failure for ρ > 22. This is so because beyond an aspect ratio of 22, the first
failure itself is platelet failure, which leads to the composite failure and there will not be
any other preceding failure to contribute to the toughness. The strength plot shown in Fig
2.14 (a), also ends at the same aspect ratio, owing to the aforementioned reason. It is now
evident that the trend of the toughness contribution from the first failure, i.e.,A1/A2 curves,
is highly dependent on the failure sequences and the modes.

2.4.4.2 Stairwise staggered models

It is observed from Figure 2.20 (b) that the toughness contribution from first failure is
first decreasing and then increasing after a particular aspect ratio, for stairwise staggered
models. We draw the stress-strain plots for the stairwise staggered model in a very similar
manner to that of regularly staggered model, for explaining the overall pattern depicted by
the A1/A2 plot in the case of stairwise staggered composites also.

First, we look into the reason for the decreasing trend. For this purpose, the stress-
strain curves are plotted for a chosen set of values of aspect ratios in a stairwise staggered
model with σpcritical

τmcritical
= 10, as shown in Figure 2.22.Similar to the case of regular staggered

composites, here also it is observed that as the aspect ratio increases, both the areas A1 and
A2 increases with A2 increasing at a faster rate, making the value of A1/A2 lesser than the
preceding value.
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Now, to check the reason for the increasing trend of A1/A2 for aspect ratios beyond
30.7, the failure sequences are probed. The failure sequence is observed to be ‘HIF after
VIF’ which is the same for all the chosen values of aspect ratios. However, when the strain
at the first failure (ε1) and that for the second failure (ε2) are compared, it is observed that
ε1 is greater than ε2 for models with ρ > 30.7, whereas for ρ < 30.7, ε1 is less than ε2. We
also see that ε1 increases with the aspect ratio, which increases the toughness contribution
from first failure, thus causing the increasing trend of A1/A2 plot beyond ρ = 30.7. The
area computation for cases with ε1 > ε2 is explained in detail, in Figure 2.24.

Figure 2.23: Variation of toughness contribution from the first failure expressed as A1/A2

(increase in toughness while considering the first failure and toughness due to the second
failure ignoring vertical interface) for materials with different Ep/Em in (a) regular stag-
gered model (b) stairwise staggered model. (The link to the Matlab scripts for reproducing
this figure can be found here)

The variation of the toughness ratio A1/A2 for different Ep/Em ratios is depicted in
Figure 2.23. It can be seen that both the plots (regular and stairwise staggered models)
show a similar trend, but the highest values decrease as the Ep/Em ratio increases. It is
also observed that the relative toughness contribution from the first failure is greater for a
stairwise staggered model compared to that of the regular staggered model. These graphs
(Figure 2.20 (a) and (b)) show that the toughness contribution from the first failure is sig-
nificant for low aspect ratio composites, especially with a stairwise staggered arrangement.
Therefore, it may be prudent to include the vertical interface in models used for analyzing
such cases depending on the material and geometrical parameters.

The trend of the A1/A2 plots seems to depend upon the sequence of failure modes
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and the variation of failure stresses and strains w.r.t the aspect ratio. It can be seen that
the A1/A2 plots follow a decreasing trend w.r.t aspect ratio initially, but the contribution
of toughness from A1 in comparison to A2 increases with an increase in the aspect ratio
beyond a certain point. To explain the role of variation of failure stresses and strains with
change in aspect ratios in A1/A2 plots, consider the point ρ = 80 in Figure 2.23 (a) as an
example. The stress-strain graph for this particular point is drawn as shown in Figure 2.24.

Figure 2.24: Stress (σ) - strain (ε) plot for regular staggered model with Ep/Em = 10,
ρ = 80.

It can be seen that the strain at first failure (ε1, at point A) is greater than the strain
obtained using the VI ignored model (ε2, at point D), which is different from that of the
schematic diagram shown in Figure 2.18. In such cases, the contribution from the inclusion
of the first failure is obtained by taking the differences between the areas OAC and ODE.

2.5 Case Study

So far, we have analyzed the effect of variation of major material properties parameters
like the Young’s moduli ratio (Ep/Em) and normal strength ratio (σpcritical/τ

m
critical) on the

mechanical properties like stiffness, strength, and toughness of the staggered composites.
However, for a realistic analysis approach, a case study using some available materials’
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properties is essential. This will be useful to elucidate the applicability of the present anal-
ysis in real life. To carry out the case study, five different sets of material properties adopted
for the numerical/experimental studies (Askarinejad et al., 2018; Nukala and Simunovic,
2005; Yang et al., 2019) as shown in Table 2.1 are chosen for examining the failure modes.

Table 2.1: Mechanical Properties of different sets of materials used as brick and mortar
phases for the numerical analysis (Askarinejad et al., 2018; Nukala and Simunovic, 2005;
Yang et al., 2019)

Material
-Sets

Modulus of elasticity
(E) in GPa

Strength of the material
in MPa

Brick
Phase
(Ep)

Mortar
Phase
(Em)

Brick
Phase

Mortar
Phase

Tensile
Strength
σpcritical

Tensile
Strength
σmcritical

Shear
Strength
τmcritical

1 1.2 0.00067 40 1 0.576

2 100 0.2 200 20 11.52

3 220 1.1 3250 30 17.3

4 220 3 3250 40 23.1

5 100 4 200 20 11.52

The material properties are chosen after examining the different types of materials
adopted for computational and experimental works in these recent research works. Also,
they are arranged in decreasing order of platelet to matrix Young’s moduli ratio (Ep/Em)
for convenient discussion of the results. Here also, we identify the sequence of fail-
ure modes and find out the different mechanical properties corresponding to these failure
modes. This is done by plotting the three non-dimensional numbers σmcritical

σmmax
, τmcritical

τmmax
, and

σpcritical
σpmax

against the aspect ratio of platelets which is varied from 1 to 120 for the selected
five material sets.

The trend of the graphs depends on the material properties, and we observe that VIF
occurs at lower aspect ratios for all material sets. For instance, see the representative graph
for set-1 shown in Figure 2.10. Note that for the ratio σpcritical

σpmax
, a horizontal line is obtained

with y-value as unity since the maximum stress experienced in a platelet is its normal
strength.
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Figure 2.25: Variation of ratio between stiffness before and after first mode of failure of
(a) regularly and (b) stairwise staggered composite; w.r.t the platelet aspect ratio (ρ). (The
link to the Matlab scripts for reproducing this figure can be found here)

The variation of the ratio between the Young’s modulus before and after the first failure
with platelet aspect ratio, for different sets of material properties followed a same trend
as obtained in 2.4.1. Figure 2.25 shows the variation of the ratio between the Young’s
modulus before and after the first failure with platelet aspect ratio, for different sets of
material properties. Here, the log scale is implemented in the x-axis so as to appreciate the
difference between the curves at lower aspect ratios.

We can observe from Figure 2.25 that for a regular staggered composite, the maximum
value of stiffness before failure (E) as 10.7, 9.9, and 8.6 times (material-set 1, 2 and 3)
the stiffness after failure (EB=0), whereas for the stairwise staggered composite it ranges
between 17.5 and 16 times (material-set 1 and 2). The models of material-sets with the
lowest value of stiffness ratio are the ones with the lowest platelet to matrix Young’s moduli
ratio (Ep/Em = 25). The stiffness ratio is seen to increase with increase in the Ep/Em
ratio, with the highest range of values for material-set 1 (Ep/Em = 1791.045). For both
the staggering types, the stiffness ratios for all material-sets are observed to converge and
follow a constant trend (less than 1.03) above an aspect ratio around 100.

Figure 2.26 shows the normalized strength of regular and stairwise staggered compos-
ites before first failure (σ′) and it can be seen that the strength increases w.r.t the aspect ratio
and the rate of increase of strength is reduced after reaching a certain point. The strength
at first failure (σ′) seems to be maximum at intermediate aspect ratios, which is attributed
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to the existence of a critical aspect ratio at which the strength is maximum (Zhang et al.,
2010). It can also be observed that the strength at first failure decreases as the Ep/Em ratio
of the material-sets decreases.

Figure 2.26: Variation of normalized strength of (a) Regularly and (b) Stairwise Staggered
Composite, at first failure; with platelet aspect ratio (ρ). (The link to the Matlab scripts for
reproducing this figure can be found here)

At the second failure, the strength(σ′′) is computed for regular and stairwise staggered
composites for all material-sets and the results are plotted against the platelet aspect ratio
in Figure 2.27. For material-set 2 in regular staggered configuration, a kink is observed at
ρ = 19 which is due to the change in the failure sequence from horizontal interface failure
to platelet failure after vertical interface failure.

Figure 2.28 shows the ratio of strengths at the first and second failures for regular and
stairwise staggered composites. It gives an idea about the decrease in strength at the second
failure with respect to the strength at the first failure. For all material sets in a regular
staggered model, the upper limit of strength at the first failure is observed to be about 3.5
to 4 times the strength at the second failure, whereas it is about 8 to 10 times for a stairwise
staggered model. However, note that this is applicable for very low aspect ratios only. The
strength at the first failure is higher than that at the second failure for aspect ratios less than
around 3 and 8, respectively, for regular and stairwise staggered models.
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Figure 2.27: Variation of normalized strength of (a) Regularly and (b) Stairwise Staggered
Composite, at second failure; with platelet aspect ratio (ρ). The plots are drawn for aspect
ratios up to which platelet or horizontal interface failure does not occur first. (The link to
the Matlab scripts for reproducing this figure can be found here)

Figure 2.28: Variation of normalized strength Ratio between first and second failures, in
(a) Regularly and (b) Stairwise Staggered Composite; with platelet aspect ratio(ρ). (The
link to the Matlab scripts for reproducing this figure can be found here)
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Figure 2.29 shows the variation of A1/A2 with aspect ratio for regular and stairwise
staggered models with different material sets. In the regular staggered configuration, the
highest value of A1/A2 (56.7%) is observed for material set - 5 at an aspect ratio of 67. In
the chosen range of aspect ratios (1 to 120), for the stairwise staggered model, the contri-
bution from the first failure is observed to be around 57.6 % for material set-5 at an aspect
ratio of 67. Also, for both regular and stairwise staggered models, a reasonably good range
of values of A1/A2 is observed for even lower aspect ratios. For example, at ρ = 6, A1/A2

is observed to be around 12.9% and 54.7% respectively, for regular and stairwise configu-
rations with material set-5.

Figure 2.29: Variation of toughness contribution from first failure expressed as A1/A2 (in-
crease in toughness while considering the first failure and toughness due to second failure
ignoring vertical interface) for different materials in (a) regular staggered model (b) a stair-
wise staggered model. (The link to the Matlab scripts for reproducing this figure can be
found here)

A decreasing trend of toughness with increasing aspect ratio was reported by (Kim
et al., 2018) in their experimental studies, for a regular staggered composite. Here, we
observe a similar trend for an initial range of values of aspect ratios and the contribution
of toughness from the first mode of failure is observed to be higher for stairwise staggered
composite when compared to that of regularly staggered composite. Also, the trend of
the A1/A2 curve is observed to be similar to that of the parametric studies. The kinks are
attributed to the change in sequence of failures as well as the variation of failure stresses
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and strains with respect to the material properties and aspect ratio.

The vertical interface failure which is ignored in a TSC model is found to contribute to
the increase in toughness and it is clearly indicated by the area ratio plots. It can be seen
from Figure 2.29 (a) and (b) that the inclusion of the first of failure in the analysis of tough-
ness has a significant contribution at lower aspect ratios. While designing a bio-inspired
composite, toughness is regarded as a crucial factor. Researchers have pointed out that
high toughness is achieved by sacrificing the stiffness of the composite (Lei et al., 2012a).
Therefore, including contribution from the first mode of failure can give a more accurate
estimation of toughness, which can help to effectively optimize the other properties like
stiffness and strength, especially for lower aspect ratios.

The yielding and large deformations at the interfaces between the composite contribute
to the toughness, which is not considered in the present study. Yet, the studies based on
elastic assumptions give reasonable approximations of the mechanical properties of bio-
inspired composites (Kim et al., 2018; Zhang et al., 2010). Also, even though advanced
fracture mechanics methods are available to compute the work of fracture of brittle mate-
rials, the area under the stress-strain curve still gives a good estimation of the toughness
(Lei et al., 2012b; Zhang et al., 2010). Moreover, the present study results are useful for
conducting a first-cut analysis to estimate the mechanical properties even if a plastic defor-
mation occurs in the composite.

2.6 Conclusion

In the present study, the effect of various failure modes and sequences on the mechani-
cal properties of bio-inspired structures are found out. To accomplish these, the equations
for evaluating the stiffness and the normal and shear stresses along the platelet and matrix
interface, respectively, are developed for a stairwise staggered composite using the modi-
fied shear lag model. The developed model shows a good agreement with the FE results.
Different possible modes of failure for stairwise and regularly staggered models are then
identified using the existing and developed equations. From the failure studies, vertical
interface failure - failure in the matrix between the short edge of the platelets is found to
occur first in most cases.

After vertical interface failure, the stairwise staggered composites are observed to pos-
sess lesser stiffness than regularly staggered composites for low ranges of aspect ratios and
a given Young’s moduli ratio of platelet to the matrix. However, the composite stiffness is
seen to be independent of the strength ratio of the platelet and matrix.
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Another important conclusion obtained is the significance of the contribution of tough-
ness from the failure of the matrix at the vertical interface between platelets. We found
that the contribution to the toughness from this failure is proportional to the platelet aspect
ratio.

The results from the case study show a good agreement with the parametric studies.
Moreover, it can be inferred from the case study that the variation in failure sequence can
indeed affect the stress-strain values, thereby affecting the toughness contribution from the
first failure.

The scientific value of this work is that it could find out the sequence of failure modes
and quantify the resulting mechanical properties like stiffness, strength, and toughness of a
staggered structure after failure, w.r.t the one before failure. In other words, if the material
properties (Young’s moduli, Poisson’s ratio, normal and shear strengths of the platelet and
matrix) and geometric properties (volume fraction, aspect ratio, width, and overlap ratio of
the platelet) are known, it is possible to quickly find out how much strength or toughness
the model possess after failure, compared to the one before failure. Thus, this research
could pave the way to obtain more reliable data on strength and toughness in the field of
bio-inspired composite design.

The results from the current Chapter could also be used in the design of a bio-inspired
stairwise staggered model for different values of n. Also, it could aid the development of
bio-inspired hierarchical models with stairwise staggered configurations, which is a possi-
ble extension of the current work. Also, the present study is done on the assumption that
the materials are linearly elastic. The flexible matrix’s deformation is vital in achieving
overall toughness, and its detailed analysis is left for future studies.

The current Chapter dealt with a single hierarchical model in which the failure se-
quences and its influences over the mechanical properties were studied in detail. In the
following chapters, we focus on the investigation of mechanical properties of non-self-
similar two hierarchical staggered composites. We analyse a two hierarchical non-self-
similar model in the next Chapter after which it is generalized in the subsequent Chapters.
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Chapter 3

Mechanical Properties of Non-self-similar
Two-hierarchical Bio-inspired Composites

There are many examples of hierarchical structures in nature such as teeth, antler, bone,

and nacre which point to the possibility of creating new bio-inspired structures with supe-

rior mechanical properties. In this Chapter, the analysis of mechanical properties of uni-

directional bio-inspired composites with two levels of non-self-similar hierarchical struc-

tures is done using an existing popular model called Tension-Shear chain (TSC) model.

The analytical equations of Young’s modulus are validated using Finite Element Analysis

which is implemented using Python scripting. The two hierarchical composites discussed

in this Chapter are seen to maintain a reasonable strength with very high toughness com-

pared to that of the single hierarchical composites and may be used for applications where

more toughness is required rather than strength. Moreover, the optimum aspect ratios at

the first and second levels of hierarchies are evaluated in this study and a comparison of

maximum toughness that can be achieved in a particular configuration is also made. These

studies could be useful in the design and development of tough bio-inspired composites.

We formulate and analyse the equations required to compute the mechanical properties of

a non-self-similar 2H bio-inspired composite.

3.1 Introduction

The biological composite system found in natural materials is a result of optimization by
the million years of evolution of animals so as to safeguard their soft tissues from external
loads arising from predator bites or the enormous hydro-static pressure occurring in the
ocean (Tran et al., 2017). A classic example of natural structural material is timber. Tim-
ber acquires high strength through its composite structure composed of cellulose fibers and
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soft lignin (Okumura and De Gennes, 2001). The structure of nacre, as we discussed in the
previous Chapters, staggered with a brick-and-mortar (B-and-M) arrangement comprising
of 95% stiff platelets (inclusions) and 5% soft matrix, results in a surprising improvement
in strength and toughness in tension compared to the stiff platelet (Barthelat and Espinosa,
2007; Okumura and De Gennes, 2001). The mineral platelets in nacre impart the desired
stiffness to support these biological systems mechanically, whereas the protein absorbs as
well as dissipates an enormous amount of fracture energy (Gao et al., 2004). Researchers
have come up with many reasons for the superior mechanical properties of the biolog-
ical composites, which range from the nano-sized constituents, the high aspect ratio of
the platelet, optimum ratios of Young’s moduli of platelet and matrix, the property of the
interface, the type of staggering in the structure (Dong et al., 2019; Ji and Gao, 2004a;
Mathiazhagan and Anup, 2016a; Mirzaeifar et al., 2015; Studart, 2012). Therefore, while
modeling the mechanical properties of a biological composite, say the micro-mechanical
model of bone, shall essentially include the structural information on the shapes and sizes
of mineral crystals as well as their orientation and pattern with respect to the matrix (col-
lagen) framework (Wagner and Weiner, 1992). Of the different types of structural arrange-
ment of these mineral crystals/platelets in biological composites, the most observed ones
are regular and stairwise staggering, owing to their overall optimized mechanical proper-
ties, compared to other types (Zhang et al., 2010). For example, the platelet configuration in
nacre and bone are examples of regular and stairwise staggering, respectively (Chao et al.,
2021; Landis, 1996; Landis et al., 1996; Lei et al., 2012b).

Many researchers have proposed bio-inspiration as a tool to realize materials with su-
perior mechanical properties (Chen et al., 2019; Mao et al., 2016; X Gu et al., 2016;
Yin et al., 2021). Several research works have investigated the factors affecting the fi-
nal properties of the biological composites, enabling them to adopt similar conditions to
realize synthetic bio-inspired composites (Gu et al., 2017; Kim et al., 2018; Li et al., 2012;
Martínez-Vázquez et al., 2021; Melaibari et al., 2021; Tran et al., 2017; Wu et al., 2019).
Gao et al. (2017) have demonstrated a technique to replicate the properties of naturally
occurring nacre (even superior mechanical performance compared to that of nacre) with a
three-dimensional and large bulk artificial nacre using a bottom-up approach of assembling
the pre-fabricated nacre mimetic films. It has been proved that a polymer (nacre-like) that is
additively manufactured can well out-perform its constituents in terms of impact resistance
(Gu et al., 2016). An optimization for balancing the flexibility and penetration resistance
of a bio-inspired composite has been studied by Greco et al. (2020), and it was found that
using the microstructural parameters such as aspect ratio and volume fraction, it is possible
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to tailor the penetration resistance of the composite as a function of flexibility.

Several limitations and shortcomings of the existing composite designs are rectified
by motivation from their respective natural counterparts’ designs. In many of the natural
composite materials, the essential properties such that high values of strength, stiffness,
and toughness are achieved simultaneously through a discontinuous architecture called a
‘brick-and-mortar’ structure, made up of stiff inclusions arranged in a soft matrix as we al-
ready discussed in the previous Chapters (Barthelat and Rabiei, 2011; Pimenta and Robin-
son, 2014). Also, the ductility limitations faced by continuous fiber composites could be
overcome by adopting the aforementioned discontinuous architecture observed in natural
composites. For this, the composite shall be designed and modeled with due consideration
given to the material microstructure and the effect of discontinuities (Begley et al., 2012).

There have been only a limited number of researches done on bio-inspired composites
from a global hierarchical point of view (Bargmann et al., 2013; Dimas and Buehler, 2012;
Li and Ji, 2020; Sen and Buehler, 2011; Xu et al., 2015; Yao and Gao, 2008). The study by
Bargmann et al. (2013) focused on modeling dental enamel revealed that the hard platelet
aspect ratio could regulate the optimization of fracture energy and fracture strength. Their
findings have important implications for the design of bio-inspired artificial fiber-reinforced
composite materials as the hard platelet aspect ratio can be used as a key design parameter.
Dimas and Buehler (2012) demonstrated that a brick and mortar-type distribution of stiff
and soft phases results in a more efficient utilization of materials in the presence of a crack.
It was also reported by them that a continuous soft phase oriented at an angle was found to
hinder the catastrophic propagation of fractures.

Another work by Sen and Buehler (2011) investigated the fracture mechanics of hierar-
chical structures comprised of up to four self-similar levels of hierarchy using an atomisti-
cally informed in silico mesoscale model yielding direct insights into hierarchical materi-
als’ fracture behavior. Through computational experiments, they demonstrated that multi-
ple hierarchy length scales in the material increase the defect-tolerance length scale by dis-
sipation of large loads through the initiation and arrest of cracks at different length scales.
This behavior stands in contrast to single hierarchy materials, which would experience
shattering due to the propagation of a single crack throughout the material. The mechani-
cal properties of self-similar hierarchical materials were described by Yao and Gao (2008),
using multi-scale cohesive laws. According to their findings based on models mimicking
gecko and bone, designing a hierarchical material with multi-scale cohesive laws from the
bottom up can result in flaw insensitivity at unattainable size scales for traditional non-
hierarchical materials.
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The number of studies conducted so far is even smaller when it comes to the case of
non-self-similar hierarchical structures (An et al., 2014; Henry and Pimenta, 2021). The
study by An et al. (2014) involved a theoretical examination of the mechanical characteris-
tics of bio-inspired composite materials with a non-self-similar hierarchical structure. Their
findings suggest that incorporating non-self-similar hierarchical designs could enhance the
energy storage capabilities of the composites, resulting in improved resilience. Further-
more, compared to systems exhibiting a self-similar hierarchy, the non-self-similar hierar-
chical composites exhibited increased pull-out work, thereby enhancing fracture resistance
and improving damage tolerance Henry and Pimenta (2021) found that self-similarity of
the reinforcing units at the two hierarchical levels is not necessary for hierarchical fail-
ure mechanisms to occur in hierarchical discontinuous composites. Their results showed
that removing the self-similarity constraint can lead to new microstructures with increased
performance (strain, stress, damage diffusion) compared to the standard self-similar mi-
crostructure.

From the discussions done so far, we find that though bio-inspired composites have been
proposed, most of them are limited to a single hierarchy. Moreover, there doesn’t seem to
be any studies particularly focussed on the mechanical properties of a two hierarchical
composite with different defined configurations at the two different levels of hierarchy,
which makes it an area still to be explored in the field of design of bio-inspired composites.

The solutions obtained are analyzed by varying the platelet aspect ratios at the first and
second levels of hierarchy and keeping the strength ratio of platelet to matrix a constant.
Also, a comparative study of the properties of 2H composites with single hierarchical bio-
inspired composites is included in Section 3.3. An analysis for finding out the optimum
configuration: aspect ratio of platelet at different levels of hierarchy, number of rows of
platelets in each period that the design shall possess to achieve maximum toughness is also
done in this section. The results are verified in Section 3.4 by conducting a Finite Element
Analysis using the commercially available software package ABAQUS (SIMULIA, 2022).
We summarize and conclude the study in Section 3.5.

3.2 Mechanical Properties of Two Hierarchical Compos-
ites based on Tension Shear Chain Model

In this section, we develop the expressions for various mechanical properties of non-self-
similar 2H RS and 2H SR composites. Figure 3.1 depicts the schematic illustrations of
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the models adopted for the studies, 2H RS and 2H SR structures. In Figure 3.1(b), the
zoomed view of the platelet of the 2H RS composite is shown which is a stairwise staggered
composite. Similarly, the schematic illustration of regularly staggered composite structure
which is incorporated as platelet in 2H SR composite is shown in Figure 3.1 (d).

Figure 3.1: (a) Two Hierarchical Regularly Staggered Composite made with Stairwise
Staggered Composite as platelet (2H RS) (b) Zoomed view of platelet with Stairwise Stag-
gered Structure (c) Two Hierarchical Stairwise Staggered Composite made with Regularly
Staggered Composite as platelet (2H SR) (d) Zoomed view of platelet with Regularly Stag-
gered Structure.

In all the cases we start with the expressions available for different single hierarchical
composites developed by Zhang et al. (2010) based on the tension shear chain (TSC) model
and thereafter use them to develop the expressions for 2H composites. The main reason
for using the TSC model in the present study for hierarchical structures is its simplicity
and reasonable accuracy. When involved with multiple hierarchies, the shear lag model
with vertical interface present would result in more complex formulations and increase the
computational time. The following mechanical properties are analyzed: stiffness, strength,
strain, and toughness. We consider regularly staggered structures with an overlap ratio of
1/2 only. Here, the overlap ratio refers to the ratio of overlapped length of platelet to full
length of a platelet.
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3.2.1 Stiffness

For a regularly staggered composite with an overlap ratio of 0.5, the modulus of elasticity
ER is given by (Zhang et al., 2010) as,

ER =
φREp

4
3

+ 4
3αR

(3.1)

where,

αR =
φRρ

2
RGm

3(1− φR)Ep
(3.2)

is a parameter which combines the effects of platelet volume fraction of the regularly stag-
gered composite φR and aspect ratio of platelet in the regularly staggered composite ρR, as
well as the shear modulus of matrix Gm and Young’s modulus of platelet Ep. Similarly,
for a stairwise staggered composite with the number of platelets in each period as n, the
modulus of elasticity ES is given by (Zhang et al., 2010) as,

ES =
φSEp

n(3n−4)
3(n−1)2 + n2

3(n−1)αS

(3.3)

where αS is a parameter which combines the effects of platelet volume fraction φS and
aspect ratio ρS , as well as the matrix and platelet elastic moduli Gm and Ep,

αS =
φSρ

2
SGm

3(1− φS)Ep
(3.4)

The stiffness, ERS of a 2H RS composite is found out by substituting Eq. (3.3) for EP
in Eq. (3.1) and the obtained expression for ERS is normalized by dividing it by EPφRφS
(since the volume fraction for the 2H composite is φRφS) as,

ERS
EPφRφS

=
1

(4
3

+ 4
3αRS

)(n(3n−4)
3(n−1)2 + n2

3(n−1)αS
)

(3.5)

where,

αRS =
φSρ

2
SGm

(
n(3n−4)
3(n−1)2 + n2

3(n−1)αS

)
3(1− φR)φSEP

(3.6)
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Similarly, the stiffness, ESR of a 2H SR composite is found out by substituting Eq. (3.1)
for EP in Eq. (3.3) and the obtained expression for ESR is normalized by dividing it by
EPφRφS as,

ESR
EPφRφS

=
1

(4
3

+ 4
3αR

)(n(3n−4)
3(n−1)2 + n2

3(n−1)αSR
)

(3.7)

where,

αSR =
φSρ

2
SGm

(
4
3

+ 4
3αR

)
3 (1− φS)φREP

(3.8)

3.2.2 Strength

The average stress occurring in a composite when the maximum shear stress in the matrix
reaches the shear strength of the matrix τmcritical or the normal stress in the platelet reaches
the strength of the platelet σpcritical is referred to as the composite strength (Zhang et al.,
2010). The composite strength of a regularly staggered composite is given by (Zhang et al.,
2010) as,

σRcritical =


φRσ

p
critical

ρR
2ρ′critical

if ρR ≤ ρ′critical

φRσ
p
critical

1
2

if ρR > ρ′critical

(3.9)

where,

ρ′critical =
σpcritical
τmcritical

(3.10)

is the critical aspect ratio separating matrix failure ρR ≤ ρ′critical from platelet failure
ρR > ρ′critical

The composite strength of a stairwise staggered composite is given by (Zhang et al.,
2010) as,

σScritical =


φSσ

p
critical

n−1
n

ρS
ρ′′critical

if ρS ≤ ρ′′critical

φSσ
p
critical

n−1
n

if ρS > ρ′′critical

(3.11)
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where,

ρ′′critical = (n− 1)
σpcritical
τmcritical

(3.12)

is the critical aspect ratio separating matrix failure ρS ≤ ρ′′critical from platelet failure
ρS > ρ′′critical

The strength, σRS of a two hierarchical regularly staggered composite with stairwise
staggered composites as platelets is found out by substituting Eq. (3.11) for σpcritical in Eq.
(3.9) and the obtained expression for σRScritical is normalized by dividing it by σPcriticalφRφS
as,

σRScritical
σpcriticalφRφS

=



ρRS

2φS
σ
p
critical
τm
critical

if ρRS ≤ ρ′RS,critical

ρS

2n
σ
p
critical
τm
critical

if ρRS > ρ′RS,critical and ρS ≤ ρ′′critical

n−1
2n

if ρRS > ρ′RS,critical and ρS > ρ′′critical

(3.13)

where, ρRS and ρ′RS,critical are respectively the aspect ratio and its critical value for a 2H
RS composite. ρ′RS,critical is given by,

ρ′RS,critical =


φSρS
n

when ρS ≤ ρ′′critical

(n−1)φSσ
p
critical

nτmcritical
when ρS > ρ′′critical

(3.14)

Similarly, the strength of a two hierarchical stairwise staggered composite with regu-
larly staggered composites as platelets, σSR can be found out by substituting Eq. (3.9) for
σpcritical in Eq. (3.11) and the obtained expression for σSRcritical is normalized by dividing it
by σPcriticalφRφS as,

σSRcritical
σpcriticalφRφS

=



ρSR

nφR
σ
p
critical
τm
critical

if ρSR ≤ ρ′′SR,critical

(n−1)ρR

2n
σ
p
critical
τm
critical

if ρSR > ρ′′SR,critical and ρR ≤ ρ′critical

n−1
2n

if ρSR > ρ′′SR,critical and ρR > ρ′critical

(3.15)
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where, ρSR and ρ′′SR,critical are respectively the normal and critical aspect ratios of 2H
SR composite. Here, ρ′′SR,critical is given by,

ρ′′SR,critical =


(n−1)φRρR

2
when ρR ≤ ρ′critical

(n−1)φRσ
p
critical

2τmcritical
when ρR > ρ′critical

(3.16)

3.2.3 Failure Strain

The optimal structural arrangement should influence not only stiffness and strength but also
the failure strain εRScritical = σRScritical/ERS and energy storage capacitywRScritical=(σRScritical)

2/2ERS .
The failure strain is normalized by the platelet failure strain εPcritical = σPcritical/EP and is
obtained for a 2H RS composite from Eq. (3.5) and Eq. (3.13) as,

εRScritical
εpcritical

=



ρRS

2φS
σ
p
critical
τm
critical

(
4
3

+ 4
3αRS
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n(3n−4)
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)
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)
if ρRS > ρ′RS,critical and ρS ≤ ρ′′critical

n−1
2n

(
4
3

+ 4
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)(
n(3n−4)
3(n−1)2 + n2

3(n−1)αS

)
if ρRS > ρ′RS,critical and ρS > ρ′′critical

(3.17)

Similarly, the normalized failure strain for a 2H SR composite is obtained from Eq.
(3.7) and Eq. (3.15) as,

εSRcritical
εpcritical

=



ρSR

nφR
σ
p
critical
τm
critical

(
4
3

+ 4
3αR

)(
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3(n−1)αSR

)
if ρSR ≤ ρ′′SR,critical

(n−1)ρR
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if ρSR > ρ′′SR,critical and ρR ≤ ρ′critical
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4
3
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if ρSR > ρ′′SR,critical and ρR > ρ′critical

(3.18)
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3.2.4 Energy Storage Capacity

The energy storage capacity (or toughness), of a 2H RS composite is found out using the
formula,

wRScritical =
(σRScritical)

2

2ERS
(3.19)

The obtained wRScritical is normalized by that of φwpcritical which is given by,

φwpcritical =
φσpcritical

2

2Ep
(3.20)

Thus, the normalized value of energy storage capacity of a 2H RS composite is obtained
as,

wRScritical
φRφSw

p
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(3.21)

The normalized value of energy storage capacity of a 2H SR composite also can be
obtained as,
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(3.22)

3.3 Results and Discussions

Here, we illustrate the effect of aspect ratio (ρ) on the mechanical properties by considering
a representative case of moduli ratio of Ep/Gm = 1000 and volume fractions at the first
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and second levels of hierarchy φS = φR = 0.5. Note that the effective platelet volume
fraction for the 2H composites is φRφS and the results are normalized with this value. The
number of platelets in a period for the stairwise staggered structure, n is kept as 5. Note that
the applicability of the present study depends on the approximate valid regions of the TSC
model, which can be identified using the aspect ratio ranges introduced by (Chen et al.,
2009) and (Liu et al., 2011).

Figure 3.2: Variation of normalized Young’s modulus of (a) 2H RS composite with platelet
aspect ratio for different values of ρRS varying from 10 to 100, (b) 2H SR composite with
platelet aspect ratio for different values of ρSR varying from 10 to 100, (c) Variation of
normalized strength of 2H RS composite with platelet aspect ratio (ρRS) for different values
of ρS varying from 5 to 40, and (d) 2H SR composite with platelet aspect ratio (ρSR) for
different values of ρR varying from 5 to 40; Ep/Gm = 1000, σpcritical/τ

m
critical = 10 and

n = 5 (The link to the code for reproducing this Figure can be found here)

61

https://github.com/abhiramiaj/2Hmechprop/blob/main/matlabcodetoreproduceFig2n3.pdf


Figure 3.2 (a) shows the variation of Young’s modulus of the 2H RS composite with
respect to the platelet aspect ratio (ρRS) for different values of the platelet aspect ratio of the
stairwise staggered composite in the first hierarchical level (ρS). It can be seen that Young’s
modulus increases with an increase of ρRS as well as ρS . After reaching a particular value
of ρRS Young’s modulus tends to attain a constant value. The rate of increase in Young’s
modulus with increasing values of ρS also shows a decreasing trend.

A similar pattern can be observed for the 2H SR composite also as shown in Figure
3.2 (b). The x-axis limit for both Figure 3.2 (a) and (b) are kept as 100 so as to capture
the lower values of Young’s modulus at lower values of aspect ratios. As the aspect ratio
increases in both levels of hierarchy, the normalized stiffness converges to a limit stiffness
of 0.65, which is obtained by substituting the terms corresponding to ρ = ∞ in Equations
3.5 and 3.7.

The stiffness of the platelets decreases with hierarchy. Though at the first level, the
stiffness ratio is 1 : 1000, at the second level, the stiffness ratio is much lesser since the
matrix modulus remains the same. For example, consider a 2H SR model. Here, say,
Ep/Gm = 1000 at the first level of the hierarchy, and the aspect ratio is 10. This gives, in
the second level of the hierarchy, the ER/Gm ≈ 12 where ER is the stiffness of the regular
staggered composite, which is the platelet in the second level of hierarchy. Also, with in-
creasing levels of hierarchy the matrix material tends to influence the mechanical properties
of the composite more even for self-similar hierarchical materials (Sen and Buehler, 2011;
Zhang et al., 2011). This could be because with increasing hierarchy, the matrix influences
even the platelet properties at that higher level.

Figure 3.2 (c) shows the variation of the strength of the 2H RS composite with platelet
aspect ratio (ρRS) for different values of the platelet aspect ratio of the stairwise staggered
composite in the first hierarchical level (ρS). The ratio of the strength of mineral platelet
(at the first level of hierarchy) to the matrix strength, σpcritical/τ

m
critical is taken to be 10. It

is seen that the strength increases with an increase in ρRS as well as ρS , and remains a
constant on reaching the critical values for both ρRS as well as ρS . Here, these critical
values of aspect ratios in the second level of the hierarchy, ρ′RS,critical and ρ′′SR,critical are 4
and 10 respectively. In Figure 3.2 (c) and (d), an x-axis limit of 120 is chosen since it can
show both the increasing and then constant y-values trends conveniently.

In Figure 3.2 (d), the normalized strength of 2H SR composites for a set of aspect ratios
(ρR) greater than 10 is seen to be the same. This is because the strength remains the same
beyond the critical aspect ratio in the first level of hierarchy. The maximum strength always
depends on the critical aspect ratio of the composite in the first level of the hierarchy. For
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2H RS and 2H SR composites, the critical aspect ratios in the first level of the hierarchy
are found to be 10 and 40, respectively, for the representative properties chosen. It can also
be observed that the critical aspect ratio at the second level of hierarchy for 2H composites
for aspect ratios beyond the critical aspect ratio in the first level of the hierarchy are 4
and 10 respectively for 2H RS and 2H SR composites. Thus, the aspect ratios beyond the
critical aspect ratios in both levels of hierarchy will result in identical and constant curves
of strength. This implies that the maximum strength that can be achieved by both 2H RS
and 2H SR composites are capped at a value of 0.4, which is lesser than that of the strengths
of regularly and stairwise staggered composites.

Figure 3.3(a) shows the variation of the normalized critical strain of the 2H RS com-
posite with respect to the platelet aspect ratio in the second hierarchical level (ρRS) for
different values of the platelet aspect ratio of the stairwise staggered composite in the first
hierarchical level (ρS). Here, it can be seen that for lesser values of ρRS , maximum values
of strain are observed for all cases of ρRS . It can also be seen that when ρS is increased, the
values of critical strain converge to a constant value. The variation of the normalized criti-
cal strain of 2H SR composite is shown in Figure 3.3 (b), in which a kink can be observed,
which is attributed to the stairwise pattern in the second level of hierarchy. In Figure 3.3
(a) and (b), the x-axis limit is set as 120 so as to capture the decreasing trend of y-values
for up to x-values of around 40 and uniform y-values beyond that.

Figure 3.3 (c) shows the variation of normalized energy storage capacity of the 2H RS
composite with platelet aspect ratio (ρRS) for different values of the platelet aspect ratio of
the stairwise staggered composite in the first hierarchical level (ρS). We observe that the
toughness decreases with an increase in both ρRS and ρS . It is also seen that the curves
show a trend of converging towards a constant value when ρS is increased. Figure 3.3 (d)
shows that the toughness of the 2H SR composite increases initially, but after reaching a
peak value it tends to decrease. As ρR is increased the curves are seen to converge as in 2H
RS composites. Moreover, the maximum value of toughness is obtained for a combination
of critical aspect ratios in both levels of hierarchy.

Note that Figure 3.3 (c) is drawn to capture the difference with respect to the aspect ratio
in the first level of hierarchy, which does not show the peak point of the graph. Moreover,
the shape of the graphs seems to be dictated by the variable that is used in the x-axis, and
a change of variable (for example in the case of 2H RS composites, interchanging ρRS and
ρR) produces a different shape as shown in Figure 3.4. The y-limit of the graph is set to 45
in Figure 3.3 (c) to capture the difference with respect to the aspect ratio in the first level of
the hierarchy, which ignores the peak point of the graph.
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Figure 3.3: Variation of normalized critical strain of (a) 2H RS composite with platelet
aspect ratio (ρRS) for different values of ρS varying from 5 to 45 , and (b) 2H SR composite
with platelet aspect ratio (ρSR) for different values of ρR varying from 5 to 45 (c) Variation
of normalized energy storage capacity of 2H RS composite with respect to platelet aspect
ratio (ρRS) for different values of ρS varying from 5 to 45 , and (d) 2H SR composite
with respect to platelet aspect ratio (ρSR) for different values of ρR varying from 5 to 45;
Ep/Gm = 1000, σpcritical/τ

m
critical = 10 and n = 5 (The link to the code for reproducing this

Figure can be found here)

The relevant graph without y-limit is provided as shown in Figure 3.4 (a). Probably, the
shape of the graphs seems to be dictated by the variable that is used in the x-axis. For ex-
ample, for an RS composite, if instead of ρRS , ρS is used in the x-axis with different curves
drawn for different ρRS , the effect is similar to that of a stairwise staggered composite as
shown in Figure 3.4 (b). To depict the varying trend of y-values for x-values up to a range
of 15 to 20 after which the y-values tend to remain uniform, an x-limit of 35 is chosen in
Figure 3.3 (c) and (d).
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Figure 3.4: Variation of normalized energy storage capacity of 2H RS composite with
respect to (a) platelet aspect ratio at 2H (ρRS) for different values of platelet aspect ratio
at 1H (ρS) varying from 5 to 45 (without y-lim); (b) platelet aspect ratio at 1H (ρS) for
different values of platelet aspect ratio at 2H (ρRS) varying from 5 to 45

The comparison of the above graphs for 2H bio-inspired composites with that of a unidi-
rectional composite with regularly staggered platelet distribution shows that for ρS > 100,
the stiffness of the 2H RS composite approaches to that of the regularly staggered com-
posite. Moreover, the maximum normalized strength of the 2H RS composites (0.4) seems
to be marginally lesser than that of a regularly staggered composite (0.5) (Zhang et al.,
2010). The toughness of 2H composites are much higher compared to that for unidirec-
tional nanocomposite with regularly staggered platelet distribution, but this increment is
confined to a smaller range of aspect ratios at the first level of hierarchy.

The 2H RS and 2H SR composites consist of a stairwise staggered structure in the
first or second level of the hierarchy, where the number of platelets per period is n. This
design parameter could influence the mechanical properties. We investigate the dependence
in toughness and strength of 2H RS and 2H SR composites on this parameter. For this
purpose, we vary the aspect ratio, and find the maximum value of toughness for each n,
while keeping all other parameters fixed. We consider two cases: unconstrained and with
imposing a lower limit value for normalized stiffness (2% that of platelet) in the analysis.
When we fix the value of n for both hierarchical levels in SR and RS combinations, the
maximum toughness occurs at the critical aspect ratios at both levels. Therefore, we find out
the maximum toughness value (at the critical aspect ratio) for both SR and RS composites.
The strength of the composite for the same combination of n and aspect ratios is also found
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out. The procedure is repeated for each value of n, varying from 2 to 10 to investigate the
effect of n on the strength and toughness.

Figure 3.5 (a) and (b) show the maximum toughness and corresponding strengths ob-
tained for models without imposing a lower value of normalized stiffness and it can be
seen that for 2H RS composites, the maximum toughness is achieved for n = 2, but the
normalized strength at that point is the least which is only 0.2.

Figure 3.5: Normalized strength vs normalized maximum toughness for (a) Two Hierar-
chical Regularly Staggered Model with Stairwise Staggered Model as platelet (2H RS) (see
Table 3.1 for the corresponding data of aspect ratios), (b) Two Hierarchical Stairwise Stag-
gered Model with Regularly Staggered Model as platelet (2H SR) (see Table 3.1 for the
corresponding data of aspect ratio), (c) 2H RS model with a minimum normalized stiffness
of 2%, (d) 2H SR model with a minimum normalized stiffness of 2%; the aspect ratios cho-
sen corresponds to the one required to obtain the maximum toughness. Ep/Gm = 1000,
σpcritical/τ

m
critical = 10 for all models.
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It can be well understood from Figure 3.5 (a) that the point corresponding to n = 3 can
be considered as an optimal point where we can obtain toughness as high as 21.82 with a
strength of 0.3. With further increase in n, it is seen that the toughness decreases whereas
the strength increases and gets capped at a value of 0.4. The variation of maximum tough-
ness for 2H SR composites also shows a decreasing trend as that of 2H RS composites,
but the strength shows an oscillating trend which can be well explained by equation 3.16.
Figure 3.5 (c) and (d) show the results for models with a minimum normalized stiffness
of 2% that of the platelet. It can also be seen from Figure 3.5 (c) and (d) that the strength
and toughness increase first with the number of platelets in a period (n) and decreases after
reaching a peak value when the minimum stiffness criterion is imposed.

Here, it would be worthwhile to compare self-similar and non-self similar models. Self-
similar hierarchical structures with regularly staggered arrangement is a special case of 2H
RS and 2H SR composite with the period, n = 2. For the case of unrestricted stiffness, (Fig-
ure 3.5 (a) and (b)) it can be seen that the non-self-similar models possess higher strength
but lower toughness. However, for the case where the stiffness of the hierarchical compos-
ite is restricted to a minimum value of at least 2% of the platelet (similar to RSM), non-self
similar models provide both higher toughness and strength. For example, the maximum
normalized toughness is observed to be 9.272 at n=13 and 10.84 at n=15 (around three
times higher than that of the self-similar model) for 2H RS and 2H SR models respec-
tively at n=10 with a corresponding normalized strength of approximately 0.46 for both the
models.

From the comparison of the normalized toughness and normalized strength values for
n= 2 and n= 5 in Figure 3.5 (a), and (b), we found that non-self-similar 2H composites
can indeed provide increased strength than self-similar 2H composites with reasonable
toughness for unconstrained stiffness. From Figure 3.5 (c) and (d) we found that non-self-
similar 2H composites can provide both higher toughness and strength than self-similar 2H
composites for cases with constrained stiffness. Therefore, while designing 2H bio-inspired
composites, non-self-similarity could be an important design consideration.

Table 3.1 shows the combination of aspect ratios required at the first and second levels
of hierarchy to produce maximum toughness in the 2H RS and 2H SR composites with
the corresponding strength. It can be seen that the aspect ratio combinations for a 2H
RS composite show an increasing trend while an oscillating trend is observed for the case
of the aspect ratio in the first level of hierarchy for 2H SR composites. For both the 2H
composites, the maximum toughness is observed to be decreasing when the number of
platelets in each period (n) is increased. It can also be seen that 2H RS composites are
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capable of achieving more toughness and strength. But, as mentioned earlier, the normal-
ized Young’s modulus values corresponding to the maximum toughness will be extremely
small. Therefore, when the stiffness is also considered, both the 2H composites give almost
equal maximum toughness and strength as explained in Figure 3.5 (c), and (d).

Table 3.1: Combination of aspect ratios at the first and second levels of hierarchy in 2H
composites to obtain maximum toughness and corresponding strength

Number of
platelets in

each
period (n)

2H RS 2H SR

Maximum
normalized
toughness

ρS ρRS

Normalized
strength at
maximum
normalized
toughness

Maximum
normalized
toughness

ρR ρSR

Normalized
strength at
maximum
normalized
toughness

2 23.4044 8 2 0.2 23.4044 8 2 0.2

3 21.8167 18 3 0.3 15.7407 10 5 0.3333

4 21.2533 24 3 0.3 13.4756 8 6 0.3

5 21.0778 40 4 0.4 12.5778 10 10 0.4

6 20.9056 48 4 0.4 11.9437 8 10 0.3333

7 20.7906 56 4 0.4 11.6984 10 15 0.4286

8 20.7084 64 4 0.4 11.3683 8 14 0.35

9 20.6467 72 4 0.4 11.3025 10 20 0.4444

10 20.5986 80 4 0.4 11.0822 10 23 0.45

3.4 Comparison of Analytical results with Finite Element
Results

In this section, the obtained results for Young’s modulus for 2H composites are validated
by conducting a Finite Element Analysis (FEA) using the commercially available Finite
Element Package ABAQUS (SIMULIA, 2022). The FEA is carried out for 2H RS as well
as 2H RS composites as follows:

3.4.1 2H RS Composites

For this, a Representative Volume Element (RVE) of the stairwise staggered composite was
created with an Ep/Gm ratio of 1000 for different volume fractions and aspect ratios of the
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platelet. The Poisson’s ratios of platelet and matrix are set as 0.22 and 0.49 respectively.
The following procedure is adopted for finding the properties of 2H RS composites by finite
element (FE) simulation. The properties of the SSM at the first level of the hierarchy are
found out first. To find out the properties of the 2H RS composite, the platelets in the RSM
at the second level of the hierarchy are modeled with orthotropic material properties as that
obtained from the analysis of the SSM at the first level of hierarchy.

Figure 3.6 shows the quad dominated meshing and the boundary conditions (BC) ap-
plied to the Finite FE models of the TSC RVEs used for the static analysis of 2H RS
composites. The SSM and RSM as shown in Figure 3.6 are meshed with 5,042 and 2,048
numbers of quadrilateral shaped CPE4R elements respectively, with linear geometric or-
der. The mesh dependency study for a regular staggered model is provided in Appendix
F, which showed that the stress variation with change in mesh size is very less. Periodic
boundary conditions (PBC) and symmetric boundary conditions (SBC) were applied in
SSM and RSM respectively at the highlighted boundaries (excluding the removed matrix
region) as depicted in Figure 3.6 for finding the stiffness matrix coefficients.

Figure 3.6: TSC FE models with highlighted boundary conditions (BC) applied for static
analysis of 2H RS composite having 80% volume fraction of platelets with a platelet aspect
ratio of 12, (a) SSM model in the first level of hierarchy for finding Q11 & Q12, (b) SSM
model in the first level of hierarchy for finding Q22, (c) RSM model in the second level
of hierarchy for finding Q11 & Q12, (d) RSM model in the second level of hierarchy for
findingQ22; PBC, SBC, ∆h, ∆v represent the periodic and symmetric boundary conditions,
horizontal and vertical displacements respectively.

For an orthotropic lamina with plane stress conditions and coordinate directions x1 and
x2 as shown in Figure 3.6, we have the stress {σ} - strain {ε} relationship as (Gibson,

69



2016),


σ11

σ22

σ12

 =

Q11 Q12 0

Q12 Q22 0

0 0 Q66



ε11

ε22

ε12

 (3.23)

Displacement in horizontal direction (∆h) was applied to compute the stiffness matrix
coefficient Q11 and Q12. To determine Q22, displacement was applied in the vertical direc-
tion (∆v). Considering the model to be in plane-strain, the stiffness matrix [Q] and there-
after the compliance matrix [S] is obtained by manipulating the ABAQUS output database
(Gibson, 2016; SIMULIA, 2022).

A finite RVE as shown in Figure 3.6 (a) is enough to simulate a bulk material for
evaluating the material properties of an SSM provided that periodic boundary conditions
are used (Wu et al., 2014). For finding Q11 and Q12, the periodic boundary conditions are
applied such that the strain along the x2 direction, ε22 = 0. Similarly, for finding Q22,
periodic boundary conditions are imposed to keep the strain along the x1direction, ε11 = 0.

Another FE model is built and subjected to shear by applying a point load (P) at the
top corners and keeping bottom edges arrested from moving in the horizontal directions as
shown in Figure 3.7. The nodes in the top edge are constrained such that the difference be-
tween displacements along the x1-direction (u1) of two successive nodes is zero. The shear
modulus is found out by usingG12 = 2PWrve

Lrveδ1
where, Lrve andWrve are the length and width

of the model respectively and δ1 is the resulting magnitude of deflection in x1−direction as
marked in Figure 3.7 (a) (Sun and Vaidya, 1996). The length and width of the TSC SSM
RVE shown in Figure 3.7 (b) is given by,

Lrve = hm + L; Wrve = n(vm + b) (3.24)

where, L, b, hm, and vm are the length and width of platelet and thickness of matrix
between two columns of platelets, and thickness of matrix between two rows of platelets
respectively.
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Figure 3.7: Boundary conditions applied for finding G12 (a) Schematic diagram (Adapted
with permission from (Sun and Vaidya, 1996)), Lrve,Wrve & δ1 represent the length and
width of the RVE and the resulting magnitude of deflection along x1 direction respec-
tively, (b) SSM model in the first level of hierarchy with the applied boundary conditions,
u1, u2, δu1 represent the displacements along x1 and x2 directions and difference in u1 be-
tween two adjacent nodes, respectively.

In the present study, it is assumed that the thickness of the matrix between two columns
is one-fourth of that between two rows of platelets and can be found out by solving the
following equation for given values of volume fraction (φ), L and b.

φ =
nLb

LrveWrve

=
Lb

(hm + L)(vm + b)
(3.25)

The same procedure is repeated with suitable symmetric boundary conditions for an
RVE of a regularly staggered composite (as shown in Figure 3.6 (c) and (d)) with or-
thotropic platelet properties as that obtained from the previous results. The obtained re-
sults from FE analysis are tabulated as shown in Table 3.2, and compared with analytical
results. It is seen that the results from Finite Element Analysis (FEA) hold a reasonably
good agreement with the proposed analytical model, especially for larger aspect ratios. For
2HRS composites, the maximum error (5.6%) is observed for the model with a volume
fraction 90% and an aspect ratio of 12, whereas the error is observed to be least (0.55%)
for the model having volume fraction 80% and an aspect ratio of 30. Note that in general,
for the TSC model, the analytical values though in good agreement with FE results, could
be higher or lower depending on aspect ratio, volume fraction and type of arrangement
(whether SSM or RSM) (Ji and Gao, 2004a; Lei et al., 2012b).

It can be seen that the maximum error is 5.63% in the computations, and decreases
with an increase in the aspect ratio. Also, the error is observed to be greater in the second
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level of the hierarchy, which is attributed to the orthotropic properties of the platelets at
the second hierarchy (the analytical model is based on isotropic materials for platelets and
matrix). The errors are accumulated, but the errors with opposite signs when accumulated
get reduced to an extent. This leads to a lower error in the second level of hierarchy in some
cases (for example, φ = 0.8, ρ = 30), since the error from the first level of the hierarchy is
canceled out to an extent in the second level of hierarchy.

Table 3.2: Comparison of analytical and FE results of stiffness, ERS of a 2H RS composite
(The link to the python scripts for reproducing these values can be found here)

Volume
Fraction

(φ)

Aspect
Ratio

Young’s modulus of Composite (MPa)
First Hierarchy

(SSM)
Second Hierarchy

(2H RS)
Finite Element

Analysis
Analytical

Method
Finite Element

Analysis
Analytical

Method

0.8
12 458.74 466.8 197.34 207.88
18 934.24 938.28 413.82 429.66
30 1970.22 1943.1 941.63 946.85

0.9
12 1046.46 1055.6 498.39 528.15
18 1927.45 1915.4 976.97 1008.9
30 3376.3 3285.6 1923.82 1889.4

3.4.2 2H SR Composites

Here, we describe the FE model of 2H SR composites. Fig. 3.9 shows the boundary con-
ditions applied in the finite element representative volume element (RVE) of the stairwise
and regular staggered composites at the first and second levels of hierarchies respectively.
Symmetric boundary conditions (SBC) are applied for computing the stiffness matrix coef-
ficients of the regular staggered model (RSM) in the first level of the hierarchy, as shown in
Fig. 3.9 (a) and (b). To find the shear modulus of the RSM in the first hierarchy, the regular
staggered FE model was subjected to shear by applying a point load at the top corners with
the bottom edges arrested from moving in the horizontal directions as shown in Fig. 3.10.
In Fig. 3.10, the difference between u1 of two successive nodes is set to zero.

The above procedure is repeated with suitable periodic boundary conditions for the
stairwise staggered RVEs. For this, orthotropic material properties are assigned to the
platelets at the second level of hierarchy, using the data obtained from the analysis of the
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RSM at the first level of hierarchy. The obtained results from FE analysis are then compared
with analytical results.

Figure 3.9: TSC FE models with highlighted boundary conditions (BC) applied for static
analysis of 2H SR composite having 80% volume fraction of platelets with a platelet aspect
ratio of 12, (a) Regular staggered model (RSM) in the first level of hierarchy for finding
Q11 & Q12, (b) RSM model in the second level of hierarchy for finding Q22 (c). Stairwise
staggered model (SSM) model in the second level of hierarchy for finding Q11 & Q12, d.
SSM model in the second level of hierarchy for finding Q22; PBC, SBC, ∆h, ∆V represent
the periodic and symmetric boundary conditions, horizontal and vertical displacements
respectively.

Figure 3.10: Boundary conditions applied for the computation of shear modulus (G12) of
the RSM u1, u2, δu1 represent the displacements in the directions x1 and x2 directions and
difference in u1 between two adjacent nodes, respectively.

For carrying out the FE analysis, the material properties of platelet and matrix are cho-
sen such that the ratio of Young’s modulus of platelet (Ep) to the shear modulus of matrix
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(Gm) is 1000. The Poisson’s ratio of platelet and matrix were set as 0.22 and 0.49 respec-
tively. Three different aspect ratios (ρ = 12, 18, 30) were chosen for two sets of platelet
volume fractions (φ = 0.8, 0.9).

Table 3.3: Comparison of FE and analytical results of stiffness, ESR of a 2H SR composite

Volume
Fraction

(φ)

Aspect
Ratio

Young’s modulus of Composite (MPa)
First Hierarchy

(RSM)
Second Hierarchy

(2H SR)
Finite Element

Analysis
Analytical

Method
Finite Element

Analysis
Analytical

Method

0.8
12 671.01 676.51 204.02 246.62
18 1261.41 1267 428.63 502.11
30 2299.7 2290.9 955.94 1069.3

0.9
12 1416.75 1425.4 502.65 602.9
18 2329.54 2329 975.15 1127.16
30 3509.71 3448 1877.12 2033.7

The obtained results are tabulated as shown in Table 3.3. It can be seen that the FE
results hold an excellent agreement with the analytical results at the first level of hierarchy
for all the models. The results in the second level of hierarchy indicates that the FEA yields
a slightly lesser approximation of stiffness compared to the analytical results. This may be
attributed to the orthotropic properties applied in the FEA which is not considered in the
derivations of the analytical equations selected for the comparison. It is also seen that the
error between the analytical and FE results decreases as the aspect ratio increases, for both
sets of volume fractions chosen.

3.5 Conclusion

In this Chapter, two non-self similar hierarchical bio-inspired composites, Two Hierarchi-
cal Regularly Staggered composite with Stairwise Staggered composite as platelet (2H RS)
and Two Hierarchical Stairwise Staggered composite with Regularly Staggered composite
as platelet (2H SR) were analyzed. From the results and discussions, it can be concluded
that the two hierarchical non-self similar composites conceived in the present study pos-
sess much higher toughness than single hierarchical regular staggered (RSM) and stairwise
staggered models (SSM) available in literature (Zhang et al., 2010).

When using two levels of non-self-similar hierarchy, the toughness can be amplified
by a factor of more than 20 while keeping the strength at 20% of the platelet. However,
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these values induce a substantial reduction of elastic stiffness (less than 1% of the platelet
stiffness). Even if the minimum stiffness is set to 2% of the platelet, the toughness gain is
still greater than 10 times regardless of the staggered arrangement in the first or second level
of hierarchy. Moreover, non-self-similar composites seem to have much better strength
while possessing similar toughness to that of self-similar 2H composites. Therefore, these
results will be useful to enhance the toughness properties of a 2H composite by reducing
the decrease in strength when compared to that of a self-similar structure (Zhang et al.,
2011).

The FE analysis results of Young’s moduli show a sufficient match with the analyti-
cal model. The values of platelet aspect ratios at the first and second levels of hierarchy
required to achieve maximum toughness in a 2H composite are also generated by compar-
ing the different combinations. It is also seen that both the configurations i.e., 2H RS and
2H SR are capable of producing an equal range of maximum toughness and strength for a
particular minimum stiffness.

It can be found from the present study as well as other research works on self-similar
hierarchical structures that the stiffness gets reduced whenever a new level of the hierarchy
is introduced (Sen and Buehler, 2011; Zhang et al., 2011). One way to address this problem
is to have stiffer platelets at the basic level. This enables the hierarchical structure to possess
a reduced, but acceptable stiffness at the same time. Therefore, it may not be possible
to retain the stiffness at the first level of hierarchy for the second level of the hierarchy.
However, the minimization of reduction in stiffness when moving up from a level of the
hierarchy is a problem to be addressed.

The results from the present Chapter could aid the development of novel bio-inspired
composites with two hierarchical non-self-similarity, which can outperform other types of
bio-inspired composites for certain combinations of strength, toughness, and stiffness. The
FE analysis in this Chapter is done by assigning the obtained results of the first-level stag-
gered composites to the platelets modeled with orthotropic material properties in the second
hierarchy level. Furthermore, the analyses are conducted based on the TSC model, wherein
the vertical interface (VI) is disregarded for the sake of simplicity. However, an analysis
of hierarchical composites that incorporates the vertical interface utilizing a modified shear
lag model is left for future studies. A multi-scale finite element model could give more
information about the stress distributions inside the hierarchical composite, which is done
in the following Chapter.
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Chapter 4

Stress Analysis of 2H Non-self-similar Stag-
gered Composites using FEA

In this Chapter, the failure analysis of the 2H non-self-similar staggered composites is con-

ducted using Finite Element Analysis (FEA). Here, the stress distributions in a two hierar-

chical (2H) non-self-similar bio-inspired composite with regular and stairwise staggering,

respectively, at the first and second levels of hierarchy (SR) with that of the models with

single hierarchy is compared.

4.1 Introduction

Even though the studies have found various properties that can be mimicked to obtain a
bio-inspired composite, it has still been impossible to get an artificial material as perfect as
its natural inspiration. For this, researchers are still exploring the optimum parameters of
the different factors affecting the final properties of a bio-inspired composite.

A few researchers have made efforts to employ Finite Element Analysis (FEA) on bio-
inspired single hierarchical staggered composites (Maghsoudi-Ganjeh et al., 2021; Yang
et al., 2019). Yang et al. (2019) have done a numerical validation to support the strength
predicting model put forward by them for regular as well as random staggered models.
Their FEA and analytical findings demonstrate a linear relationship between the strength
increase and the platelet volume fraction. Using simulations as well as experiments, Mirza-
eifar et al. (2015) conducted a comparison of stress distributions in materials possessing
varying numbers of self-similar hierarchies. The findings revealed that materials with
higher hierarchy levels exhibited a more uniform stress distribution in the uncracked re-
gion. The FE analysis of multi-scale models of non-self-similar hierarchical structures is
an area that is still to be looked into.
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In this Chapter, we conduct a Finite Element (FE) analysis using the commercially
available software ABAQUS (SIMULIA, 2022) to compare the variation of stresses in a
nacre inspired two hierarchical (2H) non-self-similar composite with that of the staggered
composites with one hierarchy: regular staggered and stairwise staggered composites.

4.2 Methodology

Fig. 4.1 shows the schematic diagram of a 2H stairwise staggered composite with regular
staggered composite as platelet (SR). For the present study we approximate the model for a
reasonable toughness with a platelet volume fraction of 80% and the material properties as
shown in Table 4.1. This is done by finding out the aspect ratio required for the maximum
toughness and corresponding strength that can be obtained for a set of platelet and matrix
material properties. The procedure for analysis as explained in Chapter 3, Section 3.3,
Figure 3.5 is used for the determination of required aspect ratios at the first and second
levels of hierarchy. The geometry details of the 2H SR model are shown in Table 4.2. The
number of platelets in a period n is chosen as 5 for the present study.

Figure 4.1: Schematic representation of (a) Two hierarchical (2H) stairwise staggered
composite (n = 5) composed of regular staggered composite platelets (SR) (b) zoomed
view of the platelet which is a regular staggered model (RSM)

The material properties for the platelet and matrix are assigned the same as that of the
widely used materials for experimental works on bio-inspired composites: Verowhite and
Agillus 30, respectively (See Table 4.1) (Mirzaeifar et al., 2015; Patpatiya et al., 2022).

The details of geometry and meshing adopted for the models is given in Table 4.2.
We conduct a 3D simulation here so as to get a closer look to the possible outcomes of an
experimental simulation. The 3D models of the composites for the three configurations (2H
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SR, SSM, and RSM) with an out of plane thickness of 5 mm are developed in ABAQUS
(SIMULIA, 2022). The meshing is done using the 3D element type C3D8R which is an
eight noded linear brick element.

Table 4.1: Material Properties adopted for the FEA

Part Material
Young’s modulus

(MPa)
Poisson’s ratio

Strength
(MPa)

Platelet Verowhite 2600 0.33 47.5 (normal)

Matrix Agillus 30 0.56 0.49 0.67 (shear)

Table 4.2: Geometry and mesh details of the FE model

Model Volume fraction Platelet aspect ratio
Meshing element

Type No. of elements

2H SR
0.8

20 (first level of hierarchy),
32 (second level of hierarchy)

C3D8R
375555

SSM 32 397790
RSM 20 104670

The dimensions of the model are fixed such that the minimum thickness of the inter-
face is kept as 1 mm, owing to the resolution of the commercially available multi jet 3D
printer (Mirzaeifar et al., 2015). Once the minimum interface thickness is fixed, the other
dimensions are computed by using the volume fraction and aspect ratio.

Fig. 4.2 shows the FE models of the 2H SR, stairwise staggered, and the regular stag-
gered composites with the details of the applied boundary conditions on the four edges.
We apply a displacement ∆h = 0.01 with periodic boundary conditions (PBC) at all edges,
for the 2H SR and the stairwise staggered model (SSM) (Figure 4.2 (a) & (b)) owing to
the periodicity of the stairwise staggering. For the simple regular staggered model (RSM),
symmetric boundary conditions are applied at the top, bottom, and left edges, with a dis-
placement of ∆h = 0.01 at the right edge, as shown in Fig. 4.2 (c).
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Figure 4.2: Boundary conditions applied in different models (a) 2H SR model with Peri-
odic Boundary Conditions (PBC) at top, bottom, left and right edges with a displacement
along x-direction ∆h = 0.01 at the right edge; (b) stairwise staggered model with PBCs
at top, bottom, left and right edges with a displacement along x-direction ∆h = 0.01 at
the right edge; (c) regular staggered model with Symmetric Boundary Conditions (SBC) at
top, bottom and left edges, with a displacement along x-direction ∆h = 0.01 at the right
edge
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4.3 Result and Discussions

The stress contours obtained for σ11 (normal stress along x-direction) from the Output
Data Base (ODB) of the three models are shown in Figure 4.3. It can be observed from
Figure 4.3 that the the normal stress distribution in a 2H SR composite (Figure 4.3 (a))
is uniform when compared with that of the simple stairwise staggered (Figure 4.3 (b)) or
regular staggered model (Figure 4.3 (c))

Figure 4.3: σ11 (normal stress along x-direction) contours obtained from the Output Data
Base (ODB) for (a) 2H SR model, (b) SSM, and (c) RSM

Also, stress concentrations are observed towards the end of the models in the single
hierarchical staggered models with stairwise and regular staggering configurations (Figure
4.3 (b) and (c)), where as it is reduced to a great extent in the 2H SR model (Figure 4.3 (a)).

The contours obtained for the shear stress in the three models are shown in Figure 4.4.
The shear stress distribution in the 2H SR model (Figure 4.4 (a)) is observed to be a com-
bination of the shear stress distributions observed in the stairwise staggered model (Figure
4.4 (b)) and the regular staggered model (Figure 4.4 (c)). However, in the 2H SR model,
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more uniform shear stress distribution and lesser regions with high stress concentrations
are observed than in the other models with a single hierarchy.

Figure 4.4: τ12 (shear stress) contours obtained from the Output Data Base (ODB) for (a)
2H SR model, (b) SSM, and (c) RSM

The shear stress (τ12) contour of the stairwise staggered model (Figure 4.4 (b)) shows
that the regions with more shear stresses are at the platelet matrix horizontal interface and
at the corner regions. But, in a regular staggered model (Fig 4.4 (c)), maximum shear stress
is observed to be at the platelet corner regions.

The results show that the introduction of multiple hierarchy could cap the stress con-
centrations which are observed in single hierarchical structures. The studies on self-similar
hierarchical composites done by Mirzaeifar et al. (2015) also shows a similar result. In the
work by Mirzaeifar et al. (2015), digital image correlation (DIC) was utilized to observe
the strain distributions on various regular staggered composite specimens with increasing
levels of self-similar hierarchy. Through the analysis of strain distributions, their research
showcased the evident impact of the hierarchical structure in effectively distributing strain
and stress within the material. The hierarchical arrangement could also impart more defect
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tolerance to the structures (Sen and Buehler, 2011).
The stress analysis findings by Yang et al. (2019) indicate that in regular staggered

composites, the matrix experiences greater magnitudes of normal and shear stresses at the
platelet end with a shorter overlap. In our present study, we have observed higher levels of
normal stress at the ends of single hierarchical regular staggered models. This phenomenon
is particularly evident in the alternating rows of half platelets, where the overlap is shorter.
Furthermore, in the case of single hierarchical composites, the variation in shear stress
is found to be concentrated at the corners. Conversely, for the stairwise staggered one
hierarchical model, the shear stress is found to be higher in the horizontal interface region.

4.4 Conclusion

From the results and discussion of the present study, it can be concluded that the hierarchi-
cal arrangement of platelets could reduce the stress concentrations significantly and assure
a more uniform stress distribution inside the structure, compared to the structures with one
hierarchy. This can help the structure to withstand impact loads, and improve the defect
tolerance.

The current study will be extremely useful in the multi-scale modelling and simulation
of bio-inspired hierarchical staggered structures subjected to various loads. Also, this could
provide a reasonably good approximation of results which can be used as a preliminary
estimation before conducting experimental works.

The stress distributions inside a multi-scale two hierarchical non-self-similar is anal-
ysed through FE analysis in the current Chapter. Now, we now generalize optimize the
analytical formulations for the mechanical properties of two hierarchical composites in the
following Chapter.
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Chapter 5

Generalization and Optimization of 2H
Bio-inspired Non-self-similar Staggered
Composites

Bio-inspired composites are often considered as ideal candidates in the field of light and

innovative structures, which the world is in need of. In order to develop a bio-inspired

composite with fine mechanical properties, it is required to study all the possible factors

which are responsible for the superior mechanical properties of a biological composite.

The hierarchical arrangement and the staggering pattern of the platelets inside the matrix

are major factors affecting the final properties of such composite materials. The gener-

alization of parameters in a hierarchical structure could be beneficial in finding out the

optimum parameters responsible for the maximum desirable mechanical properties in a

bio-inspired composite. In this Chapter, we formulate a novel generalized model for a

stairwise staggered (which is regarded as one of the patterns mostly found in nature due

to its optimized properties) two hierarchical bio-inspired composite, and we optimize the

model for a tailored design according to the stiffness, strength, and toughness requirements.

The developed model can evaluate self-similar as well as non-self-similar configurations,

and the analytical results from the studies show a good agreement when compared with the

models of specific known designs from the literature. Also, the ternary plots obtained from

optimization show that the number of platelets in a period at the first and second levels of

hierarchy are the key parameters other than the volume fractions and the critical aspect

ratios, controlling the final properties of the two hierarchical composites.
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5.1 Introduction

Many devices and equipments are conceived based on natural structures. For example, the
thin shell structural elements we see nowadays are developed based on eggshells, which is
a biological composite (Shu et al., 2020). Nacre, bone, and bamboo are a few examples
of biological composites which are well known for their superior mechanical properties,
compared to their basic constituents (Currey, 1977; Fratzl et al., 2004; Mathiazhagan and
Anup, 2016a,b; Meyers et al., 2008; Murali et al., 2011; Wegst et al., 2015).

Some of the major reasons behind the exceptional mechanical properties of biological
composites include the peculiar micro-structure of constituents at the elementary level, the
very small size of the constituents (of the order of nanometers), the hierarchical structure,
optimum aspect ratio (length to width ratio) of the platelet, and the optimum Young’s mod-
uli ratio of platelet and matrix (Anup et al., 2007; Ji and Gao, 2004b; Kim et al., 2018;
Maghsoudi-Ganjeh et al., 2021; Saroj et al., 2019).

In Figure 5.1 (b), the arrangement of platelets inside a matrix can be observed, which is
generally called a brick-and-mortar or masonry-slurry or platelet and matrix structure. The
brick/masonry/platelet refers to the rigid element, and the mortar/slurry/matrix refers to
the relatively soft element. The concepts of staggerings, self-similar, and non-self-similar
hierarchies have already been discussed in the previous Chapters. Bone is regarded as a 7-
level self-similar hierarchical structure composed of mineral crystals and protein An et al.
(2014); Gupta et al. (2006); Rho et al. (1998); Wagner and Weiner (1992). Examples of
non-self-similar biological composites include the dental enamel, the scales of alligator
gars, and turtle carapaces Achrai and Wagner (2013); Spears (1997); Yang et al. (2013).

An et al. (2014) reported that the non-self-similar hierarchical composites possess en-
hanced fracture resistance and damage tolerance compared to a self-similar composite
structure. Only a few works in open literature discuss about hierarchical bio-inspired com-
posites Henry and Pimenta (2021); Mirzaeifar et al. (2015); Sen and Buehler (2011); Tseng
et al. (2017).

The experimental and simulation studies by Mirzaeifar et al. (2015); Sen and Buehler
(2011) show that the hierarchical arrangement is a key factor contributing to the defect-
tolerant property of a composite. Here, the defect-tolerant property refers to the ability
to take up more loads, even if the material structure contains some initial flaws or cracks.
They found that the more the hierarchical levels, the higher the uniformity in the stress
distribution in the uncracked domain of the materials. Also, the studies by Zhang et al.
(2011) point out the existence of an optimum level of structural hierarchy, beyond which

86



the toughness of a composite reduces. So, there exist various design guidelines for different
parameters in a composite.

The requirement of appropriate mechanical properties according to the situations where
the composite material is intended to use leads to the need for optimization. In most cases,
having all properties at a higher end may not be necessary, but conditions can be imposed
according to the requirements. Multi-objective optimization is a method in which a model
can be optimized for multiple properties with some set conditions. The multi-objective
optimization done by Barthelat (2014) deals with the simultaneous optimization of stiff-
ness, strength, and toughness for a simple regular staggered bio-inspired composite. In the
abovementioned work, comprehensive design guidelines were formulated for optimizing
mechanical properties and applied to a model with material and structural properties of
nacre, and it was found that, indeed, nacre possesses an optimized design.

In Chapter 3, the equations to compute the mechanical properties of two hierarchical
(2H) non-self-similar composites with regular and stairwise staggerings at the first and
second levels of hierarchy and vice versa were developed. The results from Chapter 3
show that non-self-similar composites undoubtedly possess better strength for a range of
high toughness values when compared to the self-similar staggered composites.

Even though various studies exist on optimization of simple staggered models, a gen-
eralized model for a two hierarchical stairwise staggered structure and its optimization for
different mechanical properties is not available in the open literature. In the present work,
we propose a generalized model for a stairwise hierarchical structure based on the ten-
sion shear chain (TSC) model put forward by Gao et al. (2003). The optimization of the
obtained generalized model of is done using multi-objective optimization technique. The
methodology adopted for the study is explained in detail in Section 5.2. The obtained so-
lutions are applied to get the ternary diagrams for optimization as discussed in Section 5.3.
We conclude the investigation in Section 5.4.

5.2 Methodology

Figure 5.1 shows the schematic representation of a two hierarchical (2H) stairwise stag-
gered composite composed of stairwise staggered composites as platelets (SS). This can be
regarded as a non-self-similar model when the number of platelets in a period (the number
of rows of platelets after which the pattern gets repeated) at the first and second levels of the
hierarchy are different. Here, our objective is to develop equations to compute the mechan-
ical properties such as Young’s modulus, strain, strength and toughness of the composite.
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Using a generalized model, it is possible to examine the effect of different material and
geometric parameters such as the numbers of platelets in a period, the material property of
matrix, the aspect ratio as well as the volume fraction of platelets at each level of hierarchy
on these mechanical properties. The present study is carried out for a 2H SS model with
the following parameters considered in the generalization (these variables can be varied at
the first and second levels of hierarchy) study: (i) Number of platelets in a period (n), (ii)
Aspect ratio of the platelet (ρ), (iii) Volume fraction (φ). In the resulting equations, the
subscripts 1 and 2 denote the first and second levels of hierarchy, respectively. Also, we
consider the same matrix material in the first and second levels of hierarchy to simplify the
model.

Figure 5.1: Schematic diagram of 2H TSC models: (a) 2H stairwise staggered composite
made with stairwise staggered composite as reinforcing platelets (SS) (b) Zoomed view of
platelet

We generalize the 2H SS composite model shown in Figure 5.1 (a), by deriving the
equations to compute the mechanical properties such as stiffness, strength, and toughness.
The stiffness of the stairwise staggered configuration (ES) in a bio-inspired composite at
the first level of hierarchy as shown in Figure 5.1 (b) is given by Zhang et al. (2010) as,

ES =
φ1Ep

n1(3n1−4)
3(n1−1)2 +

n2
1

3(n1−1)α1

(5.1)

where,

α1 =
φ1ρ

2
1Gi

3(1− φ1)Ep
(5.2)

Gi and Ep represent the shear modulus of the matrix and Young’s modulus of platelet
materials, respectively. For, the second level of the hierarchy, the equation for stiffness can
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be written as,

ESS =
φ2ES

n2(3n2−4)
3(n2−1)2 +

n2
2

3(n2−1)α2

(5.3)

where,

α2 =
φ2ρ

2
2Gi

3(1− φ2)ES
(5.4)

SubstitutingES from Equation 5.1 in the equations ofESS (Equation 5.3) and α2 (Equa-
tion 5.4) and simplifying, we get the normalized stiffness of a 2H SS model as,

ESS
Epφ1φ2

=

[
3(n2 − 1)2 +

n2
2

3(n2−1)α2

]
Dn2(3n2 − 4)

(5.5)

where,

D =
n1(3n1 − 4)

3(n1 − 1)2 +
n2

1

3(n1−1)α1

(5.6)

α2 =
φ2ρ

2
2
Gi
Ep
D

3(1− φ2)φ1

(5.7)

The critical aspect ratio is referred to as that value of aspect ratio which separates the
matrix failure from the platelet failure, which is given by Zhang et al. (2010) at the first
level of hierarchy as,

ρ1,crit = (n1 − 1)
σpcritical
τ icritical

(5.8)

where σpcritical and τ icritical represent the normal strength of platelet and shear strength of
matrix, respectively. The strength of a stairwise staggered composite (σScritical ) is given by
Zhang et al. (2010) as,
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σScritical =

φ1σ
p
critical

n1−1
n1

ρ1

ρ1,critical
if ρ1 ≤ ρ1,critical

φ1σ
p
critical

n1−1
n1

if ρ1 > ρ1,critical

(5.9)

Now, the critical aspect ratio at the second level of hierarchy can be computed by sub-
stituting Equation 5.9 for σpcritical in Equation 5.8 as,

ρ2,critical =


(n2−1)φ1ρ1

n1
if ρ1 ≤ ρ1,critical

(n2−1)(n1−1)φ1

n1

σpcritical
τ icritical

if ρ1 > ρ1,critical

(5.10)

In a similar manner, the other properties are also found out. We get the normalized strength
of the 2H SS model as,

σSScritical
σpcriticalφ1φ2

=



ρ2

n2φ1
σ
p
critical
τm
critical

if ρ2 ≤ ρ1,critical

(n2−1)ρ1

n1n2
σ
p
critical
τm
critical

if ρ2 > ρ2,critical and ρ1 ≤ ρ1,critical

(n1−1)(n2−1)
n1n2

if ρ2 > ρ2,critical and ρ1 > ρ1,critical

(5.11)

the normalized strain,

εSScritical
εpcritical

=
σSScritical
σpcritical

/
ESS
critical

Ep
(5.12)

the normalized toughness,

wSScritical
wpcriticalφ1φ2

=

(
σSScritical

σpcriticalφ1φ2

)2

/
ESS
critical

Epφ1φ2

(5.13)

The newly formulated generalized model for a two hierarchical stairwise staggered
(2H SS) model is able to predict the mechanical properties such as the Young’s modulus,
strength, strain, and toughness for any combinations of the variables in the first as well as
the second levels of the hierarchy. Now, the need for optimization arises to find the most
suitable combination of variables for achieving good strength and toughness with also an
acceptable stiffness. For carrying out the optimization part, we follow a weighted product
approach where a multi-objective function or the fitness can be defined as (Barthelat, 2014),
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fc = Em
c,normσ

n
c,normw

k
c,norm (5.14)

where, Ec,norm, σc,norm, and wc,norm are the normalized stiffness, normalized strength,
and normalized toughness of the 2H SS composite respectively given by,

Ec,norm =
ESS
Ep

(5.15)

σc,norm =
σSScritical
σpcritical

(5.16)

wc,norm =
wSScritical

σpcriticalγ
m
critical

(5.17)

Here, m,n, k are non dimensional indices such that m + n + k = 1. The indices can
be modulated according to the emphasis given on particular properties. More the value of
an index more will be the emphasis on the respective property. For example, if (m,n,k)=
(0.3,0.3,0.4), an equal emphasis of 30 % is assigned for stiffness and strength, whereas
toughness is given the greatest emphasis of 40 %. The optimum configurations can then
be displayed in a ternary diagram in which all possible combinations of (m, n, k) can be
represented.

It is to be noted that the normalization of composite properties is done with respect to
the platelet properties for the case of stiffness and strength, whereas a hypothetical material
having the strength of platelet and elongation of the matrix is considered for normalizing
the toughness. This is done so as to keep the three parameters Enorm, σnorm, and wnorm of
the composite, platelet, and matrix between 0 and 1 (Barthelat, 2014).

5.3 Results and Discussion

The mechanical properties of 2H SS composites, as deduced from the preceding sections,
are now used to investigate the impact of the period of staggering and subsequently, for the
optimization of the mechanical properties as described below.
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5.3.1 Effect of period of staggering on mechanical properties

Using the expressions obtained for the normalized mechanical properties viz. stiffness,
strength, strain, and toughness for the 2H SS composites (Equations 5.5, 5.11, 5.12, and
5.13), plots are drawn to understand the variation of the properties with respect to the
number of platelets in a period at the first and second levels of hierarchy. For this, we
consider a set of representative material properties with the ratio of Young’s modulus of
platelet to shear modulus of the matrix, Ep/Gi = 1000, the volume fractions at the first
and second levels of hierarchy, φ1 = φ2 = 0.5, and the platelet aspect ratio at the first and
second levels of hierarchy, ρ1 = ρ2 = 10.

Figure 5.2: Variation of (a) normalized stiffness, and (b) normalized strength in a 2H SS
composite with the number of platelets in a period at first and second levels of hierarchy
(n1, n2). The values are plotted for Ep/Gi = 1000, σpcritical/τ

i
critical = 10, φ1 = φ2 = 0.5,

and ρ1 = ρ2 = 10. (The link to the Matlab scripts for reproducing this figure can be found
here)

Figure 5.2 (a) shows the variation of normalized stiffness of 2H SS composite with
respect to the number of platelets in a period at first and second levels of hierarchy (n1

and n2). From the plot, it can be seen that for a fixed value of aspect ratio and volume
fractions at the first and second levels of hierarchy, the normalized stiffness decreases as
n1 and n2 increases. The variation of normalized strength of 2H SS composite with n1 and
n2 is shown in Figure 5.2 (b), from which a decreasing trend with n1 is observed for each
value of n2. Also, the strength is seen to be increasing with an increase in n2. The constant
trend of the normalized stress graphs can be described by Equation 5.11; since the aspect
ratio, volume fraction, and material properties are the same, a quadratic variation of stress
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will be obtained according to the values of n1 and n2.
Figure 5.3 (a) and (b), show the variation of normalized strain and toughness respec-

tively, for a 2H SS composite with n1 for different values of n2. We can see a similar trend
for both the plots; the strain and toughness increase with the increase in n1 whereas they
decrease with the increase in n2. This could be because toughness depends on stress and
strain, both of which decrease with an increase in n1 as we can see from Figure 5.2 (b).

Figure 5.3: Variation of (a) normalized strain, and (b) normalized toughness in a 2H SS
composite with the number of platelets in a period at first and second levels of hierarchy
(n1, n2). The values are plotted for Ep/Gi = 1000, σpcritical/τ

i
critical = 10, φ1 = φ2 = 0.5,

and ρ1 = ρ2 = 10. (The link to the Matlab scripts for reproducing this figure can be found
here)

The above results show the variation of mechanical properties with only two parame-
ters, n1 and n2, while the other parameters, such as the volume fractions and aspect ratios
at the first and second levels of hierarchy, were kept constant. To find the influence of vari-
ation of the other parameters and to start with the process of optimization, the maximum
toughness for a particular combination of n1 and n2 is found out by comparing the values
obtained for different sets of aspect ratios at the first and second levels of hierarchy. For
this, the aspect ratios at the first and second levels of the hierarchy are varied from 1 to
120, and the maximum value of toughness obtained is found for a particular set of n1 and
n2. Also, the corresponding values of stiffness and strength for the maximum toughness
are also computed.

Figure 5.4 to 5.8 show the variation of maximum toughness and corresponding strength
and stiffness with n1 for n2 = 2 to 10. It can be seen from the plots that the maximum
toughness of the generalized 2H SS model decreases with n1.
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(a) n2 = 2

(b) n2 = 3

Figure 5.4: Maximum normalized toughness with corresponding normalized strength and
stiffness with n1, for different values of n2. φ represents the effective platelet volume
fraction of the 2H SS composite which is equal to φ1φ2. The plots are drawn for Ep/Gi =
1000 and σpcritical/τ

i
critical = 10. (The link to the Matlab scripts for reproducing this figure

can be found here)
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(a) n2 = 4

(b) n2 = 5

Figure 5.5: Maximum normalized toughness with corresponding normalized strength and
stiffness with n1, for (a) n2 = 4, and (b) n2 = 5. φ represents the effective platelet
volume fraction of the 2H SS composite which is equal to φ1φ2. The plots are drawn for
Ep/Gi = 1000 and σpcritical/τ

i
critical = 10. (The link to the Matlab scripts for reproducing

this figure can be found here)
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(a) n2 = 6

(b) n2 = 7

Figure 5.6: Maximum normalized toughness with corresponding normalized strength and
stiffness with n1, for (a) n2 = 6, and (b) n2 = 7. φ represents the effective platelet
volume fraction of the 2H SS composite which is equal to φ1φ2. The plots are drawn for
Ep/Gi = 1000 and σpcritical/τ

i
critical = 10. (The link to the Matlab scripts for reproducing

this figure can be found here)
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(a) n2 = 8

(b) n2 = 9

Figure 5.7: Maximum normalized toughness with corresponding normalized strength and
stiffness with n1, for (a) n2 = 8, and (b) n2 = 9. φ represents the effective platelet
volume fraction of the 2H SS composite which is equal to φ1φ2. The plots are drawn for
Ep/Gi = 1000 and σpcritical/τ

i
critical = 10. (The link to the Matlab scripts for reproducing

this figure can be found here)
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Figure 5.8: Maximum normalized toughness with corresponding normalized strength and
stiffness with n1, for n2 = 10. φ represents the effective platelet volume fraction of the
2H SS composite which is equal to φ1φ2. The plots are drawn for Ep/Gi = 1000 and
σpcritical/τ

i
critical = 10. (The link to the Matlab scripts for reproducing this figure can be

found here)

The results of the generalized model are seen to be matching with that obtained in
Chapter 3 for 2H regular staggered model with stairwise staggered composite as platelets
(2H RS), which can be regarded as a special case of the generalized 2H SS model with
n2 = 2. It is also observed from the plots that the maximum toughness decreases, whereas
the corresponding strength and stiffness increase with an increase in n2.

5.3.2 Optimization of the composite using fitness function and ternary
diagrams

The need for optimization arises when we have several options for designing the hierarchi-
cal composite. Here the options refer to the range of platelet aspect ratios, the number of
platelets in a period, and the platelet volume fraction. For example, if we have a partic-
ular set of materials for the platelet and matrix, the optimum configuration refers to that
design in which we get the maximum properties we are looking for. Here we make use
of the fitness function for the composite (Equation 5.14), which is a collection of the three
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important mechanical properties: stiffness, strength, and toughness, for the optimization
process.

The following variables involved in the fitness function for the composite given by
Equation 5.14 are considered for the optimization: (i) volume fractions (φ1, φ2), aspect ra-
tios (ρ1, ρ2), and the number of platelets in a period (n1, n2) at the first and second levels of
hierarchy. The optimization is done by maximizing the fitness function for the composite
using the ‘fmincon’ function in MATLAB (The Mathworks, 2020) with default conver-
gence criteria. It is observed that the fitness function for the composite (Equation 5.14)
is an increasing function of volume fraction. Due to this, the optimized values obtained
for maximized fitness function of the composite would converge at the upper limit of the
volume fraction provided. As an alternative, we optimize the other variables by keeping
the volume fractions constant.

The optimum values of aspect ratios at the first and second levels of hierarchy are cho-
sen as the critical aspect ratios since the maximum strength in a two hierarchical structure
is obtained for the critical aspect ratios in Chapter 3. Thus, for a particular volume fraction
at the first and second levels of hierarchy, at the critical aspect ratios, we maximize the
fitness function for the composite to optimize the remaining variables n1, and n2.

The maximized fitness function of the composite (fc) is normalized with the fitness
function of the matrix (fi) which is given by,

fi = Em
i,normσ

n
i,normw

k
i,norm (5.18)

where Ei,norm, σi,norm, and wi,norm are the normalized stiffness, normalized strength,
and normalized toughness of the interface respectively which are given by, Ei,norm =

wi,norm = τi, and σi,norm =
√

3τi. These assumptions are made so as to confine the
material selection for the matrix from a wide range.

Figure 5.9 (a) shows the variation of fc/fi in ternary diagrams for various combinations
of m,n, and k obtained after maximizing fc. The corresponding values of n1 and n2 are
shown in Figure 5.9 (b), and (c). It can be observed from Figure 5.9 (a) that the transition
boundary is shifting towards the right edge as the volume fraction increases. This indicates
that more combinations of m,n,and k would give a higher range of values of fc/fi, as the
volume fraction is increased.
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From Figure 5.9 (b), it can be seen that the optimized value of n1 is close to the upper
bound (20) for a larger portion of the area in the ternary diagram, with only a slight variation
as the volume fraction is increased. Also, a low value of n1 is observed for combinations
with high values of k and low values of m. This implies that if we need a 2H SS composite
having high toughness (k = 1) with low stiffness (m ≈ 0), a lower number of rows of
platelets is sufficient in a period at the first level of hierarchy. For the remaining cases,
including the ones for high stiffness (m = 1) and strength (n = 1), a higher number of
rows of platelets are required in a period at the first hierarchy.

The transition boundaries in the ternary plots of n2 shift towards the right and top with
an increase in volume fraction as observed from Figure 5.9. This interprets that as volume
fraction is increased, only a small range of combinations of m,n, and k near to the top
vertex of the ternary diagram (high toughness and low stiffness) are possible with a lower
number of rows of platelets in the second level of hierarchy. But, at low volume fractions,
the regions with a lower number of rows of platelets increase. Also, it can be observed
that more combinations of m,n, k have the upper bound of n2 as the optimum value of
the number of rows of platelets in a period in the second level of hierarchy as the volume
fraction is increased.

Thus, the procedure for a quick design of a non-self-similar hierarchical composite us-
ing a set of platelet and matrix materials for a particular volume fraction can be summarized
as follows. The optimum aspect ratio is first found out using Equations 5.8 and 5.10. Once
the critical aspect ratios are obtained, the mechanical properties are maximized using the
multi-objective function, and the ternary plots can be generated. Finally, according to the
priorities of each mechanical property, viz. stiffness, strength, and toughness, assigned to
the variables m, n, and k, respectively, the values of n1 and n2 can be chosen from the
ternary diagrams.

As an example, consider 50% volume fraction at the first and second levels of hierarchy,
with material properties such that Ep/Gi = 1000 and σpcritical/τ

i
critical = 10. For a 2H

SS composite with maximum stiffness, we can easily obtain the values of n1 and n2 by
observing the values at the left corner in Figure 5.9 (b) and (c) as 20, and 20 respectively.
To get the aspect ratio, these values can be substituted into Equations 5.8 and 5.10. Thus
we get the four variables n1, n2, ρ1, and ρ2 required for the design of a 2H SS composite.
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5.4 Conclusion

The generalization and optimization of a non-self-similar hierarchical bio-inspired compos-
ite are made in the present study. The major conclusions from the results and discussions
of the current work can be summarized as follows: The strength of the non-self-similar two
hierarchical composites (2H SS) for a given volume fraction and aspect ratio is independent
of the number of platelets in a period at the second level of hierarchy. But, the maximum
stiffness, as well as toughness for a 2H SS composite, is obtained when the number of
platelets in a period at both levels of hierarchy are minima.

It can be concluded from the results and discussions that the design of a non-self-similar
composite is influenced by the volume fraction, platelet aspect ratios, and the number of
platelets at the first and second levels of hierarchy. The design can be done according to
the required priorities of stiffness, strength, and toughness for a set of platelet and matrix
materials easily with the aid of the ternary diagrams obtained from the optimization of the
multi-objective fitness function for the composite.

This study could find its application as a design and optimization tool to estimate the
range of mechanical properties that can be expected in a 2H non-self-similar composite for
a given combination of platelet and matrix materials, and platelet volume fraction. Also,
it can be used to tailor the 2H bio-inspired composite to meet requisites according to its
intended purpose, as desired by the designer. The limitations of the present study include
the non-consideration of factors such as the plasticity of materials and the uncertainty of
the variables in the optimization problem. The influence of these factors is, however, left
for future studies.
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Chapter 6

Conclusions and Future Work

Throughout this study, we have delved into the depths of the research question on the me-

chanical properties of non-self-similar two hierarchical (2H) composites through literature

review, data analyses, and discussions. This Chapter brings all the threads together and

draw meaningful insights from the findings. The future scopes of the present study are also

discussed.

6.1 Conclusions

The present study investigates the essential mechanical properties of non-self-similar two
hierarchical composites by analytical as well as finite element analyses. The failure mech-
anisms and the influence of different sequences of failure over the stiffness, strength, and
toughness of the staggered composites with a single hierarchy (1H) are studied in detail,
first. Also, a novel analytical formulation to estimate the stresses in a stairwise staggered
composite is formulated using shear lag model. The influence of failure sequences on the
mechanical properties is compared for regular and stairwise staggered composites for var-
ious sets of material properties for the platelet and matrix, by conducting a case study.

An analytical model to predict the mechanical properties of two-hierarchical (2H) non-
self-similar composites is developed using the tension shear chain (TSC) model. We adopt
the TSC model for the formulation involving two hierarchy in the structure, owing to its
simplicity and lesser computation time, compared to that of the shear lag model.

Finally, the various parameters in the first and second levels of hierarchy are general-
ized to obtain a generalized model for 2H non-self-similar bio-inspired composites. The
generalized model is also optimized to get the configuration of a 2H composite for a given
stiffness, strength, and stiffness, using ternary diagrams.
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The major conclusions from the study are summarized as follows:

• Based on the failure analysis of single hierarchical regular staggered and stairwise
staggered models, we find that the failure sequence has an important effect on the
mechanical properties of bio-inspired composites. However, this effect is influenced
by various geometrical and material parameters.

– A significant contribution to the toughness from vertical the interface failure is
observed for regular as well as stairwise staggered models.

• The 2H non-self-similar composites conceived in the present study are character-
ized with a greater toughness than single hierarchical regular staggered (RSM) and
stairwise staggered models (SSM) available in literature (Zhang et al., 2010).

– For a similar toughness, the non-self-similar composites seem to have more
strength.

• The failure analysis using comparison of stress distribution show a significant reduc-
tion in the stress concentrations in two hierarchical composite, compared to the ones
with single hierarchy, due to the hierarchical arrangement of platelets.

• The optimization results show that for a non-self-similar two hierarchical composites
(2H SS) with a given volume fraction and aspect ratio, the strength is independent
of the number of platelets in a period at the second level of hierarchy. However, a
lower number of platelets in a period for both levels of hierarchy yielded maximum
toughness and stiffness in a 2H SS composite.

– The optimization results enable the user to tune the properties such as the stiff-
ness, strength, and the toughness of the 2H SS bio-inspired composite according
to the priorities and requirements, with the help of the ternary diagrams.

6.2 Scope for future work

The results from the thesis are promising and useful in the design of modern bio-inspired
staggered composites. Also, the finite element analysis (FEA) methodology can be used
for analysing a wide range of problems in the field of staggered composites. The following
are the possible scopes for future works:
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• Since the current analyses are done on the linearly elastic material assumptions, the
effect of the flexible matrix’s deformation is not captured. A detailed analysis consid-
ering the matrix deformation, as well as the cohesive behaviour of matrix interfaces
can be done to get more realistic results.

• The optimization study can be extended for more than the two parameters (aspect
ratio and number of platelets in one period), considered at present. The other pa-
rameters include the volume fractions in the first and second hierarchical levels, the
overlap ratio of platelets, and different material combinations of platelet and matrix.

• Experimental studies can be conducted to verify the obtained results and get more
in-depth details for the production of staggered composites.

• The study of the influence of factors like the waviness of the platelets, and random-
ness in the platelet distribution as observed in biological composites over the me-
chanical properties, is also a possible future direction of this work.

There exist different types of finite element methods which are found to be useful for the
analysis. For example, the lattice spring models (LSM) can be used to obtain the infor-
mation on the deformation, stress variation pattern, and fracture mechanism (Buxton et al.,
2001; Chen et al., 2014; Dimas and Buehler, 2012; Ghimire et al., 2021; Libonati et al.,
2017; Sen and Buehler, 2011). Another method is the extended finite element method
(XFEM) which has an advantage of mesh independence, when compared to other conven-
tional FEM methods (Belytschko, 1997; Goyal and Irizarry, 2016; Vellwock et al., 2018).
In phase field method (PFM), unlike most of the standard methods of fracture mechanics, it
used a predetermined crack path which is naturally described using thermodynamics-based
dynamic models (Amor et al., 2009; Khaderi et al., 2014; Miehe et al., 2010). The cohesive
zone modeling (CZM) can capture the interface failures which consist of the debonding of
matrix from the platelet (Alfano et al., 2007; Singh et al., 2019). These approaches are
of really beneficial for the validation of the failure analysis along with the experimental
investigations, leaving room for future research.
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Appendix A

Equations for normal and shear stresses
in a regular staggered composite

In this section, the derivation of equations for stress along a platelet in a regular staggered
composite done by Kim et al. (2018), using modified shear lag model is included as follows:
Consider the Figure A.1 in which the schematic of a regular staggered model with half
platelet thickness b and matrix thickness h is shown. The overlapped and non overlapped
lengths are denoted by La and 2Lb, respectively.

Figure A.1: (a) Schematic diagram of a regularly staggered composite with length and
width of platelet Lp and h respectively (b) Representative Volume Element (RVE) for a
regularly staggered composite, proposed by Kim et al. (2018); Ep and Em are Young’s
moduli of platelet and matrix respectively, and Gm is the Shear modulus of the matrix.

A total number of five non-dimensionalized material & geometric parameters are de-
fined for the ease in the description of the theoretical model. They are:

1. Geometric parameters:

(a) platelet to overall thickness ratio, φ = 2b
2b+h
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(b) overlapped length to platelet thickness ratio, ρ = La
b

(c) half non-overlapped length to overlapped length ratio, ξ = Lb
La

2. Material parameters:

(a) matrix shear modulus to platelet tensile modulus ratio, α = Gm
Ep

(b) matrix tensile modulus to platelet tensile modulus ratio, β = Em
Ep

d2σ1(x)

dx2
=

Gm

Ephb
(σ1(x)− σ2(x))

d2σ2(x)

dx2
=

Gm

Ephb
(σ2(x)− σ1(x))

(A.1)

Where the subscripts denote the number of the partition. Equation A.1 is valid for both the
case of stress-controlled as well as strain-controlled.

Since the governing differential equations as obtained in Equation A.1 is a set of two
second-order differential equations composed of two variables, the model requires a total
of four boundary conditions. It is assumed that partitions 4 and 5 experienced uniform
tensile stress due to the significantly smaller non-overlapped length, resulting in relatively
less stress variation compared to partitions 1, 2, and 3 with longer overlapped lengths. This
assumption gives two boundary conditions as follows:

σ1 (La) = σ5 = σ2(0) (A.2)

where σ5 represents the uniform stress in partition 5. The condition of stress continuity
across parts 5 and 1, or between parts 5 and 2 is ensured by Equation A.2. The remaining
equations to define the stress distributions inside the unit cell are derived based on Equation
A.2, in terms of σ5.

It is to be noted that partitions 1 & 4, or 2 &4 are not of the same size of sections,
where the stress continuity does not hold well. Therefore, the next boundary condition
is formulated by taking into account the force equilibrium at the interface region between
parts 4 and 1.
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Figure A.2: Schematic diagram of the deformed unit cell of regular staggered composite.
Lb represents the undeformed lengths of parts 4 and 5. ∆, u1(0) represent partial deformed
lengths due to the uniform deformation, and displacement of the upper platelet at x = 0,
respectively.

Consider Figure A.1 in which the parameters u1(0), and ∆ are shown. u1(0) is the
upper platelet’s displacement at x = 0 and ∆ is the uniform deformation. It is assumed
that part 4 is deformed into a trapezoidal shape as shown in Figure A.1 due to the following
forces: (i) force applied by σ5, (ii) force from part 1’s left end displacement.

When the force equilibrium on the interface between parts 4 and 1 is considered, the
following equation is obtained.

bσ1(0) =

(
b+

h

2

)
Em

u1(0)

Lb
+ (b+ h)

σ5

Ep
Em (A.3)

where, the left hand side represents the force on the side of part 1 while the right hand
side represents the force on the other side. The shear lag model’s governing equation given
below can be used to determine the term u1(0).

Gm
u1(x)− u2(x)

h
= b

dσ1(x)

dx
(A.4)

where the terms u1(x) and u2(x) represent the displacements of the partitions 1 and 2,
respectively. Since a fixed boundary is assumed at x = 0, u2(0) is zero.
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Now, substituting u1(0) from Equation A.4 into Equation A.3 results as,

σ1(0) =
Emh(2b+ h)

2GmLb

dσ1(0)

dx
+ σ5

Em
Ep

(b + h)

b
= σ2 (La) (A.5)

Here, the first term pertains to the trapezoidal deformation due to u1(0), which is the upper
platelet’s displacement at x = 0. The second term is associated with the uniform deforma-
tion represented by ∆.

By solving the Equation A.1 with the boundary conditions as in Equations A.3 & A.4
the stress distribution function can be obtained as,

σ1(x) = σ5


(

1− β + 2β
φ

)
A sinh(A) +B cosh(A) +

(
1 + β − 2β

φ

)
A sinh

(
A
(

2x−La
La

))
2A sinh(A) +B cosh(A)


σ2(x) = σ5


(

1− β + 2β
φ

)
A sinh(A) +B cosh(A) +

(
1 + β − 2β

φ

)
A sinh

(
A
(
La−2x
La

))
2A sinh(A) +B cosh(A)


τ3(x) = σ5α

La
h


(

1 + β − 2β
φ

)
cosh

(
A
(
La−2x
La

))
2A sinh(A) +B cosh(A)


(A.6)

Here, A & B are non-dimensional parameters that signify the influence of overlapped par-
titions 1, 2, 3, and non-overlapped partitions 4, 5, respectively.

A =
ρ

2

√
α

√
φ

1− φ
, B =

β

φξ
(A.7)

In the present study, the normal stress along a full platelet, σpreg(x) in a regularly staggered
composite is obtained as a function of the maximum normal stress in the platelet (σpreg,max)

(which is equal to the uniform normal stress in region 5 in Figure 2.1 (b) ) by extending the
equations for the unit cell by Kim et al. (2018) as follows:

σpreg (x) =



σpreg , max

(
(1−β+ 2β

φ )A sinh(A)+B cosh(A)+(1+β− 2β
φ )A sinh(A( 2x−La

La
))

2A sinh(A)+B cosh(A)

)
, 0 ≤ x < La

σpreg,max, La ≤ x < La + 2Lb

σpreg,max

(
(1−β+ 2β

φ )A sinh(A)+B cosh(A)+(1+β− 2β
φ )A sinh

(
A

(
(−2(x−La−2Lb))+La

La

))
2A sinh(A)+B cosh(A)

)
, La + 2Lb ≤ x < Lp

(A.8)
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The maximum value of normal stress in the platelet in a regular staggered composite(
σpreg,max

)
will be equal to the platelet strength (σpcritical) and occurs at x = La + 2Lb (Kim

et al., 2018). The shear stress along a platelet matrix interface at the top and bottom of a
platelet in a regular staggered composite is given by, (Kim et al., 2018)

τmreg,top (x) =



σpreg,max α
La
h

(
(1+β− 2β

φ ) cosh(A( 2x−La
La

))
2A sinh(A)+B cosh(A)

)
, 0 ≤ x ≤ La

σpreg,max α
La
h

(
(1+β− 2β

φ ) cosh(A)

2A sinh(A)+B cosh(A)

)
, La < x ≤ La + 2Lb

σpreg,max α
La
h

(
(1+β− 2β

φ ) cosh
(
A
(

3La−4Lb−2x

La

))
2A sinh(A)+B cosh(A)

)
, La + 2Lb < x ≤ Lp

(A.9)

τmreg,bottom (x) =



σpreg ,maxα
La
h

(
(1+β− 2β

φ ) cosh(A(La−2x
La

))
2A sinh(A)+B cosh(A)

)
, 0 ≤ x ≤ La

σpreg,max α
La
h

(
(1+β− 2β

φ ) cosh(−A)

2A sinh(A)+B cosh(A)

)
, La < x ≤ La + 2Lb

σpreg ,max α
La
h

(
(1+β− 2β

φ ) cosh
(
A
(

2x−3La−4Lb
La

))
2A sinh(A)+B cosh(A)

)
, La + 2Lb < x ≤ Lp

(A.10)

The peak value of shear stress in the platelet matrix interface occurs at x = La + 2Lb

and is given by,

τmmax,reg = σpmax,regα
La
h


(

1 + β − 2β
φ

)
cosh (A)

2A sinh(A) +B cosh(A)

 (A.11)

The normal stress in the matrix at the vertical interface (σmmax) is assumed to be equal
to the normal stress at the end of the platelet, which is given by,

σmmax,reg = σpmax


(

1− β + 2β
φ

)
A sinh(A) +B cosh(A) +

(
1 + β − 2β

φ

)
A sinh (A)

2A sinh(A) +B cosh(A)


(A.12)
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Appendix B

Equations for normal and shear stresses
in a stairwise staggered composite

σa(x) = σpu

γA1 sinh(A1) +B1 cosh(A1) + λA1 sinh
(
A1

[
2n(x+Lb)−L
L−2nLb

])
2A1 sinh(A1) +B1 cosh(A1)

 (B.1)

σb(x) = σpu

γA2 sinh(A2) +B2 cosh(A2) + λA2 sinh
(
A2

[
L(n+1)−2n(x+Lb)

(n−1)L−2nLb

])
2A2 sinh(A2) +B2 cosh(A2)

 (B.2)

σc(x) = σpu

γA2 sinh(A2) +B2 cosh(A2) + λA2 sinh
(
A2

[
2n(x+Lb)−L(n−1)

(n−1)L−2nLb

])
2A2 sinh(A2) +B2 cosh(A2)

 (B.3)

σd(x) = σpu

γA1 sinh(A1) +B1 cosh(A1) + λA1 sinh
(
A1

[
L(2n−1)−2n(x+Lb)

L−2nLb

])
2A1 sinh(A1) +B1 cosh(A1)


(B.4)

Thus, the normal stress along a platelet in a stairwise staggered composite, σpsw(x) can
be written as,

σpsw(x) =
σp,topsw (x) + σp,botsw (x)

2
(B.5)
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where,

σp,topsw (x) =


σc if 0 ≤ x < La2

σpu if La2 ≤ x < La2 + 2Lb

σd if La2 + 2Lb ≤ x ≤ Lp

(B.6)

σp,botsw (x) =


σa if 0 ≤ x < La1

σpu if La1 ≤ x < La1 + 2Lb

σb if La1 + 2Lb ≤ x ≤ Lp

(B.7)

where,

σpu =
2σpcrit (2A2 sinh(A2) +B2 cosh(A2))

2 [γA2 sinh(A2) +B2 cosh(A2)] + A2λ [sinh (A2 C1) + sinh (A2 C2)]
(B.8)

where,

C1 =
L(n+ 1)− 2n(x+ Lb)

(n− 1)L− 2nLb
(B.9)

C2 =
2n(x+ Lb)− L(n− 1)

(n− 1)L− 2nLb
(B.10)

Also, γ = 1− β + 2β
φ

, λ = 1 + β − 2β
φ
, and L = Lp + 2Lb

A1 = ρ1

2

√
α
√

φ
1−φ , B1 = β

φξ1
, ρ1 = La1

b
, and ξ1 = Lb

La1

A2 = ρ2

2

√
α
√

φ
1−φ , B2 = β

φξ2
, ρ2 = La2

b
, and ξ2 = Lb

La2

Also, the variation of shear stress in the matrix along the top and bottom interfaces of
the platelet with length Lp, can be found out in a similar manner as,

where,

τm,topsw (x) =


τc if 0 ≤ x < La2

τut if La2 ≤ x < La2 + 2Lb

τd if La2 + 2Lb ≤ x ≤ Lp

(B.11)
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τm,botsw (x) =


τa if 0 ≤ x < La1

τub if La1 ≤ x < La1 + 2Lb

τb if La1 + 2Lb ≤ x ≤ Lp

(B.12)

where,

τa(x) = σpmaxα
La1

h

[
λ cosh(A1

La1−2x
La1

)

2A1 sinh(A1) +B1 cosh(A1)

]
(B.13)

τub(x) = σpmaxα
La1

h

[
λ cosh(−A1)

2A1 sinh(A1) +B1 cosh(A1)

]
(B.14)

τb(x) = σpmaxα
La2

h

 λ cosh(A2

[
L(n+1)−2n(Lb+x)
L(n−1)−2nLb

]
2A2 sinh(A2) +B2 cosh(A2)

 (B.15)

τc(x) = σpmaxα
La2

h

 λ cosh
(
A2

[
La2−2x
La2

])
2A2 sinh(A2) +B2 cosh(A2)

 (B.16)

τut(x) = σpmaxα
La1

h

[
λ cosh(−A2)

2A1 sinh(A1) +B1 cosh(A1)

]
(B.17)

τd(x) = σpmaxα
La1

h

 λ
(
A1

[
(n+1)L−2n(Lb+x)

(n−1)L−2nLb

])
2A1 sinh(A1) +B1 cosh(A1)

 (B.18)
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Appendix C

Limiting value of stiffness

C.1 Regular Staggered Model

Equation C.1 is analysed for maximum stiffness ratio as Ep/Em → ∞ by expressing α in
terms of β and limiting β → 0.(

E

EB=0

)
reg

=
(A sinh(A) +B cosh(A))(cosh(A) + A sinh(A))

(cosh(A) + A sinh(A) +B cosh(A))A sinh(A)
(C.1)

(
E

EB=0

)
reg,

EP
Em
→∞

= Λ(ρ, νm, vf , b, ξ)

=

−b2 (2νm + 2)

[
Γ2(ξ+1)
ξvfΓ1

− vfΓ1Γ2
2

b3ρ
[
vfΓ1
bρ
−1
]
2(νm+2)4

]
4

Γ2
1

vfΓ1

bρ
[
vfΓ1
bρ
−1
]

(C.2)

where,

Γ1 = ρb+
bξρ

ξ + 1

Γ2 = ρb− bξρ

ξ − 1

(C.3)

where ρ, νm, vf , b, and ξ represent the platelet aspect ratio, poisson’s ratio of matrix, platelet
volume fraction, width of platelet, and overlap ratio, respectively.

Substituting the values for the above terms, we get the limiting value of stiffness ratio

131



for regular staggered composite as,

Λ(4, 0.38, 0.8, 10, 0.02) = 10.94 (C.4)

C.2 Stairwise staggered composite

The limiting values of the stiffness ratio for a stairwise staggered composite can also be
computed by applying a limit to the two parts of the regular staggered RVEs inside a stair-
wise staggered RVE. The limiting value is found to be 17.8 for the set of parameters:
(ρ, νm, vf , b, ξ, n) = (4, 0.38, 0.8, 10, 0.02, 5).

C.3 Limiting value of σ
p
crit
τmcrit

To find the limiting value of σpcritical
τmcritical

, the ratios σmcritical
σmmax

, τ
m
critical

τmmax
, and σpcritical

σpmax
, are checked for

aspect ratios from 1 to 500 and varying σpcritical
τmcritical

. The sequences of failure are obtained for

all the aspect ratios for each value of σpcrit
τmcrit

. Then, using a search algorithm in MATLAB

(The Mathworks, 2020), the minimum value of σpcrit
τmcrit

is extracted, for which platelet failure
would never occur in the range of aspect ratios chosen.
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Appendix D

Derivation of Mechanical Properties of Reg-
ular Staggered Composites using TSC model

D.1 Regular Staggered Model using TSC model

The foundational assumptions of the tension–shear chain model proposed by (Gao et al.,
2003) and Ji and Gao (2004a) are as follows (Zhang et al., 2010):

• The elastic modulus of the matrix is 2 to 3 orders of magnitude smaller than that of
the platelet, thus the matrix cannot transfer any normal stress between neighboring
platelets. In the longitudinal direction (z), the load can only be transferred through
shear in the matrix.

• The platelet thickness (h) is 1 to 2 orders of magnitude smaller than its length (L),
rendering the mineral essentially one-dimensional (depending only on z, as shown in
Figure).

• The platelet distribution exhibits repetition after two rows of platelets.

• The neighbouring platelets have an overlapping of half of their length along the lon-
gitudinal direction.

Additionally, the longitudinal gap (z) between the platelets is significantly smaller than the
length of the platelet (L). Consider Figure D.1 in which the undeformed (b) and deformed
representative volume elements (RVE) of a regular staggered composite with an overlap of
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ξ is shown. We have the equation of equilibrium along the horizontal direction as,

(1− ξ)τR − ξτL = 0 (D.1)

where, τL and τR are the shear stresses acting on the left and right parts of the matrix as
shown in Figure D.1 (c).

Figure D.1: Regular staggered composite with an offset ξL. (a) Overall structure of the
composite, (b) Representative volume element (RVE), (c) deformed RVE after the applica-
tion of longitudinal displacement ∆. The platelet dimension is L× h, and τL, τR represent
the shear stresses in the left and right parts of the matrix, respectively.

The normal stress in the (first) platelet is obtained from the force equilibrium as

σp =

{
2
h
τLz, 0 ≤ z ≤ ξL,

2
h
τR(L− z), ξL < z ≤ L

(D.2)

The strain energy in the platelets in the unit cell is 2h
∫ L

0

(
σ2
p/ (2Ep)

)
dz, where Ep is
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Young’s modulus of the platelets. e strain energy in the matrix is

2
(1− φ)h

φ

[
ξL

(
τL
)2

2Gm

+ (1− ξ)L
(
τR
)2

2Gm

]
(D.3)

Gm is the shear modulus of the matrix and φ is the platelet volume fraction. Let σp and
Ep be the normal strength and Young’s modulus of the platelets, respectively. The comple-
mentary energy of the unit cell is,

ΠC = 2h

∫ L

0

σ2
p

2Ep
dz + 2

(1− φ)h

φ

[
ξL

(
τL
)2

2Gm

+ (1− ξ)L
(
τR
)2

2Gm

]
− F∆

=

[
4ξ2L3

3hEp
+

(1− φ)ξhL

φ(1− ξ)Gm

] (
τL
)2 − 2ξLτL∆,

(D.4)

where F represents the axial force on the platelet which is given by,

F = 2τLξL (D.5)

By the minimization of complementary energy obtained by Equation D.4 we get,

dΠC/dτ
L = 0⇒ (D.6)

τL =
∆

4ξL2

3hEp
+ (1−φ)h

φ(1−ξ)Gm

. (D.7)

We have the average stress in the composite as,

σ =
F

2h+ 2(1− φ)h/φ
=
φF

2h
(D.8)

Equation D.8 can be rewritten by substituting F in terms of τL from Equations D.5 and D.6
as,

σ =
1

4
3φEp

+ 1−φ
φ2ξ(1−ξ)ρ2Gm

∆

L
(D.9)

Thus, the modulus of elasticity of the regular staggered composite can be found out by
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taking the ratio of the average stress (σ) to the average strain
(

∆
L

)
from Equation D.9 as,

E =
1

4
3φEp

+ 1−φ
φ2ξ(1−ξ)ρ2Gm

= φEp
1

4
3

+ 1
3ξ(1−ξ)α

(D.10)

A similar approach can be applied to obtain the equations of stiffness, strength and strain
in stairwise staggered composites, by considering a model with overlap of L/n where n is
the number of platelets in a period.
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Appendix E

Python code for implementing PBC

E.1 Code snippet to impose PBC

mdb.models[’Model-1’].StaticStep(name=’Step-1’, previous=’Initial’)

#Lrve: Length of the model

#Wrve: Width of the model

###Create top, right, left, and bottom edge groups

finalInstance=mdb.models[’Model-1’].rootAssembly.instances[’Composite-

1’]

a = mdb.models[’Model-1’].rootAssembly

a.Set(edges=finalInstance.edges.findAt(((Lrve/2., Wrve, 0.0),), ),

name="top")

a.Set(edges=finalInstance.edges.getByBoundingBox(xMin=Lrve-0.), name="

right")

a.Set(edges=finalInstance.edges.getByBoundingBox(xMax=hg/5.), name="

left")

a.Set(edges=finalInstance.edges.getByBoundingBox(yMax=vg), name="

bottom")

#Connecting nodesets from top & bottom, left & right, by periodic

boundary conditions

nodesets = {}

for set,i in zip(["top","bottom","right","left"],[1,1,2,2]):

nodesets[set]=[]

for node in a.sets[set].nodes:

nodesets[set].append((node.label,node.coordinates[0],node.coordinates[

1]))

nodesets[set].sort(key=lambda value: value[i])
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mdb.models[’Model-1’].keywordBlock.synchVersions(True)

keywordblock = mdb.models[’Model-1’].keywordBlock

for i,kw in enumerate(keywordblock.sieBlocks):

if kw.startswith("*End Part"):

endpart = i

elif kw.startswith("*End Instance"):

endinstance = i

elif kw.startswith("*Elset"):

endassembly = i

elif kw.startswith("*Static"):

static = i

elif kw.startswith("*Output, history"):

history = i

break

# Creating dummy node to assign displacement

partstring="*Part, name=dummy-LR\n"

partstring+="*End Part\n"

partstring+="**\n"

partstring+="*Part, name=dummy-TB\n"

partstring+="*End Part\n"

partstring+="**\n"

keywordblock.insert(position=endpart+1,text=partstring)

endinstancestring="*Instance, name=dummy-LR-1, part=dummy-LR\n"

endinstancestring+="*Node\n"

endinstancestring+="100000, -10., 10., 0.\n"

endinstancestring+="**This dummy node can be arbitrary\n"

endinstancestring+="*Nset, nset=dummy-LR-1-RefPt_, internal\n"

endinstancestring+="100000,\n"

endinstancestring+="*End Instance\n"

endinstancestring+="*Instance, name=dummy-TB-1, part=dummy-TB\n"

endinstancestring+="*Node\n"

endinstancestring+="200000, 10., 0., 0.\n"

endinstancestring+="**This dummy node can be arbitrary\n"

endinstancestring+="*Nset, nset=dummy-TB-1-RefPt_, internal\n"

endinstancestring+="200000,\n"

endinstancestring+="*End Instance\n"

endinstancestring+="** Define nset Set-dummy-LR and Set-dummy-TB for

the two dummy nodes\n"

endinstancestring+="**\n"

endinstancestring+="*Nset, nset=Set-dummy-LR, instance=dummy-LR-1\n"

endinstancestring+="100000,\n"
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endinstancestring+="*Nset, nset=Set-dummy-TB, instance=dummy-TB-1\n"

endinstancestring+="200000,\n"

keywordblock.insert(position=endinstance+1,text=endinstancestring)

# Defining equations

equationstring = "*Equation\n"

for ntop,nbot in zip(nodesets["top"],nodesets["bottom"]):

equationstring += "3\n"

equationstring += "Composite-1.%d, 1, 1.0, Composite-1.%d, 1, -1.0, %s

, 1, -1.0\n" % (ntop[0],nbot[0],’Set

-dummy-TB’)

equationstring += "3\n"

equationstring += "Composite-1.%d, 2, 1.0, Composite-1.%d, 2, -1.0, %s

, 2, -1.0\n" % (ntop[0],nbot[0],’Set

-dummy-TB’)

for nright,nleft in zip(nodesets["right"],nodesets["left"]):

equationstring += "3\n"

equationstring += "Composite-1.%d, 1, 1.0, Composite-1.%d, 1, -1.0, %s

, 1, -1.0\n" % (nright[0],nleft[0],’

Set-dummy-LR’)

equationstring += "3\n"

equationstring += "Composite-1.%d, 2, 1.0, Composite-1.%d, 2, -1.0, %s

, 2, -1.0\n" % (nright[0],nleft[0],’

Set-dummy-LR’)

keywordblock.insert(position=endassembly,text=equationstring)

bcstring = "**\n*Boundary\n"

bcstring += "Set-dummy-TB,1,1, 0.0\n"

bcstring += "**\n*Boundary\n"

bcstring += "Set-dummy-LR,1,1, 0.01\n"

bcstring += "**\n*Boundary\n"

bcstring += "Set-dummy-LR,2,2, 0.0\n"

bcstring += "**\n*Boundary\n"

bcstring += "Set-dummy-TB,2,2, 0.0\n"

keywordblock.insert(position=static+3,text=bcstring)
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Appendix F

Mesh dependency study

F.1 Regular Staggered Model

A mesh sensitivity analysis for a regular staggered composite has been conducted by vary-
ing the mesh-size. For this, we choose a regular staggered composite with volume fraction
80% and platelet aspect ratio of 12 with Ep/Gm = 1000, as shown in Figure F.1. Periodic
boundary conditions with a displacement of 0.01 at the right end as described in section3.4
is applied for the model since a regular staggered model is a stairwise staggered model with
n = 2.

Figure F.1: Path chosen in a regular staggered model of 80% platelet volume fraction and
platelet aspect ratio 12, to check mesh dependency

The mesh size of the model is by default kept as half of the vertical interface thickness
(La) in the present study. For the regular staggered model shown in Figure F.1, the mesh
size is 2La which is 0.5. The models with mesh size 0.25, 0.125, and 0.0625 are also
analysed to conduct the mesh dependency study. The normal stress (σ11) along the path
shown in Figure F.1 is plotted as shown in Figure F.2, for different mesh sizes 0.5, 0.25,
0.125, and 0.0625. It can be seen that the maximum variation of stress at a point for the
coarsest and the finest mesh size is within 0.01, which ensure the mesh independence of
the obtained results.
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Figure F.2: Comparison of stress along the path for different mesh sizes
(a) normal stress (σ11) along the path shown in Figure F.1 (b) zoomed view of the plot

highlighted in (a)
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