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Abstract

The purpose of this thesis is to investigate the orientation dynamics and resonance

properties of oscillations of a periodically driven non-spherical micro-spheroid in

a set of Newtonian unsteady viscous fluids at low Reynolds numbers. We neglect

the particle-particle interactions by assuming a sufficiently diluted suspension.

As a first case, we derive and investigate a perturbation solution of motion of the

harmonically-forced rectilinear displacement of a weak eccentric spheroid along its

axis of symmetry in the presence and absence of memory forces at resonance. The

dependence of the body’s aspect ratio, free oscillation frequency, and particle–fluid

density ratio on the motion solutions is examined and analyzed. A governing

equation inclusive of the effect of damping, Basset memory, and second history

integral forces at small Reynolds numbers is derived, and then we proceed to

obtain an analytical solution of this equation at resonance. Expressions of the

conventional Q-curves, amplitude-frequency, and phase-frequency oscillations of

the spheroid with the natural frequency are also derived.

Considering the applications of the orientation of particles in three-dimensional

systems, we study the dynamics of a rigid particle in a quiescent fluid, uniform

flow, and oscillating flow at low Reynolds numbers. We have derived the system

of differential equations that describe the motion of an arbitrarily forced spheroid

in each flow at a low Reynolds number. These governing equations are non-linear

and contain a history term of all the past positions and velocity. Therefore,

obtaining their analytical solution is non-trivial, and suitable numerical methods

are employed to study the spheroid transport. The novel features of this study

xv



include periodic forces in an arbitrary direction, The hydrodynamic forces arising

due to the disturbance of the velocity fluctuations the forces induced due to the

non-spherical nature of the rigid body. Next, we consider a periodically forced

prolate spheroid suspended in an oscillating Newtonian fluid in the low-Reynolds

number limit. We study the characteristics of the solutions of the particle due

to the periodic force applied on the spheroid particle and induced hydrodynamic

force acting on the particle. We obtain the governing equations of the proposed

problem by using an appropriate expression for the hydrodynamic force. We also

examine the orientation profile of a rigid body suspension in a time-dependent

uniform flow at low Reynolds numbers under the action of an external periodic

field.

In summarizing the results and the applications, we see that the problems

considered here have significant contributions from fundamental and technologi-

cal aspects. This proposed work help in understanding the role of aspect ratio,

density ratio, and free frequency on the oscillation properties of the particle. The

observed phenomena may give new insights into physics, especially regarding the

quantum of velocity disturbances due to particle shape. This study can be used

to analyze the oscillation variations of particles having arbitrary eccentricity in

the presence of history integral terms and/or other external forces like a mag-

netic force, acoustic radiation force, electric force, etc. Technically, we can use

the dependencies of properties on the controllable parameters for devising better

particle separation for characterizing suspensions having desired properties. The

analytical solutions obtained at resonance might be important in testing software

designed for more complicated and realistic systems, hence striking a good balance

between complication and tractability. The solutions may have practical applica-

tions in experiments involving more complex systems, mainly to understand the

effect of acoustic waves on micro-particle transport. The work can be extended

further in many directions, especially considering the effect of Brownian motion

and particle-particle interactions.
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Chapter 1

Introduction

In the low Reynolds number regime, the dynamics of particles suspended in a

viscous Newtonian fluid are fundamentally crucial in characterizing suspensions.

There are several studies on the dynamics of spherical and non-spherical bodies

for zero Reynolds number. Exploring the dynamics and rheology of non-spherical

spheroids, fibers, slender bodies, and other complex geometric particle becomes

more complicated than spherical particles, especially in the inclusion of Reynolds

numbers. This thesis intends to study the dynamics of the periodically forced

spheroids suspended in a viscous Newtonian fluid at the low Reynolds number

limit, such as resting flow, oscillating flow, and time-dependent uniform flow.

In this thesis, we derive the governing equations describing the dynamics of

spherical and non-spherical particles. Since the differential equations are coupled

and nonlinear, finding analytic and /or closed-form solutions may be difficult.

Therefore, we have solved them numerically by employing appropriate numerical

schemes. In this chapter, we describe the fundamentals and preliminaries of fluid

suspensions, expressions required for deriving the respective governing equations,

the research work done in the past, and the major objectives of the problem under

consideration.
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1.1 Objectives

The main objectives of the thesis are as follows:

• To study the resonance response of a slightly eccentric spheroid suspended

in a Newtonian fluid in one dimension.

• To analyze the oscillations of the arbitrarily shaped spheroid, which oscillates

in the Newtonian fluid with a low Reynolds number in one dimension.

• To study the effect of the resistance of Stokes, Basset force, and new history

integral term of force on the oscillations of the particles.

• To study the effects of the drag force, the Basset memory force term, and

the new history-integral force term on the spheroid.

• To study the dynamics of a periodically forced prolate spheroid suspended

in a quiescent fluid at low Reynolds numbers.

• To examine the effect of parameters such as Reynolds number, the geometry

of particles, and the amplitude of the external periodic force influence the dynam-

ics of the prolate spheroid. We also investigate the particle dynamics depending

on the shape and size of the particle.

• To analyze the dynamics of a periodically forced prolate spheroid suspended

in a time-dependent uniform flow at low Reynolds numbers. We study the effects

of parameters such as Reynolds number, aspect ratio, the flow velocity of the

fluid, and amplitude of the external periodic force on the dynamics of the prolate

spheroid.

• To investigate the dynamics of the spheroid suspended in an oscillating flow

field. We investigate how the dynamics respond to Reynolds number, aspect ratio,

external force amplitude, and the oscillating fluid field frequency.
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1.2 Review of literature

This section reviews investigations of the effects of a periodic force on sus-

pended particles in incompressible Newtonian and non-Newtonian Fluids. In

science, engineering, and technology, research on the dynamics of suspension of

particles in fluids is significant and plays a vital role in devising new technolo-

gies. Particles suspended or scattered in a fluid medium occur in various natural

and man-made environments, for example, colloids, slurries, composite materials,

proteins, ceramics, polymers, etc. The occurrence of particles will affect the bulk

properties of the suspension and, in particular, its rheological parameters, such

as effective viscosity. The central theoretical and realistic problem is understand-

ing and predicting the macroscopic balance of these multi-phase materials and

the transport properties from their micro-structural mechanism. Micro-structural

mechanics involves Brownian, inter-particle, external, and hydrodynamic forces

acting or induced on particles and their spatial and temporal distribution. It is

commonly called the microstructure of the system. The macroscopic properties

may be the rate of sedimentation or aggregation, the self-diffusion coefficient,

the thermal conductivity, or the rheology of a suspension of particles. If the

distribution of particles were given, in addition to the location and motion of

any boundaries and the physical properties of the particles and suspending fluid,

one would have to solve (in principle, not necessarily in practice) the well-posed

boundary-value problem to determine the behavior of the system. The macro-

scopic or averaged properties will be determined by averaging this solution over a

large volume or many different configurations. The critical steps in this approach

are solving the many-body problem, figuring out the micro-structure, and then

investigating the macro properties using sample averages. These approaches are

daunting but essential in understanding suspension behavior, theoretically.

Understanding the motion of micro bipolar particle inflows at low Reynolds

numbers is critical in various practical scenarios. The transport of small bipolar

3



particles in flows is of great interest because disturbances in velocity fluctuations

caused due to the particle suspension may bring the system unstable. As a result,

the unsteady hydrodynamic force in these flows must be considered when analyz-

ing particle motion and the bulk properties of the system. It is possible once the

hydrodynamic force induced on a suspended body is known as a function of the

geometric properties of the body. Many force simplifications depending on the

body’s geometry are available in the literature. The dynamics of small rigid par-

ticle drops and bubbles in a viscous Newtonian fluid at low Reynolds numbers are

addressed by Stokes (1851). Basset (1888a;b) has developed the expression for the

hydrodynamic force acting on a sphere moving in a quiescent fluid, including the

effects of unsteady inertia. Many researchers have studied particle dynamics in

linear flows without external force following the work. Some of them are Jeffrey

(1922), Bretherton (1962b;a), Leal and Hinch (1971); Leal (1971) and Brenner

(1974). Reasonably comprehensive reviews of research published before 1965 are

contained in the works by Goldsmith and Mason (1967), Brenner (1966; 1972) and

Leal (1979) and Happel and Brenner (2012). Additional topics not mentioned or

only briefly mentioned in previous reviews are covered by Cox (1970), Batche-

lor (1970), Burgers (1995), Acrivos and Lo (1978), Rallison (1978) and, Rallison

and Acrivos (1978). Mazur and Bedeaux (1974) have a generalized extension of

Faxen’s theorem to the non-steady motion of a spherical particle in an incompress-

ible flow. Lawrence and Weinbaum (1986) investigated the axisymmetric motion

of a spheroid at low Reynolds numbers. On the other hand, many others, such as

Strand and Kim (1992); Ramamohan et al. (1994) have analyzed the dynamics of

suspension under the action of an external force.

There is a vast literature on suspended particles in linear flows. Jeffrey (1922)

has obtained the dynamics of a rigid isolated ellipsoid revolved in a simple uniform

motion at low Reynolds numbers and has confirmed the existence of a closed orbit

called Jeffery’s orbit. In addition, the use of singularity methods for the Stokes

equation to construct solutions for finite single particles has been investigated by
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Chwang and Wu (1974) and Chwang (1975). Chwang and Wu (1976) have also

studied low Reynolds number flow in general. The main objective was to develop

an efficient solution method for bodies of arbitrary shapes. They considered vis-

cous flows generated by the pure rotation of an axisymmetric body having an

arbitrary prolate shape, assuming that the inertial forces have a negligible effect

on the flow. The resolution method explored in their work has been based on the

spatial distribution of singular torsional moments, called rotlets, through which

it is possible to represent the rotational motion of a given body. Chwang and

Wu (1975) have obtained exact solutions of dynamics of an elongated spheroid

in the closed-form using the method of singularities for various quadratic flows of

unbounded viscous Newtonian fluid at low Reynolds numbers.

Furthermore, Bretherton (1962a) studied the two-dimensional steady flow of

an incompressible viscous fluid around a circular cylinder and described it in terms

of asymptotically valid expansions, where the long-range velocity field is a combi-

nation of uniform velocity and uniform flow concerning Axes that move with (but

do not rotate with) the center of the cylinder. Theoretically, Bretherton (1962b)

has therefore investigated that the orbits of a particle of more general shape in a

non-uniform shear in the presence of rigid boundaries can be qualitatively simi-

lar, where inertial and non-Newtonian effects are entirely neglected. They found

that the axis orientation of almost all bodies is a periodic function of time in any

unidirectional flow. It is true even if there is a gravitational force on the particle

in the direction of the flow lines. Chwang and Wu (1976) analyzed the problem

of uniform transverse flow on a spheroid of arbitrary proportions at low Reynolds

numbers by the method of coupled asymptotic expansions. The solution depends

on two Reynolds numbers, one based on the semi-major axis a, Rea = Uca/ν,

and the other on the semi-minor axis b, Reb = Ucb/ν. Here, Uc is the free flow

velocity at infinity, perpendicular to the prolate spheroid’s major axis, and ν is

the kinematic viscosity of the fluid. When Rea is small, the current resistance

formula is reduced to Oberbeck (1876) result for the Stokes curve past a spheroid.

5



This result, therefore, provides a clear physical picture and explanation of the

well-known "Stokes paradox" in viscous flow theory.

Leal (1971) investigated the effect of an external torque on particles suspended

in a dilute suspension. They considered the movement of a sphere and arbitrary

spheroid subjected to a magnetic field. Also, they numerically evaluated the

effective viscosity of the suspension for many cases of the problem. In a later study,

Leal and Hinch (1971) investigated the effect of Brownian motion on particle

dynamics suspended in a shear flow at zero Reynolds number. Using the findings,

they have calculated the specific bulk properties of the suspension. The predicted

properties are then compared with the available experimental observation.

Chwang and Wu (1974) have studied the rotation of axisymmetric prolate

spheroids at low Reynolds number flow. Lin et al. (1970) investigated inertial

effects and suspension rheology of simple shear flow around a sphere, where results

were limited to low particle Reynolds numbers (< 1) in the dilute limit. In

addition, the motion of a spherical particle in the presence of a fluid-fluid interface

has been studied by Lee et al. (1979) and Lee and Leal (1982). First, a solution

for a point force close to a planar interface was derived. Then the solution was

extended to include the higher-order terms needed to describe the motion of a

solid sphere.

MacMillan (1989) analyzed the dynamics of particles in various linear flows

and the effect of these particles’ orientation on the suspension’s properties. Strand

(1989) developed a theory for analyzing the dynamics and rheology of non-spherical

particles in an external oscillating force field in simple shear flow. The dynamics

of suspended particles in linear flows under the action of alternating or rotating

external force fields have been considered by some researchers focusing on various

practical applications such as magnetostriction of suspensions of ferromagnetic

particles (Ignatenko 1984), magneto-fluidization (Buevich et al. 1985), rheolog-

ical properties of ferromagnetic colloids (Tsebers 1986), and characterization of

magnetorheological suspensions (Kashevskii (1986); Cebers (1993a;b)). They con-
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sidered external rotational force fields, which can be considered a superposition of

two alternating external force fields. Strand and Kim (1992) numerically demon-

strated the dynamics and rheology of non-spherical particles in constant external

force fields in simple shear flow. Szeri et al. (1992) analyzed the motion of rigid

particles in time-dependent flows. The effect of externally induced forces on small

particles in homogeneous shear currents has been considered by Brenner (1974).

The motion of a force-less spheroidal particle in paraboloid flow has been deter-

mined by him, where the spheroid has been shown to rotate around three principal

axes with angular velocities governed by Jeffery’s orbital equations with the shear

rate evaluated at the center of the spheroid.

It is demonstrated that the nonlinear coupling governing equations of the mi-

croscopic particles have influenced the macroscopic rheological parameters. The

work on periodic forcing on the orientable particles in a simple shear flow has

been summarized by Asokan et al. (2005). Patankar and Hu (2002) studied the

impact of Reynolds numbers on the rheological properties of a dilute suspension of

spherical particles in a Newtonian fluid using Direct Numerical Simulation (DNS).

Kulkarni and Morris (2008) has published a work on the role of particle scale in-

ertia of suspensions in a simulated shear flow at finite Reynolds numbers. The

rheology of rigid particle suspension has also been investigated by Mueller et al.

(2010). Vodop’yanov et al. (2010) have reported the work on the unsteady sed-

imentation of rigid spherical particles in a viscous fluid. Madhukar et al. (2010)

have investigated the particle dynamics and 'normal stress' evaluation of dilute

suspensions of periodically forced spheroid in a quiescent fluid in low Reynolds

numbers. Ramamohan et al. (2011) have studied the effects of both unsteady

and convective inertia on the dynamics and rheology of a dilute suspension of

neutrally buoyant sphere under the action of a periodic force in a quiescent fluid

at low Reynolds numbers. Ley and Bruus (2016) established a continuum model

for numerical investigations of hydrodynamic particle-particle interaction in mi-

crofluidic high-concentration suspensions.
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Furthermore, we use the formalism of the hydrodynamic force Lovalenti and

Brady (1993a), which acts on a particle in the regime of low Reynolds numbers, to

obtain the equations of motion of the particle under the influence of an external

force and its dynamics under the different test cases. The expression developed by

Lovalenti and Brady (1993a) is a good approximation up to O(Re) for spherical

particles and O(ReSl) for particles of arbitrary shape, where Re is the number

of Reynolds and Sl, is the number of Strouhal. We used the formalism of the

hydrodynamic force (Lovalenti and Brady (1993b)) acting on a particle in the low

Reynolds number regime to obtain the equations of motion of a particle under the

action of an external force and study its dynamics under different test cases. The

expression developed by Lovalenti and Brady (1993b) is a good approximation up

to O(Re) and O(ReSl) for particles of arbitrary shape, where Re is the Reynolds

number and Sl, is the Strouhal number. Once the force acting on a suspension

is identified, the governing equations can be written easily using Newton’s law of

motion. The most important part is deriving a suitable expression for represent-

ing the hydrodynamic force acting on a particle as a function of the geometry of

the particle. As pointed out earlier, the problem of determining the steady flow

over fixed bodies in a slow and uniform flow of viscous incompressible fluid was

initially considered by Stokes (1851). He has given a solution by neglecting iner-

tia’s effect by taking the zero Reynolds number. Subsequently, Whitehead (1889)

has tried to improve this solution by obtaining higher-order approximations of

the flow when the Reynolds number is not negligible. He has proposed the usage

of a lower order approximation to calculate the inertial terms in the equation of

motion, thus developing an iterative procedure. Since the boundary conditions

at each iteration step are independent of the Reynolds number, this procedure

is equivalent to assuming a flux expansion in powers of the Reynolds number.

The hypothesis of a power expansion of the Reynolds number leads to a situation

in which it is impossible to satisfy the boundary conditions of the problem in

all the terms except the principal. This mathematical phenomenon is called the
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"Whitehead paradox." Oseen (1910) resolved the paradox. When a body moves in

a viscous Newtonian fluid encountering some resistance, examination of the flow

of momentum over a large area surrounding the body shows that the magnitude

of the disturbance of the flow becomes zero only in the region of magnitude ap-

proximately inverse to the square of the distance to the body. Oseen (1910; 1913)

calculated the first correction of the Stokes resistance for small but finite values of

the Reynolds number for a sphere. He has realized that the transport properties

near the particle are described by Stokes’ equations, whereas Oseen’s equations

are adequate to describe the properties far from the particle. Oseen’s equations

are:

−∇p+ µ∇2u− ρU ·∇u = 0 (1.1a)

∇ · u = 0 (1.1b)

where u is the velocity vector, p is the pressure, ρ is the fluid density, and µ

is the viscosity of the fluid. Oseen constructed a uniformly valid leading-order

approximation to the flow field that satisfies (1.1a) and (1.1b) everywhere and

obtained the hydrodynamic force, FH
Os expression due to Oseen as

FH
Os = 6πµaU

(
1 + 3

8Re
)

(1.2)

where ρ and µ are density and viscosity of fluid respectively, Re = a|U |/ν is the

Reynolds number, here ν is kinematic viscosity defined as µ/ρ, U is velocity of

sphere, and a is radius of the sphere, . Although this result for the force is correct,

Oseen has not computed the velocity field accurately to O(Re). Goldstein (1929)

has obtained a basic solution using the Oseen technique. Later, Lagerstrom and

Cole (1955) solved Oseen’s equations to obtain higher-order flow approximations

in two and three-dimensional cases. Proudman and Pearson (1957) described
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in detail an alternative procedure which involved simultaneous consideration of

locally valid (in general) expansions. Lovalenti and Brady (1993b) have summa-

rized the literature before 1993 and also have derived an approximate expression

for the hydrodynamic force acting on an arbitrary rigid particle translating with

the time-dependent motion in a uniform time-dependent flow field, including the

effects of both unsteady and convective inertia at low Reynolds numbers. Vojir

and Michaelides (1994) have published a study on the impact of Basset memory

term on the dynamics of a solid sphere in a viscous fluid. Lawrence and Wein-

baum (1988) have explored the Navier-Stokes equations in linear form to obtain

expressions for the force acting on an arbitrary body. They have deduced the

results for a slightly eccentric spheroid. They also developed an expression for

hydrodynamic force containing the four terms, namely Stokes drag, added mass,

Basset force, and a new memory term due to the non-spherical shape of the par-

ticle, where the decay of the new memory term is faster than that of Basset force

at a long time.

The study of dynamics and rheology of suspension of periodically forced parti-

cles in a Newtonian fluid was initiated by Ramamohan and co-workers ( Ramamo-

han et al. (1994)). Their initial work focused on sheared suspension at negligible

Reynolds numbers. They have opened up a new class of problems by analyzing the

effects of external periodic force fields on the dynamics of micro-scale particles in

simple shear flow (Kumar et al. 1995; 1996; Kumar and Ramamohan 1998; Rad-

hakrishnan 1999). They have pioneered the area of chaos in periodically forced

suspensions of particles in simple shear flow, and the results are reported in sev-

eral articles (Ramamohan et al. (1994); Kumar et al. (1996); Radhakrishnan and

Ramamohan (2004)). The effect of an external periodic force on the dynamics

and rheology of slender rods in a sheared Newtonian fluid has been studied at

zero Reynolds number by Kumar and Ramamohan (1995) and Radhakrishnan

and Ramamohan (2004). Kumar et al. (1995) have demonstrated the existence of

chaos in the dynamics of periodically forced bodies of spheroids moving in a simple
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shear flow within the limit of weak Brownian motion. They have reported chaotic

dynamics in certain parametric regions with the strong migration dependence of

particles on their shape. This strong dependence of spheroid dynamics on the

particle aspect ratio is proposed as a potential application for particle separation

from fluid suspension, which is essential for the characterization of fluid suspen-

sions used in industries. Kumar and Ramamohan (1997) have also reported a new

Class I intermittency near a tangent bifurcation in the dynamics of a periodically

forced spheroid suspended in simple shear flow in the limit of weak Brownian

motion. A review of the work carried out over a decade on the dynamics and

rheology of suspensions of orientable particles in simple shear flow subject to an

external periodic force has been published Asokan et al. (2005).

The effect of the eccentricity and the viscosity ratio on the oscillations of

solid and gaseous spheroids is investigated byAbbad et al. (2006). The properties

of a one-dimensional transport along the major axis of a spheroid suspended

in a quiescent fluid under an external periodic force at a very low but non-

zero Reynolds number are also reported by Madhukar et al. (2010). They also

proposed a technique for separating particles from a fluid based on its dynamic

dependence on the shape of the particle. Magnaudet (2011) has derived different

versions of the reciprocal theorem presenting the expression of force exerted on

an arbitrarily shaped particle translating into an incompressible flow at a given

Reynolds number. An analytical investigation of the effects of fluid and particle

inertia on the dynamics of axisymmetric spheroids in a simple shear fluid has been

reported in the limit of a small Reynolds number and Stokes numbers by Dabade

et al. (2016). Recently Marath and Subramanian (2018a) have demonstrated the

effect of fluid and particle inertia on the dynamics of spheroid orientation in a

planner-linear flow.

From the above research review, we have observed that a lot of research has

been done on the suspension of particles in a Newtonian fluid for Re << 1, mainly

spherical particles. Few researchers have investigated the dynamics of the suspen-
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sion of non-spherical particles either in simple shear flow or in a quiescent fluid

field. Even then, there are several gaps to investigate the dynamics of suspension

of particles in low Reynolds numbers limit. We aim to investigate the dynamics

of the spheroid suspended under the action of periodic force in a variety of fluid

fields in which we try to characterize the oscillation properties of particles at low

Reynolds numbers. The preliminaries and the expression required for deriving

the governing equations and for analyzing the numerical solution are explained

in the subsequent sessions. The results obtained in the case of the quiescent flow

field motivate us to study the suspension behavior in different flows. The deriva-

tions, analysis, and results obtained are explained in the subsequent chapters. It

is assumed in this analysis that the suspended particles are rigid solids having the

geometry of a spheroid in order to avoid complexity. This assumption is ratio-

nale in many cases since any body of arbitrary shape can be approximated as a

spheroid.

1.3 Governing equations and scaling procedure

In this thesis, we consider a periodically forced spheroid in an infinite body of

Newtonian fluid of different velocity profiles and study the effect of an external

periodic force acting on the spheroid along the direction of the displacement of

the spheroid. Let Fext(t) denote the external force acting on the fluid at the time,

t, and hence the total force applied on the particle is FH(t) +Fext(t), where FH(t)

denotes the effective hydrodynamic force acting on the particle.

In view of Newton’s law of motion, the equation of motion for neutrally buoy-

ant particle under the effect of a periodic external force immersed in a Newtonian

fluid is given by

mp
dup(t)
dt

= Fext(t) + FH(t) (1.3)
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where mp is the mass of suspended particle of density ρp, Fext(t)(= RF sin(ωt))

is an external periodic force with frequency ω applied on the particle, up(t) is

the particle velocity, and FH(t) is hydrodynamic force induced on the particle. In

dimensionless form the above equations reduces to

mpu̇p(t)
µa2ω

= FH(t) + Fext(t), (1.4a)

along with

dyp(t)
dt

= up(t) (1.4b)

where yp(t) is the displacement vector of the particle at time, ’t’. Particle dy-

namics can be described by the above equations, once the expression for the

hydrodynamics is known. Since it mainly depends on the geometry of the par-

ticle, finding the expressions for a body of arbitrary shape is very difficult. But

many suspension can be approximated as suspensions of spheroids if aspect ratio

having varying from 0 to ∞. Expression for the hydrodynamics as a function

of geometry for arbitrary spheroids is available in the literature(Lawrence and

Weinbaum 1986; 1988; Abbad et al. 2006).

All terms of forces and pressure terms are non-dimensionalized by µaUc and

µUc/a, respectively, where a, Uc, and τ are the characteristic particle length,

speed, and time. The Reynolds number at the particle scale is (Guazzelli and

Morris 2012; Happel and Brenner 2012) which measures inertial effects compared

to viscous effects in the Navier-Stokes equation is given by

Re = aUcρ/µ ∼
∣∣∣∣∣ρ (u ·∇)u

µ∇2u

∣∣∣∣∣. (1.5)

For suspensions, recall that we are usually interested in particles of small length

scales, typically between 10−2 and 102µm.

The Strouhal number represents the ratio of inertial forces due to the local
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acceleration of the flow to the inertial forces due to the convective acceleration.

One can define a Strouhal number as(Guazzelli and Morris 2012; Happel and

Brenner 2012)

Sl = a

Ucτ
∼
∣∣∣∣∣ ∂u/∂t
(u ·∇)u

∣∣∣∣∣, (1.6)

which is a measure of unsteadiness, corresponding to the convective time a/Uc.

1.4 Particle suspension and Lorentz reciprocal

theorem

There is no entirely satisfactory method available to correlate resistance on

irregular particles. Settlement behavior has been associated with most of the

widely used shape factors. A few simple general results often lead to valuable

estimates of arbitrary particle resistance or sedimentation rate for creeping flow.

Compared to smooth edges, sharp edges have little effect on drag, while all the

most essential features remain unchanged. Also, most particle suspension can be

roughly approximated to spheres or spheroids of aspect ratio varying from 0 to

∞. For a slightly deformed sphere, the mean resistance c̄ is equal to that of the

sphere of the same volume (Happel and Brenner (2012)).
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Figure 1.1: The assignment of semi-axes on a spheroid. It is oblate if b < a (left) and
prolate if b > a (right). (Schematic)

However, medium resistance is essential and should be used cautiously because

even a slight skew in shape will cause a particle to assume a preferred orientation

(McNown and Malaika (1950)). Hill and Power (1956) have shown that the Stokes

resistance on an arbitrary particle is less than or equal to that of an enclosing

body and greater than or equal to that of a body containing it. A judicious

choice of circumscribed and inscribed bodies can give strict limits to resistance or

settling velocity. Weinberger (1972) showed that the sphere has the highest Stokes

resistance settling mean velocity for all bodies of a given volume. Keller et al.

(1967) showed that the creeping solutions always underestimate the resistance to

Re other than zero. Generalization of the results may be possible by considering

particles of arbitrary shape. We consider spheroids for the analysis, which are

more common than spherical suspensions. The dynamics of spheroidal particles

can be analyzed analytically in many cases, and their effect can be studied for

shapes ranging from slightly distorted spheres to disks and needles.

Micro-particles and self-propelled particles move and interact in viscous fluid

fields. Stokes’s flow long-range behavior suggests that hydrodynamic force in-

duced on micro-particle significantly affects particle dynamics and hence affects
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rheological parameters. Examples of this are collective dynamics of suspensions,

the circular motion of swimmers near boundaries, attraction to surfaces, synchro-

nization of cilia and flagella, interactions, and scattering of pairs of swimmers.

The difficulty in determining hydrodynamic force on suspended particles comes

because the motion of the particles constitutes boundary conditions. There is an

approach to assess the movement of a single particle and hence bypasses the need

to calculate the full hydrodynamics. This knowledge has become a standard tool

in determining the force.

The reciprocal theorem(Lovalenti and Brady 1993b; Guazzelli and Morris

2012) allows one to determine results for one Stokes flow field based upon the solu-

tion of another Stokes flow in the same geometry, i.e., having the same boundaries

but for different boundary conditions. This theorem allows us to approximate the

expression for the hydrodynamic force to certain cases in which at least some part

of the boundary is a particle surface, allowing us to determine properties of one

flow about the body based upon another known solution. Let us consider (u,σ)

and (ū, σ̄) the velocity and stress fields of two Stokes flows which are driven re-

spectively by the external forces f and f̄ and by the boundary conditions u = U

and ū = Ū on the surface S bounding the fluid volume V . The general form of

the theorem is given by

∫
V
f · ūdV +

∫
S
ū · σ · n =

∫
V
f̄ · udV +

∫
S
u · σ̄ · n (1.7)

Lovalenti and Brady (1993b) have used the above reciprocal theorem to com-

pute the hydrodynamic force induced on an arbitrarily shaped particle having ar-

bitrary time-dependent velocity in a time-dependent flowing fluid at low Reynolds

numbers, as discussed in the next section.
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1.5 Hydrodynamic forces

In 2006, Abbad et al. (2006) have developed an one dimensional expression

for the effective hydrodynamic force FH(t) due to the perturbed quasi-steady drag

force, the added mass force, the Basset memory integral term and the new history

force caused by the eccentricity of the spheroid undergoing an arbitrary time

dependent motion in the limiting case of low Reynolds number (i.e. Re << 1) in

the form,

FH(t) =6πµa
(

1 + 4
5ε+ 2

175ε
2
)
U(t)

+ 2
3ρπa

3
(

1 + 16
5 ε+ 604

175ε
2
)
U̇(t)

+ 6
√
πµa

(
1 + 8

5ε+ 116
175ε

2
) ∫ t

−∞

U̇(t)dτ√
t−τ
τ0

+ 8
175πµaε

2
∫ t

−∞
U̇(τ)G(t− τ)dτ +O(ε3), (1.8)

with

G(t) ==
[√

w

3 exp(wt/τ0) erfc(
√
wt/τ0)

]
,

w =3
2
(
1 +
√

3 i
)
, (1.9)

and

O(ε) << 1.

Where U(t) is the velocity of the suspended particle at time t with U(t) = 0 for

t ≤ 0 and, µ and ρ are the dynamic viscosity and the density of the ambient fluid

respectively. Also, U̇(t) = dU
dt

is the particle acceleration, τ0 = a2/ν is the diffusive

time scale and ν = µ/ρ is the kinematic viscosity of the fluid, a is characteristic

length of the particle, and = denotes the imaginary part of considered complex

variable. The parameter ε denotes the geometrical variation of the particle from a

sphere, and the kernel, G(t) is defined as the imaginary part of the corresponding
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complex variable.

Lawrence and Weinbaum (1988) have developed a complex formulation for

the axisymmetric motion of spheroid to compute the unsteady Stokes field. The

expression for the hydrodynamic force, FH(t) exerted at time t on an arbitrary

particle suspended in a time dependent fluid motion with velocity, up(t) has been

derived by Lawrence and Weinbaum (1988) as

FH(t) =− Fs · up(t)− π−1/2B ·
∫ t

0

dup
dτ

(t− τ)−1/2 dτ −ma
dup
dt
−

e (F1 −B) ·
∫ t

0

dup
dτ

erfc
[
(t− τ)1/2

]
dτ,

(1.10)

where ma is the dimensionless scaled added mass, Fs = 6πµaΦ is the Stokes

drag correction factor, µ is the dynamic viscosity of the fluid, Φ is the frictional

resistance tensor of the particle. F1, defined as a · a, is tensorial coefficient, and

B is Basset force coefficient. Both F1 and B are depends on the shape of the

particle and For the perturbed sphere both are identical order up to O(ε2), where

ε is sphericity of the deformed sphere.

Later on, Lovalenti and Brady (1993b) obtained the expression for the required

hydrodynamic force on an arbitrarily shaped particle in the time-dependent fluid

within the long time limit. They have used the reciprocal theorem coupled with

Fourier transform in order to drive the following expression for the hydrodynamic

force on an arbitrary shaped particle (for more details see Lovalenti and Brady

1993b):

FH =ReSlṼpu̇∞ + FH
s − ReSl

{
6πΦ ·Φ ·Φ + lim

R→∞

(∫
Vf (R)

MT ·M dV − 9
2Φ ·ΦR

)}
· u̇s(t)

+ 3
8

(ReSl
π

) 1
2
{∫ t

−∞

[
2
3FH‖

s (t)−
{

1
|A|2

(
π

1
2

2|A| erf(|A|)− exp(−|A|2)
)}

FH‖
s (s)

+2
3FH⊥

t −
{

exp(−|A|2)− 1
2|A|2

(
π

1
2

2|A| erf(|A|)− exp(−|A|2)
)}

FH⊥
s (s)

]
2ds

(t− s) 1
2

}
·Φ

− Re lim
R→∞

∫
Vf (R)

(u0 ·∇u0 − us(t) ·∇u0) ·M dV + o(ReSl) + o(Re) (1.11)
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In the above expression (1.11), Re represents the Reynolds number indicating the

magnitude of the convective inertia related to viscous force, a is the characteristic

size of the particle, and Sl denotes the Strouhal number, which will be reduced to

unity in this dissertation. M is the second rank tensor, which is a function of the

position of the particle and is defined by the condition that M · us is the Stokes

velocity field for the particle translating with velocity up in a stationary fluid. u∞
is the velocity of the fluid far from the particle, Φ is the Stokes resistance tensor

in dimensionless form, Vf (R) is the volume of fluid surrounding the particle and

bounded by a spherical surface of radius R. us(t) = up(t) − u∞(t) is the slip

velocity of the particle and u0 is the velocity induced by the translation of the

suspended particle. We also note that the expression is derived from ordering Re

and ReSl. The product ReSl measures the relative magnitude of the unsteady

inertia of the fluid. The first term of this expression is due to an accelerating

reference frame, the second is the pseudo-steady Stokes drag, and the third has

been labeled as the acceleration reaction. The fourth term represents the unsteady

Oseen correction to the hydrodynamic force. A new history integral replaces the

Basset history force at a finite Reynolds number in the long time limit. The

last term of this expression can only contribute a force perpendicular to the slip

velocity of the particle. To use this expression for a given particle, we only require

the steady Stokes drag and the corresponding steady Stokes velocity field created

by the translating particle.

Particles subject to Brownian motion tend to adopt random orientations and

do not follow the rules. In general, the drag and torque on an arbitrary particle

translating and rotating in unbounded fluids are determined by three second-order

tensors, which depend on the shape of the body:

(i) A symmetric translation tensor describes the resistance to translational motion.

(ii) A symmetric rotation tensor gives the torques resulting from rotation.

(iii) An asymmetric coupling tensor defines torques resulting from translation and

drag forces resulting from rotation.
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The use of these resistance tensors has been developed in detail by Happel and

Brenner (2012). While enabling the compact formulation of fundamental prob-

lems, these tensors have limited application since their components are rarely

available, even for simple shapes. Here we discuss specific cases of particle shape

without recourse to tensor notation, but some conclusions from the available treat-

ment are of interest. Because the translation tensor is symmetric, it follows that

every particle possesses at least three mutually perpendicular axes such that, if

the particle is translating without rotation parallel to one of these axes, the total

drag force is also parallel to the axis(Happel and Brenner 2012). These axes are

usually called principal axes of translation. For an orthotropic particle, the princi-

pal axes are normal to the planes of symmetry. For an axisymmetric particle, the

axis of symmetry is one of the principal axes. As the name suggests, the Stokes

resistance tensor is an opposing force to the particle’s motion. The computation

of the velocity field for irregular shape is not easy. Lawrence and Weinbaum

(1988) have obtained an complex formulation for the axisymmetric motion of a

spheroid to compute the unsteady Stokes field. However one can use the concept

of the Reciprocal theorem and the idea of a uniformly valid velocity field (see

section Lovalenti and Brady (1993b)) to find the unsteady Stokes correction to

the pseudo-steady Stokes drag, where ReSl << 1. In this dissertation we consider

the prolate spheroid as a first example, the polar diameter is greater than the

equatorial diameter and the equation describing a prolate spheroid is given by

x2

a2 + y2

b2 + z2

b2 = 1 (1.12)

where a is the semi-major axis and b is the semi-minor axis and (x, y, z) represent

the arbitrary poin on the spheroid. The dimensionless form of Stokes resistance

tensor (Φ) for a prolate spheroid is given by Φ = 8e/3a where e is the eccentricity

of the spheroid and a is a diagonal matrix (Chwang and Wu 1975; Chwang 1975;
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Pozrikidis 1992) given by

a11 = e2

−2e+ (1 + e2) log
(

1+e
1−e

) , a22 = a33 = −2e2

−2e+ (1− 3e2) log
(

1+e
1−e

) (1.13)

and the 1-axis is aligned with the major axis of the spheroid. As e → 0,

a11, a22, a33 → (3/8)e, yielding the results for the sphere (Pozrikidis 1992). It

will be noted that both the Stokeslets and the potential dipoles in (1.13) are

oriented in the direction of translation.

Chwang (1975) showed that the flow produced by the translation of a prolate

spheroid may be represented in terms of a distribution of Stokes-lets and potential

dipoles over the focal length of the spheroid with constant and parabolic densities

respectively. The equations for the fluid velocity field due to the translation of

prolate spheroid are given by (Pozrikidis 1992)

ui(x) = vkakj

∫ c

−c

[
Gij(x,x0)−

(
1− e2

2e2

)(
c2 − x2

0

)
Dij(x,x0)

]
dx0 (1.14)

where e is the eccentricity of the spheroid, defined as e = c/a, 0 < e < 1, where

c is the focal length of the spheroid, defined by c2 = a2 − b2, and a and b are the

major and minor axes of the spheroid, and x0 is the arbitrary pole (source point)

of the spheroid and x is the observation (field ) point. vk is the velocity of the

particle in the kth direction and a is the diagonal matrix given in (1.13).

The Stokeslet Gij(x,x0) and the potential doublet Dij(x,x0) are given by

Gij = δij
|x−x0| + (x−x0)i(x−x0)j

|x−x0|3 (1.15)

Dij = δij
|x−x0|3 −

3(x−x0)i(x−x0)j
|x−x0|5 (1.16)

We obtain singularity representations in forms by expressing the couplet, and

the potential dipole in (1.14) and (1.13) in terms of the Green’s function are

suitable for producing the Faxen relations for the force and torque. We consider
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the the force equation (1.11) given by Lovalenti and Brady (1993b) and deduce it

to a spheroid undergoing time dependent motion at low Reynolds and Strouhal

numbers. In their expression,

FH‖
s = 6πus · pp and FH⊥

s = 6πus · (δ − pp) (1.17)

where δ is the idem tensor of order 2 and p is a unit vector given by

p = ys(t)− ys(s)
|ys(t)− ys(s)|

(1.18)

where ys(t) − ys(s) is the integrated displacement of the particle relative to the

fluid from time s to the current time t and A is given by the expression,

A = Re
2

(
t− s
ReSl

) 1
2
(
ys(t)− ys(s)

t− s

)
(1.19)

we assume that the velocity of the particle up = (up, vp, wp) exerted by the fluid on

the particle is in the direction of vector A, which itself is parallel to the displace-

ment vector ys(t)− ys(s) as defined earlier. The Stokes resistance tensor is 6πΦ

and hence the hydrodynamic force, referred to the pseudo-steady state drag force,

acting on the suspended particle translating with slip velocity us (= (us, vs, ws))

is given by FH
s (t) = −6πΦ · us(t).

The second term FH
s (t) in the expression (1.11) can be decomposed into two

components parallel FH‖
s (t) and perpendicular FH⊥

s (t) to the vector A.

FH‖
s (t) =− 6π (Φ · us(t))

=− 16πe (e1us, e2vs, e2wz) (1.20)

and

FH⊥
s = (0, 0, 0) (1.21)
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The acceleration reaction term is given by the third term on the right hand

side of the hydrodynamic force equation(1.11). Here, we need to investigate the

expression given below, which appears in the force equation, over the volume of

the fluid surrounding the particle.

∫
Vf (R)

MT ·M (1.22)

where M is defined such that ui = Mijvj. The above integral diverges as R (the

radius of the fluid sphere considered ), goes to infinity. However, we find that the

following expression converges to a finite value as R tends to infinity.

lim
R→∞

∫
Vf (R)

MT ·M− 9π
2 Φ ·Φ. (1.23)

Now from the previous equation (1.14), we can deduce the following

M = (a ·H)T , (1.24)

where,

H =
∫ c

−c

[
Gij(x,x0)−

(
1− e2

2e2

)(
c2 − x2

0

)
Dij(x,x0)

]
dx0. (1.25)

Suitable equations were derived for M and the integral can be performed numer-

ically. The spherical coordinate system can be chosen to perform the integration.

The reasons for the above choice are that we would accommodate a more sig-

nificant number of data points, increasing the accuracy of the integral and easier

handling of the integral and making it simpler to understand, and also, the results

may make it easy to compare with the radius of the outer boundary. The follow-

ing formula can be used to evaluate the integral, called the summation approach
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of the integration.

∫
V
f(r, φ, θ)r2 sin(θ)drdθdφ = ∆r∆φ∆θ

∑
i

∑
j

∑
k

f(ri, θj, φk)r2
i sin(θj). (1.26)

The principal components of the 3rd order diagonal matrix representing the

acceleration reaction term thus obtain are denoted by Diag (Ixx, Iyy, Izz). Hence

the third term of the force(1.11) is given by

lim
R→∞

∫
Vf (R)

MT ·M− 9π
2 Φ ·Φ =ReSlDiag (Ixx, Iyy, Izz) · u̇s(t)

=ReSlDiag (Ixxu̇s, Iyyv̇s, Izzẇs) (1.27)

The new history integral term in the long time limit at finite Re is the fourth term

in the expression of the hydrodynamic force equation (1.11) and given by

Tnhi =3
8

(
ReSl
π

) 1
2
∫ t

−∞

2
3F

H‖
s (t)−

 1
|A|2

 π
1
2

2|A| erf(|A|)− exp(−|A|2)


FH‖
s (s) + 2

3F
H⊥
s (t)−

exp(−|A|2)− 1
2|A|2

 π
1
2

2|A| erf(|A|)− exp(−|A|2)


FH⊥
s (s)

} 2ds
(t− s) 3

2

]
·Φ

=3
8

(
ReSl
π

) 1
2
 t∫
−∞

{2
3 ×−16πe (e1us(t), e2vs(t), e2ws(t))−

B ×−16πe (e1ux(t), e2uy(t), e2uz(t))}
2ds

(t− s) 3
2

]
·Φ

=3
8

(
ReSl
π

) 1
2
 t∫

0

{
−32

3 × πe×
8e
3
(
e2

1us(t), e2
2vs(t), e2

2ws(t)
)

+

B × 16π8e
3 e

(
e2

1ux(t), e2
2uy(t), e2

3uz(t)
)} 2ds

(t− s) 3
2

]

=3
8

(
ReSl
π

) 1
2

t∫
0

{
−256

9 × πe
2 ×

(
e2

1us(t), e2
2vs(t), e2

2ws(t)
)

+
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128
3 πe2B

(
e2

1ux(t), e2
2uy(t), e2

3uz(t)
)} 2ds

(t− s) 3
2
, (1.28)

where,

B = 1
|A|2

 π
1
2

2|A| erf(|A|)− exp(−|A|2)


and

FH⊥
s (s) = 0

From the above expression (1.28) of Tnhi, we can see that there is a singularity at

s = t. In order to avoid the singularity at s = t, we split the history integral term

into two over the intervals [0, t− ε] and [t− ε, t], where ε is arbitrary. Introducing

this, we obtained the integral over [0, t− ε] as,

T ′nhi =3
8

(
ReSl
π

) 1
2 {−512

9 πe2
(
e2

1us(t), e2
2vs(t), e2

2ws(t)
) (
t−

1
2 − ε−

1
2
)

+256
3 πe2B

∫ t−ε

0

(
e2

1us(s), e2
2vs(s), e2

2ws(s)
) ds

(t− s)
3
2


=3

8

(
ReSl
π

) 1
2 {1024

9 πe2
(
e2

1us(t), e2
2vs(t), e2

2ws(t)
) (
t−

1
2 − ε−

1
2
)

+ 256
3 πe2B

∫ t−ε

0

(
e2

1us(s), e2
2vs(s), e2

2ws(s)
) ds

(t− s)
3
2

 (1.29)

Similarly, the integral over [t− ε, t] is given by

T ′′nhi =3
8

(
ReSl
π

) 1
2 {1024

9 πe2
(
e2

1us(t), e2
2vs(t), e2

2ws(t)
) 1
ε−

1
2

+ 256
3 πe2B

∫ t

t−ε

(
e2

1us(s), e2
2vs(s), e2

2ws(s)
) ds

(t− s)
3
2

 (1.30)

Note that the integral converges to a finite value in the limiting case of s→ t and
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hence the value of the integral in the range [t− ε, t] can be neglected by choosing

ε very small. Hence new history integral term Tnhi is equal to T ′nhi.

1.6 Computation of lift force term

The next task is the evaluation of the lift force, which is given the last term

in the force expression. We need to integrate the following expression for getting

the lift force term.

lim
R→∞

∫
Vf (R)

(u0 ·∇u0 − us(t) ·∇u0) ·M. (1.31)

In the above expression we the the expression for M given in equation (1.24). We

have to find the expression for the u0 and us(t), us(t) is the slip velocity given by

the expression,

us(t) = up(t)− u∞(t).

By the definition of Stokes velocity, u0 = M · us(t). We note that the particle

velocity is a function of time alone. Thus, there required expression for the lift

force, say, the vector L = (L1, L2, L3) can be evaluated as an integral. It can be

found separately as a function of aspect ratio.

As shown in the expression for the hydrodynamic force, we derived expressions

for and solved two integral terms, i.e. the acceleration reaction term and the lift

force. We also described the derivations and the implementation of the strategy

for solving the integral terms in the hydrodynamic force(1.11). Using these sim-

plifications, we obtain the expression for the hydrodynamic force exerted by the
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fluid on the spheroid as

FH(t) =ReSlVpu̇∞ − 16πe (e1, e2, e3) · us(t)− ReSl (Ixx, Iyy, Izz) · u̇s(t)+

3
8

(
ReSl
π

) 1
2 {1024

9 πe2
(
e2

1, e
2
2, e

2
3

)
· us(t)

(
t−

1
2 − ε−

1
2
)

+256
3 πe2

t−ε∫
0

B
(
e2

1, e
2
2, e

2
3

)
· us(s)

2ds
(t− s) 3

2

− Re (L1, L2, L3)

(1.32)

1.7 Organization of the thesis

The organization of this dissertation is as follows. The fundamental concepts

and preliminary results are explained in Chapter 1. Chapter 2 introduces the

equations governing the dynamics of a periodically driven micro spheroid in an

unsteady viscous fluid with low Reynolds numbers. Its oscillation properties in

the presence/absence of memory forces are reported. The central part of the

derivation is a perturbation analysis of the motion of a sphere. The calculated

solutions correspond to those available in the literature in the limiting case of a

sphere. The dependence of the solutions on the shape (ka), the free oscillation fre-

quency (ω0), and the density ratio of the particulate fluid (κ) are calculated. The

maximum amplitude of the oscillations of an oblate spheroid is greater than that

of a prolate spheroid, demonstrating that the velocity disturbance for an oblate

spheroid is greater in the presence/absence of memory strength. The increase

in ka leads to the increase (reduction) of the amplitude peaks in the case of the

flattened spheroid (prolate) in the presence and more dominant in the absence of

the force. There is also a reduction in the amplitude of many multiple spheroid

oscillations due to memory force. Stronger oscillation variations are observed with

the variation of ω0 or κ compared to ka. The variations of the phase value are

similar for the two spheroids, like the variation of ω0 and dr. In contrast, they

are inverted on the variable α. The linear scaling of the amplitude on α observed

for spheroids can give an idea of physics, particularly regarding the quantum of
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the velocity disturbances due to the size of the particles. The slopes are high in

the absence and force, confirming that the presence of force strongly increases

the resistance of the spheroid motion. The dependencies of the oscillations on

the parameters can be used to separate the particles better or characterize the

suspension. The novel ideas use in the problem and deriving analytical solutions

help in developing software that tests for more complex and realistic systems and

strike a good balance between complication and traceability.

Chapter 3 highlights the equation governing the dynamics of a solid micro

spheroid periodically forced of moderate aspect ratio in a viscous fluid oscillating

along with one of its damping actions; Basset’s memory and the history-integral

forces of the second stage are derivatives of a small Reynolds number. Determine

the amplitude and phase of oscillations by focusing on when resonance occurs at

the natural frequency of the particles. The amplitude becomes larger but does not

deviate due to the quasi-steady Stokes friction. The effect of the aspect of ratio

(ka) of the particles, the density ratio of the particulate fluid (κ), and the natural

frequency (ω0) in the modification of conventional Q-curves are studied for prolate

spheroids. Unlike other cases, the change in the Q-curves, especially the curve

corresponding to the second force in history, is significantly more significant. We

demonstrate qualitative changes in oscillations due to the impact of hydrodynamic

forces. The effect of the additional history integral term on the translational char-

acteristics of the forced spheroid of moderate aspect ratio was noted. Changes in

amplitude are confirmed in the presence of other forces, whereas only the pres-

ence of Basset memory causes a phase shift of the oscillations, and the phase shift

decreases as any parameter increases. The qualitative change observed in motion

and Q-curves clarifies the role of memory forces concerning the amplitude and

phase relationships of oscillations. Either way, the strength of the Basset memory

reduces the resonance curves. The solutions are analytical to be helpful as exper-

iments for more complex systems. Observations can be of practical importance

when acoustic waves affect micro-particle transport.
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Chapter 4 seeks a set of ordinary differential equations governing the migration

of an arbitrarily forced spheroid in a low Reynolds number quiescent flow formu-

lated and discussed, assuming a suspension sufficient diluted to neglect particle-

particle interactions. The equations are nonlinear and contain a historical term

of all past position and velocity and, therefore, impossible to solve symbolically.

Spheroid transport is studied numerically by varying Reynolds numbers, particle

aspect ratio, and external forces. Interestingly, the size of the attractor increases

with increasing aspect ratio and/or force, whereas it decreases with increasing

Reynolds number. This decrease is due to the increase in the inertia of the par-

ticles. There is a delay with the velocity at the maximum position, as shown by

the respective time series. The delay could be that in the absence of inertia, when

the velocity reaches its maximum, the position is at its minimum, and when the

particle undergoes the maximum deviation, the velocity is at its minimum. Since

the change in position is almost sinusoidal, the velocity will also be sinusoidal with

a phase shift of almost π/2. The net migration of the particle is negligible and

is expected to increase as the number increases. The inertia should significantly

change this at values higher than the Reynolds number. The dependence of po-

sition and velocity on the parameters can be a potential application in particle

separation.

Chapter 5 attempted to determine the dynamics of a prolate spheroid forcing

periodically in a Newtonian fluid flow with a uniform time-dependent velocity

at low Reynolds numbers. Inertial effects have been included to study the be-

havior more realistically. The numerical values of the acceleration reaction term

for different aspect ratios have been presented. It is observed that these values

decrease with an increase in the aspect ratio. The spheroid is seen to oscillate

under periodic forcing. A preferred direction of movement is observed, and the

spheroid shows a net displacement along that direction over time. The effect of

the system variables is studied in detail, and we see that the increase in Re limits

the particle’s movement and, therefore, the attractor’s size. By increasing the
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amplitude of the periodic force, we see that the size of the attractor increases.

The effect of the shape of the particles is studied by varying the aspect ratio. The

size of the attractor increases with increasing aspect ratio due to weaker inertial

effects. Detailed physical arguments supplemented the results, and, where possi-

ble, various tests were conducted to substantiate the results. The ultimate goal is

rheology, which can be further achieved using the results of this article as this will

determine the stress and strain behavior and determine the processing parameters

for these suspensions. It is hoped that this work will stimulate further research in

this area. Future work could address the non-uniform aspects of this movement.

It would also be interesting to study the effects of rotation-translation coupling.

Then in Chapter 6, In this work, we consider the motion of a periodically forced

prolate spheroid suspension in an oscillating Newtonian fluid within the limit of

low-Reynolds number. The characteristics of the particle dynamics due to an

external periodic force have been studied. The governing equations in the form of

a system of integro-differential equations (IDEs) are derived using the expression

developed by Lovalenti and Brady (1993b) for the hydrodynamics force.

We also compute the dynamics of a particle and analyze it in detail. The

investigation is continued by varying the system parameters such as particle aspect

ratio, Reynolds number, amplitude, and frequency of the external force. We

observed that the spheroid’s amplitude of velocity and displacement increases as

frequency, aspect ratio, or/and force increases.

Then in chapter 7, we summarize the dissertation and include some applica-

tions and novelty of the research. Moreover, we explain some future aspects of the

research. This dissertation extends the ideas and the corresponding methodology

to Newtonian fluid suspensions at low Reynolds numbers in various fluid flow

fields, like quiescent fluid, oscillating, time-dependent uniformly fluid flow fields.

We derive the governing equations under the action of an arbitrary external peri-

odic force on the dynamics of an arbitrarily shaped particle for different flow fields.

The study of dynamics of a rigid particle in a fluid at low Reynolds numbers with
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inertia emanates an additional term in the governing equation representing a fad-

ing memory for the entire history of the motion. The memory term becomes

nonlinear with the introduction of convective inertia. The equations are numer-

ically solved for some parameters, and the results are discussed in detail. The

effect of periodic force applies to a spheroidal particle in an arbitrary direction,

the hydrodynamic forces arise due to the disturbance of the velocity fluctuations,

and the forces induced due to the non-spherical nature of the rigid body likely

result in some novel features, which may be utilized for the development of new

technologies.
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Chapter 2

Oscillations of a periodically

forced slightly eccentric spheroid

in an unsteady viscous flow at

low Reynolds number

2.1 Introduction

There is significant research on the transport of micro sized particles in a va-

riety of flows, where a substantial portion of the unsteadiness appears due to the

disturbance of fluctuations of velocity components. The presence of micro parti-

cles with different shapes and sizes might result in novel features, which could be

tapped for developing new technologies. The oscillation of suspended particles at

low Reynolds number has attracted the attention of many researchers in suspen-

sion rheometry and colloidal suspension because of its use in many industries like

food, petroleum, printing, pharmaceutical etc. Madhukar et al. (2010); Lawrence

and Weinbaum (1988). The effects of the unsteady hydrodynamics force on a

suspended particle is very important in developing smart fluids and the source
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of the unsteadiness is a consequence of the disturbance of velocity fluctuations

Ouellette (2004). In most practical situations, the suspended particles are non-

spherical in geometry and irregular in size. There is a relative velocity between

the viscous fluid and the rigid body moving in the fluid at low Reynolds number.

The dynamics and resonance properties of oscillations of such micro-bodies are

very sensitive to its geometry and size. In this article, we discuss the resonance

properties of oscillations of a slightly eccentric spheroid under the influence of an

external periodic force, where the suspension is sufficiently diluted so that inter-

actions between particle and particle can be neglected. There is a vast literature

in the area of motion and rheology of suspended particles and its technological

importance. The nonlinear behavior of a periodically forced spheroid under neg-

ligible Brownian motion has been discussed in detail by Kumar et al. (1995) and

Kumar and Ramamohan (1998). Ramamohan et al. (2011) have simplified the

hydrodynamic force expression for a spherical particle suspended in a quiescent

Newtonian-fluid and studied the particle dynamics under the action of a periodic

force at small Reynolds numbers.

In 2010, Madhukar et al. (2010) have reported a study of the particle dynam-

ics and the normal-stress for a dilute suspension of spheroids in a quiescent fluid

at small values of Reynolds numbers under the action of a periodic force. The

effects of an external periodic force on the dynamics of slender rods and spheroids

have been investigated by many other researchers Asokan et al. (2005); Kumar

et al. (1995); Kumar and Ramamohan (1997; 1998); Ramamohan et al. (2011). A

review of the research work carried out over a period of 10 years on the motion

of orient particles in simple shear flow under the action of a periodic force has

been reported Asokan et al. (2005). Candelier et al. (2005) have demonstrated the

Boussinesq-Basset force effect on the radial migration of Stokes particle in a vor-

tex. Stepanyants and Yeoh (2009) have also investigated the dynamics of particles

and bubbles in creeping flow and the dynamics of nano-particles in a viscous fluid

at low Reynolds numbers. The tiny oscillations of spherical particles under the
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influence of a periodic force have been studied by Hassan et al. (2017). They have

reported that the memory integral representing the drag force [cf. Eqs.(2.5) and

(2.6)] influences the characteristics of the oscillations at low Reynolds numbers.

The present study also substantiates their observations. The resonance widening

and peak reduction observed in the analysis are significant in micro and nano-

suspensions as reported earlier Stepanyants and Yeoh (2010). The drift in the

orientation of prolate and oblate spheroid arising due to weak inertial term was

analytically studied in the limiting case of small Stokes and Reynolds numbers

Dabade et al. (2016). The orientation due to weak inertial drift of certain spheroid

particles was analytically investigated by Marath and Subramanian (2018b). A

set of non-linear ordinary differential equations governing the transport of an

arbitrary forced spheroid in a quiescent flow at low Reynolds number with the

inclusion of past position and velocity is analyzed by Singh and Kumar (2019).

Practically in many suspensions, the suspended particles will be non-spherical

with different size and shape. Hence it generates interests to study the transport

behavior of such particles. Recently, Stepanyants and his group have investigated

the dynamics of suspended particles as well as of bubbles in a viscous fluid under

the influence of an acoustic radiation force Hassan et al. (2017); Ostrovsky and

Stepanyants (2018). Hassan and Stepanyants (2017) have also studied the proper-

ties of resonance of oscillations of forced particles and gaseous bubbles of spherical

shape at low Reynolds number, where the external force is sinusoidal in nature.

As reported by Hassan and Stepanyants (2017), the oscillation characteristics of

the motion of an arbitrary oscillator in the presence of Basset memory force have

not been addressed to the best of our knowledge. They observed the possibility

of characterizing the resonance properties of the oscillations by amplitude and

phase. They have studied the influence of the drag force on the oscillations of a

spherical drop of a solid particle and a gaseous bubble.

The results of the variant of this problem might be of important particularly

in the context of acoustic streaming. In this work, we analyze the forced oscilla-
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tions of a near-sphere under the action of an external oscillatory force and study

the dependence of oscillation properties on the geometry and shape of the non-

spherical particles. As a first case, we consider oscillations of slightly eccentric

spheroids in an unsteady viscous fluid at small Reynolds number under the action

of a periodic force. Following the approach of Lawrence and Weinbaum (1986),

we obtain the governing equation of motion of oscillation of suspended particles

in non-dimensional form moving in a single direction. This study proposes the

perturbation solution of the solid sphere under the action of a periodic force in low

Reynolds number limit and hence the core part of the derivation is a perturbation

analysis of motion of a sphere. Also, we studied the well-known Q-curve for the

particle under an imposed oscillatory force. This incremental work demonstrates

the role of small eccentricity in modifying the known Q-curve for a sphere, where

the change in the Q-curve is notable. So the present work is one of the possible

extensions of the work done by Hassan and Stepanyants (2017) say, the dynamics

of arbitrary shaped particles in a viscous fluid at very small Reynolds numbers.

We demonstrate the result of dynamics of a solid slightly eccentric spheroid

constrained to one-dimensional oscillations, and solves the one dimensional equa-

tion of motion for the particle where the motion is caused by a periodic external

force. We provide solutions to the particle dynamics equations, using fluid me-

chanic solutions available in the literature. The sensitive dependencies on parti-

cle shape of amplitude and phase-frequency of oscillations of a slightly eccentric

spheroid is numerically investigated and reported in this article. This analysis is

of some utility in terms of clarifying the role of the memory force particularly with

regard to the phase relationship of the forced oscillations. It proposes a potential

application to separate particles of certain shapes from a suspension of particles

with similar size and different shapes. Another possible situation to which the

solutions of the problem might be applicable would be damped small amplitude

oscillations of a periodically forced pendulum. The results obtained may have

scientific and technological impact and may open up new methodologies for char-
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acterization of fluid suspensions.

In short, we study the properties of oscillations of slightly eccentric oblate and

prolate spheroids in an unsteady viscous fluid driven by a periodic force at small

Reynolds number in the presence and absence of the memory drag force. The

governing equation of oscillations are derived accordingly, where the eccentricity

parameter (ε), frequency of free oscillation (ω0) and density ratio (κ) of the particle

found in the equation influence the oscillation properties. In the limiting case,

ε → 0, the results match with the results of Hassan and Stepanyants (2017) and

thus verify the formulation of the problem and validate the results presented in

this work. We demonstrate that the oscillation properties depend on the geometry

and shape of suspended particle. What follows is the formulation of the problem

proposed.

2.2 The problem

The equation of a spheroid is given by

x2

a2 + y2

b2 + z2

b2 = 1

where, 2a and 2b are respectively the major and minor axes and the triplet (x, y, z)

represents an arbitrary point on the spheroid. Since it is of interest to study the

oscillation properties of a slightly eccentric spheroid, we assume that b = a(1 + ε)

for an oblate spheroid and b = a(1−ε) for a prolate spheroid, where a is considered

to be the characteristic length of the spheroid and ε << 1. The solution to the

problem considered in this analysis involves the expression for the hydrodynamic

force in the limit of low Reynolds number representing the magnitude of the

convective inertia related to viscous force.

It is trivial that the eccentricity of the spheroid,
√

2ε− ε2 reduces approxi-

mately to
√

2ε for small ε. In this analysis, we take ε << 1. Also, assume that
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a near-sphere i.e. a spheroid of small eccentricity, moves from rest with a time

dependent velocity U(t) parallel to its axis of symmetry. As given by Abbad et al.

(2006), the effective hydrodynamic force due to the perturbed quasi-steady drag

force, the added mass force, the Basset memory integral term and the new his-

tory force caused by the eccentricity of the spheroid undergoing an arbitrary time

dependent motion in the limiting case of low Reynolds number (i.e. Re << 1) is

in the form,

FH =6πµa
(

1 + 4
5ε+ 2

175ε
2
)
U(t)

+ 2
3ρπa

3
(

1 + 16
5 ε+ 604

175ε
2
)
U̇(t)

+ 6
√
πµa

(
1 + 8

5ε+ 116
175ε

2
) ∫ t

−∞

U̇(t)dτ√
t−τ
τ0

+ 8
175πµaε

2
∫ t

−∞
U̇(τ)G(t− τ)dτ +O(ε3), (2.1)

with

G(t) ==
[√

w

3 exp(wt/τ0) erfc(
√
wt/τ0)

]
and w =3

2
(
1 +
√

3 i
)
, (2.2)

where, U(t) is the velocity of the suspended particle at time t with U(t) = 0 for

t ≤ 0 and, µ and ρ are the dynamic viscosity and the density of the ambient fluid

respectively. Also, U̇(t) = dU
dt

is the particle acceleration, τ0 = a2/ν is the diffusive

time scale and ν = µ/ρ is the kinematic viscosity of the fluid. The parameter ε

denotes the geometrical variation of the particle from a sphere and the kernel,

G(t) is defined as the imaginary part of the corresponding complex variable. The

one-dimensional transport of a suspended particle under the hydrodynamic force
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FH and an external force Fext at small Reynolds number can be expressed as

d2y

dt2
+ ω̄0

2y + FH

mp

= Fext

mp

, (2.3)

where y is the displacement of the particle from equilibrium position in one-

direction, mp denotes the mass of the particle and ω̃0 symbolizes the natural

oscillation frequency of the particle in the absence of dissipation. The ω0
2y appears

as an additional external force, like spring force, that restores the particles position

to the origin. Assume that the dynamics is under the action of an external periodic

force given by Fext = A0 sin(ω̃ t) having amplitude A0 and frequency ω̃. On

simplification, by incorporating the above assumptions, we obtain the governing

equation of oscillations of a spheroid as

(
κ+ 1

2k2

)
d2y

dt2
+ 9µ

2a2ρ
k1
dy

dt
+ 9

2ak3

√
µ

πρ

∫ t

−∞

d2y

dτ 2
dτ√
t− τ

+ 3µ
4ρa2k4

∫ t

−∞

d2y

dτ 2G(t− τ)dτ + ω̃2
0

(1 + ε)2y −
Ã

(1 + ε)2 sin(ω̃t) = 0, (2.4)

where

k1 =

(
1 + 4

5ε+ 2
175ε

2
)

(1 + ε)2 , k2 =

(
1 + 16

5 ε+ 604
175ε

2
)

(1 + ε)2

k3 =

(
1 + 8

5ε+ 116
175ε

2
)

(1 + ε)2 , k4 =
8

175ε
2

(1 + ε)2 , and Ã = A0

(4/3)πa3ρ

κ ≡ ρp/ρ is the density ratio of the particle to the fluid. It is evident from above

that k1, k2, k3 and k4 are functions of eccentricity parameter ε of the spheroid. The

presence of k2 in the first term indicates the consideration of added mass forces

and k4 represents the presence of additional history force due to the suspension

of eccentric spheroid particle. The first term in Eq.(2.4) represents the effective

force on the particle due to inertia and added mass effect. The second term

of the equation describes the Stokes drag force. The third and forth integral

terms describe the two history memory forces namely the Boussinesq-Basset drag
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force Basset (1888a) known as Basset memory force and the new memory integral

term Lawrence and Weinbaum (1986) called additional history force respectively.

The last term indicates presence of external force. Assume that the particle starts

moving with velocity U(t) along its axis of symmetry and having an initial velocity

U(0) = U0. These considerations can be incorporated by expressing the velocity

component, dy
dt

by H(t) :
(
dy
dt

)∗
= H(t)(dy

dt
)+, −∞ < t <∞, where (dy/dt)∗ is the

instantaneous effective velocity of moving spheroid at any time t and (dy/dt)+ is

the velocity when t > 0 Hassan and Stepanyants (2017). Trivially, the acceleration

is given as (
d2y

dt2

)∗
= δ(t)

(
dy

dt

)
+

+H(t)
(
d2y

dt2

)
+
,

where H(t) represents the unit Heaviside step function and its derivative δ(t) ≡

dH(t)/dt denotes the Dirac delta function defined on (−∞,∞). The governing

equation Eq.(2.4) of motion in one-dimension for positive time can be expressed

as

(
κ+ 1

2k2

)
d2y

dt2
+ 9µ

2a2ρ

[
k1
dy

dt
+ aU0√

πν t
k3 + a k3

√
ρ

πµ

∫ t

0+

d2y

dτ2
dτ√
t− τ

]
+

3µU0

4ρ a2G(t)k4 + 3µ
4ρa2 k4

∫ t

0+

d2y

dτ2G(t− τ)dτ + ω̃2
0

(1 + ε)2 y −
Ã

(1 + ε)2 sin(ω̃t) = 0, (2.5)

using the result
∫ c
−c f(t)δ(t) = f(0), where the symbols,

(
dy
dt

)
+

and
(
d2y
dt2

)
+

are

replaced by
(
dy
dt

)
and

(
d2y
dt2

)
respectively for convenience. The non-dimensionalized

form of expression given in Eq.(2.5) can be again manipulated on scaling length

by a, time by a2ρ/9µ and velocity by 9µ/aρ. On substitution using

Z = y/a , θ = 9µt
a2ρ

, υ0 = U0a ρ

9µ ,

the reduced equation in non-dimensional form is obtained as

d2Z

dθ2 + k1

2κ+ k2

dZ

dθ
+ 3k3

(2κ+ k2)
√
π

(
υ0√
θ

+
∫ θ

0

d2Z

dϑ2
dϑ√
θ − ϑ

)
+ k4

6(2κ+ k2)×
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{
υ0G

(
ρa2
√

9µθ
)

+
∫ θ

0

d2Z

dϑ2 G

(
a2ρ

9µ θ − ϑ
)
dϑ

}
+ 2ω̃2

0a
4ρ2

81(1 + ε)2(2κ+ k2)µ2Z−

2Ã
(1 + ε)2(2κ+ k2)

a3ρ2

81µ2 sin( ω̃ρa
2

9µ θ) = 0. (2.6)

Equivalently,

d2Z

dθ2 + α
dZ

dθ
+ β√

π

(
υ0√
θ

+
∫ θ

0

d2Z

dϑ2
dϑ√
θ − ϑ

)
+ γ

{
υ0G

(
a2ρ

9µ θ
)

+
∫ θ

0

d2Z

dϑ2 G

(
a2ρ

9µ (θ − ϑ)
)
dϑ

}
+ ω2

0Z − A sin(ωθ) = 0, (2.7)

where

α = k1

2κ+ k2
, β = 3k3

(2κ+ k2) , γ = k4

6(2κ+ k2)

ω0 = ω̃0

√√√√ 2a4ρ2

81(1 + ε)2(2κ+ k2)µ2 , ω = ω̃ρa2

9µ

A = 2Ã
(1 + ε)2(2κ+ k2)

a3ρ2

81µ2 .

Equivalently, the non-autonomous integro-differential equation, Eq.(2.7) can be

expressed as a nonlinear autonomous integro-differential equation and can be

solved numerically. It is verified that the equation, Eq.(2.7) reduces to the equa-

tion derived by Hassan and Stepanyants (2017) who has studied the dynamics of

spherical particles.

The following analysis is conceptually important for an arbitrary body whose

shape is significantly different from sphere. Similar to the Basset force, the term

involving γ is also a memory integral force induced due to the history acceleration

of the body, where the kernel function G(t) is given by Eqs.(2.2), which decays

exponentially faster than the kernel due to Basset history force. In most cases,

the contribution from G(t) is negligibly small and is applicable only for small

values of ε. However, the new additional history force term due to non-sphericity

of particle is numerically evaluated and found that it is negligibly small compared
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to the contribution of the term containing β and other terms as reported earlier

Lawrence and Weinbaum (1986), on restricting ε << 1. Otherwise also, the part

of force containing γ (or k4) due to the additional history vanishes when ε → 0

as evident from the expressions for γ and k4. The additional history term due to

the eccentricity of the particle vanishes as ε tends to 0, and the contribution of

the other history force proportional to β does not vanish in the limit of ε → 0

as can be seen from the present analysis and the demonstration of Abbad et al.

(2006). At the same time, they have demonstrated that the Basset memory force

prevails over the other forces like added-mass and Stokes force, when the pulsation

is up to 60% of the total drag force. Naturally, the effect of additional history

term on the hydrodynamics force can be ignored as ε→ 0 and hence the term is

ignored in the present analysis. This study is of interest, since an arbitrary particle

can be approximated as a spheroid in many cases. For the present analysis we

assume that the hydrodynamics force induced due to the influence of additional

history force is negligibly small and hence the motion is free from the influence of

additional history force (i.e. γ = 0). Further, we assume that the fluid viscosity is

relatively small in such a way that the free oscillations ω0 are much greater than

the parameters α and β, where the Reynolds number is small (<< 1). Similar

assumptions are made by Hassan and Stepanyants (2017). Thus the transport of

the particle is reduced to a second order linear non-autonomous integro-differential

equation as

d2Z

dθ2 + α
dZ

dθ
+ β

1√
π

(
υ0√
θ

+
∫ θ

0

d2Z

dϑ2
dϑ√
θ − ϑ

)
+ γ

4
√

3

(
1

4
√

3
υ0

(θ − ϑ)
√
θ − ϑ

+
∫ θ

0

d2Z

dϑ2
dϑ

(θ − ϑ)
√
θ − ϑ

)
+ ω2

0Z − A sin(ωθ) = 0, (2.8)
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2.3 Results and discussion

Following Hassan and Stepanyants (2017), we find out the simplest possible

solution, to equation (2.8) in the form of

Z(θ) = R1 cos(ωθ) +R2 sin(ωθ) = R(ω, ω0) cos(ωθ − φ),

with initial values Z(0) = Z0 = 0 = v0 = Ż(0). On simplification, we have the

expressions:

R1 =−
−A

(
ωα + βω3/2

2
√

2 − γ
√

π
3
ω3/2

4
√

3

)
(
ω2

0 − ω2 − βω3/2

2
√

2 − γ
√

π
3
ω3/2

4
√

3

)2
+
(
αω + βω3/2

2
√

2 − γ
√

π
3
ω3/2

4
√

3

)2 (2.9)

R2 =−
A
(
ω2

0 − ω2 − βω3/2

2
√

2 − γ
√

π
3
ω3/2

4
√

3

)
(
ω2

0 − ω2 − βω3/2

2
√

2 − γ
√

π
3
ω3/2

4
√

3

)2
+
(
αω + βω3/2

2
√

2 − γ
√

π
3
ω3/2

4
√

3

)2 . (2.10)

The amplitude R(ω, ω0) and the fundamental phase φ(ω, ω0) are found to be

R(ω, ω0) =
√
R2

1 +R2
2 and φ(ω, ω0) = tan−1 (R2/R1)

i.e. R(ω, ω0) = −A√(
ω2

0 − ω2 − βω3/2

2
√

2 − γ
√

π
3
ω3/2

4
√

3

)2
+
(
α + βω3/2

2
√

2 − γ
√

π
3
ω3/2

4
√

3

)2
.(2.11)

and

φ = tan−1
(
−

ωα+βω3/2

2
√

2
−γ
√

π
3
ω3/2
4
√

3

ω2
0−ω2−βω

3/2
2
√

2
−γ
√

π
3
ω3/2
4
√

3

)
. (2.12)

The equations Eq.(2.11) and Eq.(2.12) can be reformulated by normalizing ω by

ω = nω0 and introducing the two quality ratios Qα and Qβ Hassan and Stepa-

nyants (2017); Klepper and Kolenkow (2014) defined by Qα = ω0/α, Qβ = 8ω0/β
2

and Qγ = 96/πω0γ
2 for the conventional characterization of oscillations. The am-

plitude of the particle oscillation is also normalized by choosing An = ω2
0R/A.

The expressions for amplitude and phase of oscillations of particles as a functions
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of Qα and Qβ for a given n are exactly same as the expressions given by Hassan

and Stepanyants (2017) and are

An(Qα, Qβ) = 1√(
1−n2−n

√
n
Qβ
−n2

√
n
Qγ

)2

+
(

n
Qα

+n
√

n
Qβ
−n2

√
n
Qγ

)2
. (2.13)

φn(Qα, Qβ) = tan−1

− n
Qα

+n
√

n
Qβ
−n2

√
n
Qγ

1−n2−n
√

n
Qβ
−n2

√
n
Qγ

 . (2.14)

Although, similar expressions for An and φn as given in Eq.(2.13) and Eq.(2.14)

are obtained, the quality ratios Qα and Qβ differ in forms which will be reduced to

the corresponding expressions obtained by them on making ε = 0. This validates

the expressions given in Eq.(2.13) to Eq.(2.14). Also, the amplitude (resonance)

and phase frequency dependencies in the limiting case of Basset memory term,

Qβ, Qγ →∞ ( i.e. β, γ→ 0) are reduced to

An(Qα, Qβ)|β=0 = 1√
(1− n2)2 + n2

Q2
α

(2.15)

φn(Qα, Qβ)|β=0 = tan−1
(
−

n
Qα

1− n2

)
(2.16)

The amplitude curve given in Eq.(2.15) attains its maximum at nm =
√

1 + 1
4Q2

α

and equals to (An)max = 1√
5

16Q4
α

+ 1
Q2
α

.

As evident from Eq.(2.13) to Eq.(2.16), the amplitude and phase frequencies

depend on the parameters ε, κ and ω0. Since ε characterizes the shape of the

suspended non-spherical particles (for spheres, ε = 0), the parameter plays a

significant role on its oscillation properties. For numerically analyzing the effect

of eccentricity on the dynamics of the particle, ε is assumed to be +ve for oblate

spheroids and is replaced by −ε for prolate spheroids in all the expressions detailed

above. For a comprehensive analysis on the oscillation properties of the spheroid
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Figure 2.1: (a) The amplitude dependency of the oscillating oblate spheroids as a func-
tion of n in the presence of Basset memory force for κ = 4, ω0 = 200, ε = 0.0, 0.05 . . .
0.35. (b) A magnified portion of the graph given in (a).
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Figure 2.2: (a) The phase-frequency dependency of the oscillating oblate spheroids as a
function of n in the presence of Basset memory integral for κ = 4, ω0 = 200 and ε = 0.0,
0.05 . . . 0.35. (b) The magnified plot of the selected portion given in (a).
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Figure 2.3: (a) The amplitude dependency of the oscillating prolate spheroids as a
function of n in the presence of the Basset memory integral for κ = 4, ω0 = 200,
ε = 0.0, 0.05 . . . 0.35. (b) A magnified plot of the selected portion given in (a).

dynamics the change in particle geometry (ε), amplitude of free oscillations (ω0)

and the density ratio (κ) are varied systematically for both the oblate and prolate

spheroids in the presence as well as in the absence of Basset memory integral

term expecting a variety of results having scientific interest. As a first case, we

keep ω0 = 200 , κ = 4 and vary ε from 0 to 0.35 in step of 0.05. The numerical

results thus obtained are analyzed in detail. It is observed from Figs.2.1 and

2.2 that the amplitude dependence increases for an oblate spheroid for all n,

whereas the phase frequency value increases (decreases) when n < 1(n > 1) as

the non-sphericity measure, ε of the particle increases. This dependence on ε

is very significant, since the hydrodynamic force exerted on the particle differs

as ε increases. Figs.2.3 and 2.4 depict that the oscillation properties observed

for oblate spheroid are reversed on replacing the suspended body by a prolate

spheroid, i.e. the amplitude dependency decreases as ε increases for any n and

the phase frequency value decreases when n < 1 and it increases when n > 1, in
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Figure 2.4: (a) The phase-frequency variation of the oscillating prolate spheroids as a
function of n in the presence of Basset memory integral for κ = 4, ω0 = 200 and ε = 0.0,
0.05 . . . 0.35. (b) A magnified plot of the selected portion given in (a).

the case of a prolate spheroid, indicating its influence on the force exerted.

This argument is substantiated by the Fig.2.5 showing maximum amplitude

and phase frequency variations for both oblate and prolate spheroids for a given

set of values of the parameters, ε, ωo and κ. It is of interest to observe that

the maximum amplitude values are higher for an oblate spheroid than a prolate

spheroid for a given ε as evident from Fig.2.5(a). This analysis shows that the

disturbance in velocity due to the presence of particle increases (decreases) as the

eccentricity of the spheroid increases in the case of an oblate (prolate) spheroid.

For the typical plot shown in Fig.2.5(a), the maximum amplitude, (An)max, of an

oblate spheroid is about 1.5 times larger than that of that of a prolate spheroid,

whereas the phase frequency of oscillations of an oblate spheroid is less (greater

than) that of a prolate spheroid when n > 1 (n < 1) as evident from Fig.2.5(b).

We summaries the argument as revealed from Figs.2.1 to 2.5 that the oscillation

attains its maximum amplitude at a point left to n = 1 for any spheroid and the
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Figure 2.5: The plot of (a) amplitudes and (b) phase-frequencies of a prolate and oblate
spheroids as function of n for ε = 0.3, ω0 = 200 and κ = 4, showing the difference of
oscillation properties of the particles in the presence of Basset memory force.
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Figure 2.6: The plot of (a) amplitudes (b) phase frequencies of oscillations of oblate
spheroids in the presence of Basset history force for κ = 4, ε = 0.3 and oscillating with
different free frequencies, ω0 = 100, 200, ..., 500.
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Figure 2.7: The plot of (a) amplitudes (b) phase frequencies of oscillations of prolate
spheroids in the presence of Basset history force for κ = 4, ε = 0.3 and oscillating with
different free frequencies, ω0 = 100, 200, ..., 500.
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Figure 2.8: The plot of (a) amplitudes (b) phase frequencies of oscillations of prolate
spheroids in the presence of Basset history force for ε = 0.3, ω0 = 200 and for different
density ratios, κ = 2, 4, ..., 10.
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Figure 2.9: The plot showing the variation of numerically computed maximum am-
plitudes for both the spheroids as a function of ε in the presence of Basset memory
integral term, showing a linear scaling on eccentricity for ω0 = 200 and κ = 4.
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Figure 2.10: The plot showing the variation of numerically computed maximum am-
plitudes for both the spheroids as a function of ε in the absence of Basset memory
integral term, showing a linear scaling on eccentricity with higher slopes for ω0 = 200
and κ = 4.
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phase frequency increases when n < 1 and decreases when n > 1 for an oblate

spheroid as ε increases. At the same time the behavior is opposite to this for

a prolate spheroid with a higher speed of variation as evident from the figures.

The other parameters κ and ω0 are also varied to study their influence on the

oscillation properties of the suspended spheroids. Interestingly, the amplitude of

the oscillations increases for all n and the phase value also increases to the left of

n = 1 and decreases to the right of n = 1, surprisingly for both the oblate and

prolate spheroids, on increasing the frequency ω0 of free oscillations in steps of

100. The variation on amplitude and phase values of oscillations of the spheroids

on changing the frequency of the free oscillations are dominantly seen from the

figures and the variations are greater than that obtained on varying ε, as can be

seen from the Fig.2.6 and Fig.2.7. Figs. 2.5, 2.6(a) and 2.7(a) also demonstrate

that the amplitude of oscillations for an oblates spheroid is more than that of a

prolate one for a given eccentricity.

A similar rather stronger variation of properties of oscillations is observed on

varying the density ratio of the particle (κ) instead of changing the frequency

of free oscillations (ω0). A pair of typical plots substantiating this argument is

shown in Fig.2.8 which resembles the variation shown in Fig.2.7. In short, the

phase variations on the change of ω0 and κ are similar for both the spheroids,

whereas it is opposite for oblate and prolate spheroids on changing ε.

It is significant to compare the influences of Stokes drag force on the oscilla-

tion characteristics of spheroids in the presence as well as in the absence of Basset

memory integral force for different values of ε. The numerically computed maxi-

mum amplitude of oscillations of both the types of oblate and prolate spheroids

in the presence and absence of Basset memory integral term for a set values of ε is

depicted in Figs.2.9 and 2.10. As can be noticed from these figures and Fig.2.5, the

oscillation curves of an oblate spheroid are taller than that of a prolate spheroid

for a given eccentricity.

It is of interest to record that the maximum value of amplitude increases

53



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

presence of memory force

absence of m
emory fo

rce

ε

ra
tio

 o
f a

m
pl

itu
de

Figure 2.11: A plot of ratios of maximum amplitude of oscillations of an oblate
spheroid to that of a prolate spheroid in the presence as well as in the absence of
Basset memory integral term for different values of ε, ω0 = 200 and κ = 4.
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ε, ω0 = 200 and κ = 4.
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linearly with slope nearly 56 for oblate spheroids and that decreases linearly with

slope nearly −75 for prolate spheroids in the presence of Basset memory integral

term as the eccentricity increases as evident from the linear fit shown in Fig.2.9.

Fig.2.10 shows that the maximum amplitude varies linearly with slope 2494 and

−2230 for oblate and prolate spheroids respectively as ε varies in the absence of

the Basset memory force. The values of the slopes confirm that the variation of

properties of oscillation is high and positive for oblate spheroids, whereas it is

high and negative for prolate spheroids in the absence of the memory force. It is

also evident from the slopes that the added influence of Basset memory integral

force weakens many times the characteristic properties of the oscillations of both

oblate and prolate spheroids as can observed from the comparatively small values

of the slopes computed.

The ratios of the maximum amplitude of an oblate spheroid to that of a pro-

late spheroid for a given ε in the absence as well as in the presence of the Basset

memory force are plotted in the Fig. 2.11. In both situations oscillations of oblate

spheroids are larger than that of the prolate spheroids. There is nearly 1 to 21
2

times reduction of maximum amplitude on replacing an oblate spheroid by a pro-

late spheroid in the absence of the memory force, whereas the reduction is only

1 to 11
2 times on replacing the particle in the presence of memory force. Another

comparison of maximum amplitude of oscillations in absence of the memory inte-

gral to that of oscillations in the presence of the term is displayed in the Fig.2.12

for both oblate and prolate spheroids. In this, the maximum amplitude reduction

of the oscillations under the influence of the memory force is 16 to 20 times for

the case of motion of an oblate spheroid. At the same time, the reduction of max-

imum amplitude for a prolate spheroid under the effect of the memory integral

has come down to 12-16. However, the analysis demonstrates that the presence

of memory force increases the resistance to the motion of a spheroid, as expected.
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2.4 Conclusion

The results of the work can be summarized as follows. The influence of the

memory force on the oscillation properties of rigid particles of different shapes in

a viscous flow subjected to an external periodic is significant. The shape, free

oscillation frequencies and the density ratio of the particle to suspended fluid

have significant impact on the migration properties of a suspended particle. The

change in shape leads to the enhancement (reduction) of amplitude peaks in the

case of oblate (prolate) spheroid in presence and absence of memory force as

the eccentricity increases. It is important to note the amplitude of fluctuations

becomes smaller and smaller in the case of prolate spheroids, whereas it becomes

larger and larger in the case of oblate spheroid as the eccentricity of the spheroid

increases. This means that increase in ε suppresses (enhances) the oscillations of

particles for prolate (oblate) spheroids. The influence of the other two parameters,

density ratio (κ) and frequency of the oscillations (ω0) is also studied and analyzed

in detail. A stronger variation of oscillations on changing these two parameters is

observed in comparison with the variations observed due to change in eccentricity.

The strong dependence of oscillations on the free oscillation frequency and density

ratio of particles is also interesting, whereas the variations of phase values are

similar for both the oblate and prolate spheroid on varying ω0 and κ, but the

variations are reversed on replacing oblate spheroids by the prolate spheroids as

the eccentricity parameter, ε varies.

A linear scaling of maximum amplitude on the eccentricity of both the spheroid

in the presence as well as in the absence of Basset memory integral force is ob-

served. Note that the influence of eccentricity on the oscillation properties is

linear and high for both oblate and prolate spheroids in the absence of the Basset

memory force and hence the presence of the force increases the resistance of the

motion of the particle. This linearity may give new insight into the physics of

the problem, especially regarding the quantum of velocity disturbances due to the
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size of the particle. There is a maximum amplitude reduction of the oscillations

under the influence of the memory force and the reduction is many times the am-

plitude of the oscillation observed in the absence of the force. The amplitude and

phase dependence of oscillations on shape of the particle can be utilized for better

separation of particles from the suspension to characterize the fluid suspension.

The solutions obtained for the system under consideration are analytical and

hence they might have value as tests for more complicated systems. Hence, the

problem under consideration in this paper has novelty and strikes a good balance

between complication and tractability. The fact that analytical solutions are ob-

tained makes the work valuable for testing software developed for more realistic

situations. The study can be extended to analyze the oscillation variation of par-

ticles having arbitrary eccentricity in the presence of history integral term (γ)

and/or other external forces like magnetic force, acoustic radiation force, electric

force etc. Here we have investigated the oscillatory motion of a slightly eccentric

spheroid oscillating in a viscous Newtonian fluid at low Reynolds numbers. We

have demonstrated the effects of the shape and size of the particle on the oscil-

lations of motion. Also, we have analyzed the effects of the force terms such as

damping, Basset memory force, and new history force, individually on the par-

ticle’s oscillations of motion. we have considered the dynamics o near sphere in

this analysis and the properties investigated motivate to extend the study to the

dynamics of arbitrary shaped particle. In next chapter we shall investigate the

characteristics of oscillations of motion of arbitrary spheroid suspended in viscous

Newtonian fluid in low Reynolds numbers limit.
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Chapter 3

Periodically driven spheroid in a

viscous fluid at low Reynolds

numbers

3.1 Introduction

The hydrodynamic forces acting on a body undergoing time-dependent motion,

the oscillation properties of particles in a Stokes flow at low Reynolds numbers and

the qualitative experiments to validate the predicted quantitative mathematical

results developed interest among the researchers working in the area of micro-

particle transport and related topics. The authors, Basset (1888b;a); Buchanan

(1890); Jeffrey (1922); Taylor (1923); Bretherton (1962b); Williams (1966); Riley

(1967); Looker and Carnie (2004); Vasil’ev and Chashechkin (2009) have proposed

models and analysed them for the characterization of the transport phenomena.

Lawrence and Weinbaum (1988) obtained a general general tensor expression for

the functional form of the hydrodynamic force exerted on an arbitrary spheroid of

moderate aspect ratio within the range 0.1 to 10 suspended in an unsteady flow

field at low Reynolds numbers. Also, the expression for the hydrodynamic forces
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such as Stokes drag force, frictional tensor, Basset coefficient and the second

history integral force induced on an arbitrary shaped rigid particle undergoing

time-dependent fluid motion at low Reynolds number has been introduced in

terms of the geometry of the body by Lovalenti and Brady (1993b). The effect of

the history force on an oscillating rigid sphere and that of the memory force on

slightly eccentric spheroid at low Reynolds number have been analyzed in detail

(Abbad and Souhar 2004; Abbad et al. 2006). Resonance properties of motion

of sphere and a comparison of motion of rigid spherical particles and gaseous

bubbles suspended in a viscous fluid under the influence of an external sinusoidal

force in the limit of low Reynolds number has been studied by Stepanyants and

Yeoh (2009); Hassan et al. (2017); Hassan and Stepanyants (2017); Ostrovsky and

Stepanyants (2018), where the buoyancy force, Stokes drag force, and memory-

integral drag force are taken into account. The oscillation properties of solid

particles of different shapes in a viscous flow under the action of an external

periodic force are significantly important since the dependencies of motion on the

system parameters can be utilized for better separation of particles from the fluid

or for characterizing the suspension (Kumar et al. (1995); Hassan et al. (2017);

Singh and Kumar (2019), and the references therein).

In a recent paper, Singh and Kumar (2021) have investigated motion of the

harmonically-forced rectilinear displacement of a weak eccentric spheroid along its

axis of symmetry. They have done an incremental advance on the work of Hassan

et al. (2017) and also discarded the new memory term, in view of O(e2), that exists

for a non-spherical particle. Their rationale for doing so is that for a near-sphere

this new term decays much faster than the Basset term and thus should not affect

the particle dynamics too much. While the additional memory term is small for

a slightly eccentric spheroid as demonstrated by Singh and Kumar (2021), it is

important to note an approximate formula proposed by Lawrence and Weinbaum

(1988) for the hydrodynamic force on a spheroid of moderate aspect ratio, for

which the effect of the additional memory term on the translation of suspended
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particle is not small. These observations motivate the study of the motion of

spheroid particles of different shapes in the limit of low Reynolds numbers.

In this study, we derive the transport equation of a spheroid using the expres-

sion of the hydrodynamics force developed by Lawrence and Weinbaum (1988)

and examine the oscillation properties of dynamics of a spheroid particle in an

unsteady viscous flow in the limit of low Reynolds numbers. We find expressions

of the conventional Q-curves, amplitude-frequency and phase-frequency of the os-

cillations of the spheroid at resonance with the natural frequency. We also discuss

and compare the effect of damping force, Basset memory force, and the second

history integral term on the amplitude and phase oscillations of a spheroid. This

study can be utilized to analyze the oscillation variations of particles having ar-

bitrary eccentricity in the presence of history integral term and/or other external

forces like a magnetic force, acoustic radiation force, electric force, etc. and to

understand how the oscillation properties depend to the change of aspect ratio,

density ratio, and free frequency.

3.2 The problem formulation

The displacement, y at time t of a particle of mass,mp suspended in a fluid at a

small Reynolds number, Re is given by the fundamental expression, mp
d2y
dt2

= ΣF;

where, ΣF represents the sum of the forces exerted on the particle. In this work,

we consider the motion of a periodically forced spheroid subjected to forces due to

the natural frequency, ω0; the hydrodynamic forces, FH(t) due to the disturbance

in fluid in the vicinity of particle; and an external force, Fext(t). What follows

is the derivation of the dynamics of a suspended rigid spheroid with equatorial

radius, b and polar radius, a of the spheroid. A spheroid particle can be classified

as prolate if ka > 1, spherical if ka = 1 and oblate if ka < 1 where the ratio,

ka = a/b is called the aspect ratio of the particle.

The expression for the hydrodynamic force, FH(t) exerted at time t on an
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arbitrary particle suspended in a time dependent fluid motion with velocity, U(t)

has been derived by Lawrence and Weinbaum (1988) as

FH(t) =− FH
s (t) ·U(t)− π−1/2B ·

∫ t

0

dU

dτ
(t− τ)−1/2 dτ −ma ·

dU

dt
−

e (F1 −B) ·
∫ t

0

dU

dτ
erfc

[
(t− τ)1/2

]
dτ,

(3.1)

where FH
s = 6πµaΦ is the Stokes drag correction factor, µ is the dynamic viscosity

of the fluid, Φ is the frictional resistance tensor of the spheroid and is given by

Φ = 8
3ea (Lovalenti and Brady 1993a;b), where e is eccentricity of the spheroid.

The tensor, a = aij, i, j = 1, 2, 3 is a diagonal matrix and is given by Singh and

Kumar (2019) as

a11 = e2

−2e+ (1 + e2) log(1+e
1−e)

,

a22 = −2e2

−2e+ (1− 3e2) log(1+e
1−e)

,

a33 = a22,

and aij = 0 for i 6= j.

(3.2)

For convenience, we prefer the notations a11 = e1; a22 = a33 = e2. The symbols,

F1 and B denote the coefficients of the first-order corrections at low and high

frequency in tensor form. Note that B is identified as the Basset coefficient

for the spheroid (Lawrence and Weinbaum 1988) and F1 = a · a. The other

symbols, ma and erfc(t) denote the scaled added mass and the standard error

function respectively. The Eq.(3.1) represents a more general approximation of the

hydrodynamic force for a spheroid of aspect ratio within the range 0.1 < ka < 10,

with reasonable accuracy.

As explained above, the equation governing the motion of a rigid particle

suspended in a fluid subjected to the hydrodynamics force, FH; force due to natural
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frequency, ω̃2
0y; and an external force, Fext(t) is given by

mp
d2y(t)
dt2

+ ω̃2
0y(t) = Fext(t) + FH(t), (3.3)

where y(t) is the displacement of the particle from equilibrium position, mp is

the mass of particle and ω̃0 is the Brunt-Vaisala (or buoyancy) natural frequency

of oscillations of particle in the absence of dissipation. Inserting Eq.(3.1) in Eq.

(3.3), we obtain the following equation of motion in 1-dimensional form.

d2y(t)
dt2

+ ω̃2
0y(t) = 1

mp

{
−FsU(t)− π− 1

2B
∫ t

0

dU

dτ
(t− τ)−

1
2 dτ −ma

dU

dt

− e (F1 −B)
∫ t

0

dU

dτ
erfc

[
(t− τ)

1
2
]
dτ

}
+ Fext(t)

mp

.

(3.4)

Making the changes,

y(t) = y,

U(t) = dy(t)
dt

= dy

dt
,

and
dU(t)
dt

= d2y

dt2
.

and taking Fext = A0 sin(ω̃ t) as the external periodic force having amplitude A0

and frequency ω̃, the Eq.(3.4) modifies to

d2y

dt2
+ ω̃2

0y + Fs
mp

dy

dt
+ π−

1
2B

mp

.
∫ t

0

d2y

dτ 2 (t− τ)−
1
2 dτ + ma

mp

d2y

dt2

+ e (F1 −B)
mp

∫ t

0

d2y

dτ 2 erfc
[
(t− τ)

1
2
]
dτ = A0 sin(ω̃ t)

mp

.

(3.5)

For the spheroid, it is found that

F1 = 6πµa
(πν)1/2 ,
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a2
11 = 6πµa

(πν)1/2 e
2
1

and

B = 4πµa (1 + e2)
(πν)1/2

 e

(1 + e2)
1
2
− 9

2ma

2  (2 + e2)
(1 + e2)

1
2

sinh−1
(1
e

)
− 1

 ,
where ν is the kinematic viscosity of the fluid. Assuming ρp and ρas the densities

of the solid spheroid and the fluid respectively, the mass of the spheroid, mp is
4
3πa

2bρp and the equivalent mass of the fluid displaced by the spheroid, ma is
4
3πa

2bρ. By taking, κ = ρp
ρ, we have

(κ+ 1) d
2y

dt2
+ 3

4
Fs
πa2bρ

dy

dt
+ 3

4
π−1/2B

πa2bρ

∫ t

0

d2y

dτ 2
dτ

(t− τ)1/2

+ 3
4
e (F1 −B)
πa2bρ

∫ t

0

d2y

dτ 2 erfc
[
(t− τ)

1
2
]
dτ + κω̃2

0y = A0 sin(ω̃t)
4
3πa

2bρ
.

(3.6)

By taking,

α = 12ee1

(1 + κ) ka

β = 9B1

2 (1 + κ) ka

γ = 9e
2 (1 + κ) ka

(
e2

1 −B1
)

A = 3A0aρ

4 (1 + κ) πµ2 ,

ω2
0 = κ

ω̃2
0a

3ρ2

(1 + κ)µ2 ,

and

ω = a2

ν
ω̃,

and non-dimensionalizing t by a2/ν and all lengths by a, the governing equation
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Eq.(3.6) reduces to

d2y

dt2
+ α

dy

dt
+ β

∫ t

0

d2y

dτ 2
dτ

(t− τ)1/2 + γ
∫ t

0

d2y

dτ 2 erfc
[
(t− τ)

1
2
]
dτ

+ ω2
0y − A sin(ωt) = 0.

(3.7)

The above integro-differential equation represents the motion of a periodically

driven spheroid in a viscous fluid at low Reynolds number, where α represents the

effect of the damping force, the integral containing β corresponds to the Basset

memory force and the second integral containing γ is the history force due to the

memory of the previous acceleration of the particle having kernels like t−1/2 and

an error function of t1/2.

3.3 Solutions and discussions

We attempt a trial solution to Eq.(3.7), similar to the classical one outlined

by Hassan et al. (2017). A simplest possible trial solution to the Eq.(3.7) can be

obtained in the form of

y(t) =R1 cos(ωt) +R2 sin(ωt)

=R(ω, ω0) cos(ωt− φ),

with initial values y0 = y(0) = 0 and v0 = ẏ(0) = 0. Applying Laplace trans-

formation techniques (for calculation of integrals terms in the governing equa-

tion see A.2 ), the amplitude, R(ω, ω0) and the fundamental phase, φ(ω, ω0)

of the trial solution are found using the identities R(ω, ω0) =
√
R2

1 +R2
2 and

φ(ω, ω0) = tan−1 (R2/R1), as

R(ω, ω0) = A√(
αω + γω + β ω

3
2

2

√
π
2

)2
+
(
ω2

0 − ω2 − β ω
3
2

2

√
π
2

)2
, (3.8a)
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φ(ω, ω0) = tan−1

− ω2
0 − ω2 − β ω

3
2

2

√
π
2

αω + γω + β ω
3
2

2

√
π
2

 . (3.8b)

Clearly, R(ω, ω0) and φ(ω, ω0) depend on the parameters, κ, ka and ω0. We char-

acterize oscillation properties of the spheroid by analysing the solutions at reso-

nance. To have solutions at resonance, amplitude and phase expressions given in

Eq.(3.8a) and Eq.(3.8b) are normalized using ω = nω0(i.e. at resonance). For the

conventional characterization, two quality factors, Qα, Qβ (Hassan et al. 2017;

Klepper and Kolenkow 2014) corresponding to the effect of damping force and

Basset memory term respectively are introduced by choosing Qα = ω0
α
, Qβ = 8ω0

πβ2

to proceed further. A third quality factor, Qγ representing the effect of second

history integral is newly proposed by taking Qγ = ω0
γ
. All the Q-actors are func-

tions of κ, ka, and ω0. The amplitude of the particle oscillation is also normalized

by choosing An = ω2
0

R
A(ω,ω0) . Hence, the expressions Eqs.(3.8a) and (3.8b) reduce

to the following for a given n.

An (Qα, Qβ, Qγ) = 1√(
n
Qα

+ n
Qγ

+ n
√

n
Qβ

)2
+
(

1− n2 − n
√

n
Qβ

)2
, (3.9a)

φ (Qα, Qβ, Qγ) = tan−1

− 1− n2 − n
√

n
Qβ

n
Qα

+ n
Qγ

+ n
√

n
Qβ

 , (3.9b)

To understand the dependencies of damping force, Basset memory term, and sec-

ond history integral on κ, ka, and ω0; all the Q-factors are graphed as a function

of the parameters. The graphs show that all the factors depend on the parameters

κ, ka, and ω0, and in particular the dependency is more on ka than κ, and ω0.

The typical plots of the Q-factors given in Fig.3.1(a-c) reveals that each factor

increases as the aspect ratio or/and density ratio or/and natural frequency in-

creases. Interestingly, Qβ values increases more rapidly than Qα and Qγ values,

whereas the Qγ increments are less compared to the values of Qα as the parameter
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values increase. In other words, the impact of Qβ, that is the influence of Basset

memory force on particle dynamics is high compared to the other two hydrody-

namic forces as the parameters varies as can be seen from Fig.3.1(d). The change

in Q-curves shows that all the hydrodynamic forces influence the dynamics of a

solid particle suspended in a viscous fluid. Most importantly, the role of the new

integral force in the transport of suspensions is not negligible at least in the case

of dynamics of particles of arbitrary shapes. We use trial solutions at resonance

for a detailed study of the transport phenomena

The resonance and phase curves representing the trial solutions are studied

by varying the parameters in the presence or/and absence of damping, Basset

memory, and second history forces to characterize its effect on oscillations. The

sample plot, Fig.3.2 showing the amplitude and phase variations reveals that

the new history force plays a significant role in particle dynamics in comparison

with the Basset memory force. It is also evident that the impact of damping on

particle dynamics is higher than the effect of the other two forces, whereas the

quality factor, Qα indicating damping force is less than the factor, Qβ representing

Basset memory force. In short, we find that all the three forces influence the

magnitude of the motion: the amplitude increases with the force of damping as

well as the second historical integral force, while the presence of Basset memory

decreases it. Notably, Basset force causes a phase-shift in oscillations, while the

other two forces have no effect on the phase. What follows is a detailed analysis

to substantiate these observations. The changes in amplitude and phase of the

oscillations of a prolate spheroid at the normalized frequency near 1 are plotted

in Fig.3.3 fot κ = 4, ω0 = 500, and ka = 2, 3, ..., 10. As the aspect ratio increases,

the amplitude increases from 75 to 400 units as can be seen from Fig.3.3a. At the

same time, the respective phases moves above for the value of n ≤ 1 and below

for the value of n ≥ 1 as shown in Fig. 3.3b. Similar amplitude variations and

phase-frequency shifts of different scales are observed as the free frequencies and

density ratios vary as evident from the Figs.3.4 and 3.5. One can notice from
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Figure 3.1: The surface plot of values of (a) Qα corresponds to damping force, (b) Qβ
corresponds to Basset memory integral, (c) Qγ corresponds to history integral force for
κ, ka, =1,2,3 ... 10, and ω0 =100, 500. Also, the line plot of values of (d) Qα, Qβ, and
Qγ for κ, ka varies from 1 to 10 in steps of 0.5.
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Figure 3.2: The plot of (a) amplitudes (b) phase oscillations of the trial solutions of
a spheroid motion for density ratio κ = 5, free frequency ω0 = 500 and aspect ratio
ka = 5 showing the effect of the damping force, the Basset memory force and the new
history integral force on particle motion
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Figure 3.3: The plot of (a) amplitudes (b) phase oscillations of a prolate spheroid for
density ratio κ = 4, free frequency ω0 = 500 and different aspect ratios ka = 2, 3, ..., 10
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Figure 3.4: The plot of (a) amplitudes (b) phase oscillations of a prolate spheroid for
density ratio κ = 4, aspect ratio ka = 2 and free frequencies ω0 = 100, 200, ..., 1000.
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Figure 3.5: The plot of (a) amplitudes (b) phase oscillations of a prolate spheroid for
free frequency ω0 = 500, aspect ratio ka = 2 and density ratios, κ = 1, 2, ..., 10.
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the Figs. 3.3, 3.4 and 3.5 that the amplitudes get multiplied many times in the

presence of the forces as the system parameter increases, whereas the resonant

curves change from n = 1 to the left of it for all values of the parameters. At the

same time, this shifting moves close to n = 1 and synchronizes with it for larger

values of the parameters. Interestingly, the upward phase-frequency shifting due

to the density-ratio variation is higher than that due to the change in aspect ratio

and free frequency values as can be seen from the Figs.3.3(b), 3.4(b) and 3.5(b).

The shifting due to the Basset memory force prevails even in the presence of

damping and second history integral term force as can be seen from the Figs.3.3,

3.4 and 3.5. By and large, these variations in phase shift are comparatively higher

for n ≤ 1 than that for n ≥ 1 as evident from Fig.3.5b. These findings propose the

possibility of reduction/enhancement and phase shifting of the resonance curves

by controlling the system parameters.

The above analysis pertains to the cases when all the three forces are accom-

modated for the study apart from the external periodic force. So, a comparison of

oscillations in the presence or/and absence of these forces is worth and may lead

to a wide range of phenomenal changes. The spheroid motion due to the effect of

the hydrodynamics forces are given in Figs.3.6 and 3.7 for some parameter values.

The Figs.3.6(a) and 3.7(a) depict that the amplitude curves of the oscillations

coincide each other and hence, the motion is not sensitive to aspect ratio as well

as to density ratio in the absence of the hydrodynamic forces. It is clear from the

Figs.3.6(b) and 3.7(b), that the amplitude variations due to the damping depend

on the aspect ratio and density ratio, whereas no change in phase values is ob-

served for the change in the parameters. There is a reduction in amplitude and a

shift in phase to the left side of n = 1, once Basset memory is introduced along

with the effect of the damping force as can be seen from the figures Figs.3.6(c)

and 3.7(c).
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Figure 3.6: The plot of amplitude oscillations of the dynamics in the presence of (a)
no hydrodynamic force (b) damping force alone (c) damping force and Basset memory
force, and (d) damping force, Basset memory force, and the new history integral term
together for ω0 = 500, κ = 4, and ka = 2, 5.
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Figure 3.7: The plot of amplitude oscillations of the dynamics in the presence of (a)
no hydrodynamic force (b) damping force (c) damping force and Basset memory force,
and (d) damping force, Basset memory force, and the new history integral term for
ω0 = 500, ka = 5, and κ = 4, 8.
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This means that change in shape suppresses the oscillations of non-spherical

particles due to Basset force. Interestingly, the introduction of the history integral

makes a further reduction in amplitude, but maintains the phase shift as evident

from the Figs.3.6(d) and 3.7(d). So, the influence of the newly identified history

force term on the amplitude of oscillations of spheroids cannot be ignored, unlike

spheres and slightly eccentric spheroids as reported earlier Hassan et al. (2017);

Singh and Kumar (2021).

3.4 Conclusion

Lawrence and Weinbaum (1986) have provided a general expression of the

hydrodynamic force for an unsteady stokes flow of an axisymmetric body in ar-

bitrary motion; then Abbad et al. (2006) have narrowed the derivation to the

specific case of a slightly eccentric spheroid. Hassan et al. (2017) have solved a

differential equation governing the dynamics of periodically forced bubbles/solid

particles of spherical shape; Singh and Kumar (2021) have derived the equation

of motion giving a perturbed solution of sphere constrained to one-dimensional

oscillations and solved the equation, where the motion is caused by a periodic

external force in the limiting case of a small Reynolds number. In this work,

we derive an equation of dynamics of periodically forced micro solid spheroids of

moderate aspect ratio in a viscous fluid at low Reynolds number under the action

of damping, Basset memory, and new history forces. This work provides exact

solutions to the dynamics of a spheroid of moderate aspect ratio, using fluid me-

chanic solutions. The trial solutions of the integrodifferential equation containing

the classical Q-factors are investigated at resonance. The results are validated by

comparing them with those derived by Hassan et al. (2017); Singh and Kumar

(2021) for the limiting case of spherical and near-spherical particles. We also study

the well-known Q-curves for a particle under an imposed oscillatory force, which

has some utility in terms of clarifying the role of the memory forces particularly
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about the phase relationship of the forced oscillations. Unlike the other works,

where a drift due to zero or very small eccentricity of spheroid causing no change

or negligible change in properties over time is noticed, the change in the Q-curves

observed in this problem of spheroid having moderate shape is significantly large

as can be seen from the figures. We observe that Qβ varies more rapidly than the

other two Q-values in response to the parameter changes. The newly introduced

factor, Qγ corresponding to the new history force depends on the particle aspect

ratio (ka), particle-fluid density ratio (κ) and the natural frequency (ω0) and also

plays a significant role in spheroid dynamics.

The qualitative changes in amplitude and phase shift due to the impact of

the damping force, the Basset memory force, and the new history integral are

investigated, characterized and compared. Amplitude changes are observed in

the presence of all the forces, whereas the shift changes are observed only due to

the Basset memory force. This study confirms the significance of second history

integral in particle transport as can be seen from the amplitude changes, espe-

cially when the particle is geometrically different from a sphere. We demonstrate

the role of the parameters ka, κ, and ω0 in modifying the Q-curves for a prolate

spheroid. The fact that analytic solutions are obtained for a physically realizable

system makes the work important for testing software developed for more realistic

situations. This study may give insight into the motion of particles under the ac-

tion of an oscillatory force field due to an acoustic standing wave and hence may

be of interest in the context of acoustic streaming. The novelty of the problem

strikes a reasonably good balance between complication and tractability. This

analysis is of some utility in terms of clarifying the role of the memory force par-

ticularly about the phase relationship of the forced oscillations. In This chapter,

we have studied the dynamics of an arbitrary spheroidal particle oscillating in a

viscous Newtonian fluid at low Reynolds numbers. In this chapter and previous

chapter we have analysed dynamics of particles in one dimensional system. The

rotational dynamics of particles in 3-dimensional system is also important. Since
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it play a major role in describing the rheological parameters of the fluid suspen-

sion. The Orientation dynamics of spheroids in quiescent flow will be presented

in the next chapter.
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Chapter 4

Dynamics of a periodically forced

spheroid in a quiescent fluid in

the limit of low Reynolds

numbers

4.1 Introduction

The study of the motion of micro dipolar particles in flows at low Reynolds

numbers is important in a variety of practical situations. There is a consider-

able interest in the transport of small particles in flows, since a large part of

the unsteadiness arises from the disturbance of velocity fluctuations. Hence the

unsteady hydrodynamic force in these flows must be considered for analyzing par-

ticle motion. The literature is vast in this area starting with the work of Basset

(1888b) who developed the expression for the hydrodynamic force acting on a

sphere moving in a quiescent fluid including the effects of unsteady inertia. Many

researchers have been studied the particle dynamics in linear flows in the absence

of external force Jeffrey (1922); Bretherton (1962b); Leal (1971); Brenner (1974)
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whereas many others Strand and Kim (1992); Ramamohan et al. (1994) have been

analysed the dynamics of suspension under the action of an external force. Mazur

and Bedeaux (1974) have generalized the Faxen’s theorem to non-steady motion

of a spherical particle in an arbitrary incompressible flow. Lawrence and Wein-

baum (1986) have studied the axisymmetric motion of a spheroid at low Reynolds

numbers. An analysis of axisymmetric flow surrounding a spheroid particle to the

the action of the force depending on the aspect ratio is pertinent in the history

of fluid analysis Lawrence and Weinbaum (1988). Lovalenti and Brady (1993b)

have summarized the literature prior to 1993 and also have derived an approxi-

mate expression for the hydrodynamic force acting on an arbitrary rigid particle

translating with the time dependent motion in a uniform time dependent flow

field including the effects of both unsteady and convective inertia at low Reynolds

numbers. Vojir and Michaelides (1994) have published a study on the effect of

Basset memory term on the motion of rigid sphere in a viscous fluid. Lawrence

and Weinbaum (1988) have explored the Navier-Stokes equations in linear form to

obtain expressions for the force acting on an arbitrary body. They deduced the re-

sults for a slightly eccentric spheroid and obtained the force expression containing

the four terms, namely Stokes drag, added mass, Basset force and a new memory

term due to the non-spherical shape of the particle, where the decay of the new

memory term is faster than that of Basset force at long time. Kumar et al. (1995)

have demonstrated the existence of chaos in the dynamics of periodically forced

bodies of spheroids moving in a simple shear flow in the limit of weak Brownian

motion. They have seen the existence of chaotic dynamics in certain paramet-

ric regions with the strong migration dependence of particles on its shape. This

strong dependence of spheroid dynamics on the particle aspect ratio is proposed

as a potential application for particle separation from fluid suspension, which is

very essential for the characterization of fluid suspensions used in industries. Ku-

mar and Ramamohan (1997) reported a new Class I intermittency near a tangent

bifurcation in the dynamics of a periodically forced spheroid suspended in simple
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shear flow in the limit of weak Brownian motion.

The group headed by Ramamohan pioneered the area of chaos in periodically

forced suspensions of particles in simple shear flow and the results are reported in a

number of articles (Ramamohan et al. (1994); Kumar et al. (1996); Radhakrishnan

and Ramamohan (2004)). The effect of an external periodic force on the dynamics

and rheology of slender rods in a sheared Newtonian fluid has been studied at

zero Reynolds number by Kumar and Ramamohan (1995) and, Radhakrishnan

and Ramamohan (2004). A review of the work carried out for over a decade, on

the dynamics and rheology of suspensions of orientable particles in simple shear

flow subject to an external periodic force has been published Asokan et al. (2005).

The effect of the eccentricity and the viscosity ratio on the oscillations of solid

and gaseous spheroids is investigated by Abbad et al. (2006). The properties of

an one dimensional transport along the major axis of a spheroid suspended in

a quiescent fluid under an external periodic force at very low Reynolds number

are also reported by Madhukar et al. (2010). They also proposed a technique

for separating particles from a fluid based on its dynamic dependence on the

shape of the particle. Magnaudet (2011) has derived different versions of the

reciprocal theorem presenting expression of force exerted on an arbitrary shaped

particle translating in an incompressible flow at a given Reynolds number. An

analytical investigation of effects of fluid and particle inertia on the dynamics

of axisymmetric spheroids in a simple shear fluid has been reported in the limit

of a very small Reynolds number and Stokes numbers by Dabade et al. (2016).

Recently Marath and Subramanian (2018a) have demonstrated the effect of fluid

and particle inertia on the dynamics of spheroid orientation in a planner-linear

flow.

In the present work, we extend the results given in Asokan et al. (2005) to the

regime of low Reynolds numbers including the effects of both fluid and particle

inertia. We derive the governing equations to study the effect of an arbitrary

external periodic force on the dynamics of an arbitrary shaped particle, following
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the formalism given by Lovalenti and Brady (1993b). This study of dynamics of

a rigid particle in a quiescent fluid at low Reynolds numbers with the inclusion

of inertia emanate an additional term in the governing equation that represents a

fading memory for the entire history of the motion. The memory term becomes

nonlinear on the introduction of convective inertia. The equations are numerically

solved for some parameters and the results are discussed in detail. The effect

of periodic force applies on a spheroidal particle in an arbitrary direction, the

hydrodynamic forces arise due to the disturbance of the velocity fluctuations and

the forces induce due to the non-spherical nature of the rigid body likely result

in a number of novel features, which may be utilized for the development of new

technologies.

4.2 Problem statement

The equation of a prolate spheroid in an arbitrary point x = (x, y, z) on it is

given by
x2

a2 + y2 + z2

b2 = 1, a > b

where a and b are polar and equatorial radii of spheroid respectively. The eccen-

tricity is defined as

e =
√
a2 − b2

a

and the aspect ratio ka is defined as a/b. Lovalenti and Brady (1993b) have

derived the expression for the required hydrodynamic force on an arbitrary shaped

particle, in the long time limit using Fourier transform and reciprocal theorem.

As developed by them, the expression for the force on a spheroid undergoing

an arbitrary time dependent motion at low Reynolds and Strouhal numbers is

obtained as a function of time, ′t′ in the form,

FH(t) =ReSlṼpu̇∞(t) + FH
s (t)− ReSl

[
6πΦ ·Φ ·Φ + lim

R→∞

(∫
Vf (R)

MT ·MdV − 9π
2 Φ ·ΦR

)]
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· u̇s(t) + 3
8

(ReSl
π

) 1
2
[∫ t

−∞

{
2
3FH‖

s (t)−
[

1
|A|2

(
π

1
2

2|A|erf(|A|)− exp(−|A|2)
)]

FH‖
s (s)

+2
3FH⊥

s (t)−
[

exp(−|A|2)− 1
2|A|2

(
π

1
2

2|A|erf(|A|)− exp(−|A|2)
)]

FH⊥
s (s)

}
2ds

(t− s) 3
2

]
·Φ

− Re lim
R→∞

∫
Vf (R)

(u0 · ∇u0 − us(t) · ∇u0) ·MdV + o(ReSl) + o(Re), (4.1)

where the first term of the equation is due to the accelerating reference frame,

the second term FH
s (t) is due to the pseudo-steady state Stokes drag force exerted

on the particle, the third is called the acceleration reaction term similar to the

added mass and the fourth term represents the unsteady Oseen correction which

replaces the Basset memory integral in the long time limit at a finite Reynolds

number. The last integral induces a force, normal to the direction of motion of

the particle called Lift force. In the above expression, Re represents the Reynolds

number indicating the magnitude of the convective inertia related to viscous force,

Sl denotes the Strouhal number which will be reduces to 1 in this analysis, M is

the second order tensor depending on the geometry of the particle and is defined

such that the vector M ·up is the Stokes velocity field with respect to the particle

traveling with velocity up and MT is the transpose of M. u0 is the steady Stokes

velocity field in a stationary fluid induced by the movement of the particle, u∞

is the velocity of the undisturbed flow with slip velocity us(t) = up(t) − u∞(t)

which tend to zero as it is away from particle. Vf (R) is the fluid volume bounded

by a spherical surface of radius R surrounding the suspended body and Vp is the

particle volume. Note that the expression given in Eq.(4.1) is derived in o(Re) and

o(ReSl), where the product ReSl measures the relative magnitude of the unsteady

inertia of the fluid. The Stokes resistance tensor Φ as the name suggests is an

opposing force to the motion of the particle. The dimensionless form of Stoke’s

resistance tensor for a prolate spheroid is given by Φ = 8
3ea, where e is the
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eccentricity of the spheroid and a is the diagonal matrix stated by

a11 = e2

−2e+ (1 + e2) log(1+e
1−e)

,

a22 = −2e2

−2e+ (1− 3e2) log(1+e
1−e)

,

a33 = a22,

and aij = 0 for i 6= j.

(4.2)

For convenience, we prefer the notations a11 = e1; a22 = a33 = e2. Lawrence and

Weinbaum (1988) have given a complex formulation for the axisymmetric motion

of a spheroid to compute unsteady Stoke’s field, but have failed to find solution

for regular perturbation. One can use the concept of Reciprocal theorem and the

idea of uniformly valid velocity field to find the unsteady Stoke’s correction to

pseudo-steady Stoke’s drag in the limiting case ReSl << 1. We investigate the

complex dynamics of a prolate spheroid suspended in a quiescent fluid under the

action of a periodic force applies to the body in an arbitrary direction. As a first

case, we discuss the dynamics of a prolate spheroid in the fluid at rest and hence

assume that u∞(t) = 0, which leads to u̇∞(t) = 0. Therefore the first term of

Eq.(4.1) becomes

T1 =ReSlṼpu̇∞(t)

=0.

As given by Lovalenti and Brady (1993b), the second term T2 = FH
s (t) can be

decomposed into two parts namely, FH‖
s (s) and FH⊥

s (s) parallel and perpendicular

vectors to the vector A. In their expressions,

FH‖
s = 6πus · pp and FH⊥ = 6πus · (δ − pp),
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where δ is the idem tensor of order 2, p is the unit vector along ys(t) − ys(s)

which is the integrated displacement of the particle relative to fluid from the past

time s to the current time t and A is given by the expression,

A = Re
2

(
t− s
ReSl

) 1
2
(

ys(t)− ys(s)
t− s

)
, (4.3)

which itself is parallel to the displacement vector ys(t)−ys(s). The pseudo-steady

state drag force acting on the suspended particle translating with slip velocity

us(t) can be written as

FH
s (t) = −6πΦ · us(t),

where 6πΦ is the Stokes resistance tensor. Hence we have,

FH(t)‖
s (s) =6π (Φ · us(s))

=6π (Φ · up(s)) .
and FH⊥

s (s) = (0, 0, 0) (4.4)

Representing the velocity, up of the particle exerted by the fluid as up = (ux, uy, uz),

we have,

T2 = −16πe (e1ux(s), e2uy(s), e2uz(s)) .

The acceleration reaction term is given by the third term, T3 on the right hand side

of Eq.(4.1). The equation for the velocity field of the fluid due to the translation of

a prolate spheroid is given by Pozrikidis (1992). Chwang (1975) have shown that

the velocity field induced by the translation of a prolate spheroid can be written

in terms of Stokes-lets, Gij and potential dipoles, Dij which are distributed over

the focal length of the spheroid with constant and parabolic densities as given

below:

vi(x) = ukakj

c∫
−c

[
Gij(x,x0)−

(
1− e2

2e2

)(
c2 − x2

0

)
Dij(x,x0)

]
dx0 (4.5)
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Here, uk is the velocity of the particle in the kth direction and a is the diago-

nal matrix given above. The Stokeslets, Gij and the potential doublet, Dij are

respectively given by

Gij(x,x0) = δij
|x− x0|

+ (x− x0)i(x− x0)j
|x− x0|3

(4.6a)

Dij(x,x0) = δij
|x− x0|3

− 3(x− x0)i(x− x0)j
|x− x0|5

(4.6b)

where, c2 = a2 − b2, e = c/a, 0 < e < 1, a is the major axis, b is the minor axis,

x0 is the arbitrary pole of the spheroid and x is the observation point. Now we

need to evaluate the integral expression

∫
Vf (R)

MT ·M dV (4.7)

over the volume of the fluid surrounding the particle, where M is the tensor

defined by vi = Mijuj. The above integral diverges as the radius of the fluid

sphere R, goes to infinity. However we found that the term

∫
Vf (R)

MT ·M dV − 9π
2 Φ ·ΦR (4.8)

converges to a finite value as R approaches infinity. Now, from Eqs.(4.5) and

(4.6), we can deduce the following:

M = (a ·H)T (4.9)

where

H =
∫ c

−c

[
Gij(x,x0)−

(
1− e2

2e2

)
(c2 − x2

0)Dij(x,x0)
]
dx0 (4.10)
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The integral given in Eq.(4.10) can be computed numerically using the expression

derived for M. The reason for the above choice is that we could accommodate a

larger number of data points, increasing the accuracy of the integral. Incorporat-

ing all these, the third term of the force reduces to

T3 =ReSlDiag(Ixx, Iyy, Izz) · u̇s

=ReSl [Ixxu̇x(t), Iyyu̇y(t), Izzu̇z(t)] ,
(4.11)

where the 3rd order diagonal matrix representing the expression within the square

brackets in the acceleration reaction term given in Eq.(4.11) is denoted by

Diag(Ixx, Iyy, Izz) (4.12)

The new history integral in the long time limit at finite Re is the forth term in
the force expression and is given by

T4 =3
8

(ReSl
π

) 1
2

 t∫
−∞

{
2
3FH‖

s (t)−
[

1
|A|2

(
π

1
2

2|A|erf(|A|)− exp(−|A|2)
)]

FH‖
s (s) + 2

3FH⊥
s (t)

−
[
exp(−|A|2)− 1

2|A|2

(
π

1
2

2|A|erf(|A|)− exp(−|A|2)
)]

FH⊥
s (s)

}
2ds

(t− s)
3
2

]
·Φ

=3
8

(ReSl
π

) 1
2

 t∫
0

{2
3 ×−16πe (e1ux(t), e2uy(t), e2uz(t))−

B × (−16)πe (e1ux(s), e2uy(s), e2uz(s))}
2ds

(t− s)
3
2

]
·Φ

=3
8

(ReSl
π

) 1
2

t∫
0

{
−256

9 πe2
(
e2

1ux(t), e2
2uy(t), e2

2uz(t)
)

+

128
3 πe2B

(
e2

1ux(s), e2
2uy(s), e2

2uz(s)
)} 2ds

(t− s)
3
2
,

(4.13)
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where

B = 1
|A|2

(
π 1

2
2|A|erf(|A|)− exp(−|A|2)

)
and FH⊥

s (s) = 0. (4.14)

As can be seen from the term T4, there is a singularity at s = t. In order to

avoid the singularity, we split the history integral into two integrals over the non-

overlapping intervals [0, t− ε] and (t− ε, t], where ε is arbitrary. The integrals are

denoted by T ′4 and T ′′4 respectively. Hence, we have

T ′4 =3
8

(
ReSl
π

) 1
2 {−512

9 πe2
(
e2

1ux(t), e2
2uy(t), e2

2uz(t)
)
× (−2)

(
t−

1
2 − ε−

1
2
)

+256
3 πe2

t−ε∫
0

B
(
e2

1ux(s), e2
2uy(s), e2

2uz(s)
) ds

(t− s) 3
2


=3

8

(
ReSl
π

) 1
2 {1024

9 πe2
(
e2

1ux(t), e2
2uy(t), e2

2uz(t)
) (
t−

1
2 − ε−

1
2
)

+256
3 πe2

t−ε∫
0

B
(
e2

1ux(s), e2
2uy(s), e2

2uz(s)
) ds

(t− s) 3
2

 .
(4.15)

We observe that the numerical integral converges to a finite value in the limiting

case of s→ t and hence the value of integral in the range (t−ε, t] can be neglected

by choosing ε very small. Numerical computation of the second integral also shows

that T ′′4 → 0 as ε → 0. Hence T4 = T ′4. The next task is the evaluation of the

lift force given by the 5th term of the force equation. We need to integrate the

following expression T5, for computing the lift force.

T5 = lim
R→∞

∫
Vf (R)

(u0 ·∆u0 − us(t) ·∆u0)M dV. (4.16)

where the expressions for M, us are given earlier. The initial velocity, u0 of the

fluid is to be found out. Since the flow under consideration is a quiescent fluid

medium, we have u∞(t) = (0, 0, 0) and thus, us(t) = up(t). Also by definition,

88



u0 = M · us(t). Thus, the required expression for the lift force, say, the vector

L = (L1, L2, L3) can be evaluated separately.

Introducing all these simplifications, the expression given in Eq.(4.1) for the

hydrodynamic force deduces to,

FH(t) =− 16πe (e1ux(t), e2uy(t), e2uz(t))− ReSl (Ixxu̇x(t), Iyyu̇y(t), Izzu̇z(t)) +

3
8

(
ReSl
π

) 1
2 {1024

9 πe2
(
e2

1ux(t), e2
2uy(t), e2

2uz(t)
) (
t−

1
2 − ε−

1
2
)

+256
3 πe2

t−ε∫
0

B
(
e2

1ux(s), e2
2uy(s), e2

2uz(s)
) ds

(t− s) 3
2

− Re (L1, L2, L3) .

(4.17)

The Eq.(4.17) represents the hydrodynamic force induced on a neutrally buoyant

spheroid in an infinite body of quiescent fluid. In addition to the hydrodynamic

force given in Eq.(4.17), we assume that there is an external periodic force denoted

by Fext acting on the spheroid. Following the Newton’s law of motion, the equation

of motion for neutrally buoyant particle immersed in a Newtonian fluid under the

effect of the external periodic force in dimensionless form is given by

mpu̇p(t)
µa2ω

= FH(t) + Fext(t) (4.18)

and the displacement of the particle yp(t) = (yx(t), yy(t), yz(t)) can be evaluated

from
dyp(t)
dt

= up(t),

where up(t) = (ux(t), uy(t), uz(t)) . Taking, Fext = (F1, F2, F3) sin(t), (4.18) can

be written as

dux(t)
dt

= 1
C1Re

F1 sin(t)− 16πee1ux(t)−
3
8

(
ReSl
π

) 1
2

(P1 +Q1)− ReL1

 (4.19a)
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duy(t)
dt

= 1
C2Re

F2 sin(t)− 16πee2uy(t)−
3
8

(
ReSl
π

) 1
2

(P2 +Q2)− ReL2

 (4.19b)

duz(t)
dt

= 1
C3Re

F3 sin(t)− 16πee2uz(t)−
3
8

(
ReSl
π

) 1
2

(P3 +Q3)− ReL3

 (4.19c)

dyx(t)
dt

= ux(t),
dyy(t)
dt

= uy(t),
dyz(t)
dt

= uz(t). (4.20)

where

C1 = 4π
3

(
b

a

)2

+ SlIxx C2 = 4π
3

(
b

a

)2

+ SlIyy C3 = 4π
3

(
b

a

)2

+ SlIzz

P1 = 256πe2

3

t−ε∫
0

Be2
1ux(s) (t− s)−

3
2 ds P2 = 256πe2

3

t−ε∫
0

Be2
2uy(s) (t− s)−

3
2 ds

P3 = 256πe2

3

t−ε∫
0

Be2
2uz(s) (t− s)−

3
2 ds Q1 = 1024

9 πe2e2
1ux(t)

(
t−1/2 − ε−1/2

)

Q2 = 1024
9 πe2e2

2uy(t)
(
t−1/2 − ε−1/2

)
Q3 = 1024

9 πe2e2
2uz(t)

(
t−1/2 − ε−1/2

)
.

and the time t has been scaled with respect to the frequency of the external

periodic force.

The validity of the Eqs.(4.19) and (4.20) governing the dynamics of a spheroid

is verified in two ways. The effect of both convective and unsteady inertia on the

dynamics of a dilute suspension of periodically forced neutrally buoyant spherical

particles in a quiescent Newtonian fluid at low Reynolds numbers has been studied

by Ramamohan et al. (2011), where they have considered external force along

the direction of the x-axis. Since the external force has been applied along the

direction of transport of the sphere, the lift force on it has been vanished. It is

verified that the Eqs.(4.19) and (4.20) analytically deduces to the equations given

by them on choosing ka = 1 which corresponds to a sphere, and L = 0 which
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means no lift force experiences. Secondly it is demonstrated that the Eqs.(4.19)

and (4.20) reduces to the equations derived by Madhukar et al. (2010) who have

demonstrated the dynamics of a spheroid in a quiescent fluid at low Reynolds

number on restricting the external force along the x component alone. In both

cases, the numerical computation of lift force shows that it is negligibly small for

a movement of a sphere and spheroid under the action of a force along x direction.

It is numerically verified that the results obtained in the our analysis is in good

agreement with the work of Madhukar et al. (2010).

4.3 Results and discussion

After obtaining all the necessary expressions and values for different aspect

ratios, we proceed to solve the more general set of ODEs given in Eqs.(4.19) and

(4.20) for different sets of parameters. We should note the following facts about

the differential equation. It is evident from the equations that the system of dif-

ferential equations is nonlinear and contains a history term of all the past values

of the position, yp(t) and the corresponding velocity, up(t) and hence impossi-

ble to solve symbolically. As an alternative, it has to be simulated numerically

for further analysis. A spherical coordinate system is suggested for evaluating

the integral numerically. A set of codes in MATLAB is written to compute the

expressions involved in the equations and to solve the final set of differential equa-

tions. As a first case, we consider forces F = F1 = F2 = F3 and the numerical

computation of the lift force shows that its effect on the transport of particles is

in the order of o(10−10) and hence ignored for the present analysis. The position,

yp(t) and velocity, up(t) are computed from the ODE’s as a function of time.

To understand the long time behavior of the system, we plot the position and

velocity trajectories after removing the transient dynamics, where all trajectories

are computed assuming the initial position of the spheroid as yp = (0, 0, 0). For a

preliminary analysis, plots are generated from the simulation for different sets of
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parameters ka, Re and F . The aspect ratio ka is varied over the range 1 ≤ ka ≤ 10

in steps of 1, where as the external force F and the Reynolds number Re are varied

over the ranges 0 ≤ F ≤ 4.0 and 0 ≤ Re ≤ 0.5 in steps 0.5 and 0.05 respectively.

A set of typical plots showing the oscillations of x-component of attractors of po-

sition and the corresponding velocity of migration of the spheroid, unveiling the

variation on amplitude, and phase shift as a function of ka, F and Re are shown in

Figs.4.1-4.3 respectively. The dependence of position and velocity of migration

of spheroids on particle size is evident from the Fig.4.1. The particles are settled

in different positions for a given time with different velocities for different aspect

ratios, as can be seen from the Fig.4.1. The position and velocity oscillate with

almost equal wave length for different aspect ratios, whereas the amplitude of the

oscillations changes as the aspect ratio changes. Interestingly, the maximum am-

plitude of both the oscillations increases as the particle size increases as evident

from Figs 4.1 and 4.5(a). Similar variations are observed in the oscillation of posi-

tion and velocity on varying the external force, keeping the other two parameters

ka and Re same, as can be seen from the Figs.4.2 and 4.5(b). It is evident from

Figs.4.1 and 4.2 that the size of the attractor of position and velocity of spheroid

dynamics increases in the long run on increasing the particle aspect ratio or/and

external force. This variation of oscillations observed on the aspect ratio or/and

external force demonstrates a strong dependence of solution on external force and

aspect ratio. As the amplitude of the periodic force increases, the particle also

oscillates with greater amplitude, covering greater surface area in the attractor

plot as revealed from the Fig.4.2. On the other hand, it is observed that the size

of the attractor of position and velocity shrinks as the Reynolds number increases

as can be seen from the typical plot, Fig.4.3 showing the variation of attractor

size for different Re values. As the parameter Re, increases the position and ve-

locity waves oscillate with the almost same period, whereas the amplitude of both

waves slowly decreases as observed from Figs.4.3 and 4.5(c). This shows how the

inertia slows down the migration of a spheroid particle having the same size under
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Figure 4.1: The time series plots of x-component of position and velocity showing
amplitude, phase changes and characteristic frequency for Re = 0.05, F = 0.05 and
different values of ka. 93
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Figure 4.2: The time series plots of x-component of position and velocity showing
amplitude, phase changes and characteristic frequency for Re = 0.05, ka = 10 and
different values of F. 94
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Figure 4.3: The time series plots of x-component of position and velocity showing
amplitude, phase changes and characteristic frequency for F = 0.05, ka = 6 and different
values of Re.
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Figure 4.4: The phase space plot of position, velocity and time plotted for the evolution
of the dynamics for F = 0.5, ka = 10 and different values of Reynolds number.

96



(a) Re = 0.05 and F = 0.05.

(b) Re = 0.05 and ka = 10.

(c) ka = 10 and F = 0.5.

Figure 4.5: The plot of maximum amplitude of position and velocity as a function of
(a) ka, (b)force amplitude F , and (c) Reynolds numbers,Re.
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the action of the same external force amplitude. As Re increases, the resistance

to change in motion increases and as a result the attractor size diminishes. This

decrement in size of the oscillations is happened due to the influence of increase of

inertia, where the Reynolds number stands for a measure of particle inertia. The

observation can be again confirmed from the phase space plot of x components

of position and velocity given in Fig.4.4 as a function of time for different values

of Re. The decrement of area of reach of the phase space plot on increment of Re

is dominantly seen in Fig.4.4. The change in attractor size also demonstrates the

strong dependence of dynamics on Re.

As explained above, the movement of particle decreases as the inertia increases,

whereas the movement can be accelerated by increasing the external force or/and

particle size. Fig.4.5 (a) and (b) depict that the maximum amplitude of posi-

tion and velocity increases non-linearly as the aspect ratio increases, whereas it

increases linearly as the external force increases. Also, note that the maximum

amplitude of position and velocity coincides for every choice of aspect ratio or ex-

ternal force as can be seen in Fig.4.5(a) and (b). The nonlinear change observed

in Fig.4.5(a), shows that the migration of non-spherical particles is more complex

than spherical particles. This manifests that the geometrical deviations of sus-

pended particle from its spherical shape accelerate the complexity of the particle

dynamics. If there is a proportional increase in amplitude with the external force

then it is still a linear phenomenon as can be observed from the Fig.4.5(b). Also,

the maximum amplitude of both position and velocity vary non linearly as the

Reynolds numbers vary and the numbers representing resistance bring additional

complexity in the dynamics as evident from Fig. 4.5(c). If, however, the change

in amplitude is not proportional to increase in Re, that will be a nonlinear effect

which can be attributed to nonlinear inertial terms. If the mean position of the

variation in position is not zero that deviation from zero can be attributed to

inertia, since in Stokes flow, the mean position of the oscillation will be zero. The

deviation of the mean position from zero should be in the direction of the first
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motion of the particle, namely, dependent on the sign of the external force. This

is so since the direction of the first motion will be determined by the sign, which

is already demonstrated by Madhukar et al. (2010). Interestingly, the inertia

brings down the velocity oscillations compare to the position oscillations as can

be summarized from Fig.4.5(c). The particle exhibits larger particle oscillations as

the external force/ aspect ratio increases and smaller oscillations as the Reynolds

number increases, as evident from Figs.4.1-4.4 and also from Fig.4.5.

In short, significant differences in the behavior of the particle migration can

be found from the Figs.4.1-4.4. Since the dynamics is very sensitive to shape of

the particle, inertia and the external force, particle separation of different shapes

of similar spheroids is possible. From the Fig.4.1-4.3 a shifting of the velocity

series compared to its position series is observed for the choice of any set of the

controlling parameters. The external field causes migration of particles due to

internal velocity is high, which resulted in a delay of movement of particles. We

believe that the shift is due to the fact that in the absence of inertia, the time at

which the velocity reaches its maximum, the position is at its minimum and when

the particle experiences its maximum deviation the velocity is at its minimum.

The variation of position is almost sinusoidal in nature and hence if we assume that

the position variation is sinusoidal the velocity which is its derivative with respect

to time will also be sinusoidal with a phase shift of π/2. The shift of nearly π/2 in

the velocity variation with respect to the position variation is clearly evident from

the plots given in Figs.4.1 to 4.3. Inertia should change this to a larger extent at

higher values of Reynolds numbers. The net migration at zero Reynolds number

will be negligible and should increase with the increase in the number. Also, if we

replace the external force with negative of it, the direction of the net migration

is also reverse. Hence, the dynamics of the particles of different shapes at low

Reynods number are numerically demonstrated. The change in ka and Re brings

nonlinear changes, whereas and the change in amplitude of external force brings

linear changes in the maximum amplitude of oscillations of the particles in its
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position and velocity as observed in Fig.4.5.

4.4 Conclusion

The dynamics dependencies of particles on the parameters are evident in this

analysis, which can be used for separating particles of different shape with similar

sizes. This chapter has analysed the numerical simulations of the dynamics of rigid

spheroid suspensions in quiescent Newtonian fluid as a function of aspect ratio,

external force amplitude, and Reynolds number. In this work, we have observed

some fundamentally important properties of suspensions in a fluid at rest. We

extend this work to an oscillating flow field as explained in the next chapter.
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Chapter 5

Dynamics of forced particles in

an oscillating flow at low

Reynolds numbers

5.1 Introduction

The dynamics of suspended particles is significant in many industries such as

oil recovery and refinery, printing and paper-making, pharmaceuticals, food pro-

cessing and so on. The study of suspension rheology leads to insights that may

lead to better control of fluid stress deformation behaviour and may lead to appro-

priate changes in processing technologies. In most situations, the dynamics of the

particles are very sensitive to the orientation distribution of the suspended parti-

cles due to the irregular and non-spherical shape of the particles. The motion of

non-spherical particles in a shear flow at vanishingly small Reynolds numbers has

been studied theoretically for a long time and is summarized by Singh and Kumar

(2021). It has been known, since the work of (Jeffrey 1922) at zero Reynolds num-

bers that in the absence of inertia, an axisymmetric particle in a simple shear flow

rotates periodically in one of an infinite single-parameter family of closed ’Jeffery’
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orbits. In the absence of hydrodynamic interactions, Brownian motion, etc., the

particular orbit followed by the particle depends on the initial conditions, render-

ing the inertia-less limit indeterminate. Later it is substantiated by Bretherton

(1962b). Nilsen and Andersson (2013) have investigated the chaotic behaviour of

particle dynamics of a spheroid with strong inertia for the large Stokes numbers.

They have observed that the chaos has occurred only for Stokes’s number larger

than certain critical number. Li and Sarkar (2005) have done a numerical simu-

lation of dynamics of a drop in an oscillating extensional flow at finite Reynolds

numbers. They have studied the effect of inertia on rheology of dropes and peri-

odic forcing at low, but finite inertia. In this work we have study the dynamics

in an oscillating flow, in the presence of inertial terms.

5.2 Formulation and methodology

The general expression of hydrodynamic force on a rigid particle suspended in

a time-dependent Newtonian fluid developed by Lovalenti and Brady (1993b) is

given as (See Eq.(1.11) in chapter1)

FH(t) =ReSlṼ pu̇∞(t) + FH
s (t)−

ReSl
[
6πΦ ·Φ ·Φ + lim

R→∞

(∫
Vf (R)

MT ·MdV − 9π
2 Φ ·ΦR

)]
· u̇s(t)+

3
8

(
ReSl
π

) 1
2
∫ t

−∞

2
3F

H‖
s (t)−

 1
|A|2

 π
1
2

2|A|erf(|A|)− exp(−|A|2)
FH‖

s (s)

+2
3F

H⊥
s (t)−

exp(−|A|2)− 1
2|A|2

 π
1
2

2|A|erf(|A|)− exp(−|A|2)


FH⊥
s (s)} 2ds

(t− s) 3
2

]
·Φ

− Re lim
R→∞

∫
Vf (R)

(u0 · ∇u0− us(t) · ∇u0) ·MdV + o(ReSl) + o(Re)

(5.1)
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We assume that fluid flow far from the particle (u∞ (t)) with unsteady uniform

velocity field is u∞(t) = (u∞(t), v∞(t), w∞(t)). Also, we assume that the velocity

of the particle up(t) = (up(t), vp(t), wp(t)) exerted by the fluid on the particle

is in the direction of the vector A, which itself is parallel to the displacement

vector ys(t) − ys(s) as given earlier. Therefore, the slip velocity of the fluid is

given by us(t) = up(t) − u∞(t). All velocities us(t),up(t) and u∞(t) are non-

dimensionalized by the characteristic velocity Uc and the acceleration (i.e., by

Uc/τc), and all length dimensions non-dimensionalized by a. Here, a and Uc are

the characteristic particle dimension and the slip velocity of particle and hence

the characteristic timescale is defined as τc = a/Uc. The Stokes resistance ten-

sor associated with the particle is 6πΦ and hence the pseudo-steady state drag

force, acting on the suspended particle translating with slip velocity us is given

by, FH
s (t)(t) = −6πΦ·us(t). The second order tensor Φ = 8e

3 a, where e is the

eccentricity of prolate spheroid and a is a diagonal matrix defined by

a11 = e2

−2e+ (1 + e2) log(1+e
1−e)

(5.2a)

a22 = −2e2

−2e+ (1− 3e2) log(1+e
1−e)

(5.2b)

a33 = a22, (5.2c)

and aij = 0 for i 6= j. (5.2d)

The first term on the right side of the Eq. (5.1) is due to an accelerating frame of

reference translating with the particle, and the second term is the pseudo-steady

Stokes drag (Stokes’s force). The third one is the unsteady Oseen correction to

the hydrodynamic force. It is a history integral that replaces the Basset memory

term, and the fourth term is an acceleration reaction term. The last integral
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term is the contribution of a force orthogonal to the direction of particle velocity,

called ‘lift force’. In their expression, the pseudo-Stokes force FH
s can be split into

parallel and perpendicular components to the displacement vector. The parallel

and perpendicular components of pseudo-Stokes force can be given respectively

by

FH‖
s (t) = 6πus · pp,

and

FH⊥
s (t) = 6πus · (δ − pp).

Where δ is the idem tensor of order 2 and p is the unit vector given by

p = ys(t)− ys(s)
|ys(t)− ys(s)|

(5.3)

where ys(t)−ys(s) is the integrated displacement of the particle relative to fluid

from time s to the current time t and A has been defined as

A = Re
2

(
t− s
ReSl

) 1
2
(

ys(t)− ys(s)
t− s

)
(5.4)

We consider the motion of a spheroid moving along the major (polar radius) axis

of the body suspended in an oscillating flow. An arbitrary point, (x, y, z) on the

surface of the spheroid having major axis, 2a and minor (equatorial radius) axis,

2b satisfies the expression,
x2

a2 + y2 + z2

b2 = 1. (5.5)

There are three cases, say a < b for an oblate spheroid; and a > b for a prolate

spheroid; and a = b for a sphere, where ka = b/a is the aspect ratio of the particle.

In this analysis, we consider the motion of a prolate spheroid (i.e., ka < 1 whose

eccentricity is

e =
√
a2 − b2

a2 .

104



The dominant hydrodynamic forces induced on a spheroid suspended in a fluid

are (a) a downward force due to gravity, (b) an upward buoyant force, and (c)

the hydrodynamic force FH due to the disturbance of the fluid flow in the vicinity

of the particle and (d) the applied external force Fext. Using these the respective

governing equation can be deriveed as done in chapter 4.

5.2.1 Governing equations for the problem

From the expression given for the hydrodynamic force, we solve the two inte-

gral terms, i.e. the acceleration term and the lift force. Incorporating all these

simplifications, we get the expression for the hydrodynamic force exerted by the

fluid on the particle as

FH(t) =ReSl
(
Ṽ pu̇∞ + (Ixx, Iyy, Izz) · u̇∞

)
− 16πe (e1us(t), e2vs(s), e3ws(t))

− ReSl (Ixxu̇p(t), Iyyv̇p(t), Izzẇp(t)) + 3
8

(
ReSl
π

) 1
2

{1024
9 πe2

(
e2

1us(t), e2
2vs(t), e2

3ws(t)
) (
t−

1
2 − ε−

1
2
)

+256
3 πe2

t−ε∫
0

B
(
e2

1us(s), e2
2vs(s), e2

3ws(s)
) 2ds

(t− s) 3
2


− Re (L1, L2, L3) (5.6)

where L1, L2, L3 are the components of the lift force

lim
R→∞

∫
vf

(u0 ·∆u0 − us(t) ·∆u0) ·MdV (5.7)

From the numerical simulations, we note that the lift force contributes a force

only in the perpendicular direction. We found and numerically verified that it is

very small and amounts to O(10−8), in this case. The expression for M is known
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in the literature, whereas we need to find out expression for u0 and us(t). us(t)

is the slip velocity and is given by us(t) = up(t)−u∞(t). The expression for B is

given as

B = 1
|A|2

(
π 1

2
2|A|erf(|A|)− exp(−|A|2)

)
. (5.8)

It is assumed that the external periodic force Fext = (F1 sin(t), F2 sin(t), F3 sin(t))

is dimensionless, where time has been scaled with τc(= a/Uc). The characteristic

velocity Uc is assumed to be aω1, where ω1 is the frequency of the external periodic

force. We use expression (5.6) for FH to obtain the governing equations of the

motion of a prolate spheroid in the fluid, starting with zero velocity at t = 0. Let

us = (up, vp, 0) − (u∞ sin(ωt), v∞ sin(ωt), 0) and is scaled by Uc = aω1, the size

of particle and frequency of external force ω1. The yp(t)(= (x, y, z)) denotes the

displacement vector and up(t) is the velocity vector of the particle.

Let Fext denote the external force acting on the particle, and hence the effective

force is FH(t)+Fext(t). The governing equations of motion for a suspended prolate

spheroid in an oscillating Newtonian fluid under the effect of a periodic external

force are formulated as,

mpu̇p = FH(t) + Fext(t). (5.9)

In dimensionless form the above equations reduced to

mpu̇p
µa2/Uc

= FH(t) + Fext(t). (5.10)

The above expression are substituted in Eq.(5.10) and are simplified. The set of

IDEs modeled for up(t) along with

dyp(t)
dt

= up
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are

dup(t)
dt

= 1
C1Re

[
F1 sin(t) + ReSl

(4
3πα

2 + Ixx

)
u∞ω cos(ωt)

−16πee1us(t)−
3
8(P1 +Q1)− ReL1

]
(5.11a)

dx(t)
dt

=up(t) (5.11b)

dvp(t)
dt

= 1
C1Re

[
F1 sin(t) + ReSl

(4
3πα

2 + Iyy

)
v∞ω cos(ωt)

−16πee2vs(t)−
3
8(P2 +Q2)− ReL2

]
(5.11c)

dy(t)
dt

=vp(t) (5.11d)

dwp(t)
dt

= 1
C1Re

[
F1 sin(t) + ReSl

(4
3πα

2 + Izz

)
w∞ω cos(ωt)

−16πee2ws(t)−
3
8(P3 +Q3)− ReL3

]
(5.11e)

dz(t)
dt

=wp(t), (5.11f)

where,

C1 =4π
3

(
b

a

)2

+ SlIxx,

C2 =4π
3

(
b

a

)2

+ SlIyy,

C3 =4π
3

(
b

a

)2

+ SlIzz,

P1 =256πe2

3

t−ε∫
0

Be2
1us(s) (t− s)−

3
2 ds,
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P2 =256πe2

3

t−ε∫
0

Be2
2vs(s) (t− s)−

3
2 ds,

P3 =256πe2

3

t−ε∫
0

Be2
2ws(s) (t− s)−

3
2 ds,

Q1 =1024
9 πe2e2

1us(t)
(
t−1/2 − ε−1/2

)
,

Q2 =1024
9 πe2e2

2vsy(t)
(
t−1/2 − ε−1/2

)
,

Q3 =1024
9 πe2e2

2ws(t)
(
t−1/2 − ε−1/2

)
.

The lift force is numerically computed using the expression in Eq.(5.7). The

acceleration reaction term (Ixx, Iyy, Izz) is computed using the expression given by

Pozrikidis (1992); Chwang (1975). After calculating all necessary expressions and

values for different parameters, we solve the more general set of the equation given

above. We solve the equations using a finite difference method. These results are

validated by perturbation analysis as explained in next section 5.3.

5.3 Numerical simulation of the dynamics

The integro-differential equations are solved numerically using one step finite-

difference routine. In order to accommodate the nonlinear integral term, the

trapezoidal product rule was implemented. We select the value of ε as 1 × 10−4.

The set of 20000 data points with the time step δt = 0.0001 in both the character-

istic position and velocity is generated using a MATLAB code. Further decrease

in time step and increase in resolution did not yield any significant changes in the

results and hence we use these values for all computations.
The perturbed solutions are used to validate the study investigated in this
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paper. The perturbed solutions are found by the Taylor series expansions for non-
linear integral terms obtained in the governing equations. We use the Reynolds
number Re as the perturbation parameter. Note that the hydrodynamic force ex-
pression for an arbitrarily shaped particle given by Lovalenti and Brady (1993b)
is valid up to O(Re). The numerical solutions are compared with the perturbed
solution of the system of equations (5.11) along with (5.12). The perturbed so-
lutions of the equations (5.11) are given (for more details see Nayfeh (1981)) by

x(t) = −F1

256π2e2e2
1 + C1

2Re2

[
16πe e1 cos(t) + C1Re

(
sin(t) + C1Re

16πe e1
exp

(−16πe e1
C1Re t

))]
+ F1

16πe e1
+ 16πe e1u∞

256π2e2e2
1 + ω2C1

2Re2

[−16πe e1
ω

cos(ωt) + ω (2πReSl − C1Re)(sin(ωt)
ω

+ ReC1
16πe e1

exp
(−16πe e1

ReC1
t

))]
+ u∞ωRe2C1

2Sl cos(ωt)
256π2e2e2

1 + ω2C1
2Re2 + u∞

ω

(5.13a)

y(t) = −F2

256π2e2e22 + C2
2Re2

[
16πe e2 cos(t) + C2Re

(
sin(t) + C2Re

16πe e2
exp

(−16πe e2
C2Re t

))]
+ F2

16πe e2
+ 16πe e2v∞

256π2e2e22 + ω2C2
2Re2

[−16πe e2
ω

cos(ωt) + ω (2πReSl − C2Re)(sin(ωt)
ω

ReC2
16πe e2

exp
(−16πe e2

ReC2
t

))]
+ v∞ωRe2C2

2Sl cos(ωt)
256π2e2e22 + ω2C2

2Re2 + v∞
ω

(5.13b)

z(t) = −F3

256π2e2e22 + C3
2Re2

[
16πe e2 cos(t) + C3Re

(
sin(t) + C3Re

16πe e2
exp

(−16πe e2
C3Re t

))]
+ F3

16πe e2
+ 16πe e2w∞

256π2e2e22 + ω2C3
2Re2

[−16πe e2
ω

cos(ωt) + ω (2πReSl − C3Re)(sin(ωt)
ω

+ ReC3
16πe e2

exp
(−16πe e2

ReC3
t

))]
+ w∞ωRe2C3

2Sl cos(ωt)
256π2e2e22 + ω2C3

2Re2 + w∞
ω

(5.13c)
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up(t) = F1

256π2e2e2
1 + C1

2Re2

[
16πee1 sin(t) + C1Re

(
exp

(−16πee1
C1Re t

)
− cos(t)

)]
+ 16πee1u∞

256π2e2e2
1 + ω2C1

2Re2 [16πe e1 sin(ωt) + ω (2πReSl − C1Re) (cos(ωt)−

exp
(−16πe e1

C1Re t

))]
+ ω2Re2SlC1

2 sin(ωt)u∞
256π2e2e2

1 + ω2C1
2Re2 (5.14a)

vp(t) = F2

256π2e2e2
2 + C2

2Re2

[
16πee2 sin(t) + C2Re

(
exp

(−16πee2
C2Re t

)
− cos(t)

)]
+ 16πee2v∞

256π2e2e22 + ω2C2
2Re2 [16πe e2 sin(ωt) + ω (2πReSl − C2Re) (cos(ωt)−

exp
(−16πe e2

C2Re t

))]
+ ω2Re2SlC2

2 sin(ωt)v∞
256π2e2e2

2 + ω2C2
2Re2 (5.14b)

wp(t) = F3

256π2e2e2
2 + C3

2Re2

[
16πee2 sin(t) + C3Re

(
exp

(−16πee2
C3Re t

)
− cos(t)

)]
+ 16πee2w∞

256π2e2e22 + ω2C3
2Re2 [16πe e2 sin(ωt) + ω (2πReSl − C3Re) (cos(ωt)−

exp
(−16πe e2

C3Re t

))]
+ ω2Re2SlC3

2 sin(ωt)w∞
256π2e2e2

2 + ω2C3
2Re2 . (5.14c)

5.4 Results and discussion

The time series variations in positions and velocity are plotted in the figures 5.1

and 5.2 for the aspect ratios 2,4,6,8,10, RF = 0.5 and Re=0.1 and ω = .2. These

graphs reveal that there are significant increases in the amplitude of position,

whereas only very small increments in the amplitude of velocity are noticed. This

shows the response of the motion to the change in aspect ratio ka. Also, the phase

variations of oscillations are given in figure 5.3a (a) for the aspect ratios 2,4,6,8,

(b) for the Reynolds numbers 0.02, 0.04, 0.06, 0.08, where RF = 0.5 and Re = 0.1

and ω = 0.2. This graph shows the variations in phase with respect to the change

in aspect ratio of the spheroid and the Reynolds number is significant.

The variations of the amplitudes of position and velocity are investigated for
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Figure 5.1: The plots showing the variation of x- and y-components of position time
series with respect to aspect ratio ka for Re = 0.1, RF = 0.5 and ω = 0.2.
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Figure 5.2: Plots showing the variation of x- and y-components of velocity time series
with respect to aspect ratio ka for Re = 0.1, RF = 0.5 and ω = 0.2.
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Figure 5.3: The phase plots drawn for RF = 0.5, ω = 0.2, (a) Re = 0.1, and ka = 2, 4, 6,
and 8, (b) ka = 6, and Re = 0.02, 0.04, 0.06 and 0.08.113
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Figure 5.4: The plots showing the variation of x- and y-components of position time
series for different values of Re, where ka = 6, RF = 0.5 and ω = 0.2.
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Figure 5.5: The plots showing the variation of x- and y-components of position time
series for different amplitude of external force RF , where Re = 0.1, ka = 6 and ω = 0.2.
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different Reynolds numbers ranging from 0.01 to 0.1. The phase changes and am-

plitude of positions for different Reynolds number (Re = 0.02, 0.04, 0.06, 0.08, 0.10)

for a given aspect ratio of (ka) 6, external force’s amplitude (RF ) of 0.50 and

frequency of fluid oscillations (ω) of 0.2 are shown in figures 5.3b and 5.4, re-

spectively. The results show that the increments in amplitudes of position for

prolate spheroid considered in the analysis are very small as the Reynolds number

increases. The influence in the phase of the particle is negligible as the Reynolds

number increases and attain regular orbits as depicted in figure 5.3b.

The influence of amplitude of the external force on the amplitude of position

is demonstrated in the time series given in the figure 5.5 for the aspect ratio of

ka = 6, fluid oscillation’s frequency of ω = 0.2 and Reynolds number of Re = 0.1

for different values of the amplitude of external force. It is substantiated from

the analysis that the eternal force has a significant effect on the dynamics of the

spheroid.

5.5 Conclusions

In this chapter, equations governing the dynamics and analysis of numerical

solutions are carried out to determine the dynamical characteristic of a suspended

prolate spheroid in an oscillating fluid at a low Reynolds number. The influence

of Reynolds number, aspect ratio, the amplitude of external force on the motion

of the particles is investigated and analyzed in detail. The dynamics of rigid

spheroid suspensions in an oscillating Newtonian fluid at low Reynolds numbers

is numerically studied and has been explained in this chapter. We have observed

that the dynamics of the spheroid varied significantly as the parameters such as

aspect ratio, external force amplitude, Reynolds number, and frequency of the

oscillating fluid, changes. In the next chapter, we shall extend this work to an

time-dependent uniform flow field.
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Chapter 6

Transport of a driven spheroid in

a uniform flow at low Reynolds

numbers

6.1 Introduction

Micro-particle dynamics in slurry, composite materials, ceramics, colloids,

polymers, proteins, and other natural and man-made settings is scientifically and

technologically important. The transport properties of the particles occurring

in these fields are significant in understanding the macroscopic features of the

system, such as sedimentation, aggregation rate, self-diffusion coefficient, ther-

mal conductivity, certain rheological parameters, and so on. These macroscopic

properties can be investigated by averaging the solution of dynamics of micro

body suspensions over a large volume (Stokes 1851; Pozrikidis 1992; Happel and

Brenner 2012). The findings in their work are substantiated (Ramamohan et al.

1994; Kumar et al. 1996) by demonstrating chaotic dynamics of a periodically

forced spheroid in a shear flow in certain parametric regions and investigating its

strong dependence on rheological parameters. They proposed a method for par-
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ticle separation using the dependence of dynamics on shape. It promises a better

characterization of fluid suspensions employed in industries. Asokan et al. (2005)

have reviewed the investigations done by the group over a decade on the dynam-

ics of driven particles and change of rheological parameters observed due to the

forced suspensions in a simple shear flow. Ramamohan et al. (2009) have analyzed

the results of dynamics of a dilute suspension of periodically forced and neutrally

buoyant spherical particles in a quiescent Newtonian fluid at low Reynolds num-

bers based on a numerical simulation. They have included the effects of convective

and unsteady inertia in their analysis. Effects of inertia on the dynamics and rhe-

ology of suspensions have been investigated by Ramamohan et al. (2011). The

addition of inertia has resulted in additional terms representing a fading memory

of the particle’s entire history of motion in the governing equations. The mem-

ory term becomes nonlinear due to the presence of convective inertia in the low

Reynolds number limit. However, governing equations of suspensions of a particle

of arbitrary shape can be easily derived, once the forces induced on the suspended

body are identified using the particle geometry.

Lovalenti and Brady (1993b) have derived an approximate expression for the

hydrodynamic force exerted on a particle of micro-size translating with the time-

dependent fluid motion including both unsteady and convective inertia at low

Reynolds numbers. Lawrence and Weinbaum (1986) have also proposed an ex-

pression for the hydrodynamic force induced on a suspended particle, including

forces due to Stokes drag, added mass, Basset memory, and the secondary memory

term generated as a result of the non-spherical geometry of the particle. Mad-

hukar et al. (2010) have used Lovalenti and Brady’s formulation for deriving the

governing equations of a periodically forced rigid spherical particle in a quiescent

flow field at low Reynolds numbers.

Recently, Singh and Kumar (2019) have derived equations describing the

transport of harmonically forced spheroid in a quiescent flow in the limit of low

Reynolds number, following Lovalenti and Brady (1993b). They have modeled
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the problem as a set of ordinary differential equations. The numerical investi-

gation of the problem by varying Reynolds numbers, particle aspect ratios, and

external forces revealed that the size of the attractor is increased as the aspect

ratio or/and force is increased, whereas it is decreased as the Reynolds number

is increased. They have observed sinusoidal variation of position with no phase

shift, sinusoidal variation of velocity with a phase shift of nearly π
2 , a delay with

the velocity at maximum position, and a strong dependence of the position and

velocity on the control variables. These results may have practical importance

as given in Singh and Kumar (2019). More details of the applications can be

seen from the references therein. Their novel results are presented when fluid at

rest, and this motivates us to study the orientation properties of the particle in a

disturbed flow.

In this article, we analyse the particle dynamics in a time-dependent uniform

flow at low Reynolds numbers. Accordingly, we model the orientation of a peri-

odically forced prolate spheroid suspended in a three-dimensional time-dependent

uniform flow in the limit of small Reynolds numbers, and derive the respective

equations following the methodology and formulation of an earlier work (Singh

and Kumar 2019) of us. This modeling also considers the influence of both fluid

and particle inertia on the transport of solid particles, where the flow field far

from the spheroid is assumed to be unsteady with a uniform velocity field. First,

we derive the governing equations of the typical case and then do the numerical

solutions for further analysis. We provide rough phase diagrams of the proper-

ties of the solutions as a function of the control variables such as aspect ratio,

amplitude, phase of periodic force, Reynolds number, etc. It is found that the

acceleration reaction term increases with the increase in aspect ratio, whereas the

lift force remains near zero. The dependence of trajectory attractors of position

and velocity of orientations on aspect ratio, Reynolds number, and the amplitude

of the external field is substantiated. The change of average position, attractor

size of position and velocity are the novel properties of this problem. A phase
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shift in position, velocity, and drift of trajectories is also observed on varying the

parameters. The results may open up new challenges in characterising particle

suspension and technologies.

6.2 Governing Equations

We use Newton’s second law of motion to derive the governing equations after

formulating the expressions for the fluid-induced hydrodynamics force, FH(t) and

the external force, F ext(t). A general expression of the flow-induced hydrodynamic

force on an arbitrary shaped rigid particle undergoing a time-dependent motion in

an unsteady Newtonian Fluid at low Reynolds numbers is given in Eq. 8.24 of the

work by Lovalenti and Brady (1993b) in the long time limit. Taking a coordinate

system with the origin at the instantaneous center of mass of the spheroid and

assuming the frame of reference translates with the suspended particle, a simplified

form of the hydrodynamic force, FH(t) induced on a particle by the flow at rest

is given in Singh and Kumar (2019) as a modification of Lovalenti and Brady

(1993b). The simplified expression is given in Eq. (6.1) of their article. In this

work, we discuss the dynamics of an externally driven spheroid of arbitrary shape

in a time-dependent uniform flow field considering the impact of both particle and

fluid inertia, where the flow field far from the spheroid is assumed to be unsteady.

Fig. 6.1 presents a schematic representation of the spheroid suspension. Following

the formulation of Singh and Kumar (2019), the hydrodynamic force expression

Eq. 8.24 of Lovalenti and Brady (1993b) deduces to Eq. (6.1) for a spheroid

suspended in a time-dependent uniform flow.
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Figure 6.1: Schematic representation of the problem

FH(t) =ReSlVpu̇∞(t)− 16πe (e1us(t), e2vs(t), e2ws(t))

− ReSl (Ixxu̇s(t), Iyyv̇s(t), Izzẇs(t)) + 3
8

(
ReSl
π

) 1
2

{1024
9 πe2

(
e2

1us(t), e2
2vs(t), e2

2ws(t)
) (
t−

1
2 − ε−

1
2
)

+256
3 πe2

t−ε∫
0

B
(
e2

1us(s), e2
2vs(s), e2

2ws(s)
) 2ds

(t− s) 3
2


− Re (L1(t), L2(t), L3(t)) (6.1)

Where,

• u∞(t) is the velocity of the undisturbed uniform flow field at time ′t′,

• Sl is the Strouhal number,

• Vp = 4
3πab

2 is the volume of the spheroid,

• a and b are half of the lengths of the major and minor axes of the spheroid,

respectively,

• Re is the Reynolds number,
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• e is eccentricity of the particle,

• e1 = e2

−2e+(1+e2)log( 1+e
1−e ) ,

• e2 = e2

−2e+(1−3e2)log( 1+e
1−e ) ,

• us(t), vs(t), and ws(t) are the x,y,z components of the slip velocity of the

suspended particle, which is given by up(t)− u∞(t),

• up(t) is the velocity of the translating spheroid.

• B= 1
|A|2

(
π 1

2
2|A|erf(|A|)− exp(−|A|2)

)
,

• A=Re
2

(
t−s
ReSl

) 1
2
(
Ys(t)−Ys(s)

t−s

)
,

• Ys(t)− Ys(s) is the integrated displacement of the particle relative to fluid

from the past time s to the current time t,

• Ys(t) = Yp(t)− Y∞(t),

• Yp(t) and Y∞(t) represent the position vectors of the centre of mass of the

particle and fluid respectively at time ′t′,

• Ixx, Iyy, and Izz are the principal diagonal elements of the diagonal matrix of

order 3, raises from the acceleration reaction term of the problem considered.

• the limit of integration for the problem is from −∞ to the current time,

t. Hence there is a singularity at s = t while integrating w.r.t s to obtain

the new history integral term at finite Re. The term is thus split into two

integrals over [−∞, t − ε] and (t − ε, t], where ε > 0 is an arbitrarily small

number. Numerical computations show that the integral over the interval

(t− ε, t] tends to zero as ε tends to 0 whereas the integral over the interval

[−∞, t − ε] converges. In short, the singularity doesn’t create any issue,

at least for the present problem. This is computationally proved in our

analysis.
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• L(t) = (L1(t), L2(t), L3(t)) is the lift force calculated for the uniform flow

field at time t, using the method explained in Singh and Kumar (2019).

The term, ReSlVpu̇∞(t) in Eq. 6.1 is the only added term to Eq. 12 of Singh

and Kumar (2019) and Eq. 6.1 reduces to Eq. 12 of Singh and Kumar (2019)

on taking u∞(t) = 0 (fluid velocity field is zero). We begin the numerical

computation by taking F ext(t) = (F1(t), F2(t), F3(t)) sin(ωt) as the dimension-

less sinusoidal(external) force having frequency ω, Yp(t) = (x(t), y(t), z(t)) as

the displacement vector of the particle, up(t) = (up(t), vp(t), wp(t)) as the veloc-

ity of the particle exerted by the fluid at time t and, the fluid velocity field as

u∞(t) = f(t)(1, 1, 1), where f(t) is a real-valued continuous function defined on

(−∞,∞). We also non-dimensionalize the velocity term by Uc, acceleration by

Uc/τc, time by ω and length by a, where Uc, τc, and a represent the characteristic

velocity of the particle, characteristic timescale (defined as τc = aUc) and char-

acteristic length respectively. We obtain the following equations by plugging all

these expressions into the Newtonian’s second law of motion. For the details of

the scheme used in this derivation, the readers are referred to Singh and Kumar

(2019), and Lovalenti and Brady (1993b).

u̇p(t) = 1
C1Re

[
F1(t) sin(ωt) + ReSl

(4
3πk

2
a + 1

)
f(t)− 16πee1 (up(t)− f(t))

−3
8(P1 +Q1)(t)− ReL1(t)

]
(6.2)

v̇p(t) = 1
C2Re

[
F2(t) sin(ωt) + ReSl

(4
3πk

2
a + 1

)
f(t)− 16πee2 (vp(t)− f(t))

−3
8(P2 +Q2)(t)− ReL2(t)

]
(6.3)

ẇp(t) = 1
C3Re

[
F3(t) sin(ωt) + ReSl

(4
3πk

2
a + 1

)
f(t)− 16πee3 (wp(t)− f(t))

−3
8(P3 +Q3)(t)− ReL3(t)

]
(6.4)

where,
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dx(t)
dt

= up(t), dy(t)
dt

= vp(t), dz(t)
dt

= wp(t)

and

dup(t)
dt

= u̇p(t), dvp(t)
dt

= v̇p(t), dwp(t)
dt

= ẇp(t),

ka =a

b
, C1 = 4π

3

(
b

a

)2
+ SlIxx,

C2 =4π
3

(
b

a

)2
+ SlIyy, C3 = 4π

3

(
b

a

)2
+ SlIzz

P1 =256πe2

3 B

t−ε∫
0

e2
1

(
up(s)− e−s

)
(t− s)

3
2

ds, P2 = 256πe2

3 B

t−ε∫
0

e2
2

(
vp(s)− e−s

)
(t− s)

3
2

ds

P3 =256πe2

3 B

t−ε∫
0

e2
3

(
wp(s)− e−s

)
(t− s)

3
2

ds Q1 = 1024
9 πe2e2

1us(t)
(
t−1/2 − ε−1/2)

Q2 =1024
9 πe2e2

2vsy(t)
(
t−1/2 − ε−1/2) , Q3 = 1024

9 πe2e2
2ws(t)

(
t−1/2 − ε−1/2) .

The above set of decoupled nonlinear equations is numerically solved. The com-

putational results in case of ω = 1 and f(t) = e−t are summarised in the following

section. We study the long-term behavior of the particle’s orientation directions;

hence, more than half of the iterations are removed to ignore the transient dynam-

ics of the body. This means that all graphs generated in this study represent the

long-term orientation dynamics of the particle. We observe that the steady-state

solution is an orbit for a given set of parameters. In what follows, we characterize

the dynamics by analysing the graphs of the orbits for different sets of parameters.

6.3 Results and Discussion

We calculate all necessary expressions and values for different choices of the

parameters, and then the above system of integro-differential equations is solved.
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The diagonal elements Ixx, Iyy, and Izz representing the acceleration reaction term,

and the components, Li(t), i = 1, 2, 3 representing the lift force exerted on the

particle due to the uniform flow are calculated as per the scheme explained in Singh

and Kumar (2019) for different values of the aspect ratios(ka) ranging from 1 to

10 in steps of 1. Note that the diagonal elements representing the acceleration

reaction term is constant for the flow at rest and it increases for the uniform

flow. The Table. 6.1 shows that all the three diagonal elements of the tensor

corresponding to the acceleration reaction term increase with the aspect ratio

and hence are significant, where the second and third components are similar for

a given choice of the parameter ka. This similarity may be due to the symmetry

in the direction of motion of the spheroid in the current framework. Certainly,

these values affect the dynamics of spheroid motion as the aspect ratio increases.

Whereas, as can be seen from Table 6.2, the lift force exerted by the uniform fluid

flow on the spheroid particle is negligibly small and hence has no influence on

the orientation transport of spheroid for 1 < ka < 10. For further confirmation,

we ran the code for the orientation dynamics for a few sets of parameters and

found that the lift force doesn’t make any difference in the particle orientation.

Accordingly, the respective term is ignored from the numerical solution of motion.

ka Ixx Iyy Izz

1
2 6.01 8.01 9.2
3 6.45 17.03 17.2
4 8.05 25.07 25.25
5 10.34 33.05 33.06
6 11.73 37.05 38.0
7 12.30 40.50 40.50
8 14.85 47.0 47.0
9 19.25 59.0 59.8
10 19.30 60.5 61.50

Table 6.1: The calculated values of the diagonal matrix representing the acceleration
reaction term for different values of ka.
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ka L1 L2 L3
1
2 2.96e-09 -1.50e-09 -2.32e-10
3 4.25e-09 -2.30e-09 -3.46e-10
4 5.67e-09 -3.18e-09 -4.74e-10
5 7.22e-09 -4.16e-09 -6.16e-10
6 8.88e-09 -5.22e-09 -7.70e-10
7 1.06e-08 -6.36e-09 -9.35e-10
8 1.25e-08 -7.58e-09 -1.11e-09
9 1.45e-08 -8.88e-09 -1.30e-09
10 1.66e-08 -1.02e-08 -1.50e-09

Table 6.2: The calculated values of components of the lift force as a function of the size
of the spheroid.

We solve the system of differential equations, Eqs. 6.2-6.4 numerically using

the built-in RK-4 solver of MATLAB for the position and velocity at time t,

after incorporating the tabled values corresponding to the acceleration reaction

term. The final simplified system of equations contains a set of five parameters,

namely, the aspect ratio (ka), the Reynolds number (Re), the amplitude (Fi), and

the phase value (ω) of the external periodic force and the Strouhal number (Sl).

Since Sl, always occurs in combination with Re as the present model is restricted

for ReSl << 1, we can choose the Strouhal number equal to unity without loss

of generality, where the limit Sl << 1 is automatically attained, once we select

the values of Re in the range 0 < Re << 1. Essentially, we vary the parameters,

ka and Fi appeared in the governing equation for different values of Re within

its limit, keeping ω = 1. The effect of parameters on the particle dynamics is

summarised in the following sections by analysing the graphs in detail.

6.3.1 The Aspect ratio

The x, y, and z components of position and velocity over time are plotted in

Figs. 6.2 and 6.3 respectively. It can be noticed from Fig. 6.2 that the average

displacement of the spheroid along the x, y, and z axes is increasing as the aspect
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ratio increases, where the increase along x component is dominant than the other

two. Further, we observe from Fig. 6.3 that there are no significant changes in the

maximum amplitude of velocity-time plots as the aspect increases. A phase shift

in position and velocity is also observed with the change in aspect ratios, as can

be observed from Fig. 6.2 and 6.3. Fig. 6.2a also reveals that the amplitude of the

x-component of the position increases as the aspect ratio increases. At the same

time, the maximum amplitudes of y and z components of position are initially

increasing up to ka = 6 and then decreasing on varying ka from the lower value to

higher, as can be noticed from Figs. 6.2b and 6.2c. Similar behavior is observed in

the case of velocity, where the maximum amplitude increases and later decreases

as the aspect ratio increases, as can be seen from Fig. 6.3. This dependence on

the size of the attractor as a function of aspect ratio is again substantiated by the

enhancement of the area bounded by the attractors as evident from the typical

graphs shown in Fig. 6.4, where the Fig. 6.4 represents the component-wise phase

space plot of position and velocity as a function of the size of the particle. It is

clear that the position-velocity variation along the x axis and y-axis are periodic,

as evident from Figs. 6.4a and 6.4b, whereas the variation along the z-axis is

quasi-periodic as can be seen from the Fig. 6.4c. Interestingly a forward drift

phenomenon of trajectory along the x-axis is observed as evident from Fig. 6.2

and 6.3 as the aspect ratio increases. This forward drift of attractors along the

x-axis is further confirmed by Fig. 6.4. The respective 3-dimensional trajectories

of position and velocity are shown in Figs. 6.5(a-f). Notably, the orientation

of attractors depends on the aspect ratio, as shown in Fig. 6.5. This graphical

analysis confirms that the aspect ratio of rigid suspension significantly affects the

orientation dynamics of the particle due to its change in inertial effects.
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Figure 6.2: The x, y and z components of position of orientation for Re = 0.05,, F1 = 1.5,
and different values of ka = 2, 4, 6, 8, 10 are shown respectively in a, b, and c.
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Figure 6.3: The x,y,z-components of velocity of motion for Re = 0.05, F1 = 1.5, and
different values of ka = 2, 4, 6, 8, 10.
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Figure 6.4: The projections of the phase-space motion of the spheroid in the planes
of (a) xy, (b) yz, (c) zx planes, for Re = 0.05, F1 = 1.5, and different values of ka =
2, 4, 6, 8, 10.
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Figure 6.5: The trajectories of positions (a-c) and velocities (d-f) corresponding to the
positions for ka = 3, 6, 9, Re = 0.05 and F1 = 5.
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6.3.2 The Reynolds number

Fig. 6.5 shows that the particle motion aligns along the z-axis as the aspect

ratio increases in the limit of low Re, as we have discussed in the previous session.

To understanding the stroboscopic effect of Re on the orientation dynamics of

suspensions, we plot the time series components of position and velocity by varying

Re from 0.05 to 0.45. The plots are presented in Fig. 6.6 and Fig. 6.7, for values of

the other parameters. As can be seen from the figures, the orientation resistance

increases as Re increases. Moreover, the inertia effects position and velocity at

higher Reynolds numbers (in the limit of 0 < Re < 1), as seen from Figs. 6.7-6.9.

The phase space area bounded by x-components of position and velocity of the

spheroid decreases as Re increases as depicted in Fig. 6.8a. From Fig. 6.8b, it is

evident that the size of the phase plot area of y-component representation tends to

zero. In Fig. 6.8c, it can be observed that the phase space area of z-components

of the particle drifted away from the zero displacement along axis of position in

the negative direction. Fig. 6.9 shows the trajectory of positions in the infinite

time limit for different values of Re. The spheroid attains its orbit in equilibrium,

and its bounded area decreases as the Reynolds number increases. In addition,

the orbit of the spheroid is shifted down along the z-axis as the Reynolds number

increases; hence, the dynamics depends significantly on Re within its limit.
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Figure 6.6: The components of position of motion for F1 = 1.5, ω = 1, ka = 6 and
Re = 0.05, 0.15, 0.25, 0.35, 0.45 (a) x-axis, (b) y-axis, (c) z-axis
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Figure 6.7: The velocity’s components of motion shown in Fig. 6.6 for F1 = 1.5, ω = 1,
aspect ratio ka = 6, and Re = 0.05, 0.15, 0.25, 0.35, 0.45 are shown above.
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Figure 6.8: Phase plots of position and velocity for F1 = 1.5, ω = 1 ka = 6, and
Re = 0.05, 0.15, 0.25, 0.35, 0.45 are plotted. (a) x-components, (b) y-components and
(c) z-components.

135



Figure 6.9: The trajectory of position of spheroid for ka = 6, ω = 1, F1 = 1.5, and
Reynolds number Re = .1, 0.2, 0.3,&0.4.

6.3.3 The External Periodic Field

The next important parameter in this problem is the amplitude of the external

periodic force field. We observe that the steady-state solution is a fixed orbit for

a given set of parameters, and the interior area bounded by the orbit reduces with

the increase in the amplitude of external force. Figs. 6.10 and 6.11 show the time

series of the position and velocity of spheroid motion for different values of F1,

respectively. The amplitude of position and velocity oscillations increases signifi-

cantly on varying amplitude of the force, as seen from the figures. Interestingly,

the average position of particles moves up, whereas average velocity is constant

for a given set of parameters, as evident from the graph of position and velocity

given in Figs. 6.10 and 6.11. Fig. 6.12 shows the phase space plot of x, y, and z

components of position and velocity. The phase space plot enlarges in a particular

pattern as the parameter varies, and the area surrounded by the closed trajec-

tory increases as F1 increases due to the enlargement. The trajectory attractors

of position for different values of amplitudes are given in Fig. 6.13, showing the

dependence of the dynamics of the particle on external force. From the analysis,

136



it is confirmed that orientation dynamics rapidly changes as the parameter varies.
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Figure 6.10: The time series of components of position of motion for Re = 0.15,, aspect
ratio ka = 6 and F1 varying from 0.5 to 4.5.

137



70 75 80 85 90 95 100
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(a)

70 75 80 85 90 95 100
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(b)

70 75 80 85 90 95 100
-0.4

-0.2

0

0.2

0.4

(c)

Figure 6.11: The time series of the velocity of the spheroid for the cases shown in Fig.
6.10.
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Figure 6.12: Component-wise phase plots of the spheroid for Re = 0.05, ka = 6, and for
different values of F1.
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Figure 6.13: Trajectory of position of the spheroid for ka=2, Re = 0.15, and F1 =
1.0, 2.0, 3.0&4.0.

6.4 Conclusion

We attempt to examine the dynamics of a prolate spheroid subject to a periodic

forcing in a Newtonian fluid flow with a uniform time-dependent velocity at low

Reynolds numbers. Fluid and particle inertia terms have been included to study

their effect on the orientation dynamics more realistically. The numerical values

for the acceleration reaction term and the lift force for different aspect ratios

are presented. It is observed that the values corresponding to the acceleration

reaction term increase with the increase in aspect ratio and hence contribute to

the orientation dynamics of the particle, whereas the values representing the term

due to the lift force amount to near zeros and hence contribute no effect to the

particle motion. Using this observation and the other essential calculations, a set

of integro-differential equations governing the position and velocity of orientations

in the limit of low Reynolds number is derived. Then the equations are numerically

solved using some standard techniques. The results thus obtained are analysed
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carefully by varying the parameters for characterising the changes in the motion

behavior. The trajectory attractors of position and velocity of orientations depend

on the parameters, aspect ratio, Reynolds number (within the limit), and the

amplitude of the external field. It is confirmed that particle dynamics rapidly

change as the parameter varies. The average position, the size of the attractors

of position, and the respective velocity change as the parameter value changes,

whereas the average velocity is zero for any of the parameter values. A phase

shift in position, velocity, and drift of trajectories is also observed on varying

parameters. These changes in the dynamics of suspension may affect the rheology

of the suspension, like stress deformation; hence, the analysis is scientifically and

technologically important.
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Chapter 7

Summary of the thesis

In this dissertation, We have investigated the fundamental properties of a fluid

suspension of a periodically forced spheroid in a Newtonian fluid at low Reynolds

numbers. We have analyzed two classes of problems: the translational motion of

a spheroid in one dimension and the rotational dynamics of a spheroid in three

dimensions in a variety of flows that includes Quiescent fluid fields, Uniform time-

dependent fluid fields, and Oscillating fluid fields. The equations governing the

dynamics of a periodically driven micro-spheroid in an unsteady viscous fluid

at low Reynolds numbers have been derived, and its oscillation properties are

studied in the presence/absence of memory forces. These equations have been

derived with the help of perturbation analysis of the motion of a sphere. The

computed solution depends on the shape, free oscillation frequency, and ratio of

particle density to fluid density and it is in agreement with the solutions which

are available in the literature for the limiting case of a sphere. The maximum

amplitude of the oscillations of an oblate spheroid has been greater than that of a

prolate spheroid, showing that the velocity disturbance for an oblate spheroid was

higher. The increase in aspect ratio has to lead to the enhancement (reduction)

of amplitude peaks in the case of the oblate (prolate) spheroid in the presence

and more dominantly in the absence of the force. A reduction in the amplitude
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of spheroid oscillations of many multiples due to the memory force has been

seen. More vital oscillation variations have been observed on changing natural

frequency or particle-fluid density compared to aspect ratio. The variations of the

phase value have been similar for both the spheroids on varying the frequency and

density ratio, whereas they have reversed on changing the aspect ratio. The linear

scaling of amplitude on aspect ratio observed for the spheroids might have given

insight into the physics, especially regarding the quantum of velocity disturbances

due to particle size. The slopes have been high in the absence of the force,

confirming that the presence of the force essentially increases the resistance of

spheroid motion.

In addition, we have studied the motion of a spheroid of an average aspect ratio

in a viscous fluid under the action of an external harmonic force. Here, first, we

have derived the dynamics equation of the particle oscillating along with one of its

axes and subject to damping, Basset memory, and second history integral forces

at small Reynolds numbers, and then, we have proceeded to obtain an analytical

solution of this equation at resonance. With graphical representation, we have

observed that for a prolate spheroid, the conventional Q-curves have shown a more

significant variation concerning the particle aspect ratio, particle–fluid density

ratio, and natural frequency; the variation has been significantly more for the

curve corresponding to the second history force. Furthermore, we have found

that all three forces affect the amplitude of motion: the amplitude has increased

with the strength of damping and the second history integral forces, whereas the

presence of Basset memory has decreased it. Remarkably, Basset memory has

caused a phase-shift in the oscillations, while the other two forces do not affect

the phase. Since our solutions have been analytical, they might have practical

application in experiments involving more complex systems, mainly to understand

the effect of external force on the transport of micro-particles.

Subsequently, we have discussed a solution for the orientation transport of

a periodically driven prolate spheroid suspended in Newtonian fluid oscillating
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in the range of low Reynolds number. A set of ordinary differential equations

governing the migration of an arbitrarily forced spheroid in a quiescent flow at

low Reynolds numbers have been formulated and discussed, assuming a sufficiently

dilute suspension to neglect the particle-particle interactions. These governing

equations are nonlinear and contain a history term of all the past positions and

velocities; hence, obtaining an analytical solution would be difficult. Therefore, we

have performed numerical simulations for the numerical approximation of these

equations. Since the prolate spheroid has been suspended in a quiescent fluid,

the motion of the prolate spheroid has been solely due to the external periodic

force acting on the particle. The phase of motion has been helical, and the size of

orbits of the helix has decreased as the Reynolds number increases. The spheroid

transport has been investigated by varying Reynolds numbers, particle aspect

ratios, and external forces. Interestingly, the size of the attractor has increased

as the aspect ratio or/and force has increased, whereas it has decreased as the

Reynolds number has increased. This decrease has been due to the increase in

particle inertia. A delay with the velocity at the maximum position has been

observed, as evident from the respective time series. The delay could be that in

the absence of inertia, the time at which the velocity reaches its maximum, the

position was at its minimum, and when the particle experienced its maximum

deviation, the velocity was at its minimum. Since position variation has been

almost sinusoidal, the velocity would also be sinusoidal with a phase shift of

nearly π/2. The net migration at zero Reynolds number would be negligible and

should have increased with the number increased. Inertia should have changed

this to a more considerable extent at higher values of Reynolds number. We have

observed that the velocity and displacement increased as the system parameters,

such as natural frequency, the aspect ratio of the spheroid, and the magnitude of

the externally driving periodic force, increased.

The investigation done in the case of quiescent flow has been repeated with

the uniform flow and oscillating flow. The numerical values for the acceleration
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reaction term for different aspect ratios have been presented for both cases. We

have observed that the amplitude of velocity and displacement increases as fre-

quency, and the aspect ratio of the spheroid or/and force increases in the case

of oscillating fluid. Moreover, the amplitude of velocity and displacement de-

creases as frequency, aspect ratio, or/and force increases. However, the phase

plot is reversed when the force is changed in the opposite direction. In the case

of time-dependent uniform flow, we stress that the values corresponding to the

acceleration reaction term increase as the aspect ratio increases, and hence it is

a significant study. On the other hand, the lift force exerted by the uniform fluid

flow on the spheroid particle is negligibly small and hence it is insignificant. To

illustrate the dynamics, we have provided phase diagrams of the properties of the

solutions having functional relations with the particle’s geometry, amplitude and

phase of an external field, and Reynolds numbers. We have observed a phase shift

in position and velocity, a drift in solution trajectories, and orientation properties

as a function of aspect ratio, the amplitude of the external field, and the Reynolds

number in the low < limit. In each chapter, the results have been supplemented

with detailed physical arguments, and wherever possible, various tests have been

conducted to justify the results. Based on this study, we believe that the depen-

dencies of oscillations on the parameters could be utilized for better separation

of particles or characterizing the suspension. The obtained analytical solutions

would help in testing software for more complicated and realistic systems and

strike a good balance between complication and tractability. The dependence of

the position and velocity on the parameters could be characterized by using it as

a potential application to particle separation.
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Appendix A

Some useful mathematical

expressions and tools

A.1 The co-ordinate system

We will denote by {r, θ, φ} the prolate spheroidal coordinates which have the

following domain of definition:

r → [0,∞), (A.1a)

θ → [0, π], (A.1b)

φ→ [0, 2π]; (A.1c)

and are related to the usual Cartesian coordinates (x, y, z) by:

x = r sin(θ) cos(φ), (A.2a)

y = r sin(θ) sin(φ), (A.2b)
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z =
√
r2 + r2

µ cos(θ); (A.2c)

where the constant parameter rµ has the meaning of the distance of the foci from

the origin of the Cartesian coordinate system. One can see also that surfaces

r = constant are prolate spheroids with their foci along the z-axis, and therefore

satisfy:
z2

r2 + r2
µ

+ x2 + y2

r2 = 1 (A.3)

where the value r = constant correspond to the length of its minor radius and

the size of its major radius is equal to
√
r2 + r2

µ. In this coordinates system the

line element of the flat Euclidean metric in R3 acquires the following expression:

ds2 =
(
r2 + r2

µ sin(θ)2
)( dr2

r2 + r2
µ

+ dθ2
)

+ r2 sin(θ)2dφ2

A.2 Illustration of I1(t) = ∫∞
0

d2y
dτ2

dτ√
t−τ and

∫ t
0
d2y
dτ2 erfc

[
(t− τ )

1
2
]
dτ

Let

G(α) =
∫ ∞
−∞

exp(−αx2)dx (A.4)

Since exp(−αx2) is even function in domain (−∞,∞), therefore by using integral

property, we can write it as

G(α) = 2
∫ ∞

0
exp(−αx2)dx. (A.5)

The integral (A.4) and (A.5) is Gaussian integral and its deduced integral over

right half domain, respectively. These lead to the value of following integral:

∫ ∞
−∞

e−αx
2
dx =

√
π

α
,

∫ ∞
0

e−αx
2
dx = 1

2

√
π

α
. (A.6)
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Now if the integrand is complex function, by assuming α = i, we have obtained

∫ ∞
−∞

e−ix
2
dx =

√
π

i
,

∫ ∞
0

e−ix
2
dx = 1

2

√
π

i
. (A.7)

We know that the square root of i is 1+i√
2 , of course it is principal value (in general

±1+i√
2 or ekπi+πi

4 , k = 0, 1). Whence we have obtained

∫ ∞
−∞

e−ix
2
dx = (1− i)

√
π√

2
. (A.8)

The equation (A.8) may be written as

∫ ∞
−∞

(
cos(x2)− i sin(x2)

)
dx =

√
π

2 − i
√
π

2 . (A.9)

Hence we have found

∫ ∞
−∞

cos(x2)dx =
∫ ∞
−∞

cos(x2)dx =
√
π

2 . (A.10)

I1(t) =
∫ ∞

0

d2y

dτ 2
dτ√
t− τ

= −ω
3/2√π
2
√

2
[R1 {sin(ωt) + cos(ωt)}+R2 {sin(ωt)− cos(ωt)}] (A.11)

To evaluate it, consider its Laplace transformation

Î1(s) = L{d
2y

dt2
}L{ 1√

t
} = L{−ω2 (R1 cosωt+R2 sinωt)}L{ 1√

t
}

= −ω2R1s+R2ω

s2 + ω2

√
π

s

= −ω2√πR1s+R2ω

s2 + ω2
1√
s

(A.12)
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This expression can be further written in terms of a sum of simple fractions,

Î1(s) = −ω2√π
{

R1s

s2 + ω2
1√
s

+ R2ω

s2 + ω2
1√
s

}

= −ω2√π
{
R1

2

(
1√

s(s+ iω) + 1√
s(s− iω)

)
− R2

2i

(
1√

s(s+ iω) −
1√

s(s− iω)

)}
(A.13)

The inverse Laplace transformation then leads to

I1(t) =− ω2√π
{
R1

2

(
e−iωt erf(

√
−iωt)√

−iω
+ eiωt erf(

√
iωt)√

iω

)
(A.14)

−R2

2i

(
e−iωt erf(

√
−iωt)√

−iω
− eiωt erf(

√
iωt)√

iω

)}

=− ω3/2√π
2
√

2
[R1 {sin(ωt) + cos(ωt)}+R2 {sin(ωt)− cos(ωt)}] (A.15)

Since, by the obvious, erf(±∞) = ±1, or one can find it by using definition of

error function along with equations (A.5)-(A.10). On simplifications of all terms

reduce to

I1(t) = −ω
3/2√π
2
√

2
[R1 {sin(ωt) + cos(ωt)}+R2 {sin(ωt)− cos(ωt)}] (A.16)

and also we deduced

dI1(t)
dt

=
∫ ∞

0

d2y

dτ 2

(
−1

2

) 1
(t− τ)3/2dτ

=
(
−1

2

) ∫ ∞
0

d2y

dτ 2
1

(t− τ)3/2dτ (A.17)

Let

I2(t) =
∫ t

0

d2y

dτ 2 erfc
[
(t− τ)

1
2
]
dτ (A.18)

here, we have y(t) = R1 cos(ωt)+R2 sin(ωt) and ÿ(t) = −ω2 (R1 cos(ωt) +R2 sin(ωt)) .
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Therefore the (A.18) can be written as

I2(t) =
∫ t

0
−ω2 (R1 cos(ωt) +R2 sin(ωt)) erfc

[
(t− τ)

1
2
]
dτ

= −ω2
∫ t

0
(R1 cos(ωt) +R2 sin(ωt)) erfc

[
(t− τ)

1
2
]
dτ. (A.19)

Letting f(t) = erfc(t), then the above integration written as convolution of y(t)

and f(t),

I2(t) = −ω2
∫ t

0
y(τ)f(t− τ)dτ. (A.20)

Now by considering Laplace transformation of I2(t) is Î(s), we have

Î2(s) = L({I2(t)})

=− ω2 L({y(t)}) L({f(t)})

=− ω2R1s+R2ω

s2 + ω2

√
s+ 1− 1
s
√
s+ 1

=− ω2R1s+R2ω

s2 + ω2

(
1
s
− 1
s
√
s+ 1

)

=− ω2
[
R1ω −R2s

ω (s2 + ω2) + R2

ωs
− 1

1 + ω2

{
(R1 −R2ω)

√
s+ 1

s2 + ω2 − (R2 +R1ω) s
√
s+ 1

s2 + ω2

+R2

ω

(1 + ω2)
√
s+ 1

s
+ (R1 −R2ω)

√
s+ 1
s+ 1

}]
(A.21)

The inverse Laplace transform gives

I2(t) =− ω2
[
R1

ω
sin(ωt)− R2

ω
cos(ωt) + R2

ω

(
1− (πt)− 1

2 e−t − erf(
√
t)
)

− 1
1 + ω2

(R1 −R2ω)
2

e(−iω+1)t erf(
√

(−iω + 1)t)√
(−iω + 1)

+
e(iω+1)t erf(

√
(iω + 1)t)√

(iω + 1)


+(R2 +R1ω)

2i

e(−iω+1)t erf(
√

(−iω + 1)t)√
(−iω + 1)

−
e(iω+1)t erf(

√
(iω + 1)t)√

(iω + 1)


+ (R1 −R2ω) (πt)− 1

2 e−t
}]

(A.22)
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We obtain after some simplifications

I2(t) =− ω (R1 sin(ωt)−R2 cos(ωt)) (A.23)
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