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Abstract

Information geometry emerged from the geometric study of a statistical model of prob-
ability distributions. A statistical model equipped with a Riemannian metric and a pair
of dual affine connections is called a statistical manifold. Various geometric aspects of
statistical manifolds were studied by many researchers. The main objective of this the-
sis is to explore certain geometric properties of statistical manifolds and the geometry of
estimation.

In Chapter 2, we discuss the geometry of immersions and statistical manifolds. In
Section 2.1, we discuss definitions and basic results related to affine immersions. In Propo-
sition (2.1) detailed proof is given for the result that a simply connected statistical manifold
can be realized in Rn+1 if and only if it is 1-conformally flat. In Section 2.2, we first
discuss about the statistical submanifolds and the fundamental equations associated with
it. Then in Theorem (2.4) we prove a necessary and sufficient condition for the inherited
statistical manifold structures to be dual to each other. Statistical immersion is defined and
in Theorem (2.5) we prove a necessary condition for a statistical manifold to be a statisti-
cal hypersurface. Also, we prove its converse in Theorem (2.6). Then, in Theorem (2.10)
a necessary and sufficient condition for a statistical immersion into a dually flat statisti-
cal manifold of codimension one to be minimal is obtained. Also, in Theorem (2.11) a
necessary condition is obtained for minimal statistical immersion of statistical manifolds
equipped with α-connections. In Section 2.3, centro-affine immersion into Rn+2 and the
fundamental equations of it are discussed first. Also, in Proposition (2.3) and in Proposi-
tion (2.4) a detailed proof of 1-conformal equivalence and (−1)-conformal equivalence of
statistical manifold structures in the case of centroaffine immersions into Rn+2 are given,
respectively. We define centro-affine immersions of codimension two into a dually flat sta-
tistical manifold and in Theorem (2.13) we give a necessary and sufficient condition for the
inherited statistical manifold structures to be dual to each other. In Theorem (2.14) we show
that the inherited statistical manifold structure is conformally-projectively flat in the case
of non-degenerate, centro-affine, equiaffine immersion into a dually flat statistical mani-
fold of codimension two. In Section 2.4, we first discuss the affine fundamental form and
relations between curvature tensors for affine immersions of general codimension. Then,
we define the transversal volume element map for equiaffine statistical immersion of gen-
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eral codimension and certain properties are also proved in Lemma (2.3) and in Proposition
(2.6).

In Chapter 3, we discuss the geometry of submersions and statistical manifolds. In
Section 3.1, definitions of submersion and semi-Riemannian submersion and certain basic
results are given. We summarize the definition and basic results of affine submersions with
horizontal distribution in Section 3.2. Also, discuss the theorem by Abe and Hasegawa on
geodesics comparison for an affine submersion with horizontal distribution. In Section 3.3,
we first introduce the concept of a conformal submersion with horizontal distribution for
Riemannian manifolds, which is a generalization of the affine submersion with horizontal
distribution. Then, in Theorem (3.3) a necessary condition for the existence of such a
map is proved. In Theorem (3.6) a necessary and sufficient condition is obtained for π ◦
σ to be a geodesic of B when σ is a geodesic of M for a conformal submersion with
horizontal distribution. Then, in Proposition (3.5) we prove a necessary and sufficient
condition for the horizontal lift of a geodesic to be geodesic. Also, in corollary (3.3) we
give a necessary condition for the connection on B to be complete when the connection
on M is complete for a conformal submersion with horizontal distribution π : M −→
B. In Section 3.4, we first discuss the affine submersion with horizontal distribution and
statistical manifolds. A statistical structure is obtained on the manifold B induced by the
affine submersion π : M −→ B with the horizontal distribution H(M) = V⊥(M). In
the case of conformal submersion with horizontal distribution in Theorem (3.9) we prove
a necessary and sufficient condition for (M,∇, gm) to become a statistical manifold. Also,
in Proposition (3.7) we prove π : (M,∇) −→ (B,∇∗) is a conformal submersion with
horizontal distribution if and only if π : (M,∇) −→ (B,∇∗) is a conformal submersion
with horizontal distribution.

Chapter 4 deals with the statistical structures on tangent bundles, harmonic maps be-
tween statistical manifolds and between tangent bundles. In Theorem (4.3) of Section 4.1

we prove a necessary and sufficient condition for TM to become a statistical manifold
with the complete lift connection and the Sasaki lift metric. In Section 4.2, we first give a
detailed description of the harmonic map using tension field. In Theorem (4.4) we prove
a necessary and sufficient condition for the harmonicity of identity map for conformally-
projectively equivalent statistical manifolds. Then, conformal statistical submersion is de-
fined which is a generalization of the statistical submersion and in Theorem (4.5) we prove
that harmonicity and conformality cannot coexist. In Section 4.3, certain properties of the
differential of the tangent map is given first. For statistical manifolds, in Theorem (4.7) we
prove that a smooth map φ : M −→ B is harmonic with respect to ∇ and ∇∗ if and only
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if it is harmonic with respect to the conjugate connections ∇ and ∇∗. Then, in Theorem
(4.8) given a necessary condition for the harmonicity of the tangent map with respect to
the complete lift structure on the tangent bundles. Also, in Proposition (4.8) we prove a
necessary and sufficient condition for the tangent map to be a statistical submersion.

In Chapter 5, estimation of parameters in statistical manifolds, exponential family and
its submanifolds, estimation of parameters in the curved exponential family and Fisher-
Neyman sufficient statistic for parametrized models are discussed. In Section 5.1, short
account of the statistical properties of an estimator is given. In Theorem (5.2) of Section
5.2 we show that if all∇1-autoparallel proper submanifolds of a±1-flat statistical manifold
M are exponential then M is an exponential family. Also, in Theorem (5.3) we prove that
if submanifold of a statistical model is an exponential family, then it is a ∇1-autoparallel
submanifold. In the theory of estimation in curved exponential family we give a short ac-
count of Amari’s geometric conditions for the consistency and efficiency of an estimator
in a curved exponential family using ancilliary manifolds. Then discuss the MLE algo-
rithm for estimating parameters in the curved exponential family obtained by Cheng et al.
In Section 5.3 we show that the Fisher-Neyman sufficient statistic is invariant under the
isostatistical immersions of statistical manifolds in Theorem (5.5).
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Chapter 1

Introduction

1.1 Introduction and Summary

Information Geometry is the geometric study of a statistical model of probability distribu-
tions and its application to various problems in science. Statisticians use statistical models
to derive inferences; they use families of probability distributions which form, in most
cases, a finite dimensional manifold which in information geometry is known as a statisti-
cal manifold. Amari and Nagaoka [1] introduced a conjugate structure or duality structure
in information geometry which lead to the development of more applications of information
geometry. The notion of dually flat structure was also introduced by Amari and Nagaoka
[1] when they studied information geometry on Riemannian spaces. By definition, a sta-
tistical structure can be viewed as a generalization of a Riemannian structure containing a
Riemannian metric and the Levi-Civita connection. So, it is natural to inquire whether the
results in Riemannian geometry still hold in the geometry of statistical manifolds. Various
geometric aspects of statistical manifolds were studied by many researchers. In this work,
our effort is also to explore certain geometric properties of statistical manifolds and the
geometry of estimation.

In Chapter 2, we discuss the geometry of immersions and statistical manifolds. Affine
differential geometry assumes a significant importance in the field of geometry. Affine im-
mersions were introduced by Nomizu and Sasaki [2]. Statistical manifold was originally
introduced by Lauritzen [3], later Kurose [4] reformulated this from the viewpoint of affine
differential geometry. Kurose [5] has given a necessary and sufficient condition for a sta-
tistical manifold to be realized by an affine immersion of codimension one. Dillen et al.
[6] proved a necessary and sufficient condition for realizing a simply connected statistical
manifold in Rn+1. In Section 2.1, we discuss definitions and basic results related to affine
immersions [2]. A detailed proof is given for the result that a simply connected statistical
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manifold can be realized in Rn+1 if and only if it is 1-conformally flat. Then, discussed
the theorems by Kurose [4] on affine immersions and statistical manifolds. In Section 2.2,
we first discuss about the statistical submanifolds and the fundamental equations associ-
ated with it [7]. Uohashi et al. [8] proved that a 1-conformally flat statistical manifold of
dimension n ≥ 2 can be locally ralized as a submanifold of a flat statistical manifold of
dimension n+ 1. We considered manifolds immersed in statistical manifolds and obtained
a necessary and sufficient condition for the inherited statistical manifold structures to be
dual to each other. Statistical immersion is defined and then proved a necessary condition
for a statistical manifold to be a statistical hypersurface. Its converse is also proved [9].
Furuhata [10] has proved a necessary and sufficient condition for minimal immersion of
a statistical manifold into Rn+1. We prove a necessary and sufficient condition for a sta-
tistical immersion into a dually flat statistical manifold of codimension one to be minimal.
Also, a necessary condition is obtained for minimal statistical immersion of statistical man-
ifolds equipped with α-connections [11]. In Section 2.3, centro-affine immersion into Rn+2

and the fundamental equations of it are discussed first [12], [13]. Then, dependence on the
change of transversal vector field and change in an immersion are discussed. Also, proof
of 1-conformal equivalence and (−1)-conformal equivalence of statistical manifold struc-
tures in the case of centro-affine immersions into Rn+2 are given in detail [13]. Matsuzoe
[14] obtained conditions for a statistical manifold to be realized in Rn+2 by centro-affine,
equiaffine immersions of codimension two. We define centro-affine immersions of codi-
mension two into a dually flat statistical manifold and give a necessary and sufficient con-
dition for the inherited statistical manifold structures to be dual to each other. Then, show
that the inherited statistical manifold structure is conformally-projectively flat in the case of
non-degenerate, centro-affine, equiaffine immersion into a dually flat statistical manifold of
codimension two. In Section 2.4, we first discuss the affine fundamental form and relations
between curvature tensors for affine immersions of general codimension [2]. Equiaffine
immersion of general codimension and the transversal volume element map were studied
by Koike and Takekuma [15]. We define the transversal volume element map for equiaffine
statistical immersion of general codimension and prove certain properties. Then discuss
the result by Matsuzoe et al. [16] on sufficient condition for a statistical submanifold of a
dually flat statistical manifold to be equiaffine.

In Chapter 3, we discuss the geometry of submersions and statistical manifolds. Rie-
mannian submersion is a special tool in differential geometry and it has got various appli-
cations. Notion of submersion is dual to the notion of an immersion. From a statistical
viewpoint submersions were first mentioned by Barndroff-Neilsen and Jupp [17]. O’Neill
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[18] defined a Riemannian submersion and obtained the fundamental equations of Rie-
mannian submersions for Riemannian manifolds. Also in [19], O’Neill defined a semi-
Riemannian submersion. In Section 3.1, definitions of submersion and semi-Riemannian
submersion and certain basic results are given. Comparison of geodesics by O’Neill for a
semi-Riemannian submersion is also discussed [18], [20]. We summarize the definition and
basic results of affine submersions with horizontal distribution in Section 3.2. Also, discuss
the theorem by Abe and Hasegawa [21] on geodesics comparison for an affine submersion
with horizontal distribution. In Section 3.3, we first introduce the concept of a conformal
submersion with horizontal distribution for Riemannian manifolds, which is a generaliza-
tion of the affine submersion with horizontal distribution [22]. Then, a necessary condition
for the existence of such a map is proved. A necessary and sufficient condition is obtained
for π ◦σ to be a geodesic of B when σ is a geodesic of M for a conformal submersion with
horizontal distribution. Then, prove a necessary and sufficient condition for the horizontal
lift of a geodesic to be geodesic. Also, we give a necessary condition for the connection on
B to be complete when the connection on M is complete for a conformal submersion with
horizontal distribution π : M −→ B. In Section 3.4, we first discuss the affine submersion
with horizontal distribution and statistical manifolds. A statistical structure is obtained on
the manifold B induced by the affine submersion π : M −→ B with the horizontal dis-
tribution H(M) = V⊥(M). Abe and Hasegawa [21] obtained a necessary and sufficient
condition for (M,∇, gm) to become a statistical manifold for an affine submersion with
horizontal distribution π : (M,∇) −→ (B,∇∗). In the case of conformal submersion with
horizontal distribution we obtained a necessary and sufficient condition for (M,∇, gm) to
become a statistical manifold. Also, we prove π : (M,∇) −→ (B,∇∗) is a conformal sub-
mersion with horizontal distribution if and only if π : (M,∇) −→ (B,∇∗) is a conformal
submersion with horizontal distribution [22].

Chapter 4 deals with the statistical structures on tangent bundles, harmonic maps be-
tween statistical manifolds and between tangent bundles. In Section 4.1, we discuss the
work of Matsuzoe and Inoguchi [23] and Balan et al. [24] on obtaining the various sta-
tistical manifold structures on the tangent bundle TM. Then, we prove a necessary and
sufficient condition for TM to become a statistical manifold with the complete lift connec-
tion and the Sasaki lift metric [22]. The motivation to study harmonic maps comes from
the applications of Riemannian submersion in theoretical physics [25]. Presently, we see
an increasing interest in harmonic maps between statistical manifolds [26], [27]. In Section
4.2, we first give a detailed description of the harmonic map using tension field. In [26],
Uohashi obtained a condition for the harmonicity on α-conformally equivalent statistical
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manifolds. We prove a necessary and sufficient condition for the harmonicity of identity
map for conformally-projectively equivalent statistical manifolds. Then, conformal statis-
tical submersion is defined which is a generalization of the statistical submersion and prove
that harmonicity and conformality cannot coexist [28]. Harmonicity of the tangent maps of
tangent bundles endowed with the Sasaki lift metric were studied in [29], [30] for Rieman-
nian manifolds. In [30], Oproiu obtained conditions for the tangent map to be harmonic in
the case of tangent bundles equipped with the metrics obtained from the complete lift of
metrics and the vertical lift of appropriate tensor fields. In Section 4.3, certain properties
of the differential of the tangent map is given first. For statistical manifolds, we prove that
a smooth map φ : M −→ B is harmonic with respect to ∇ and ∇∗ if and only if it is
harmonic with respect to the conjugate connections ∇ and ∇∗. Then, given a necessary
condition for the harmonicity of the tangent map with respect to the complete lift structure
on the tangent bundles. Also, prove a necessary and sufficient condition for the tangent
map to be a statistical submersion.

In Chapter 5, estimation of parameters in statistical manifolds, exponential family and
its submanifolds, estimation of parameters in the curved exponential family and Fisher-
Neyman sufficient statistic for parametrized models are discussed. In [31], Amari dis-
cussed the statistical properties of an estimator in a statistical manifold. In Section 5.1, a
short account of the statistical properties of an estimator is given. Amari and Nagaoka [1]
obtained a necessary and sufficient condition for a submanifold of an exponential family
to be exponential. In Section 5.2, we show that if all ∇1-autoparallel proper submanifolds
of a ±1-flat statistical manifold M are exponential then M is an exponential family. Also,
we show that if submanifold of a statistical model is an exponential family, then it is a
∇1-autoparallel submanifold [32]. In the theory of estimation in curved exponential family
we discuss Amari’s geometric conditions for the consistency and efficiency of an estimator
in a curved exponential family using ancilliary manifolds [33], [31]. Then given the MLE
algorithm for estimating parameters in the curved exponential family obtained by Cheng
et al. [34]. A statistical model is a family M of probability measures on a measurable
space Ω and the sample space can be finite or infinite. For the case of a finite dimensional
sample space the theory of statistical manifold structure with the dual connections is well
understood. Also a statistical manifold- a Riemannian manifold with each of whose points
is a probability distribution - can be embedded into the space of probability measures on
a finite set. Infinite dimensional families of probability distributions were first considered
by Pistone and Sempi [35]. To deal with infinite dimensional spaces of probability mea-
sures Ay et al. [36] developed a functional analytic framework. They introduced the notion
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of parametrized measure models and obtained the analogue of the structures considered
in the finite dimensional information geometry. In [36], Ay et al. have given a necessary
and sufficient condition for a statistic to be a Fisher-Neyman sufficient statistic. We show
that the Fisher-Neyman sufficient statistic is invariant under the isostatistical immersions
of statistical manifolds in Section 5.3.

1.2 Preliminaries

In this section, certain basic concepts regarding differentiable manifolds and statistical
manifolds are discussed, [37], [1].

Definition 1.1. A second countable Hausdorff topological space M is called an n-dimensional
topological manifold if it is locally Euclidean. That is, for every point p ∈ M there exists
an open set U ⊂ M containing p and a homeomorphism ϕ : U −→ W , where W is an
open subset of Rn.

(U,ϕ) is called a coordinate chart on M around p and ϕ = (xi), i = 1, · · · , n are
called local coordinates on U . The coordinate chart (U,ϕ) is called a global chart when
U = M and in that case we have a global coordinate system.

Let (U,ϕ) and (V, ψ) be two charts on M such that U ∩ V 6= ∅, the composite map
ψ ◦ ϕ−1 : ϕ(U ∩ V ) −→ ψ(U ∩ V ) is called the transition map. Two charts (U,ϕ) and
(V, ψ) are said to be smoothly compatible if either U ∩V = ∅ or the transition map ψ ◦ϕ−1

is a diffeomorphism.
A collection A of charts is said to be an atlas for M if its domains cover M. An atlas

A is said to be smooth if any two charts inA are smoothly compatible with each other, and
A is a maximal atlas if any chart that is smoothly compatible with every charts in A is in
A. A smooth structure on any topological manifold is a maximal smooth atlas on M. A
smooth manifold is a pair (M,A), where M is a topological manifold and A is a smooth
structure on M. If M is a smooth manifold, a chart contained in the given maximal smooth
atlas is called a smooth chart.

Definition 1.2. Let M and B be smooth manifolds, a map f : M −→ B is said to be
a smooth map if for any smooth charts (U,ϕ) on M and (V, ψ) on B the composite map
ψ ◦ f ◦ ϕ−1 is smooth from ϕ(U ∩ f−1(V )) to ψ(V ).

If B = R, then we call f a smooth function on M. Note that in this case ψ = Id. The
collection of all smooth functions from M to R is denoted by C∞(M) which is a vector
space over R.
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Definition 1.3. Let M be a smooth manifold and let p be a point in M. A linear map
X : C∞(M) −→ R is called a derivation at p if it satisfies

X(g1g2) = g1(p)X(g2) + g2(p)X(g1),

for g1, g2 ∈ C∞(M).

The collection of all derivations of C∞(M) at p is called the tangent space to M at p
and is denoted by TpM. An element of TpM is called a tangent vector at p.

Let (U,ϕ = (xi)) be a smooth chart on M around p. Then { ∂
∂xi
|p, i = 1, · · · , n} form

a basis for TpM. Let T ∗pM denote the dual space of TpM which is also an n-dimensional
vector space and {dxi|p, i = 1, · · · , n} form a basis, where dxi|p is the differential of xi at
p. Elements of T ∗pM are called the cotangent vectors at p.

The tangent bundle on M is denoted by TM which is the disjoint union of tangent
spaces at all points in M. That is,

TM =
⋃
p∈M

TpM.

Similarly, the cotangent bundle is

T ∗M =
⋃
p∈M

T ∗pM.

Definition 1.4. A vector field X on a smooth manifold M is a map X : M −→ TM,
which associate each point p ∈ M a tangent vector Xp ∈ TpM. Vector field X is said to
be a smooth vector field if it is smooth as a map. The set of all smooth vector fields on M

is denoted by X (M).

Let M be a smooth manifold of dimension n. A covariant k-tensor on M is a multi-
linear map

F : TpM× · · · × TpM︸ ︷︷ ︸
k copies

−→ R.

Similarly, a contravariant `-tensor is a multilinear map

F : T ∗pM× · · · × T ∗pM︸ ︷︷ ︸
` copies

−→ R.
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Also we have tensors of mixed types, a tensor of type (`, k) is a multilinear map

F : T ∗pM× · · · × T ∗pM︸ ︷︷ ︸
` copies

×TpM× · · · × TpM︸ ︷︷ ︸
k copies

−→ R.

The collection of all tensors of type (`, k) is denoted by T k` (TpM), we often denote collec-
tion of all covariant k tensors by T k0 (TpM) and contravariant ` tensors by T 0

` (TpM). The
bundle of (`, k)-tensors on M is denoted by T k` M, defined as the disjoint union

T k` M =
⋃
p∈M

T k` (TpM).

A tensor field of type (`, k) on M is a smooth section of the tensor bundle T k` M.

Definition 1.5. A Riemannian metric g on a smooth manifold M is a tensor field of type
(0, 2), such that

1. g(X, Y ) = g(Y,X), for X, Y ∈ X (M) (Symmetric).

2. g(X,X) > 0 if X 6= 0 (Positive definite).

Note that the Riemannian metric determines an inner product on each tangent space
TpM. A Riemannian Manifold is a smooth manifold equipped with a Riemannian metric.

Remark 1.1. A semi-Riemannian metric g on M is a map p −→ gp, where gp is the non-
degenerate, symmetric inner product on Tp(M) and this map is smooth in the sense that for
X, Y ∈ X (M), p −→ gp(Xp, Yp) is a smooth map on M. A smooth manifold M together
with a semi-Riemannian metric g is called a semi-Riemannian manifold.

Let f : M −→ B be a smooth map, for each point p ∈M define a map f∗ : TpM −→
Tf(p)B, called the push-forward of f , by

(f∗Xp)(g) = Xp(g ◦ f), for g ∈ C∞(B).

Note that f∗Xp is a derivation at f(p). Let F be a covariant tensor of type (0,m) on B then
define the pullback f ∗(F ) of F under f as follows:

f ∗(F )(X1, · · ·Xm)(p) = F (f∗(X1)p, · · · f∗(Xm)p),

for Xi ∈ X (M), p ∈M and m is the dimension of B.
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Definition 1.6. Let M be a smooth manifold. An affine connection on M, denoted by ∇,
is a map from X (M)×X (M) into X (M) satisfying the following properties

(1) ∇X+YZ = ∇XZ +∇YZ,

(2) ∇X(Y + Z) = ∇XY +∇XZ,

(3) ∇fXY = f∇XY ,

(4) ∇X(fY ) = f∇XY +X(f)Y ,

for X, Y ∈ X (M) and f ∈ C∞(M). The torsion of the affine connection ∇ is defined
as T (X, Y ) = ∇XY − ∇YX − [X, Y ], for X, Y ∈ X (M). The connection ∇ is called
torsion-free or symmetric if T ≡ 0.

Let (U,ϕ = (xi)) be a smooth chart in M. Then {∂i = ∂
∂xi
, i = 1, · · · , n} are smooth

vector fields on U called the coordinate vector fields. The affine connection ∇ on M can
be locally determined by n3 functions Γkij given by

∇∂i∂j =
∑
k

Γkij∂k. (1.1)

Γkij are called the Christoffel symbols of the affine connection∇. The Christoffel symbols
are also written as Γijk =

∑
h Γhijgkh = 〈∇∂i∂j, ∂h〉, these n3 functions are called the

components of∇.

Definition 1.7. Let M be a Riemannian manifold with Riemannian metric g. An affine
connection ∇ is said to be compatible with g if it satisfies the following product rule for
X, Y, Z ∈ X (M)

∇Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ). (1.2)

A compatible with g torsion-free affine connection is called the Levi-Civita connection
for g.

Note. Note that for a given metric g there exists the unique Levi-Civita connection ∇, for
it we have

Γijk =
1

2
(∂igjk + ∂jgki + ∂kgij),

where gij = g(∂i, ∂j).

A connection on M is said to be flat if ∇∂i∂j = 0 for some coordinate system (xi) on
M. In that case (xi) is called an affine coordinate system for M.
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Definition 1.8. Let (M, g) be a Riemannian manifold, a smooth curve σ : [a, b] −→M is
said to be a geodesic in M if∇ .

σ

.
σ = 0, where

.
σ is the tangent vector field.

Next we discuss certain basic concepts regarding statistical manifolds [1], [3], [36],
[38], [39]

Let Ω be the sample space associated with some random experiment and B be the σ-
field of subsets of Ω. Then a probability measure P on (Ω,B) is a measure satisfying
P (Ω) = 1 and (Ω,B, P ) is called a probability space. Consider a family M of probability
distributions on Ω. Suppose each element of M can be parametrized using n real valued
variables (θ1, · · · , θn), that is

M = {p(x, θ) : θ = (θ1, · · · , θn) ∈ Θ},

where Θ is an open subset of Rn and the map θ −→ p(x, θ) is injective. Such a family
M is called an n-dimensional statistical model or a parametric model or simply a model
on Ω. Also, we write it as M = {pθ}. Note that these are finite dimensional parametrized
families of measures and in this case the theory of statistical manifold structure with the
dual connections is well studied. Infinite dimensional families of probability measures were
first considered by Pistone and Sempi [35]. To deal with the infinite dimensional spaces of
probability measures Ay et al. [36] developed a functional analytic framework.

We now state some regularity conditions in the case of statistical models (finite dimen-
sional) which are required for the geometric theory [31], [1].
Regularity Conditions

• Θ is an open subset of Rn and for each x ∈ Ω, the map θ −→ p(x, θ) is a smooth
map.

• Let `(x, θ) = log p(x; θ) and ∂i = ∂
∂θi

. Then the n functions {∂i`(x, θ), i = 1, · · · , n}
are linearly independent. These functions are knowns as scores.

• Assume that the order of integration and differentiation may be freely rearranged.

• The moments of scores exists upto necessary orders.

• Assume that the support of pθ, supp(pθ) = {x ∈ Ω : p(x, θ) > 0}, does not vary
with respect to θ. In that case Ω can be redefined to be supp(pθ). This is equivalent
to that p(x, θ) > 0 for all θ ∈ Θ and all x ∈ Ω.
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Definition 1.9. Let M = {p(x, θ) : θ ∈ Θ ⊆ Rn} be a statistical model, the mapping ϕ :

M −→ Rn defined by ϕ(p(x, θ)) = θ allows us to consider ϕ = [θi] as a coordinate system
for M. Suppose we have a C∞ diffeomorphism ψ from Θ onto ψ(Θ) ⊆ Rn. Then by using
ρ = ψ(θ) as the parameter instead of θ we get M = {p(x, ψ−1(ρ)) : ρ ∈ ψ(Θ)}. This
expresses the same family of probability distributions M = {p(x, θ)}. Then M is a smooth
manifold by considering parametrizations which are C∞ diffeomorphic to each other to be
equivalent and is called a statistical manifold. Note that (θi) is a global coordinate system
on M.

For the statistical manifold M = {p(x, θ)} define `(x, θ) = log p(x, θ) and consider
the partial derivatives ∂i` for i = 1, · · · , n. By regularity condition, {∂i`, i = 1, · · · , n}
are linearly independent functions in x. We can construct following n-dimensional vector
space spanned by ∂i`, for i = 1, · · · , n as

T 1
θ (M) = {A(x) : A(x) =

n∑
i=1

Ai∂i`}

Define the expectation with respect to the distribution p(x, θ) as

Eθ[f ] =

∫
Ω

f(x)p(x, θ)dx.

Note that Eθ[∂i`] = 0 since p(x, θ) satisfies∫
Ω

p(x, θ)dx = 1.

Hence for any random variable A(x) ∈ T 1
θ (M) we have Eθ[A(x)] = 0. This expectation

induces an inner product on M in a natural way

〈A(x), B(x)〉θ = Eθ[A(x)B(x)]; for A(x), B(x) ∈ T 1
θ (M).

Then for basic vectors ∂i and ∂j we have

gij(θ) = 〈∂i, ∂j〉θ = Eθ[∂i`∂j`]

=

∫
Ω

∂i`(x; θ)∂j`(x; θ)p(x, θ)dx. (1.3)

Note that the matrixG = (gij(θ)) is symmetric (ie, gij = gji) and thatG is positive definite.
Hence g = 〈.〉 defined in (1.3) is a Riemannian metric on statistical manifold M called the
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Fisher information metric. So statistical manifold is a Riemannian manifold with metric
as Fisher information metric.

Example 1.1. Let Ω = R, n = 2, θ = (µ, σ), Θ = {(µ, σ) : −∞ < µ <∞, 0 < σ <∞}.
The family of normal distributions

N(µ, σ) = {p(x, θ) =
1√
2πσ

e
−(x−µ)2

2σ2 : θ = (µ, σ) ∈ Rn}.

This is a 2-dimensional manifold which can be identified with the upper half plane. The
log likelihood function is given by

`(x, θ) = −−(x− µ)2

2σ2
− log

√
2πσ.

Then, the tangent space T 1
θ (M) is spanned by ∂1 = ∂

∂µ
and ∂2 = ∂

∂σ
, here

∂1 =
(x− µ)

σ2
, ∂2 = −(x− µ)

σ3
− 1

σ
.

The Fisher information matrix G(θ) = (gij) is given by[
1
σ2 0

0 2
σ2

]
.

Statistical manifolds are abstract generalization of the statistical models. There are
three equivalent ways of defining a statistical manifold. One of them is to represent the
statistical manifold by (M,∇, g), where M is a Riemannian manifold,∇ a connection and
g a Riemannian metric with ∇g symmetric [4]. Then dual connections are introduced so
that the statistical manifold is represented as a quadruplet (M,∇,∇, g) [1]. Another way
is to define the statistical manifold by the triplet (M, g, C), where C is the (0, 3)-tensor on
(M, g) [3]. The third way of introducing a statistical structure is to deduct the Riemannian
metric and the conjugate connections on a Riemannian manifold from a given divergence
function [40]. A divergence function is a distance like function (which is not symmetric in
general) defined on the manifold [1].

Definition 1.10. A semi-Riemannian manifold (M, g) with a torsion-free affine connection
∇ is called a statistical manifold if∇g is symmetric.
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For a statistical manifold (M,∇, g) the dual connection∇ is defined by

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ) (1.4)

for X, Y and Z in X (M). If (∇, g) is a statistical structure on M, so is (∇, g). Then
(M,∇, g) becomes a statistical manifold called the dual statistical manifold of (M,∇, g).

Let R∇ be the curvature tensor of∇ defined by

R∇(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

for X, Y, Z ∈ X (M). Similarly, R∇ be the curvature tensor of∇. It follows from equation
(1.4) that

g(R∇(X, Y )Z,W ) = −g(Z,R∇(X, Y )W ), (1.5)

for X, Y, Z and W in X (M). We say (M,∇,∇, g) has constant curvature k if

R∇(X, Y )Z = k{g(Y, Z)X − g(X,Z)Y }. (1.6)

A statistical manifold with curvature zero is called a flat statistical manifold and in that case
(M,∇,∇, g) is called a dually flat statistical manifold.

Definition 1.11. Two statistical manifolds (M,∇, g) and (M, ∇̃, g̃) are said to be α-
conformally equivalent if there exists a real valued function φ on M such that

g̃(X, Y ) = eφg(X, Y ) (1.7)

g(∇̃XY, Z) = g(∇XY, Z)− 1 + α

2
dφ(Z)g(X, Y )

+
1− α

2
{dφ(X)g(Y, Z) + dφ(Y )g(X,Z)}, (1.8)

where X, Y and Z in X (M) and α is a real number.

Note. Two statistical manifolds (M,∇, g) and (M, ∇̃, g̃) are α-conformally equivalent if
and only if the dual statistical manifolds (M,∇, g) and (M, ∇̃, g̃) are (−α)-conformally
equivalent.

Definition 1.12. Two statistical manifolds (M,∇, g) and (M, ∇̃, g̃) are said to be conformally-
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projectively equivalent if there exist two real valued functions φ and ψ on M such that

g̃(X, Y ) = eφ+ψg(X, Y ) (1.9)

∇̃XY = ∇XY − g(X, Y )gradgψ + d(φ)(X)Y + d(φ)(Y )X, (1.10)

where X, Y and Z in X (M).

Definition of the statistical manifold given by Lauritzen [3] is

Definition 1.13. Let (M, g) be a semi-Riemannian manifold, a triplet (M, g, C), where
C : X (M) × X (M) × X (M) −→ C∞(M) is a trilnear map, is said to be a statistical
manifold if C(X, Y, Z) is totally symmetric for X, Y, Z ∈ X (M).

Another way to look at statistical manifold is by considering the divergence functions
[40].

Definition 1.14. Let M be an n-dimensional manifold with coordinate system θ =

(θ1, · · · , θn) = (θi). Let the coordinates of the points p, q be (θi), (θi
′
), respectively. A

divergence function D : M ×M −→ R is a smooth function satisfying the following
conditions

• D(p, q) ≥ 0 for p, q ∈M with equality holding if and only if p = q.

• ∂i∂j′D(p, q) |p=q is negative definite, where ∂i = ∂
∂θi

and ∂j′ = ∂

∂θj
′ .

In [40], Eguchi defined the unique Riemannian metric gD and an affine connection∇D

using the divergence function as follows

gDij = 〈∂i∂j〉Dθ = −∂i∂j′D(p, q) |p=q
ΓDijk(θ) = 〈∇D

∂i
∂j∂k〉Dθ = −∂i∂j∂k′D(p, q) |p=q .

Then, (M, gD,∇D) is a statistical manifold. The dual structure can be computed using the
dual D of the divergence function D, where D is defined as

D(p, q) = D(q, p), for p, q ∈M.

Note that gD = gD and ∇D and ∇D are conjugate with respect to gD [40]. In [41], Ma-
tumoto has proved that every torsion-free dualistic structure is induced from a globally
defined divergence.
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Chapter 2

Geometry of Immersions and Statistical
Manifolds

Affine differential geometry, a branch developing out from the classical differential geom-
etry, assumes a significant importance in the field of geometry and it was introduced in the
early 1920’s most notably by Blaschke [42]. Affine immersions were introduced by No-
mizu and Sasaki [2]. Statistical manifold was originally introduced by Lauritzen [3], later
Kurose [4] reformulated this from the viewpoint of affine differential geometry.

Kurose [4] has given a necessary and sufficient condition for a statistical manifold to
be realized by an affine immersion of codimension one. Dillen et al. [6] proved a neces-
sary and sufficient condition for realizing a simply connected statistical manifold in Rn+1.
Matsuzoe [14] obtained conditions for a statistical manifold to be realized by centro-affine,
equiaffine immersions of codimension two. Uohashi et al. [8] proved that a 1-conformally
flat statistical manifold of dimension n ≥ 2 can be locally ralized as a submanifold of a flat
statistical manifold of dimension (n + 1). Furuhata [10] has proved a necessary and suffi-
cient condition for minimal immersion of a statistical manifold into Rn+1. In this chapter,
we consider affine immersions and immersions into statistical manifolds of codimension
one and two. Also, mention about the immersions of general codimension.

In Section 2.1, we give the basic definitions and results of affine immersion along with
the proof of simply connected statistical manifold realized in Rn+1 if and only if it is 1-
conformally flat. Then, discuss the theorems by Kurose [4] on affine immersions and sta-
tistical manifolds. In Section 2.2, a necessary and sufficient condition for the inherited sta-
tistical manifold structures to be dual to each other in the case of immersions to statistical
manifolds is obtained. Then, statistical immersion is defined and prove a necessary condi-
tion for a statistical manifold to be a statistical hypersurface. Its converse is also proved [9].
Also, we obtained a necessary and sufficient condition for the affine equivalence of non-
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degenerate equiaffine immersions of statistical manifolds realized in Rn+1. Then, proved
a necessary and sufficient condition for a statistical immersion into a dually flat statistical
manifold of codimension one to be minimal. Also, a necessary condition is obtained for
minimal statistical immersion of statistical manifolds equipped with α-connections [11]. In
Section 2.3, we present a detailed proof of 1-conformal equivalence and (−1)-conformal
equivalence of statistical manifold structures in the case of centro-affine immersions into
Rn+2. Then, defined the centro-affine immersions of codimension two into a dually flat
statistical manifold and given a necessary and sufficient condition for the inherited statisti-
cal manifold structures to be dual to each other. Also, we show that the inherited statistical
manifold structure is conformally-projectively flat in the case of non-degenerate, centro-
affine, equiaffine immersion into a dually flat statistical manifold of codimension two [9].
In Section 2.4, transversal volume element map is defined for equiaffine statistical immer-
sion of general codimension and certain properties also proved.

2.1 Affine Immersions

In this section, we give the basic definitions and results of an affine immersion along with
the proof of the result that a simply connected statistical manifold is realized in Rn+1 if
and only if it is 1-conformally flat [2], [5]. Then, discussed the theorems by Kurose [4] on
affine immersions and statistical manifolds.

Let M and M̃ be two smooth manifolds of dimensions n and m (m ≥ n), respectively
with the affine connections∇ on M and ∇̃ on M̃. Let k = m− n.

Definition 2.1. An immersion f : M −→ M̃ is said to be an affine immersion if there
exists a k-dimensional smooth distribution N along f which assigns to every point p ∈M

a subspace Np of Tf(p)(M̃) such that the following equations hold

Tf(p)(M̃) = f∗(Tp(M))
⊕
Np, (2.1)

(∇̃Xf∗Y )p = (f∗(∇XY ))p + α(X, Y )p, (2.2)

where α(X, Y )p ∈ Np at each point p in M and X, Y are in X (M).

Since the distribution p ∈M −→ Np is smooth, each p in M has a system of k smooth
vector fields {ξ1, · · · , ξk} on a neighborhoodU of p such that the span of {ξ1(q), · · · , ξk(q)}
equal to Nq for each q ∈ U . This distribution is considered as a bundle of transversal k-
subspaces. If M̃ is a Riemannian manifold with positive definite Riemannian metric g̃, then
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for the immersion f : M −→ M̃ we can choose the normal space at each point p ∈ M,
namely,

Np = {ξ ∈ Tf(x)(M̃) : g̃(ξ, v) = 0, for all v ∈ Tp(M)}.

But, in general there is no natural choice of such transversal subspaces. Also, the map
(X, Y ) ∈ X (M)× X (M) 7→ α(X, Y ) defines for each point p ∈M a symmetric bilinear
map

Tp(M)× Tp(M) −→ Np.

This map α is called the affine fundamental form.

Example 2.1. Isometrically immersed hypersurface. Let (M1, g1) and (M2, g2) be Rie-
mannian manifolds of dimensions n and (n+1), respectively with Levi-Civita connections
g1

∇ on M1 and
g2

∇ on M2. If f : (M1, g1) −→ (M2, g2) is an immersion with g1 = f ∗g2,
then f : M1 −→M2 is an affine immersion with a transversal vector field ξ which is given
locally as the unit normal vector field.

Example 2.2. Graph immersion. Let M be an n-dimensional manifold with a flat affine
connection ∇ and ψ : M −→ Rn be an affine immersion. Since the dimension of M and
Rn are equal, locally ψ is a diffeomorphism that preserves affine connections. Consider Rn

as a hyperplane H in Rn+1 and let ξ be a parallel vector field transversal to H . For any
differentiable function F : M −→ R, define f : M −→ Rn+1 by f(x) = ψ(x) + F (x)ξ,
for x ∈M. We have

f∗(Y ) = ψ∗(Y ) + (dF )(Y )ξ, for Y ∈ Tx(M),

so f is an immersion. For X and Y in X (M),

∇̃Xf∗Y = ∇̃Xψ∗Y + ∇̃X(Y Fξ) = ψ∗(∇XY ) + (XY F )ξ

= f∗(∇XY ) + (XY F − (∇XY )F )ξ.

Hence f is an affine immersion with α(X, Y ) = XY F − (∇XY )F.

Now onwards in this section we consider the case of codimension k = 1.

Definition 2.2. Let M be an n-dimensional manifold with an affine connection ∇. An
immersion f : M −→ Rn+1 is called an affine immersion of codimension one if there
exists a transversal vector field ξ on M such that

Tf(x)(Rn+1) = f∗(TxM)
⊕

Span{ξx}, (2.3)

16



for x ∈M and
DXf∗Y = f∗(∇XY ) + h(X, Y )ξ, (2.4)

where D is the standard flat connection on Rn+1.
The covariant tensor field h of type (0, 2) is called the second fundamental form.
The affine shape operator S and the transversal connection form τ are given by

DXξ = −f∗(SX) + τ(X)ξ. (2.5)

Definition 2.3. A torsion-free affine connection∇ on M is called equiaffine if there exists
a volume element ω on M such that ∇ω = 0. Then, we say that (∇, ω) is an equiaffine
structure on M.

Consider an affine immersion f : M −→ Rn+1. Let ω̃ be a fixed volume element on
Rn+1 such that Dω̃ = 0. Now define an induced volume element θ on M as

θ(X1, · · · , Xn) = ω̃(f∗X1, · · · , f∗Xn, ξ), (2.6)

where ξ is the transversal vector field of the immersion f : M −→ Rn+1. In [2], Nomizu
and Sasaki proved that the induced volume element θ satisfies, ∇Xθ = τ(X)θ for each
X ∈ Tp(M). As a consequence, ∇θ = 0 if and only if τ = 0, that is, DXξ has only
tangential part for vector fields X on M.
An affine immersion f : M −→ Rn+1 is said to be equiaffine ifDXξ has only the tangential
part, that is, the transversal connection form τ = 0. An affine immersion f : M −→ Rn+1

of codimension one is called non-degenerate if the second fundamental form h is non-
degenerate.

Let f : M −→ Rn+1 be an immersion of codimension one and ξ be an arbitrary
transversal vector field on M. Then,

Tf(x)(Rn+1) = f∗(TxM)
⊕

Span{ξx}, (2.7)

for every x ∈M. Then, DXf∗Y is decomposed as

DXf∗Y = f∗(∇XY ) + h(X, Y )ξ, (2.8)

for X, Y in X (M). Here f∗(∇XY ) is the notation for the tangential part of DXf∗Y . Now,
a connection ∇ is obtained on M defined by (2.8). This connection is called the induced
connection on M with respect to ξ. Immersion (f, ξ) is said to be totally umbilical if S is
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proportional to the identity operator and τ = 0. Note that (f, ξ) is totally umbilical if and
only if the affine mean curvature L = 1

n
trace(S) is constant and ξ + Lx is constant along

M. Let (f, ξ) be another immersion of M, ∇ and h be its induced connection and second
fundamental form respectively. We say that (f, ξ) is dual to (f, ξ) if h = h on M and ∇ is
dual to∇ with respect to h.

For a non-degenerate totally umbilical immersion (f, ξ), the dual is constructed as fol-
lows.
The Legendre Transformation Let (f, ξ) be a non-degenerate totally umbilical affine im-
mersion with L = 0. The local coordinates (u1, u2, ...un) of M and the coordinates
(x1, x2, ...xn+1) of Rn+1 be such that

xi = ui (1 ≤ i ≤ n).

xn+1 = φ(u1, u2..., un),where φ : M→ R.

ξ = (0, 0....0, 1).

Define the dual affine immersion (f, ξ) by

f
i

=
∂φ

∂ui
(1 ≤ i ≤ n).

f
n+1

=
n∑
i=1

uif
i − φ.

ξ = (0, 0....0, 1).

Conormal Transformation Let (f, ξ) be a non-degenerate totally umbilical affine immer-
sion with L 6= 0. Denote the dual space of Rn+1 by Rn+1. Define the affine immersion
(f, ξ) of M into Rn+1 as follows

f(f∗X) = 0 for X ∈ X (M).

f(ξ) = L.

ξ = −Lf.

Note that in both the cases (f, ξ) is dual to (f, ξ).

Let f : M −→ Rn+1 be an affine immersion of codimension one and ξ be an arbitrary
transversal vector field on M. Let ∇ be the induced connection on M and R denote the
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curvature of M with respect to∇. Then, the fundamental equations are [2]

R(X, Y )Z = h(Y, Z)SX − h(X,Z)SY, (2.9)

(∇Xh)(Y, Z) + τ(X)h(Y, Z) = (∇Y h)(X,Z) + τ(Y )h(X,Z), (2.10)

(∇Y S)(X)− τ(Y )SX = (∇XS)(Y )− τ(X)SY, (2.11)

dτ(X, Y ) = h(SY,X)− h(Y, SX). (2.12)

The equation (2.9) is called the Gauss equation, (2.10) and (2.11) are called the Codazzi
equations for h and S, respectively. The equation (2.12) is called the Ricci equation.

Let f : M −→ Rn+1 be an affine immersion of codimension one and ξ be an arbitrary
transversal vector field on M. Let ∇ be the induced connection on M with respect to ξ. If
f is non-degenerate and equiaffine, from the fundamental equations

(∇Xh)(Y, Z) = (∇Y h)(X,Z) (2.13)

(M,∇, h) becomes a statistical manifold. We call (M,∇, h) the statistical manifold re-
alized in Rn+1. In [6], Dillen et al. proved that a simply connected statistical manifold
(M,∇, h) can be realized in Rn+1 if and only if ∇ is projectively flat connection with
symmetric Ricci tensor. As a consequence of this result we have

Proposition 2.1. [4] A simply connected statistical manifold can be realized in Rn+1 if and

only if it is 1-conformally flat.

Proof. A statistical manifold (M,∇, h) is 1-conformally flat if and only if the dual con-
nection ∇ is projectively flat with symmetric Ricci tensor. Then, the proposition follows
from the result mentioned above by Dillen et al. [6].

Now, we discuss two important theorems by Kurose [4] which describe the relation
between affine immersions and statistical manifolds.

Theorem 2.1. [4] Let (M,∇,∇, g) be a simply connected and connected statistical mani-

fold of dimension n. If (M,∇,∇, g) has constant curvature, then there exist affine immer-

sions (f, ξ) of (M,∇) and (f, ξ) of (M,∇) such that their second fundamental forms are

equal to g. Moreover each of them is uniquely determined up to an affine transformation

of Rn+1 and (f, ξ) is obtained from (f, ξ) by the Legendre transformation or conormal

transformation.
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Proof. Let (M,∇,∇, g) be a simply connected and connected statistical manifold with
constant curvature k. Define h, S and τ as follows:

h = g.

S = kI.

τ = 0.

Then,∇, h, S, and τ satisfy the equations (2.9), (2.10),(2.11) and (2.12). Then, there exists
a non-degenerate eqiaffine immersion (f, ξ) of (M,∇) such that second fundamental form
equal to g. The corresponding dual immersion (f, ξ) can be obtained using the Legendre
transformation or Conormal transformation.

Theorem 2.2. [4] Let (M,∇,∇, g) be a connected statistical manifold of dimension n ≥
3. If there exists an affine immersion of (M,∇) and an affine immersion of (M,∇) such

that their second fundamental forms are equal to g, then (M,∇,∇, g) has constant curva-

ture.

Proof. Let (M,∇,∇, g) be a connected statistical manifold of dimension n ≥ 3. Let (f, ξ)

be the dual affine immersion of (f, ξ). Now, to show that S = LI . Since,∇ and∇ are dual
with respect to g

g(R∇(X, Y )Z,W ) = −g(Z,R∇(X, Y )W ), (2.14)

for X, Y, Z and W in X (M). Then,

g(Y, Z)g(SX,W )− g(X,Z)g(SY,W ) = g(Y,W )g(SX,Z)

−g(X,W )g(SY, Z). (2.15)

Set L = 1
n
tr(S) and L = 1

n
tr(S). Now, taking trace in X and W components in (2.15) we

get
nLg(Y, Z)− g(S(Y ), Z) + g(SY, Z)− ng(SY, Z) = 0. (2.16)

Again, taking trace in Y and Z components,

L = L.

Also, from (2.16)
nLI = S + (n− 1)S. (2.17)
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Since equation (2.15) is symmetric in S and S

nLI = S + (n− 1)S. (2.18)

Equations (2.17) and (2.18) imply S = LI for n ≥ 3. Hence, (M,∇,∇, g) has constant
curvature.

2.2 Immersions into Statistical Manifolds

In this section, we first discuss about the statistical submanifolds and the fundamental equa-
tions associated with it [7]. Uohashi et al. [8] proved that a 1-conformally flat statistical
manifold of dimension n ≥ 2 can be locally realized as a submanifold of a flat statistical
manifold of dimension (n+ 1). Then, we consider manifolds immersed in statistical mani-
folds and obtained a necessary and sufficient condition for the inherited statistical manifold
structures to be dual to each other. Statistical immersion is defined and then proved a nec-
essary condition for a statistical manifold to be a statistical hypersurface. Its converse is
also proved [9]. Furuhata [10] has proved a necessary and sufficient condition for minimal
immersion of a statistical manifold into Rn+1. We proved a necessary and sufficient condi-
tion for a statistical immersion into a dually flat statistical manifold of codimension one to
be minimal. Also, a necessary condition is obtained for minimal statistical immersion of
statistical manifolds equipped with α-connections [11].

Let (M, g) be a submanifold of a statistical manifold (M̃, ∇̃, ∇̃, g̃) with the induced
metric g, that is, the metric g is the restriction of g̃ onto the tangent space of M. Let ∇ be
the affine connection on M defined by

∇XY = π(∇̃XY ), (2.19)

where π is the orthogonal projection of TM̃ onto TM. That is, for each p in M, πp :

Tp(M̃) −→ Tp(M) is a linear map such that πp(V ) = V , for all V ∈ Tp(M). Then,
(M,∇, g) becomes a statistical manifold called the induced statistical submanifold. Sim-
ilary, define the connection ∇ induced by the dual connection ∇̃. In [7], Vos proved that
(∇, g) and (∇, g) are dual statistical structures on M.

Definition 2.4. Let M be a submanifold of M̃. The statistical manifold (M,∇,∇, g) is
called the statistical submanifold of (M̃, ∇̃, ∇̃, g̃) if g, ∇ and ∇ coincide with the induced
structures.
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The corresponding Gauss formulae are [7]

∇̃XY = ∇XY + α(X, Y ), (2.20)

∇̃XY = ∇XY + α(X, Y ), (2.21)

where α and α are symmetric bilinear forms, called the affine fundamental forms (called
the imbedding curvature tensors by Amari [31]) of M in M̃ for ∇̃ and for ∇̃, respectively.

Let ξ be a normal vector field on M, define the shape operators S and S by

g(SξX, Y ) = g̃(α(X, Y ), ξ), (2.22)

g(SξX, Y ) = g̃(α(X, Y ), ξ), (2.23)

whereX and Y are inX (M). The corresponding Weingarten formulae are given as follows
[7]

∇̃Xξ = −SξX +∇⊥XY, (2.24)

∇̃Xξ = −SξX +∇⊥XY, (2.25)

where ∇⊥ and ∇⊥ are affine connections on normal bundle TM⊥. In addition, the funda-
mental equations relating the curvatures are [7]

g̃(R̃(X, Y )Z,W ) = g(R(X, Y )Z,W ) + g̃(α(X,Z), α(Y,W ))

−g̃(α(X,W ), α(Y, Z)), (2.26)

(R̃(X, Y )Z)⊥ = ∇⊥Xα(Y, Z)− α(∇XY, Z)− α(Y,∇XZ)

−{∇⊥Y α(X,Z)− α(∇YX,Z)− α(X,∇YZ)}, (2.27)

g̃(R⊥(X, Y )ξ, η) = g̃(R̃(X, Y )ξ, η) + g([Sξ, Sη](X), Y ), (2.28)

where R⊥ is the Riemannian curvature tensor on TM⊥, ξ, η are normal vector fields on M

and [Sξ, Sη] = SξSη − SηSξ. The equation (2.26) is called the Gauss equation, (2.27) is
called the Codazzi equation and (2.28) is called the equation of Ricci.

In [8], Uohashi et al. introduced the statistical submanifold realized in a statistical
manifold, which is nothing but a statistical submanifold of (M̃, ∇̃, g̃) defined above. They
proved that, for a Hessian domain (Ω, D̃, g̃ = D̃dφ), n-dimensional level surfaces of φ are
1-conformally flat statistical submanifolds of (Ω, D̃, g̃ = D̃dφ). Also,

Theorem 2.3. [8] An arbitrary 1-conformally flat statistical manifold of dimension n ≥
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2 with a Riemannian metric can be locally realized as a submanifold of a flat statistical

manifold of dimension (n+ 1).

Proof. Let (M,∇, g) be a 1-conformally flat statistical manifold of dimension n ≥ 2 with
a Riemannian metric g. Then, by proposition (2.1) (M,∇, g) can be realized in Rn+1 by
non-degenerate equiaffine immersion (f, ξ). Let U be a simply connected open subset of
M and ε ≥ 0, define a function φ on Ũ = ∪q∈U{f(q)⊕ (−ε, ε).ξq} by

φ(p) = e−t for p = f(p0) + tξp0 , p0 ∈ U, t ∈ (−ε, ε). (2.29)

It is enough to show that (U,∇, g) is a statistical submanifold of the flat statistical manifold
(Ũ, D̃, D̃dφ). For X, Y ∈ X (U), we have dφ(X) = 0, dφ(ξ) = −1. Then,

(D̃Xdφ)(Y ) = X(dφ(Y ))− dφ(D̃XY )

= −dφ(∇XY + g(X, Y )ξ)

= −g(X, Y )dφ(ξ)

= g(X, Y ).

Thus, (U,∇, g) is a statistical submanifold of (Ũ, D̃, D̃dφ).

Let E be a vector field on Ũ whose value is ξp0 at p = f(p0) + tξp0 . Then, on f(U)

E(dφ(E)) = 1, D̃EE = 0,

and
(D̃Edφ)(E) = 1.

Thus, (D̃Edφ)f(p0) is positive definite for p0 ∈ U . Since φ is continuous, D̃dφ is a Rieman-
nian metric on Ũ for a small ε. Hence, (Ũ, D̃, D̃dφ) is a flat statistical manifold.

Next, we discuss the geometry of an n-dimensional smooth manifold immersed into a
statistical manifold of dimension (n + 1), such manifolds are known as statistical hyper-
surfaces.

Let M be an n-dimensional manifold and (M̃, ∇̃, g̃) be an (n+ 1)-dimensional statisti-
cal manifold. Let f : M −→ M̃ be an immersion. The induced metric f ∗g̃ and the induced
connection∇ on M are defined as

f ∗g̃(X, Y ) = g̃(f∗X, f∗Y ), (2.30)
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f ∗g̃(∇XY, Z) = g̃(∇̃Xf∗Y , f∗Z), (2.31)

for X, Y, Z ∈ X (M).

Note. The pullback f ∗g̃ of g̃ is called the induced metric. Also,∇ defined by (2.31) satisfies
all the properties of an affine connection.

Note that from the above definition (2.30) and (2.31),

(∇Xf
∗g̃)(Y, Z) = Xf ∗g̃(Y, Z)− f ∗g̃(∇XY, Z)− f ∗g̃(Y,∇XZ)

= Xg̃(f∗Y, f∗Z)− g̃(∇̃Xf∗Y, f∗Z)− g̃(f∗Y, ∇̃Xf∗Z)

= (∇̃X g̃)(f∗Y, f∗Z).

Thus, (M,∇, f ∗g̃) is also a statistical manifold.

Let M be an n-dimensional manifold and (M̃, ∇̃, ∇̃, g̃) be an (n + 1)-dimensional
statistical manifold. Let f : M −→ M̃ be an immersion into a statistical manifold of
codimension one with the unit normal vector field ξ along f . Then, for each p ∈M

Tf(p)(M̃) = f∗(Tp(M)) + span{ξp}. (2.32)

Also, the equations connecting various tensors on M and M̃ are

∇̃Xf∗Y = f∗(∇>XY ) + h(X, Y )ξ, (2.33)

∇̃Xf∗Y = f∗(∇
>
XY ) + h(X, Y )ξ, (2.34)

∇̃Xξ = −f∗(SX) + τ(X)ξ, (2.35)

∇̃Xξ = −f∗(SX) + τ(X)ξ, (2.36)

for X, Y ∈ X (M), where h(X, Y ) and h(X, Y ) are symmetric bilinear forms on tangent
space Tp(M) for p in M, called the affine fundamental forms. The tensors S and S are
tensor fields of type (1, 1) and τ, τ are 1-forms. The tensor S (S) is called the shape
operator and τ (τ ) is the transversal connection form for f and the induced connections
∇> (∇>). The equations (2.33), (2.34) are called the Gauss formulae and (2.35), (2.36) are
called the Weingarten formulae [43], [7].

The connection ∇> induced by the Gauss formula coincides with the induced connec-
tion ∇ defined by (2.31) on M. So, we write ∇ instead of ∇>. Thus, on M we have
induced connections∇ and∇ and the second fundamental forms h and h. Using the Gauss
and the Weingarten formulae we have the following observations.
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(a). The induced connections ∇ and ∇ on M are dual with respect to the induced metric
f ∗g̃.
(b). For vector fields X, Y ∈ X (M)

(i) h(X, Y ) = f ∗g̃(SX, Y ).

(ii) h(X, Y ) = f ∗g̃(SX, Y ).

(iii) τ(X) + τ(X) = 0.

Now, suppose (M̃, ∇̃, ∇̃, g̃) has constant curvature k̃, then the fundamental equations are
[43], [7]

R∇(X, Y )Z = k̃{f ∗g̃(Y, Z)X − f ∗g̃(X,Z)Y }+ h(Y, Z)SX

−h(X,Z)SY, (2.37)

(∇Xh)(Y, Z) + τ(X)h(Y, Z) = (∇Y h)(X,Z) + τ(Y )h(X,Z), (2.38)

(∇XS)(Y )− τ(X)SY = (∇Y S)(X)− τ(Y )SX, (2.39)

h(X,SY )− h(SX, Y ) = dτ(X, Y ), (2.40)

where R∇ denotes the curvature tensor with respect to ∇ in M. Equation (2.37) is called
the Gauss equation, (2.38) and (2.39) are called the Codazzi equation for h and the Codazzi
equation for S, respectively. The equation (2.40) is called the Ricci equation. Similarly,
one can write the fundamental equations with respect to the dual connection also.

Definition 2.5. Let f : M −→ M̃ be an immersion of codimension one. Then, f is said to
be non-degenerate if the second fundamental form h is non-degenerate and f is equiaffine
if the transversal connection form τ is zero.

Remark 2.1. For a non-degenerate equiaffine immersion f : M −→ M̃ with M̃ has con-
stant curvature, from equation (2.38) we get (M,∇, h) is a statistical manifold. Similarly,
(M,∇, h) is also a statistical manifold, where ∇ and h are the connection and the second
fundamental form obtained using the dual connection ∇̃ of (M̃, ∇̃, ∇̃, g̃). Note that, in this
case an equation similar to equation (2.38) called the Codazzi equation for h can be written.

Definition 2.6. Statistical manifolds (M,∇, h) and (M,∇, h) are said to be dual to each
other if h = h and the connections∇, ∇ are dual with respect to h.

Now, we prove a necessary and sufficient condition for the inherited statistical mani-
folds (M,∇, h) and (M,∇, h) to be dual to each other.
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Theorem 2.4. Let M be an n-dimensional manifold and (M̃, ∇̃, g̃) be an (n+1)-dimensional

statistical manifold with constant curvature k̃. Let f : M −→ M̃ be a non-degenerate,

equiaffine immersion of codimension one. Then, (M,∇, h) and (M,∇, h) are dual to each

other if and only if S = S = λI for some constant λ. Moreover h = λf ∗g̃.

Proof. Suppose S = S = λI for some constant λ. From the above observation (b)

h(X, Y ) = f ∗g̃(SX, Y )

= λf ∗g̃(X, Y ).

Similarly, h(X, Y ) = λf ∗g̃(X, Y ), thus h = h = λf ∗g̃. Since∇ and∇ are dual with respect
to f ∗g̃, the statistical manifolds (M,∇, h) and (M,∇, h) are dual to each other.

Conversely, let (M,∇, h) and (M,∇, h) be dual to each other. Then h = h and ∇, ∇
are dual with respect to h. So

Zh(X, Y ) = h(∇ZX, Y ) + h(X,∇ZY ). (2.41)

Now, consider

Zf ∗g̃(SX, Y ) = f ∗g̃(∇ZSX, Y ) + f ∗g̃(SX,∇ZY )

= f ∗g̃(∇ZSX, Y ) + h(X,∇ZY ). (2.42)

Since h(X, Y ) = f ∗g̃(SX, Y ) = f ∗g̃(SX, Y ) = h(X, Y ), from (2.41) and (2.42) we get

∇ZSX = S(∇ZX),

which implies (∇ZS)X = 0, then S = λI for some constant λ.
Therefore S = S = λI . Also, note that the induced metric h = λf ∗g̃.

Remark 2.2. Let (M̃, ∇̃, g̃) be an (n+1)-dimensional statistical manifold. If f : M −→ M̃

is an immersion of codimension one, then (M,∇,∇, f ∗g̃) is a statistical manifold. For a
non-degenerate equiaffine immersion f : M −→ M̃ of codimension one with M̃ having
constant curvature, (M,∇,∇, h) is a statistical manifold if and only if S = S = λI for some
constant λ.

Definition 2.7. Let (M̃, ∇̃, g̃) and (M,∇, g) be statistical manifolds. An immersion f :

M −→ M̃ is called a statistical immersion if the metric g on M coincides with the induced
metric and the connection∇ on M coincides with the induced connection.
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Note. Fundamental equations can be written for statistical immersions of codimension one.
In this case, the Gauss equation (2.37) reduces to

R∇(X, Y )Z = k̃{g(Y, Z)X − g(X,Z)Y }+ h(Y, Z)SX

−h(X,Z)SY, (2.43)

and all other equations (2.38), (2.39) and (2.40) remain the same.

Example 2.3. Let H = {(x1, · · · , xn+1) ∈ Rn+1 : xn+1 > 0} be the upper half space
of constant curvature (−1) with Riemannian metric g̃ = (xn+1)−2

∑n+1
i=1 (dxi)

2. Define an
affine connection ∇̃ on H by the following relations

∇̃ ∂
∂xn+1

∂

∂xn+1

= (xn+1)−1 ∂

∂xn+1

, ∇̃ ∂
∂xi

∂

∂xj
= 2δij(xn+1)−1 ∂

∂xn+1

, (2.44)

∇̃ ∂
∂xi

∂

∂xn+1

= ∇̃ ∂
∂xn+1

∂

∂xj
= 0, (2.45)

where i, j = 1, · · · , n. Then, (H, ∇̃, g̃) is a Hessian manifold. For a constant y0 > 0,
define the map f0 : Rn −→ H by f0 ((x1, · · ·xn)) = (x1, · · · , xn, y0). Then, f0 is an
immersion, (∇, g) be the statistical structure on Rn induced by f0 from (∇̃, g̃). Then,
f0 : (Rn,∇, g) −→ (H, ∇̃, g̃) is a statistical immersion. Note that the transversal vector
field ξ = y0

∂
∂xn+1

, the second fundamental forms h = 2g and h = 0. Also, the affine shape
operators S = 2I , S = 0 and the transversal connection forms τ = τ = 0.

Definition 2.8. An n-dimensional statistical manifold (M,∇, g) is said to be realized in
an (n + 1)-dimensional statistical manifold (M̃, ∇̃, g̃) if there exists a non-degenerate
equiaffine immersion f : M −→ M̃ such that the affine fundamental form h equal to
g and the induced connection coincide with∇.

Now, we prove

Theorem 2.5. Let (M,∇,∇, g) and (M̃, ∇̃, ∇̃, g̃) be simply connected and connected sta-

tistical manifolds of dimensions n and (n + 1) with constant curvatures k and k̃, respec-

tively, then M is realized in M̃.

Proof. Define

h = g, (2.46)

S = (k − k̃)I, (2.47)

τ = 0. (2.48)
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Note that ∇, h, S, τ satisfy the fundamental equations (2.43), (2.38), (2.39) and (2.40).
Then, there exists a non-degenerate equiaffine statistical immersion (f, ξ) : M −→ M̃ such
that h, S, τ are the affine fundamental form, the affine shape operator and the transversal
connection of (f, ξ), respectively. Hence, M is realized in M̃.

Also, we have

Theorem 2.6. Let (M̃, ∇̃, ∇̃, g̃) be an (n+ 1)-dimensional connected statistical manifold

with constant curvature k̃ and (M,∇,∇, g) be a connected statistical manifold of dimen-

sion n ≥ 3. If there exists a statistical immersion (f, ξ) : (M,∇,∇, g) −→ (M̃, ∇̃, ∇̃, g̃)

such that h = h = g, then (M,∇,∇, g) has constant curvature.

Proof. Since, by the Gauss equation

R∇(X, Y )Z = k̃{g(Y, Z)X − g(X,Z)Y }+ h(Y, Z)SX

−h(X,Z)SY,

it is enough to show that S = λI for some constant λ. Now, consider

R∇(X, Y )W = k̃{g(Y,W )X − g(X,W )Y }+ h(Y,W )SX

−h(X,W )SY.

∇ and∇ are dual with respect to g, so

g(R∇(X, Y )Z,W ) = −g(Z,R∇(X, Y )W ), (2.49)

for X, Y, Z and W in X (M). Then,

g(Y, Z)g(SX,W )− g(X,Z)g(SY,W ) = g(Y,W )g(SX,Z)

−g(X,W )g(SY, Z). (2.50)

Set L = 1
n
tr(S) and L = 1

n
tr(S). Now, taking trace in X and W components in (2.50) we

get
nLg(Y, Z)− g(SY, Z) + g(SY, Z)− ng(SY, Z) = 0. (2.51)

Again, taking trace in Y and Z components,

L = L. (2.52)
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Also, from (2.51)
nLI = S + (n− 1)S. (2.53)

Since equation (2.50) is symmetric in S and S

nLI = S + (n− 1)S. (2.54)

Equations (2.53) and (2.54) imply that S = LI for n ≥ 3. Hence, (M,∇,∇, g) has
constant curvature.

Theorem 2.7. Let f : (M,∇, g) −→ (M̃, ∇̃, g̃) be a non-degenerate equiaffine statistical

immersion of codimension one. If (M,∇, h) and (M,∇, h) are dual to each other, then

f : (M,∇(α), g) −→ (M̃, ∇̃(α), g̃) is a statistical immersion of codimension one with the

Gauss equation ∇̃(α)
X f∗Y = f∗(∇(α)

X Y ) + h(X, Y )ξ, for α ∈ R.

Proof. Consider

f∗(∇(α)
X Y ) = f∗

(
1 + α

2
(∇XY ) +

1− α
2

(∇XY )

)
=

(
1 + α

2

)
f∗(∇XY ) +

(
1− α

2

)
f∗(∇XY )

=

(
1 + α

2

)
(∇̃Xf∗Y − h(X, Y )ξ) +

(
1− α

2

)
(∇̃Xf∗Y − h(X, Y )ξ)

=

(
1 + α

2

)
∇̃Xf∗Y +

(
1− α

2

)
∇̃Xf∗Y −

(
1 + α

2

)
h(X, Y )ξ

−
(

1− α
2

)
h(X, Y )ξ,

since (M,∇, h) and (M,∇, h) are dual to each other

f∗(∇(α)
X Y ) = ∇̃(α)

X f∗Y − h(X, Y )ξ.

Then
∇̃(α)
X f∗Y = f∗(∇(α)

X Y ) + h(X, Y )ξ, for α ∈ R,

hence we get
g̃(∇̃(α)

X f∗Y, f∗Z) = g(∇(α)
X Y, Z)

So, f : (M,∇(α), g) −→ (M̃, ∇̃(α), g̃) is a statistical immersion of codimension one with
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the Gauss equation

∇̃(α)
X f∗Y = f∗(∇(α)

X Y ) + h(X, Y )ξ, for α ∈ R.

The notion of affine equivalence has been introduced by Dillen [44]. Two affine immer-
sions f1 : (M1,∇1) −→ (Rn+1, D) and f2 : (M2,∇2) −→ (Rn+1, D) are said to be affine
equivalent with respect a diffeomorphism F : (M1,∇1) −→ (M2,∇2) if F preserves the
connection and such that f2 ◦ F = f1. He also proved that f1 and f2 are equivalent with
respect to F if the following conditions are satisfied.

1. There exists a diffeomorphism F : (M1,∇1) −→ (M2,∇2) that preserves the con-
nection.

2. h2(F∗X,F∗Y ) = h1(X, Y ).

3. τ 1(X) = τ 2(F∗X).

4. rank(h1) = rank(h2) > 1.

Now, we have the following theorem for statistical manifolds.

Theorem 2.8. Let (M1,∇1, h1) and (M2,∇2, h2) be two statistical manifolds realized

in Rn+1 with respect to two non-degenerate equiaffine immersions f1 : M1 −→ Rn+1

and f2 : M2 −→ Rn+1 with common transversal vector field ξ. Then, f1 and f2 are

equivalent with respect to a diffeomorphism F : (M1,∇1) −→ (M2,∇2) if and only if F

is a statistical immersion.

Proof. Suppose f1 and f2 are equivalent with respect to F , then by definition F is a dif-
feomrphism such that f2 ◦ F = f1 and∇2

F∗ZF∗X = F∗(∇1
ZX), for X,Z ∈ X (M1). Since,

f1 = f2 ◦ F

f1∗X = (f2 ◦ F )∗(X)

= f2∗(F∗(X)),

for X ∈ X (M1). Now, consider

DX(f2∗(F∗(Y ))) = DF∗X(f2∗(F∗(Y ))),

= f2∗(∇2
XF∗Y ) + h2(F∗X,F∗Y )ξ. (2.55)
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Also,

DXf1∗Y = f1∗(∇1
XY ) + h1(X, Y )ξ,

= f2∗(F∗(∇1
XY )) + h1(X, Y )ξ. (2.56)

By equating the transversal part of (2.55) and (2.56) we get

h2(F∗X,F∗Y ) = h1(X, Y ).

Hence,

h2(∇2
F∗XF∗Y, F∗Z) = h1(∇1

XY, Z).

So F : M1 −→M2 is a statistical immersion.
Conversely, suppose there exist a statistical immersion F : M1 −→M2 then

h2(F∗X,F∗Y ) = h1(X, Y ). (2.57)

h2(∇2
F∗XF∗Y, F∗Z) = h1(∇1

XY, Z). (2.58)

Also, by the definition of isometric immersion F is a diffeomorphism. Now, it is enough
to show that F∗(∇1

XY ) = ∇2
F∗XF∗Y.

From (2.57) and (2.58) we have

h2(∇2
F∗XF∗Y, F∗Z) = h1(∇1

XY, Z)

= h2(F∗(∇1
XY ), F∗Z),

for X, Y, Z ∈ X (M). This implies F∗(∇1
XY ) =∇2

F∗XF∗Y .
Hence, f1 and f2 are equivalent with respect to F .

2.2.1 Minimal Immersions

Statistical structure induced by the minimal affine immersions are studied by Furuhatha
[10]. He obtained a necessary and sufficient condition for a statistical structure to be real-
ized as a minimal affine hypersurface. In this subsection, we give a necessary and sufficient
condition for the existence of a minimal statistical immersion. Also, obtained conditions
for a statistical immersion to be minimal for statistical manifolds with α- connections [11].
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Definition 2.9. An affine immersion f : M −→ Rn+1 is said to be a minimal affine
immersion if the affine mean curvature L = 1

n
tr(S) vanishes identically, where S is the

affine shape operator.

Furhatha [10] proved that,

Theorem 2.9. Let M be a simply connected, oriented manifold of dimension n and (∇, h)

be a statistical structure on M. A necessary and sufficient condition for (∇, h) to be in-

duced by a minimal affine immersion of M into Rn+1 is the following:

1. ∇V olh = 0

2. (∇, h) is dual-projectively flat

3. The scalar curvature Scal(∇,h) of (∇, h) vanishes identically, where Scal(∇,h) = 2L.

Definition 2.10. Let f : M −→ M̃ be a statistical immersion of codimension one. Then f
is called a minimal immersion if the mean curvature L = 1

n
trS vanishes identically.

Then, we have

Theorem 2.10. Let f : (M,∇, g) −→ (M̃, ∇̃, g̃) be a statistical immersion of codimension

one and (M̃, ∇̃, ∇̃, g̃) be dually flat. Then, f is a minimal immersion if and only if the

scalar curvature Scal(∇,h) vanishes identically.

Proof. Since (M̃, ∇̃, ∇̃, g̃) is dually flat, we have k̃ = 0. Then, the equation

R∇(X, Y )Z = k̃{g(Y, Z)X − g(X,Z)Y }+ h(Y, Z)SX − h(X,Z)SY

reduces to
R∇(X, Y )Z = h(Y, Z)SX − h(X,Z)SY.

Then,
Ric∇(Y, Z) = h(Y, Z)trS − h(SY, Z). (2.59)

From the definition of the scalar curvature

Scal(∇,h) = 2L,

where L = 1
n
trS. Then, f is a minimal immersion if and only if the scalar curvature

Scal(∇,h) vanishes identically.
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Definition 2.11. Let (M,∇,∇, g) be an n-dimensional statistical manifold. Then the dif-
ference tensor K(X, Y ) is defined by

K(X, Y ) = ∇XY −∇YX, for X, Y ∈ X (M). (2.60)

Remark 2.3. From
g

∇ =
1

2
(∇+∇),

K(X, Y ) = 2(
g

∇XY −∇YX) = 2(∇XY −
g

∇YX), for X, Y ∈ X (M). Also,

∇α
XY =

g

∇XY −
α

2
K(X, Y ),

with

∇XY =
g

∇XY − 1
2
K(X, Y ), ∇XY =

g

∇XY + 1
2
K(X, Y ).

Here
g

∇ is the Levi-Civitta connection with respect to g.

Note. The curvature tensor R∇α for the α-connection∇α satisfies

R∇
(α)

(X, Y )Z =
1 + α

2
R∇(X, Y )Z +

1− α
2

R∇(X, Y )Z

+
1− α2

4
(K(Y,K(X,Z))−K(X,K(Y, Z))).

In local coordinates

∇∂i∂j =
∑
`

Γ`ij∂`

R∇(∂i, ∂j)∂` =
∑
k

Rk
`ij∂k

with
Rk
`ij = ∂iΓ

k
ij − ∂jΓk`i +

∑
m

(ΓkmiΓ
m
ij − Γm`iΓ

k
mj)

and

K(∂i, ∂j) =
∑

kK
k
ij∂k =

∑
k(Γ

k

ij − Γkij)∂k
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with

K(∂i, K(∂j, ∂`)) = K(∂i,
∑
m

Km
j`∂m)

=
∑
m

Km
j`K(∂i, ∂m)

=
∑
m,k

Km
j`K

k
im∂k.

Also

R
(α)k
`ij =

1 + α

2
Rk
`ij +

1− α
2

R
k

`ij +
1− α2

4
(
∑
m

Km
i`K

k
jm −

∑
m

Kk
imK

m
j` ).

The Ricci tensor Rα
ij =

∑
k R

(α)k
ikj gives

R
(α)
ij =

1 + α

2
Rij +

1− α
2

Rij +
1− α2

4
(
∑
m,k

Km
ikK

k
jm −

∑
m,k

Km
ijK

k
km)

and the scalar curvature Scal(∇,h) =
∑

j` h
j`R∇`,j.

Proposition 2.2. [45] The scalar curvature Scal(∇
α,h) for∇α is related to Scal(∇,h) as

Scal(∇
α,h) = Scal(∇,h) +

1− α2

4
K, (2.61)

where

K =
∑
m,k,i,j

hij(Km
ikK

k
jm −Km

ijK
k
km). (2.62)

Proof. Consider h(R∇(X, Y )Z,W ) = −h(Z,R∇(X, Y )W ). Writing this equation in the
component form gives ∑

k

hkmR
k
`ij +

∑
k

h`kR
k

mij = 0.

Multiplying by htm, hs` and sum over `,m indices,∑
`

h`sR
t
`ij +

∑
m

hmtR
s

mij = 0. (2.63)

Since∇ is torsion free

R∇(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇∇XYZ +∇∇YXZ,
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in local coordinates
Rt
`ij = −Rt

`ji. (2.64)

From (2.63) and (2.64)
Scal(∇,h) = Scal(∇,h).

Now, consider

R
(α)
ij =

1 + α

2
Rij +

1− α
2

Rij +
1− α2

4
(
∑
m,k

Km
ikK

k
jm −

∑
m,k

Km
ijK

k
km).

Multiplying by hij and sum over i, j,

Scal(∇
(α),h) =

1 + α

2
Scal(∇,h) +

1− α
2

Scal(∇,h) +
1− α2

4
K,

where
K =

∑
m,k,i,j

hij(Km
ikK

k
jm −Km

ijK
k
km).

Since,
Scal(∇,h) = Scal(∇,h)

we have
Scal(∇

α,h) = Scal(∇,h) +
1− α2

4
K.

Now, we prove a necessary condition for the minimal statistical immersion of statistical
manifolds equipped with α-connections.

Theorem 2.11. Let f : (M,∇(α), g) −→ (M̃, ∇̃(α), g̃) be a non-degenerate statistical

immersion of codimension one. Then, f is a minimal immersion if f : (M,∇, g) −→
(M̃, ∇̃, g̃) is a minimal immersion and∇XY = ∇XY .

Proof. Since f : (M,∇, g) −→ (M̃, ∇̃, g̃) is a minimal immersion, we have

Scal(∇,h) = 0.

Then, from the above proposition

Scal(∇
α,h) =

1− α2

2
K.
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Since∇XY = ∇XY , we get Scal(∇α,h) = 0. Then, from the theorem (2.10)
f : (M,∇(α), g) −→ (M̃, ∇̃(α), g̃) is a minimal immersion for α ∈ R.

2.3 Centro-affine Immersion of Codimension Two

In this section, centro-affine immersion into Rn+2 and the fundamental equations of it are
discussed first [12], [13]. Then, dependence on the change of transversal vector field and
change in an immersion are discussed [13]. Also, we give a detailed proof of 1-conformal
equivalence and (−1)-conformal equivalence of statistical manifold structures in the case
of centro-affine immersions into Rn+2. We define centro-affine immersions into a dually
flat statistical manifold of codimension two and give a necessary and sufficient condition
for the inherited statistical manifold structures to be dual to each other. Then, show that
the inherited statistical manifold structure is conformally-projectively flat in the case of
non-degenerate, centro-affine, equiaffine immersion into a dually flat statistical manifold
of codimesion two [9].

Let M be an n-dimensional manifold and f : M −→ Rn+2 be an immersion. Let D be
the standard flat affine connection on Rn+2 and η =

∑n+2
i=1 x

i ∂
∂xi

be the radial vector field
of Rn+2 − {0}, where {x1, · · · , xn+2} is the affine coordinate system on Rn+2.

Definition 2.12. An immersion f : M −→ Rn+2 is called a centro-affine immersion of
codimension two if there exists a vector field ξ along f (at least locally) such that

Tf(p)Rn+2 = f∗(TpM)⊕R{ηf(p)} ⊕R{ξf(p)}, (2.65)

where R{η} and R{ξ} are 1-dimensional subspaces spanned by η and ξ, respectively. The
vector field ξ is called the transversal vector field.

As a result of this decomposition the vector fields DXf∗Y and DXξ, where X and Y
are vector fields on M, are written as follows

DXf∗Y = f∗(∇XY ) + T (X, Y )η + h(X, Y )ξ, (2.66)

DXξ = −f∗(SX) + µ(X)η + τ(X)ξ, (2.67)

where∇ is a torsion free affine connection, T , h are symmetric (0, 2)-tensor fields, µ, τ are
1-forms and S is a tensor field of type (1, 1) on M called the shape operator. The affine
connection ∇ is called the induced connection, h is called the second fundamental form
and τ is called the transversal connection form.
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Since the connection D is flat the fundamental equations are

R(X, Y )Z = h(Y, Z)SX − h(X,Z)SY

− T (Y, Z)X + T (X,Z)Y, (2.68)

(∇XT ) (Y, Z) + µ(X)h(Y, Z) = (∇Y T ) (X,Z) + µ(Y )h(X,Z), (2.69)

(∇Xh) (Y, Z) + τ(X)h(Y, Z) = (∇Y h) (X,Z) + τ(Y )h(X,Z), (2.70)

(∇XS) (Y )− τ(X)SY + µ(X)Y = (∇Y S) (X)− τ(Y )SX + µ(Y )X, (2.71)

T (X,SY )− T (Y, SX) = (∇Xµ) (Y )− (∇Y µ) (X) + τ(Y )µ(X)

− τ(X)µ(Y ), (2.72)

h(X,SY )− h(Y, SX) = (∇Xτ) (Y )− (∇Y τ) (X). (2.73)

The equation (2.68) is called the Gauss equation, (2.69), (2.70), (2.71) are called the Co-
dazzi equation for T , the Codazzi equation for h and the Codazzi equation for S, respec-
tively. The equations (2.72) and (2.73) are called the Ricci equations.
Now, to see the impact of the change in the transversal vector field and the immersion.

Lemma 2.1. [13] Let f : M −→ Rn+2 be a centro-affine immersion of codimension two

with transversal vector field ξ. Let λ be a non-zero scalar function, a be a scalar function

and U be a tangent vector field on M. Suppose the transversal vector field ξ is changed to

λξ̃ = ξ + aη + f∗U. (2.74)

Then, the change in the induced connection, the affine fundamental form and the transver-

sal connection form are as follows:

∇̃XY = ∇XY − h(X, Y )U, (2.75)

h̃(X, Y ) = λh(X, Y ), (2.76)

τ̃(X) = τ(X)−X(logλ) + h(X,U). (2.77)

Proof. Since f is a centro-affine immersion of codimension two

DXf∗Y = f∗(∇XY ) + T (X, Y )η + h(X, Y )ξ.

Then, from equation (2.74)

DXf∗Y = f∗(∇XY − h(X, Y )U) + {T (X, Y )− ah(X, Y )}η + λh(X, Y )ξ̃. (2.78)
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On the other hand,

DXf∗Y = f∗(∇̃XY ) + T̃ (X, Y )η + h̃(X, Y )ξ̃. (2.79)

Then, by comparing equations (2.78) and (2.79)

∇̃XY = ∇XY − h(X, Y )U, (2.80)

h̃(X, Y ) = λh(X, Y ). (2.81)

Similarly, the other equation is obtained by considering DXξ.

Immersion f is said to be non-degenerate if h is non-degenerate. If h is non-degenerate,
we can choose a transversal vector field ξ such that τ = 0 because of equation (2.77). As
in case of codimension one, {f, ξ} is said to be equiaffine if τ vanishes. In this case, from
(2.70) we get (M,∇, h) is a statistical manifold. Then, we say that the statistical manifold
is realized in Rn+2 by centro-affine equiaffine immersion of codimension two.

Lemma 2.2. [13] Let f : M −→ Rn+2 be a centro-affine immersion of codimension two

with transversal vector field ξ. Let σ be a positive function on M, change the immersion f

by f̂ = σf . Then, the induced connections, the affine fundamental forms and the transver-

sal connection forms of (f, ξ) and (f̂, ξ) are related as:

∇̂XY = ∇XY + d(logσ)(Y )X + d(logσ)(X)Y,

ĥ(X, Y ) = σh(X, Y ),

τ̂(X) = τ(X). (2.82)

Proof. Recall, f̂∗(Y ) = Y (σ)f + σf∗Y . Then,

DX f̂∗(Y ) = DX(Y (σ)f + σf∗Y )

= X(Y (σ))f +X(σ)f∗Y + Y (σ)f∗X

+ σ{f∗(∇XY + T (X, Y )η + h(X, Y )ξ)}. (2.83)

On the other hand

DX f̂∗(Y ) = f̂∗(∇̂XY ) + T̂ (X, Y )η + ĥ(X, Y )ξ

= (∇̂XY )(σ)f + σf∗(∇̂XY ) + T̂ (X, Y )η + ĥ(X, Y )ξ. (2.84)
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Comparing equations (2.83) and (2.84)

∇̂XY = ∇XY + d(logσ)(Y )X + d(logσ)(X)Y,

ĥ(X, Y ) = σh(X, Y ).

Similary, the other equation is obtained by considering DXξ.

Remark 2.4. Note that from the equation (2.82) that (f, ξ) is equiaffine if and only if (f̂, ξ)

is equiaffine.

As a consequence of the above lemmas (2.1) and (2.2) we have the following proposi-
tions.

Proposition 2.3. [14] Let (M,∇, h) be a statistical manifold realized in Rn+2 by a centro-

affine immersion {f, ξ}. Take a transversal vector field ξ̃ = λ−1{ξ + aη + λ−1gradhφ},
where a is a function, φ a positive function on M and gradhφ is the gradient vector field

of φ with respect to h. Then, the statistical manifold (M, ∇̃, h̃) realized by {f, ξ̃} is 1-

conformally equivalent to (M,∇, h).

Proof. Proof follows from lemma (2.1) with U = gradhφ.

Also,

Proposition 2.4. [14] Let (M,∇, h) be a statistical manifold realized in Rn+2 by a centro-

affine immersion {f, ξ}. Change the immersion f by f̂ = σf , where σ is a positive function

on M. Then, the statistical manifold (M, ∇̂, ĥ) realized by {f̂, ξ} is (−1)-conformally

equivalent to (M,∇, h).

Proof. Proof is immediate from lemma (2.2).

In [14], Matsuzoe obtained a necessary and sufficient condition for a statistical manifold
to be realized by a nondegenerate equiaffine centro-affine immersion of codimension two.

Theorem 2.12. [14]

Let f : M −→ Rn+2 be a nondegenerate equiaffine centro-affine immersion with in-

duced connection ∇ and affine fundamental form h. Then, (M,∇, h) is a conformally-

projectively flat statistical manifold. Conversely, suppose that (M,∇, h) is simply con-

nected conformally-projectively flat statistical manifold of dimension n. Then, there exists

a nondegenerate equiaffine centroaffine immersion f : M −→ Rn+2 with the induced

connection∇ and the affine fundamental from h.

39



2.3.1 Centro-Affine Immersion into Dually Flat Statistical Manifolds

In this subsection, we define the centro-affine immersion into a dually flat statistical mani-
fold of codimension two, which is a generalization of the centro-affine immersion of codi-
mension two [9].

Definition 2.13. Let (M̃, ∇̃, ∇̃, g̃) be a dually flat statistical manifold of dimension (n+2)

and M be an n-dimensional manifold. Let γ =
∑n+2

i=1 θ
i ∂
∂θi

be the radial vector field of M̃
with respect to the affine coordinate [θi] of ∇̃. An immersion f : M −→ M̃ is called a
centro-affine immersion of codimension two if there exists a unit normal vector field ξ such
that

Tf(p)(M̃) = f∗(Tp(M)) + span{ξ}+ span{γ}.

In this case the Gauss and the Weingarten formulae are

∇̃Xf∗(Y ) = f∗(∇XY ) + h(X, Y )ξ + T (X, Y )γ, (2.85)

∇̃Xξ = −f∗(SX) + τ(X)ξ + σ(X)γ, (2.86)

∇̃Xγ = −f∗(X), (2.87)

where S is the affine shape operator, τ(X) and σ(X) are the transversal connection forms
and

h, T : Tp(M)× Tp(M) −→ R

are the second fundamental forms. The Gauss and the Weingarten formulae for the dual
connection can also be written similarly.

Let f : M −→ M̃ be a centro-affine immersion of codimension two. Then, f is said to
be non-degenerate if the second fundamental form h is non-degenerate and f is equiaffine
if the transversal connection form τ is zero.

Remark 2.5. From the fundamental equations of centro-affine immersion of codimension
two we can show that (M,∇, h) and (M,∇, h) are statistical manifolds for non-degenerate
equiaffine, centro-affine immersion.

Now, we have
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Theorem 2.13. Let (M̃, ∇̃, ∇̃, g̃) be a dually flat statistical manifold of dimension (n+ 2)

and M be a manifold of dimension n. If f : M −→ M̃ is a non-degenerate centro-affine,

equiaffine immersion of codimension two, then (M,∇, h) and (M,∇, h) are dual to each

other if and only if S = S = λI for some constant λ.

Proof. Proof is same as that of the theorem (2.4)

Now, we show that for a non-degenerate centro-affine, equiaffine immersion of codi-
mension two into a dually flat statistical manifold the inherited structure (M,∇, h) is a
conformally-projctively flat statistical manifold.

Theorem 2.14. Let (M̃, ∇̃, ∇̃, g̃) be a dually flat connected statistical manifold of dimen-

sion (n+ 2) and M be a manifold of dimension n. Let f : M −→ M̃ be a non-degenerate

centro-affine, equiaffine immersion of codimension two. Then, the inherited statistical man-

ifold (M,∇, h) is conformally-projectively flat.

Proof. Let f : M −→ M̃ be a non-degenerate, centro-affine equiaffine immersion of
codimension two. For p ∈ M the affine coordinate of f(p) in M̃ with respect to ∇̃ is
denoted by θ = [θi].

Let η =
∑n+2

i=1 θ
i ∂
∂θi

be the radial vector field of f in M̃, ξ be the normal vector field of
f in M̃. Then,

Tf(p)(M̃) = f∗(Tp(M)) + span{ξp}+ span{ηp}.

Also,

∇̃Xf∗(Y ) = f∗(∇XY ) + h(X, Y )ξ + T (X, Y )η.

∇̃Xξ = −f∗(SX) + τ(X)ξ + σ(X)η.

For a positive function ψ : M −→ R, define J(p) = ψ(p)θ(f(p)). Then, J : M −→ M̃

is a centro-affine immersion of codimension two with the radial vector field η and the unit
normal vector field ξ. Then,

TJ(p)(M̃) = J∗(Tp(M)) + span{ξp}+ span{ηp}.

Also,

∇̃XJ∗(Y ) = J∗(∇̂XY ) + ĥ(X, Y )ξ + T̂ (X, Y )η,

∇̃Xξ = −J∗(ŜX) + τ̂(X)ξ + σ̂(X)η,
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where ∇̂ is the induced connection with respect to the immersion J . The tensors ĥ, T̂ are
the second fundamental forms, Ŝ the shape operator and τ̂, σ̂ are the transversal connection
forms.
Then, (∇, h, τ) and (∇̂, ĥ, τ̂) are related by

∇̂XY = ∇XY + d(logψ)(Y )X + d(logψ)(X)Y. (2.88)

ĥ = ψh. (2.89)

τ̂ = τ. (2.90)

For each p ∈ M, choose ψ in some neighborhood Up of p such that the coefficient of
η for the immersion J = ψf is zero. Take a transversal vector field ξ

′ on Up with ξ

restricted to Up is ξ′ . Since J∗(TxM), ηJ(x) and ξx are linearly independent for x ∈ Up

there exists a positive function φ, a function a and a tangent vector field V on Up such that
φξ
′
x = ξx + aηJ(x) + J∗V .

Now, consider the immersion (J, ξ
′
, η) : Up −→ M̃ then T ′ = 0. Also,

∇′XY = ∇̂XY − ĥ(X, Y )V, (2.91)

h
′

= φĥ, (2.92)

τ
′
(X) = τ̂(X)−X(logφ) + ĥ(X, V ). (2.93)

Since ξ′ is parallel around p, ∇̃Xξ
′

= 0 which implies µ′ = S
′

= τ
′

= 0. Then, by the
Gauss equation R∇

′
(X, Y )Z = h

′
(Y, Z)S

′
X − h′(X,Z)S

′
Y − T ′(Y, Z)X + T

′
(X,Z)Y ,

where X, Y, Z are vector fields on Up we get ∇′ is flat. That is, (Up,∇
′
, h
′
) is a flat

statistical manifold.

Since ξx and ξ′x are equiaffine from (2.93)

ĥ(X, V ) = X(logφ).

Then,
V =

1

φψ
gradhφ. (2.94)

From equations (2.88) to (2.94)

h
′

= φψh.

h(∇′XY, Z) = h(∇XY, Z)− d(logφ)(Z)h(X, Y ) + d(logψ)(X)h(Y, Z)

+d(logψ)(Y )h(X,Z).
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Hence, (M,∇, h) is conformally-projectively flat.

2.4 Affine Immersions of General Codimension

In this section, we first discuss the affine fundamental form and relation between curvature
tensors for affine immersions of general codimension [2]. Transversal volume element map
is defined for equiaffine statistical immersion of general codimension and certain properties
also proved. Also, we give a detailed proof of the sufficient condition given by Matsuzoe
et al. [16], for a statistical submanifold of a dually flat statistical manifold to be equiaffine.

Let M and M̃ be two smooth manifolds of dimension n and (n + r) with torsion-free
affine connections ∇ and ∇̃ respectively. An immersion f : M −→ M̃ is called an affine
immersion if there exists an r-dimensional smooth distribution N along f which assigns
to every point p ∈M a subspace Np of Tf(p)(M̃) such that the following equations hold

Tf(p)(M̃) = f∗(Tp(M))
⊕
Np, (2.95)

(∇̃Xf∗Y )p = (f∗(∇XY ))p + α(X, Y )p, (2.96)

where α(X, Y )p ∈ Np at each point p in M and X, Y are in X (M). The (0, 2)-tensor
α(X, Y ) is called the affine fundamental form, the choice of which is not unique in general.
The affine fundamental form defines a mapping

αp : Tp(M)× Tp(M) −→ Np, for p ∈M.

Rank of this map is called the rank of the affine fundamental form. Also, the Weingarten
decomposition is

∇̃Xξ = −f∗(SξX) +∇⊥Xξ, (2.97)

where ξ is the vector field on the transversal bundle N , f∗(SξX) ∈ TM and ∇⊥Xξ ∈ N .
This defines the shape operator Sξ and the transversal connection∇⊥.

In the general codimension case also we have equations relating the curvature tensors
[2]. Let the prefixes tan and nor denote the tangential and normal components of the vector
in Tf(p)(M̃) according to the decomposition (2.95).

tanR̃(X, Y )Z = R(X, Y )Z + Sα(X,Z)Y − Sα(Y,Z)X, (2.98)

norR̃(X, Y )Z = (∇Xα)(Y, Z)− (∇Y α)(X,Z), (2.99)

tanR̃(X, Y )ξ = (∇Y S)ξ(X)− (∇XS)ξY, (2.100)

norR̃(X, Y )ξ = α(SξX, Y )− α(X,SξY ) +R⊥(X, Y )ξ, (2.101)
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where X, Y, Z are in X (M) and R⊥(X, Y ) is the curvature tensor of the transversal con-
nection. The equation (2.98) is called the Gauss equation, (2.99) and (2.100) are called the
Codazzi equations. The equation (2.101) is called the Ricci equation.

Now, we consider immersions of general codimension in the case of statistical mani-
folds. Let (M,∇′ ,∇

′

, g) and (M̃, ∇̃, ∇̃, g̃) be statistical manifolds of dimensions n and
(n + r), respectively. Let f : M −→ M̃ be a statistical immersion, since (M̃, ∇̃, g̃) is a
semi-Riemannian manifold we can chooseN = TM⊥. The connection∇ on M and TM⊥

valued symmetric (0, 2)-tensor field α(X, Y ) on M are defined by

∇̃Xf∗Y = f∗(∇XY ) + α(X, Y ) for all X, Y ∈ X (M),

where f∗(∇XY ) is the f∗TM- component of ∇̃Xf∗Y and α(X, Y ) is the TM⊥- component
of ∇̃Xf∗Y . Let {ξ1, ξ2...ξr} denote the frame for TM⊥ then

α(X, Y ) =
r∑
i=1

αi(X, Y )ξi,

∇⊥Xξ =
r∑
j=1

τij(X)ξj,

where∇⊥ is the transversal connection form.

Since f is a statistical immersion observe that ∇ coincides with ∇′ . Also, for dual
connection ∇̃ we have

1. ∇̃Xf∗Y = f∗(∇XY ) + α(X, Y ) ∀ X, Y ∈ X (M).

2. ∇̃Xξ = −f∗(SξX) +∇⊥Xξ.

3. α(X, Y ) =
∑r

i=1 αi(X, Y )ξi.

4. ∇⊥Xξ =
∑r

j=1 τ ij(X)ξj .

Note that, in this case∇
′

coincides with∇.

Let (M̃, ∇̃, ∇̃, g̃) be an (n+r)-dimensional statistical manifold and M be an n-dimensional
smooth manifold. Let f : M −→ M̃ be an immersion of codimension r. We have the in-
duced metric f ∗g̃ and the induced connection∇ on M defined by

f ∗g̃(∇XY, Z) = g̃(∇̃Xf∗Y , f∗Z).
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Then, (M,∇, f ∗g̃) is a statistical manifold and the induced connections ∇ and ∇ are dual
with respect to f ∗g̃.

Definition 2.14. Let θ̃ be the volume element on M̃ and θ⊥ be the volume element on
TM⊥. Then, the volume element on M is defined as

θ(X1, X2...Xn) =
θ̃(f∗X1, f∗X2, ...f∗Xn, ξ1, ξ2...ξr)

θ⊥(ξ1, ξ2...ξr)
, (2.102)

where {ξ1, ξ2...ξr} is a frame of TM⊥. We call θ the induced volume element for (TM⊥, θ⊥).

Remark 2.6. If∇θ = 0, then f is said to be an equiaffine immersion of (M,∇) into (M̃, ∇̃)

and we say that (TM⊥, θ⊥) is equiaffine. f is said to be non-degenerate if α is non-
degenerate.

Proposition 2.5. [15] Let (M̃, ∇̃, θ̃) be an equiaffine manifold, then the condition ∇θ = 0

and ∇⊥θ⊥ = 0 are equivalent.

Proof. Take an arbitrary point x ∈M and a local frame {ξ1, ξ2...ξr} of TM⊥ on a neigh-
borhood U of x with θ⊥(ξ1, ξ2...ξr) = 1. Then,

(∇̃X θ̃)(f∗X1, ..., f∗Xn, ξ1, ..., ξr)

= X(θ̃(f∗X1, ..., f∗Xn, ξ1, ..., ξr))−
∑n

i=1 θ̃(f∗X1, ...∇̃Xf∗Xi, ..., f∗Xn, ξ1, ..., ξr)

−
∑r

i=1 θ̃(f∗X1, ..., f∗Xn, ξ1, ..., ∇̃Xξi, ..., ξr)

= X(θ̃(f∗X1, ..., f∗Xn, ξ1, ..., ξr))−
∑n

i=1 θ̃(f∗X1, ...f∗(∇XXi), ..., f∗Xn, ξ1, ..., ξr)

−
∑r

i=1 θ̃(f∗X1, ..., f∗Xn, ξ1, ..., ∇̃Xξi, ..., ξr)

= X(θ(X1, ..., Xn))−
∑n

i=1 θ(X1, ...∇XXi, ..., Xn)−
∑r

i=1 τii(X)θ(X1, ..., Xn)

= (∇Xθ)(X1, ...∇XXi, ..., Xn) -
∑r

i=1 τii(X)θ(X1, ..., Xn),

for every X1, ..., X1 in X (M). Since (M̃, ∇̃, θ̃) is equiaffine

(∇Xθ)(X1, ...∇XXi, ..., Xn) =
r∑
i=1

τii(X)θ(X1, ..., Xn).
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Thus, ∇θ = 0 is equivalent to
∑r

i=1 τii(X) = 0. Now,

(∇⊥Xθ⊥)(ξ1, ..., ξr) = X(θ⊥)(ξ1, ..., ξr))−
r∑
i=1

θ⊥)(ξ1, ...,∇⊥Xξi, ..., ξr)

= −
r∑
i=1

θ⊥)(ξ1, ...,∇⊥Xξi, ..., ξr)

= −
r∑
i=1

τii(X).

Thus∇θ = 0 is equivalent to∇⊥θ⊥ = 0.

Now, we define the transversal volume element map in the case of statistical immersion
of general codimension and obtain certain properties of it. Let (M̃, ∇̃, g̃) be an (n + r)-
dimensional statistical manifold with equiaffine structure (∇̃, θ̃) and (M,∇, g) be a statis-
tical manifold of dimension n. Let f : M −→ M̃ be an equiaffine statistical immersion of
codimension r.

Definition 2.15. The map ν : M −→
∧r(TM̃) defined by kerνp = f∗(TpM) and

νp |TpM⊥×TpM⊥....×TpM⊥ = θ⊥p , for p ∈M, is called the transversal volume element map for
(TM⊥, θ⊥).

Lemma 2.3. For every X, Y ∈ TpM and every frame (ξ1, ξ2, ...ξr) of TM⊥ the following

relations hold

ν∗(Y )(ξ1, ξ2...ξr) = 0.

ν∗(Y )(f∗X, ...) = −ν(α(X, Y ), ...).

Proof. Take a frame field (ξ̃1, ξ̃2, ...ξ̃r) of TM⊥ on a neighborhood of p such that (ξ̃i)p

= ξi, for i = 1, ...r and ν(ξ̃1, ξ̃2, ...ξ̃r) is constant. By differentiating ν(ξ̃1, ξ̃2, ...ξ̃r) in the
direction Y

Y (ν(ξ̃1, ξ̃2, ...ξ̃r)) = (∇̃Y ν)(ξ1, ξ2, ...ξr) +
r∑
i=1

ν(ξ1, ..., ∇̃Y ξ̃i, ..., ξr)

= ν∗(Y )(ξ1, ξ2, ...ξr) +
r∑
i=1

ν(ξ1, ...,∇⊥Y ξ̃i, ..., ξr)

= ν∗(Y )(ξ1, ξ2, ...ξr) +
r∑
i=1

ν(ξ1, ...,
r∑
j=1

τij(Y )ξj, ..., ξr).
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This implies

ν∗(Y )(ξ1, ξ2, ...ξr) +
r∑
i=1

τii(Y )ν(ξ1, ..., ξi, ..., ξr) = 0.

Since (TM⊥, θ⊥) is equiaffine

ν∗(Y )(ξ1, ξ2...ξr) = 0.

Similarly, we can prove the other equation.

Proposition 2.6. If f is non-degenerate, then ν is an immersion.

Proof. Take a point p ∈M and Y ∈ Tp(M) with Y 6= 0. Since f is non-degenerate, there
exists X ∈ Tp(M) with α(X, Y ) 6= 0, then from the above lemma ν∗(Y )(f∗X, ...) 6= 0. In
particular, ν∗(Y ) 6= 0 and this implies ν is an immersion.

In [16], Matsuzoe et al. discuss about the equiaffine structure on a dually flat statistical
manifold in the case of general codimension. Let (M̃, ∇̃, ∇̃, g̃) be a dually flat statistical
manifold of dimension n. Let M be a manifold of dimension m (m < n) embedded in
M̃ . Then, (M,∇,∇, g) is a statistical manifold, where g,∇,∇ are induced from g̃, ∇̃, ∇̃
respectively. Let {ξλ}, for λ = m+ 1, ..., n be a basis for the normal space of M, then

∇̃XY = ∇XY +
n∑

λ=m+1

αλ(X, Y )ξλ.

∇̃Xξλ = −Sλ(X) +
n∑

k=m+1

τ kλ (X)ξk.

Since ∇̃ is dually flat the fundamental equations are

1. R∇(X, Y )Z =
∑n

λ=m+1[αλ(Y, Z)SλX − αλ(X,Z)SλY ].

2. (∇Xα
λ)(Y, Z)+

∑n
k=m+1 τ

λ
k (X)αk(Y, Z)=(∇Y α

λ)(X,Z)+
∑n

k=m+1 τ
λ
k (Y )αk(X,Z).

3. (∇XSλ)(Y ) +
∑n

k=m+1 τ
k
λ (Y )SkX = (∇Y Sλ)(X) +

∑n
k=m+1 τ

k
λ (X)SkY .

4. αk(X,SλY )− (∇Xτ
k
λ )(Y )−

∑n
ν=m+1 τ

ν
λ (Y )τ kν (X) = αk(Y, SλX)− (∇Y τ

k
λ )(X)−∑n

ν=m+1 τ
ν
λ (X)τ kν (Y ).

From (1) and (4)

Ric(Y, Z) = αλ(Y, Z)trSλ − αλ(Sλ(Y ), Z), (2.103)

αλ(X,Sλ(Y ))− (∇Xτ
λ
λ )(Y ) = αλ(Y, Sλ(X))− (∇Y τ

λ
λ )(X). (2.104)
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Proposition 2.7. [16] The following statements are equivalent.

1. Ric is a symmetric tensor field.

2.
∑

λ α
λ(Sλ(.), .) is a symmetric tensor field.

3. d(
∑

λ τ
λ
λ ) = 0.

Proof. Suppose Ric is symmetric, then from the equation (2.103) we get αλ(Sλ(Y ), Z) is
symmetric. So (2) holds. Assume

∑
λ α

λ(Sλ(.), .) is a symmetric tensor field. Then, from
the equation (2.104) we get (∇Xτ

λ
λ )(Y )−(∇Y τ

λ
λ )(X) = 0. This implies (3). Let d(

∑
λ τ

λ
λ )

= 0. Then, from the equation (2.104) we get αλ(X,Sλ(Y )) is symmetric. Thus from the
equation (2.103) Ric is a symmetric tensor field.

Let (u1, u2, ...un) be a local coordinate system on M̃ such that the coordinate on M

is {(u1, u2, ...um) | um+1 = um+2.... = un = 0}, then g̃(∂a, ∂λ) = 0 on M, for a =

1, ...m and λ = m+ 1, ...n where {uλ} form a basis for the normal space of M. Now, we
have the following equations

∇̃∂i∂j =
m∑
a=1

Γaij∂a +
n∑

λ=m+1

Γλij∂λ.

∇̃∂λ∂j =
m∑
a=1

Γaiλ∂a +
n∑

k=m+1

Γkiλ∂k.

Proposition (2.7) can be written as

Proposition 2.8. [16] The following statements are equivalent.

1. Ric is a symmetric tensor field.

2.
∑n

λ=m+1

∑m
a=1 ΓaiλΓ

λ
aj =

∑n
λ=m+1

∑m
a=1 ΓajλΓ

λ
ai.

3. ∂j(
∑n

λ=m+1 Γλiλ) = ∂i(
∑n

λ=m+1 Γλjλ).

Let C denote the cubic form with respect to g, that is

C(Y, Z,X) = (∇Xg)(Y, Z).

Similarly, the cubic form with respect to g̃ is denoted by C̃. Set g̃(ξλ, ξk) = δλk, for λ, k =
m+ 1, ...n. In [16], Matsuzoe et al. proved that∑

λ

τλλ (X) = (−1/2)
∑
λ

C̃(ξλ, ξλ, X),
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that is, if
∑

λ C̃(ξλ, ξλ, X) = 0, then Ric is symmetric.

Theorem 2.15. [16] Let (∇̃, ω̃) be an equiaffine structure on M̃, set

ω(X1, X2, ...Xm) = ω̃(X1, X2, ...Xm, ξm+1, ξm+2, ..ξn).

T (X) = trgC(∗, ∗, X).

T̃ (X) = trg̃C̃(∗, ∗, X).

If T = T̃ on M, then (∇, ω) is an equiaffine structure on M.

Proof. Consider,

(∇Xω)(X1, X2...Xn) =
∑
λ

τλλ (X)ω(X1, X2...Xn).

Also,

(−2)
∑
λ

τλλ (X) =
∑
λ

C̃(ξλ, ξλ, X)

= trg̃C̃(∗, ∗, X)− trgC(∗, ∗, X)

= T̃ (X)− T (X).

Now, if T = T̃ on M, then (∇, ω) is an equiaffine structure on M.

Note. The equiaffine immersion of codimension one as well as the non-degenerate equiaffine
centro-affine immersion of codimension two induces statistical structures. In both the cases
we obtained a torsion-free affine connection and the semi-Riemannian metric. There is a
natural choice of semi-Riemannian metric that is independent of the choice of transversal
vector field. However, in the case of immersions of general codimension the affine funda-
mental form is a TM⊥ valued symmetric (0, 2)-tensor. Defining a suitable metric on M

and realizing a statistical manifold in an affine space or in a statistical manifold are open
problems.
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Chapter 3

Geometry of Submersions and Statistical
Manifolds

Riemannian submersion is a special tool in differential geometry and it has got applica-
tion in different areas such as Kaluza-Klein theory, Yang-Mills theory, supergravity and
superstring theories, statistical machine learning processes, medical imaging, theory of
robotics and the statistical analysis on manifolds. Riemannian submersions from a sta-
tistical viewpoint were first mentioned by Barndroff-Neilsen and Jupp [17]. O’Neill [18]
defined a Riemannian submersion and obtained the fundamental equations of Riemannian
submersions for Riemannian manifolds. Also in [19], O’Neill defined a semi-Riemannian
submersion. Abe and Hasegawa [21] defined an affine submersion with horizontal dis-
tribution and obtained the fundamental equations. For the semi-Riemannian submersion
π : (M, gm)→ (B, gb), Abe and Hasegawa [21] obtained a necessary and sufficient condi-
tion for (M,∇, gm) to become a statistical manifold with respect to the affine submersion
with horizontal distribution π : (M,∇) → (B,∇∗). Conformal submersion and the fun-
damental equations of conformal submersion were also studied by many researchers, see
[46], [47] for example. Harmonic morphisms between Riemannian manifolds of arbitrary
dimensions and horizontally conformal submersions were introduced by Fuglede [48] and
Ishihara [49] independently. Harmonic morphisms are nothing but harmonic and horizon-
tally conformal maps. Their study focuses on the conformality relation between metrics
on the Riemannian manifolds and the Levi-Civita connections. Our interest is on confor-
mal submersion between Riemannian manifolds M and B and the conformality relation
between any two affine connections ∇ and ∇∗ (not necessarily be the Levi-Civita connec-
tions ) on M and B, respectively.

In Section 3.1, we discussed certain results regarding submersion and semi-Riemannian
submersion for Riemannian manifolds. In Section 3.2, affine submersion with horizontal
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distribution for Riemannian manifolds is considered. In Section 3.3, we define the concept
of a conformal submersion with horizontal distribution for Riemannian manifolds, which
is a generalization of the affine submersion with horizontal distribution. Then, a necessary
condition for the existence of such a map is proved. A necessary and sufficient condition
is obtained for π ◦ σ to be a geodesic of B when σ is a geodesic of M for a conformal
submersion with horizontal distribution. Then, proved a necessary and sufficient condition
for the horizontal lift of a geodesic to be geodesic. Also, we give a necessary condition for
the connection on B to be complete when the connection on M is complete for a conformal
submersion with horizontal distribution π : M −→ B. In Section 3.4, we discuss affine
and conformal submersion with horizontal distribution and statistical manifolds. A statisti-
cal structure is obtained on the manifold B induced by the affine submersion π : M −→ B

with the horizontal distribution H(M) = V(M)⊥ [21]. In the case of conformal sub-
mersion with horizontal distribution we obtained a necessary and sufficient condition for
(M,∇, gm) to become a statistical manifold. Also, we prove π : (M,∇) −→ (B,∇∗) is a
conformal submersion with horizontal distribution if and only if π : (M,∇) −→ (B,∇∗)
is a conformal submersion with horizontal distribution [22].

3.1 Semi-Riemannian Submersion

In this section, definitions of submersion and semi-Riemannian submersion for Riemannian
manifolds and certain basic results are given. Comparison of geodesics by O’Neill for
semi-Riemannian submersions is also discussed [18], [20].

Let (M, gm) and (B, gb) be smooth Riemannian manifolds of dimensionm and n (m ≥
n), respectively.

Definition 3.1. A smooth onto map π : M −→ B is called a submersion if π∗p : TpM −→
Tπ(p)B is onto for all p ∈M.
For a submersion π : M −→ B, π−1(b) is a submanifold of M of dimension (m − n) for
each b ∈ B. These submanifolds π−1(b) are called the fibers.

A vector field on M is called vertical if it is tangent to the fibers and is horizontal
if it is orthogonal to the fibers. Set V(M)p = ker(π∗p) for each p ∈ M, then V(M)p

coincides with the tangent space of π−1(b) at p, where π(p) = b. V(M)p is called the
vertical subspace at p. There is a corresponding smooth distribution V(M) to the foliation
of M determined by the fibers of π, called the vertical distribution. Note that the vertical
vector fields are nothing but the sections of V(M). The distribution H(M) = V(M)⊥ is
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the complementary distribution of V(M) determined by the Riemannian metric gm and is
called the horizontal distribution. Then, for p in M we have the orthogonal decomposition
Tp(M) = V(M)p ⊕ H(M)p, where H(M)p is called the horizontal subspace at p. For a
submersion π : M −→ B, let H and V denote the projection of the tangent space of M
onto horizontal and vertical subspaces, respectively.

Definition 3.2. Let (M, gm), (B, gb) be semi-Riemannian manifolds of dimensions n,m,
respectively (n > m). A submersion π : M −→ B is called a semi-Riemannian submer-
sion if all the fibers are semi-Riemannian submanifolds of M and π∗ preserves the length
of horizontal vectors.

Note. For a semi-Riemannian submersion π : (M, gm) −→ (B, gb), the map π∗p deter-
mines a linear isomorphism betweenH(M)p and Tπ(p)B. Then,

(gm)p(X, Y ) = (gb)π(p)(π∗X, π∗Y ), X, Y for ∈ H(M)p and p ∈M. (3.1)

Definition 3.3. A vector field Y on M is said to be projectable if there exists a vector field
Y∗ on B such that π∗(Yp) = Y∗π(p) for each p ∈M, that is, Y and Y∗ are π related. A vector
field X on M is said to be basic if it is projectable and horizontal. Every vector field X on
B has a unique smooth horizontal lift, denoted by X̃ , to M.

Proposition 3.1. [25] Let π : (M, gm) −→ (B, gb) be a semi-Riemannian submersion. Let

X and Y in X (M) be π related to X
′

and Y
′

in X (B), respectively. Then,

(1) gm(X, Y ) = gb(X
′
, Y

′
) ◦ π.

(2) H[X, Y ] is a basic vector field and is π related to [X
′
, Y

′
].

(3) H(
gm

∇XY ) is a basic vector field and is π related to
gb
∇X′Y

′
.

(4) [X, V ] is vertical, for any vertical vector field V .

gm

∇ and
gb
∇ are the Levi-Civita connections of M and B, respectively.

Proof. Since X ′ = π∗X and Y ′ = π∗Y , property (1) follows from (3.1). Moreover, [X, Y ]

is π related to [X
′
, Y

′
] and (2) follows. Since

gm

∇ is the Levi-Civita connection on M,

2gm(
gm

∇XY, Z) = Xgm(Y, Z) + Y gm(X,Z)− Zgm(X, Y )

+gm([X, Y ], Z) + gm([Z,X], Y )− gm([Y, Z], X), (3.2)
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for X, Y, Z ∈ X (M). Since X, Y, Z are the horizontal lifts of the vector fields X ′ , Y ′ , Z ′ ,
we get Xgm(Y, Z) = X

′
gb(Y

′
, Z
′
) ◦ π and gm([X, Y ], Z) = gb([X

′
, Y

′
], Z

′
) ◦ π. Now,

from equation (3.2)

gb(π∗(H
gm

∇XY ), Z
′
) ◦ π = gb(

gb
∇X′Y

′
, Z
′
) ◦ π.

Since π is onto and Z ′ is arbitrarily chosen,

π∗(H(
gm

∇XY )) =
gb
∇X′Y

′
.

Hence, the property (3) follows. Finally, for any vertical vector field V , [X, V ] is π related
to [X

′
, 0], where X is a basic vector field π related to X ′ . Since [X

′
, 0] is vertical, property

(4) follows.

Definition 3.4. Let π : (M, gm) −→ (B, gb) be a semi-Riemannian submersion. Then, the
fundamental tensors T and A are defined as

TEF = H(
gm

∇VEVF ) + V(
gm

∇VEHF ), (3.3)

AEF = V(
gm

∇HEHF ) +H(
gm

∇HEVF ), (3.4)

for E,F in X (M). Here
gm

∇ denote the Levi-Civita connection of (M, gm).

Note that these are (1, 2)-tensors and these tensors can be defined in a general situation,
namely, it is enough that a manifold M has a splitting TM = V(M)

⊕
H(M). The

following properties of T and A are often used in the subsequent calculations.

(1) TE and AE are, at each point, skew-symmetric linear operators on the tangent space
of M; each sends horizontal vectors to vertical, and vertical to horizontal.

(2) T is vertical and A is horizontal. That is, TE = TV(E) and AE = AHE .

(3) For vertical vector fields V and W , TVW = TWV ; for horizontal vector fields, X
and Y , AXY = 1

2
V [X, Y ] = −AYX , [18].

Let R be the Riemannian curvature of (M, gm) defined by

R(E,F )G =
gm

∇[X,Y ]G−
gm

∇E

gm

∇FG+
gm

∇F∇EG,

for E,F,G ∈ X (M). Let R∗ denote the (1, 3)-tensor field on X (H(M)) with values in
X (H(M)). That is, to any X, Y, Z ∈ X (H(M)) and p ∈ M the tensor R∗ associates the
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horizontal lift R∗(X, Y, Z)p of R′π(p)(π∗p(Xp), π∗p(Yp), π∗p(Zp)), where X (H(M)) denote
the collection of all horizontal vector fields and R′ is the Riemannian curvature of (B, gb).
Then,

π∗(R
∗(X, Y, Z)) = R

′
(π∗X, π∗Y, π∗Z).

As in [50], for E,F,G,H ∈ X (M)

R(E,F,G,H) = gm(R(G,H, F ), E).

Then, using the above notation

R∗(X, Y, Z,H) = gm(R∗(Z,H, Y ), X)

= R
′
(π∗X, π∗Y, π∗Z, π∗H) ◦ π.

The fundamental equations are [25], [18].

R(U, V, F,W ) = R̂(U, V, F,W ) + gm(TUW,TV F )− gm(TVW,TUF ), (3.5)

R(U, V,W,X) = gm((
gm

∇V T )(U,W ), X)− gm((
gm

∇UT )(V,W ), X), (3.6)

R(X, Y, Z, V ) = gm((
gm

∇ZA)(X, Y ), V ) + gm(AXY, TVZ)

−gm(AYZ, TVX)− gm(AZX,TV Y ), (3.7)

R(X, Y, Z,H) = R∗(X, Y, Z,H)− 2gm(AXY,AZH)

+gm(AYZ,AXH)− gm(AXZ,AYH), (3.8)

R(X, Y, V,W ) = gm((
gm

∇VA)(X, Y ),W )− gm((
gm

∇WA)(X, Y ), V )

+gm(AXV,AYW )− gm(AXW,AY V )

−gm(TVX,TWY ) + gm(TWX,TV Y ), (3.9)

R(X, V, Y,W ) = gm((
gm

∇XT )(V,W ), Y ) + gm((
gm

∇VA)(X, Y ),W )

+gm(AXV,AYW )− gm(TVX,TWY ), (3.10)

for vertical vector fields U, V,W, F and horizontal vector fields X, Y, Z,H . Here R̂ stands
for the Riemannian curvature of the fibre (π−1(b), ĝb). Note that ĝb is the Riemannian
metric induced by gm on the submanifold π−1(b) of M.

In [20], O’Neill compares the geodesics for a semi-Riemannian submersion. Let M, B
be Riemannian manifolds and π : M→ B be a semi-Riemannian submersion. Let E be a
vector field on a curve σ in M and the horizontal part H(E) and the vertical part V(E) of
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E be denoted by H and V , respectively. Let π ◦σ be a curve in B and E∗ denote the vector
field π∗(E) = π∗(H) on the curve π ◦ σ in B. E ′∗ denote the covariant derivative of E∗ and
is a vector field on π ◦ σ. The horizontal lift to σ of E ′∗ is denoted by Ẽ ′∗. O’Neill [20] has
shown that

H(E
′
) = Ẽ

′

∗ + AH(U) + AX(V ) + TU(V ), (3.11)

V(E
′
) = AXH + TUH + V(V

′
), (3.12)

where X = H(σ
′
) and U = V(σ

′
) and A, T are fundamental tensors.

Acceleration σ′′ of σ is the covariant derivative of σ′ . Then,

Proposition 3.2. [20] Let σ be a curve in M with X = H(σ
′
) and U = V(σ

′
). Then,

H(σ
′′
) = σ̃

′′

∗ + 2AXU + TUU, (3.13)

V(σ
′′
) = TUX + V(U

′
), (3.14)

where σ
′′
∗ is the acceleration of π ◦ σ.

Proof. From property (3) of the fundamental tensors mentioned above, AXX = 0 for the
horizontal vector field X . Now, by setting H = H(σ

′
) and V = V(σ

′
) in equations (3.11)

and (3.12)

H(σ
′′
) = σ̃

′′

∗ + 2AXU + TUU.

V(σ
′′
) = TUX + V(U

′
).

Remark 3.1. From equations (3.13) and (3.14) it can be observed that, if σ is a geodesic of
M, then π ◦ σ is a geodesic of B if and only if 2AXU + TUU = 0. In particular if σ is a
horizontal geodesic (U = V(σ

′
) = 0), then π ◦ σ is a geodesic.

Definition 3.5. Let π : (M,∇, gm) → (B,∇∗, gb) be a semi-Riemannian submersion and
α be a smooth curve in B. Let α′ be the tangent vector field of α and ˜(α

′
) be its horizontal

lift. Define the horizontal lift of the curve α as the integral curve σ in M of (α̃
′
).

Proposition 3.3. [20] Let π : (M, gm) → (B, gb) be a semi-Riemannian submersion.

Then, every horizontal lift of a geodesic of B is a geodesic of M.
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Proof. Let α be a geodesic of B and σ be the horizontal lift of α. Then, π ◦ σ = α and
σ
′
(t) = ˜(α

′
(t)). Let X = H(σ

′
(t)) and U = V(σ

′
(t)), clearly X = ˜(α

′
(t)) and U = 0.

Then, from (3.13) and (3.14)

H(σ
′′
) = α

′′
.

V(σ
′′
) = 0.

Since α is a geodesic we get α′′ = 0. Hence σ is a geodesic of M.

Remark 3.2. O’Neill [20] proved that for a semi-Riemannian submersion π : M −→ B, if
γ is a geodesic of M that is horizontal at some point, then γ is always horizontal (that is,
π ◦ γ is geodesic of B). Hence, B is geodesically complete if M is geodesically complete.

3.2 Affine Submersion with Horizontal Distribution

In this section, we give the definition and basic results of an affine submersion with horizon-
tal distribution for Riemannian manifolds. Also, discuss the theorem by Abe and Hasegawa
[21] on geodesics comparison for an affine submersion with horizontal distribution.

Suppose M and B are smooth manifolds of dimensionsm and n (m > n), respectively.

Definition 3.6. A submersion π : M −→ B is called a submersion with horizontal distri-
bution if there is a smooth distribution p −→ H(M)p such that

TpM = V(M)p
⊕
H(M)p, (3.15)

where V(M)p = ker(π∗p) for each p ∈M.

Note. Projectable and basic vector fields are defined as in the case of semi-Riemann sub-
mersion. A vector field X on B has a unique smooth horizontal lift, denoted by X̃ , to
M.

Definition 3.7. Let ∇ and ∇∗ be affine connections on M and B, respectively.
π : (M,∇) −→ (B,∇∗) is said to be an affine submersion with horizontal distribution
if π : M −→ B is a submersion with horizontal distribution and satisfies H(∇X̃ Ỹ ) =
(∇∗XY )˜, for X, Y ∈ X (B).

Note. If π : (M, gm) −→ (B, gb) is a semi-Riemannian submersion and
gm

∇ and
gb
∇ are Levi-

Civita connections on M and B, respectively, then π : (M,
gm

∇) −→ (B,
gm

∇) is obviously
an affine submersion with horizontal distributionH(M) = V(M)⊥.
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Theorem 3.1. [21] Assume that π : M −→ B is a submersion with horizontal distribution

and∇ is an affine connection on M. IfH(∇X̃ Ỹ ) is projectable for all vector fields X and

Y on B, then there exists a unique affine connection ∇∗ on B such that π : (M,∇) −→
(B,∇∗) is an affine submersion with horizontal distribution.

Proof. Setting ∇∗XY = π∗(∇X̃ Ỹ ), we show that ∇∗ is an affine connection on B. Since
˜(fX) = (f ◦ π)X̃ ,

∇∗X(fY ) = π∗(∇X̃(f ◦ π)Ỹ ) = π∗((X̃(f ◦ π))Ỹ + (f ◦ π)∇X̃ Ỹ )

= (Xf)Y + f∇∗
X̃
Ỹ.

The other conditions for the affine connection can be proved similarly. The uniqueness is
clear from the definition.

Note. A connection V∇V on the subbundle V(M) is defined by (V∇V)EV = V(∇EV ),
for any vertical vector field V and any vector field E on M. For each b ∈ B, V∇V induces
a unique connection ∇̂b on the fiber π−1(b). Hereafter we often omit the superscript b.
In [21], Abe and Hasegawa observed that if ∇ is torsion-free, then ∇̂b and ∇∗ are also
torsion-free.

As we mentioned in the previous section, to define fundamental tensors, we only need
to split the tangent bundle TM = V(M)

⊕
H(M). The fundamental tensors for an affine

submersion with horizontal distribution are defined as follows.

Definition 3.8. Let π : (M,∇, gm) −→ (B,∇∗, gb) be an affine submersion with horizon-
tal distributionH(M). Then, the fundamental tensors T and A are defined as

TEF = H(∇VEVF ) + V(∇VEHF ),

AEF = V(∇HEHF ) +H(∇HEVF ),

for E and F in X (M). Also, the fundamental tensors corresponding to the dual connection
∇ of ∇ are denoted by T and A.

These are (1, 2)-tensors. Also, TE andAE reverses the horizontal and vertical subspaces
and TE = TVE , AE = AHE .

The inclusion map (π−1(b), ∇̂b) −→ (M,∇) is an affine immersion [2]. The following
equations are corresponding to the Gauss and the Weingarten formulae. Let X and Y be
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horizontal vector fields and V and W be vertical vector fields on M. Then,

∇VW = TVW + ∇̂VW. (3.16)

∇VX = H(∇VX) + TVX. (3.17)

∇XV = V(∇XV ) + AXV. (3.18)

∇XY = H(∇XY ) + AXY. (3.19)

Let R be the curvature tensor of (M,∇). Denote the curvature tensor of ∇∗ (respectively
∇̂) by R∗ (respectively R̂). Define (1, 3)-tensors RP1,P2,P3 for affine submersion with hori-
zontal distribution by

RP1,P2,P3(E,F )G = P3∇[P1E,P2F ]P3G− P3∇P1E(P3∇P2FP3G)

+P3∇P2F (P3∇P1EP3G),

where Pi = H or V for i = 1, 2, 3 and E,F,G are vector fields on M. The fundamental
equations for affine submersion with horizontal distribution are [21].

VR(U, V )W = RVVV(U, V )W + TV TUW − TUTVW,

HR(U, V )W = H(∇V T )UW −H(∇UT )VW − TTor(∇)(U,V )W,

VR(U, V )X = H(∇V T )UX − V(∇UT )VX − TTor(∇)(U,V )X,

HR(U, V )X = RVVH(U, V )X + TV TUX − TUTVX,

VR(U,X)V = RVHV(U,X)V − TUAXV − AXTUV,

HR(U,X)V = H(∇XT )UV −H(∇UA)XV − AAXUV + TTUXV

−TTor(∇)(U,X)V − ATor(∇)(U,X)V,

VR(U,X)Y = V(∇XT )UY − V(∇UA)XY − AAXUY + TTUXY

−TTor(∇)(U,X)Y − ATor(∇)(U,X)Y,

HR(U,X)Y = RVHH(U,X)Y − TVAXY + AXTUY,

VR(X, Y )U = RHHV(X, Y )U + AYAXU − AXAYU,

58



HR(X, Y )U = H(∇YA)XU −H(∇XA)YU + TAXYU − TAYXU

−TTor(∇)(X,Y )U − ATor(∇)(X,Y )U,

VR(X, Y )Z = V(∇YA)XZ − V(∇XA)YZ + TAXYZ − TAYXZ

−TTor(∇)(X,Y )Z − ATor(∇)(X,Y )Z,

HR(X, Y )Z = RHHH(X, Y )Z + AYAXZ − AXAYZ,

where X, Y, Z are horizontal vector fields and U, V,W are vertical vector fields.
In the previous section, the comparison of geodesics for semi-Riemannian submersion

is discussed. In [21], Abe and Hasegawa compared the geodesics of M and B for affine
submersion with horizontal distribution. Let π : (M,∇) → (B,∇∗) be an affine sub-
mersion with horizontal distribution. Let E be a vector field on a curve σ in M and the
horizontal partH(E) and the vertical part V(E) of E be denoted by H and V , respectively.
π ◦ σ is a curve in B and E∗ denote the vector field π∗(E) = π∗(H) on the curve π ◦ σ in
B. E ′∗ denote the covariant derivative of E∗ and is a vector field on π ◦ σ. The horizontal
lift to σ of E ′∗ is denoted by Ẽ ′∗. In [21], Abe and Hasegawa have shown that

H(E
′
) = E

′

∗ +HTor(∇)(U,H) + AHU + AXV + TUV, (3.20)

V(E
′
) = AXH + TUH + V(V

′
), (3.21)

where X = H(σ
′
) and U = V(σ

′
). Here Tor(∇) denote the torsion of∇.

Proposition 3.4. [21] Let σ be a curve in M with X = H(σ
′
) and U = V(σ

′
). Then,

H(σ
′′
) = σ

′′

∗ +HTor(∇)(U,X) + 2AXU + TUU,

V(σ
′′
) = AXX + TUX + V(U

′
),

where σ
′′
∗ denotes the covariant derivative of (π ◦ σ)

′
.

Proof. By setting H = H(σ
′
) and V = V(σ

′
) in equations (3.20) and (3.21)

H(σ
′′
) = σ

′′

∗ +HTor(∇)(U,X) + 2AXU + TUU

V(σ
′′
) = AXX + TUX + V(U

′
),

Remark 3.3. From above proposition it can be seen that if σ is a geodesic, then π ◦ σ is a
geodesic of B if and only if HTor(∇)(U,X) + 2AXU + TUU = 0. In particular, if σ is a
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horizontal geodesic (ie, U = V(σ
′
) = 0), then π ◦ σ is a geodesic.

Corollary 3.1. [21] Let π : (M,∇) −→ (B,∇∗) be an affine submersion with horizontal

distributionH(M) such that AXX = 0 for all horizontal vector X . Then, every horizontal

lift of a geodesic of B is a geodesic of M.

Proof. Proof follows from the proposition (3.4).

Remark 3.4. In [21], Abe and Hasegawa proved that for an affine submersion π : (M,∇)→
(B,∇∗) with horizontal distribution H(M) such that AZZ = 0 for all horizontal vectors
Z,∇∗ is geodesically complete if∇ is geodesically complete.

3.3 Conformal Submersion with Horizontal Distribution

In this section, we introduce the concept of a conformal submersion with horizontal distri-
bution for Riemannian manifolds, which is a generalization of the affine submersion with
horizontal distribution. Then, a necessary condition for the existence of such a map is given.
A necessary and sufficient condition is obtained for π ◦ σ to be a geodesic of B when σ is
a geodesic of M for a conformal submersion with horizontal distribution. Then, proved a
necessary and sufficient condition for the horizontal lift of a geodesic to be geodesic. Also,
we give a necessary condition for the connection on B to be complete when the coneection
on M is complete for a conformal submersion with horizontal distribution π : M −→ B.

Definition 3.9. Let (M, gm) and (B, gb) be Riemannian manifolds. A submersion π :

(M, gm) −→ (B, gb) is called a conformal submersion if there exists a φ ∈ C∞(M) such
that gm(X, Y ) = e2φgb(π∗X, π∗Y ), for horizontal vector fields X, Y ∈ X (M).

For π : (M,∇) −→ (B,∇∗) an affine submersion with horizontal distribution,
π∗(∇X̃ Ỹ ) = ∇∗XY , for X, Y ∈ X (B). In the case of conformal submersion we prove
the following theorem, which is the motivation for us to generalize the concept of an affine
submersion with horizontal distribution.

Theorem 3.2. Let π : (M, gm) −→ (B, gb) be a conformal submersion. If
gm

∇ on M and
gb
∇

on B are the Levi-Civita connections, then

gb(π∗(
gm

∇X̃ Ỹ ), Z) = gb(
gb
∇XY, Z)− dφ(Z̃)gb(X, Y )

+{dφ(X̃)gb(Y, Z) + dφ(Ỹ )gb(Z,X)},

where X, Y, Z ∈ X (B) and X̃, Ỹ, Z̃ denote the unique horizontal lifts on M.
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Proof. We have the Koszul formula for the Levi-Civita connection,

2gm(
gm

∇X̃ Ỹ, Z̃) = X̃gm(Ỹ, Z̃) + Ỹ gm(Z̃, X̃)− Z̃gm(X̃, Ỹ )

−gm(X̃, [Ỹ, Z̃]) + gm(Ỹ, [Z̃, X̃]) + gm(Z̃, [X̃, Ỹ ]). (3.22)

Now, consider

X̃gm(Ỹ, Z̃) = X̃(e2φgb(Y,Z))

= X̃(e2φ)gb(Y,Z) + e2φX̃(gb(Y,Z))

= 2e2φdφ(X̃)gb(Y, Z) + e2φXgb(Y, Z).

Similarly,

Ỹ gm(X̃, Z̃) = 2e2φdφ(Ỹ )gb(X,Z) + e2φY gb(X,Z).

Z̃gm(X̃, Ỹ ) = 2e2φdφ(Z̃)gb(X,Y ) + e2φZgb(X,Y ).

Also, gm(X̃, [Ỹ, Z̃]) = e2φgb(X, [Y, Z]), gm(Ỹ, [Z̃, X̃]) = e2φgb(Y, [Z,X]) and

gm(Z̃, [X̃, Ỹ ]) = e2φgb(Z, [X,Y ]). Then, from the equation (3.22) and the above equations

2gm(
gm
∇X̃ Ỹ, Z̃) = 2dφ(X̃)e2φgb(Y, Z) + 2dφ(Ỹ )e2φgb(X,Z)

−2dφ(Z̃)e2φgb(X,Y ) + 2e2φgb(
gb
∇XY,Z).

This implies

gb(π∗(
gm
∇X̃ Ỹ ), Z) = gb(

gb
∇XY,Z)− dφ(Z̃)gb(X,Y )

+{dφ(X̃)gb(Y, Z) + dφ(Ỹ )gb(Z,X)}.

Now, we generalize the concept of an affine submersion with horizontal distribution as
follows:

Definition 3.10. Let π : (M, gm) −→ (B, gb) be a conformal submersion and let ∇ and
∇∗ be affine connections on M and B, respectively. Then, π : (M,∇) −→ (B,∇∗) is said
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to be a conformal submersion with horizontal distributionH(M) = V(M)⊥ if

gb(π∗(∇X̃ Ỹ ), Z) = gb(∇∗XY, Z)− dφ(Z̃)gb(X, Y )

+{dφ(X̃)gb(Y, Z) + dφ(Ỹ )gb(Z,X)}, (3.23)

for some φ ∈ C∞(M) and for X, Y, Z ∈ X (B).

Note. If φ is constant, it turns out to be an affine submersion with horizontal distribution.
Also, the equation (3.23) can be written as

H(∇X̃ Ỹ ) = ˜(∇∗XY ) + X̃(φ)Ỹ + Ỹ (φ)X̃ −H(gradπφ)gm(X̃, Ỹ ).

Example 3.1. Let Hn = {(x1, ..., xn) ∈ Rn : xn > 0} and g̃ = 1
x2n
g be a Riemannian

metric on Hn, where g is the Euclidean metric on Rn. Let π : Hn −→ Rn−1 be defined by
π(x1, ..., xn) = (x1, ..., xn−1). Let φ : Hn −→ R be defined by φ(x1, ..., xn) = log( 1

x2n
).

Then, we have

g̃

(
∂

∂xi
,
∂

∂xj

)
= eφg

(
∂

∂xi
,
∂

∂xj

)
.

Hence, π : (Hn, g̃) −→ (Rn−1, g) is a conformal submersion. Then, by theorem (3.2),

π : (Hn,
g̃

∇) −→ (Rn−1,
g

∇) is a conformal submersion with horizontal distribution, where
g̃

∇ and
g

∇ are Levi-Civita connections on Hn and Rn−1, respectively.

Now, a necessary condition is obtained for the existence of a conformal submersion
with horizontal distribution.

Theorem 3.3. Let π : (M, gm) −→ (B, gb) be a conformal submersion and∇ be an affine

connection on M. Assume that π : M −→ B is a submersion with horizontal distribution.

IfH(∇X̃ Ỹ ) is projectable forX , Y inX (B), then there exists a unique connection∇∗ on B

such that π : (M,∇) −→ (B,∇∗) is a conformal submersion with horizontal distribution.

Proof. Setting∇∗XY = π∗(∇X̃ Ỹ )− X̃(φ)Y − Ỹ (φ)X+e2φπ∗(gradπφ)gb(X, Y ), we show
that∇∗ is an affine connection on B. Since ˜(fX) = (f ◦ π)X̃ , we have

∇∗X(fY ) = π∗(∇X̃(f ◦ π)Ỹ )− X̃(φ)fY − ˜(fY )(φ)X

+e2φπ∗(gradπφ)gb(X, fY ). (3.24)
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Now, consider

π∗(∇X̃(f ◦ π)Ỹ ) = π∗((X̃(f ◦ π))Ỹ + (f ◦ π)∇X̃ Ỹ )

= X(f)Y + f∇∗XY + X̃(φ)fY + fỸ (φ)X

−e2φπ∗(gradπφ)fgb(X, Y ). (3.25)

From (3.24) and (3.25)

∇∗X(fY ) = X(f)Y + f∇∗XY.

The other condition for affine connection can be proved similarly. The uniqueness is clear
from the definition.

Note. From the definition of conformal submersion with horizontal distribution we get if
∇ is torsion-free, then∇∗ and ∇̂ are also torsion-free.

Fundamental tensors T and A for conformal submersion with horizontal distribution
π : (M,∇) −→ (B,∇∗) are defined for E and F in X (M) by

TEF = H∇VE(VF ) + V∇VE(HF )

and
AEF = V∇HE(HF ) +H∇HE(VF ).

Note that these are (1, 2)-tensors.

Let R denote the curvature tensor of (M,∇), denote the curvature tensor of ∇∗ (re-
spectively ∇̂) by R∗ (respectively R̂). Define (1, 3)-tensors RP1,P2,P3 for the conformal
submersion with horizontal distribution by

RP1,P2,P3(E,F )G = P3∇[P1E,P2F ]P3G− P3∇P1E(P3∇P2FP3G)

+P3∇P2F (P3∇P1EP3G),

where Pi = H or V (i = 1, 2, 3) and E,F,G are vector fields on M. Then, the follow-
ing fundamental equations for the conformal submersion with horizontal distribution are
obtained.

Theorem 3.4. Let X, Y, Z be horizontal vector fields and U, V,W be vertical vector fields.
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Then,

VR(U, V )W = RVVV(U, V )W + TV TUW − TUTVW.

HR(U, V )W = H(∇V T )UW −H(∇UT )VW − TTor(∇)(U,V )W.

VR(U, V )X = H(∇V T )UX − V(∇UT )VX − TTor(∇)(U,V )X.

HR(U, V )X = RVVH(U, V )X + TV TUX − TUTVX.

VR(U,X)V = RVHV(U,X)V − TUAXV − AXTUV.

HR(U,X)V = H(∇XT )UV −H(∇UA)XV − AAXUV + TTUXV

−TTor(∇)(U,X)V − ATor(∇)(U,X)V.

VR(U,X)Y = V(∇XT )UY − V(∇UA)XY − AAXUY + TTUXY

−TTor(∇)(U,X)Y − ATor(∇)(U,X)Y.

HR(U,X)Y = RVHH(U,X)Y − TVAXY + AXTUY.

VR(X, Y )U = RHHV(X, Y )U + AYAXU − AXAYU.

HR(X, Y )U = H(∇YA)XU −H(∇XA)YU + TAXYU − TAYXU

−TTor(∇)(X,Y )U − ATor(∇)(X,Y )U.

VR(X, Y )Z = V(∇YA)XZ − V(∇XA)YZ + TAXYZ − TAYXZ

−TTor(∇)(X,Y )Z − ATor(∇)(X,Y )Z.

HR(X, Y )Z = RHHH(X, Y )Z + AYAXZ − AXAYZ.

3.3.1 Geodesics

In this subsection, for a conformal submersion with horizontal distribution we prove a
necessary and sufficient condition for π◦σ to be a geodesic of B when σ is a geodesic of M.
Then, obtained a necessary and sufficient condition for the horizontal lift of a geodesic to be
geodesic. Also, we give a necessary condition for the connection on B to be complete when
the connection on M is complete for a conformal submersion with horizontal distribution
π : M −→ B.

Let M, B be Riemannian manifolds and π : M → B be a submersion. Let E be a
vector field on a curve σ in M and the horizontal part H(E) and the vertical part V(E) of
E be denoted by H and V , respectively. π ◦ σ is a curve in B and E∗ denote the vector
field π∗(E) = π∗(H) on the curve π ◦ σ in B. E ′∗ denote the covariant derivative of E∗ and
is a vector field on π ◦ σ. The horizontal lift to σ of E ′∗ is denoted by Ẽ ′∗.

Let π : (M,∇, gm)→ (B,∇∗, gb) a conformal submersion with horizontal distribution
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H(M). Throughout this section we assume ∇ is torsion-free. A curve σ is a geodesic if
and only if H(σ

′′
) = 0 and V(σ

′′
) = 0, where σ′′ is the covariant derivative of σ′ . So, first

we obtain the equations for H(E
′
) and V(E

′
) for a vector field E on a curve σ in M for a

conformal submersion with horizontal distribution.

Theorem 3.5. Let π : (M,∇, gm) → (B,∇∗, gb) be a conformal submersion with hori-

zontal distribution and let E = H + V be a vector field on a curve σ in M. Then,

π∗(H(E
′
)) = E

′

∗ + π∗(AXU + AXV + TUV )− e2φπ∗(gradπφ)gb(π∗X, π∗H)

+X(φ)π∗H +H(φ)π∗X,

V(E
′
) = AXH + TUH + V(V

′
),

where X = H(σ
′
) and U = V(σ

′
).

Proof. Consider a neighborhood of an arbitrary point σ(t) of the curve σ in M. By choos-
ing the base fields W1, ....,Wn, where n = dimB, near π(σ(t)) on B and an appropriate
vertical base field near σ(t), we have

(E
′

∗)t =
∑
i

ri
′
(t)(Wi)π(σ(t)) +

∑
i,k

ri(t)sk(t)(∇∗Wk
Wi)π(σ(t)), (3.26)

π∗(H(E
′
)t) =

∑
i

ri
′
(t)(Wi)π(σ(t)) +

∑
i,k

ri(t)sk(t)π∗(H(∇W̃k
W̃i))π(σ(t))

+π∗((AHU) + (AXV ) + (TUV ))π(σ(t)), (3.27)

where W̃i is the horizontal lift of Wi, for i = 1, 2, ...n and ri(t) ( respectively sk(t)) are the
coefficients ofH (respectively ofX ) in the representation using the base field W̃i restricted
to σ.

Since π is a conformal submersion with horizontal distribution

π∗(H(∇HX)) = ∇∗π∗(H)π∗X +X(φ)π∗H +H(φ)π∗X − e2φπ∗(gradπφ)gb(π∗X,π∗H).

Hence,

π∗(H(E
′
)) = E

′
∗ + π∗(AXU +AXV + TUV )− e2φπ∗(gradπφ)gb(π∗X,π∗H)

+X(φ)π∗H +H(φ)π∗X.

Similarly we can prove V(E
′
) = AXH + TUH + V(V

′
).
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For σ′′ we have

Corollary 3.2. Let σ be a curve in M with X = H(σ
′
) and U = V(σ

′
). Then,

π∗(H(σ
′′
)) = σ

′′

∗ + π∗(2AXU + TUU)− e2φπ∗(gradπφ)gb(π∗X, π∗X)

+2X(φ)π∗X, (3.28)

V(σ
′′
) = AXX + TUX + V(U

′
), (3.29)

where σ
′′
∗ denotes the covariant derivative of (π ◦ σ)

′
.

Now, for a conformal submersion with horizontal distribution we prove a necessary and
sufficient condition for π ◦ σ to become a geodesic of B when σ is a geodesic of M.

Theorem 3.6. Let π : (M,∇, gm) → (B,∇∗, gb) be a conformal submersion with hor-

izontal distribution. If σ is a geodesic of M, then π ◦ σ is a geodesic of B if and only

if

π∗(2AXU + TUU)) + 2X(φ)π∗X = π∗(gradπφ) ‖ X ‖2,

where X = H(σ
′
) and U = V(σ

′
) and ‖ X ‖2= gm(X,X).

Proof. Since σ is a geodesic of M from (3.28) we get

σ
′′

∗ = π∗(gradπφ) ‖ X ‖2 −π∗(2AXU + TUU)− 2dφ(X)π∗X.

Hence, π ◦ σ is a geodesic of B if and only if

π∗(2AXU + TUU)) + 2X(φ)π∗X = π∗(gradπφ) ‖ X ‖2 .

Remark 3.5. If σ is a horizontal geodesic (that is, σ is a geodesic with V(σ
′
) = 0), then

π ◦ σ is a geodesic if and only if 2X(φ)π∗X = π∗(gradπφ) ‖ X ‖2.

Now we have,

Proposition 3.5. Let π : (M,∇, gm)→ (B,∇∗, gb) be a conformal submersion with hori-

zontal distribution such that AZZ = 0 for all horizontal vectors Z. Then, every horizontal

lift of a geodesic of B is a geodesic of M if and only if 2X(φ)π∗X = π∗(gradπφ) ‖ X ‖2,

whereX is the horizontal part of the tangent vector field of the horizontal lift of the geodesic

of B.
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Proof. Let α be a geodesic of B and σ be the horizontal lift of α. Then, π ◦ σ = α and
σ
′
(t) = ˜(α

′
(t)). Let X = H(σ

′
(t)) and U = V(σ

′
(t)), clearly X = ˜(α

′
(t)) and U = 0.

Then, from (3.28) and (3.29)

π∗(H(σ
′′
)) = α

′′ − π∗(gradπφ) ‖ X ‖2 +2X(φ)π∗X.

V(σ
′′
) = AXX.

Since, α is a geodesic and AXX = 0 we have, σ′′ = 0 if and only if 2X(φ)π∗X =

π∗(gradπφ) ‖ X ‖2. That is, every horizontal lift of a geodesic of B is a geodesic of M if
and only if 2X(φ)π∗X = π∗(gradπφ) ‖ X ‖2.

Corollary 3.3. Let π : (M,∇, gm) → (B,∇∗, gb) be a conformal submersion with hori-

zontal distribution such that AZZ = 0 for all horizontal vectors Z. Then, ∇∗ is geodesi-

cally complete if∇ is geodesically complete and 2X(φ)π∗X = π∗(gradπφ) ‖ X ‖2, where

X is the horizontal part of the tangent vector field of the horizontal lift of the geodesic of

B.

Proof. Let α be a geodesic of B and α̃ be its horizontal lift to M, by Proposition (3.5) α̃
is a geodesic of M. Since ∇ is geodesically complete, α̃ can be defined on the entire real
line. Then, the projected curve of the extension of α̃ is a geodesic and is the extension of
α, that is∇∗ is geodesically complete.

3.4 Affine and Conformal Submersions with Horizontal
Distribution and Statistical Manifolds

In this section, we first discuss the affine submersion with horizontal distribution and statis-
tical manifolds. A statistical structure is obtained on the manifold B induced by the affine
submersion π : M −→ B with the horizontal distribution H(M) = V⊥(M). Abe and
Hasegawa [21] obtained a necessary and sufficient condition for (M,∇, gm) to become a
statistical manifold for an affine submersion with horizontal distribution π : (M,∇) −→
(B,∇∗). In the case of conformal submersion with horizontal distribution we obtained a
necessary and sufficient condition for (M,∇, gm) to become a statistical manifold. Also,
we prove π : (M,∇) −→ (B,∇∗) is a conformal submersion with horizontal distribu-
tion if and only if π : (M,∇) −→ (B,∇∗) is a conformal submersion with horizontal
distribution [22].
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3.4.1 Affine Submersion with Horizontal Distribution and Statistical
Manifolds

In this subsection, we discuss the affine submersion with horizontal distribution for statis-
tical manifolds.

Definition 3.11. Let π : (M,∇) −→ (B,∇∗) be an affine submersion with horizontal dis-
tribution V⊥(M) and g be a semi-Riemannian metric on M and H(∇X̃ Ỹ ) be projectable.
Define the induced semi-Riemannian metric g̃ and the induced connection∇′ on B as

g̃(X, Y ) = g(X̃, Ỹ ), (3.30)

∇′XY = π∗(∇X̃ Ỹ ), (3.31)

where X, Y are in X (B).

Now, we show that (B,∇′ , g̃) is a statistical manifold.

Theorem 3.7. Let (M,∇, g) be a statistical manifold and π : M −→ B be an affine

submersion with horizontal distribution H(M) = V⊥(M) and H(∇X̃ Ỹ ) be projectable.

Then, (B,∇′ , g̃) is a statistical manifold.

Proof. Let X, Y, Z be in X (B), then

(∇′X g̃)(Y, Z) = Xg̃(Y, Z)− g̃(∇′XY, Z)− g̃(Y,∇′XZ)

= X̃g(Ỹ, Z̃)− g(∇X̃ Ỹ, Z̃)− g(Ỹ,∇X̃Z̃)

= (∇X̃g)(Ỹ, Z̃).

Since (M,∇, g) is a statistical manifold, (B,∇′ , g̃) is also a statistical manifold.

Let (M, gm) be a semi-Riemannian manifold with affine connection ∇ and ∇ denotes
the conjugate connection of∇ with respect to gm. Let (B, gb) be another semi-Riemannian
manifold with affine connection ∇∗ and ∇∗ denotes the conjugate connection of ∇∗ with
respect to gb.

Proposition 3.6. [21] Let π : (M, gm) −→ (B, gb) be a semi-Riemannian submersion.

Then, π : (M,∇) −→ (B,∇∗) is an affine submersion with horizontal distributionH(M) =

V(M)⊥ if and only if π : (M,∇) −→ (B,∇∗) is an affine submersion with the same hori-

zontal distribution.
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Proof. Let X̃, Ỹ and Z̃ be the horizontal lift of vector fields X, Y and Z on B. Now,

X̃gm(Ỹ, Z̃) = Xgb(Y, Z)

= gb(∇∗XY, Z) + gb(Y,∇
∗
XZ). (3.32)

On the other hand,

X̃gm(Ỹ, Z̃) = gm(∇X̃ Ỹ, Z̃) + gb(Ỹ,∇X̃Z̃)

= gb(π∗(∇X̃ Ỹ ), Z) + gb(Y, π∗(∇X̃Z̃)). (3.33)

Now, from the equations (3.32) and (3.33) we get

gb(π∗(∇X̃ Ỹ )−∇∗XY, Z) = gb(Y,∇
∗
XZ − π∗(∇X̃Z̃)).

Hence, π : (M,∇) −→ (B,∇∗) is an affine submersion with horizontal distribution
H(M) = V(M)⊥ if and only if π : (M,∇) −→ (B,∇∗) is an affine submersion with
the same horizontal distribution.

Lemma 3.1. [21] Let π : (M, gm) −→ (B, gb) be a semi-Riemannian submersion and

π : (M,∇) −→ (B,∇∗) be an affine submersion with horizontal distribution V(M)⊥,

then for horizontal vectors X, Y and vertical vectors U, V,W ,

(∇X̃gm)(X̃1, X̃2) = (∇∗Xgb)(X1, X2) ◦ π, (3.34)

(∇V gm)(X, Y ) = −gm(SVX, Y ), (3.35)

(∇Xgm)(V, Y ) = −gm(AXV, Y ) + gm(AXV, Y ), (3.36)

(∇Xgm)(V,W ) = −gm(SXV,W ), (3.37)

(∇V gm)(X,W ) = −gm(TVX,W ) + gm(T VX,W ), (3.38)

(∇Ugm)(V,W ) = (∇̂U ĝm)(V,W ), (3.39)

where X̃i are the horizontal lift of vector fields Xi on B, ĝ is the induced metric on the

fibers and SVX = ∇VX −∇VX .

Proof. Now,

(∇X̃gm)(X̃1, X̃2) = X̃gm(X̃1, X̃2)− gm(∇X̃X̃1, X̃2)− gm(X̃1,∇X̃X̃2)

= Xgb(X1, X2)− gb(π∗(∇X̃X̃1), X2)

−gb(X1, π∗(∇X̃X̃2))
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= Xgb(X1, X2)− gb(∇∗XX1, X2)− gb(X1,∇∗XX2)

= (∇∗Xgb)(X1, X2) ◦ π.

Similarly, we can prove the other equations.

Using the lemma (3.1), Abe and Hasegawa proved the following theorem.

Theorem 3.8. [21] Assume that Tor(∇) = 0. Let π : (M, gm) −→ (B, gb) be a semi-

Riemannian submersion and π : (M,∇) −→ (B,∇∗) be an affine submersion with hor-

izontal distribution H(M) = V⊥(M). Then, (M,∇, gm) is a statistical manifold if and

only if

1. H(SVX) = AXV − AXV .

2. V(SXV ) = TVX − T VX .

3. (π−1(b), ∇̂b, ĝbm) is a statistical manifold for each b ∈ B.

4. (B,∇∗, gb) is a statistical manifold.

Proof. Suppose (M,∇, gm) is a statistical manifold, then∇gm is symmetric.
So (∇V gm)(X, Y ) = (∇Xgm)(V, Y ), where X, Y are horizontal vector fields and V is a
vertical vector field. Then, from (3.35) and (3.36) of the above lemma gm(SVX, Y ) =

gm(AXV, Y ) − gm(AXV, Y ). This implies, H(SVX) = AXV − AXV. Similarly from
(3.37) and (3.38) of the above lemma, we have V(SXV ) = TVX − T VX .

Since ∇gm is symmetric, from (3.39) of the above lemma, we get ∇̂bĝb is symmetric,
so (π−1(b), ∇̂b, ĝbm) is a statistical manifold. Also from (3.34) of the above lemma, we
get (∇X̃gm)(X̃1, X̃2) = (∇∗Xgb)(X1, X2), where X̃i are the horizontal lift of the vector
fields Xi on B. Since, ∇gm is symmetric ∇∗gb is also symmetric. Hence, (B,∇∗, gb) is a
statistical manifold.

Conversely, if all the four conditions hold then from the above lemma
∇Egm(F,G) = ∇Fgm(E,G), for E,F and G in X (M). That is,∇gm is symmetric on M

and hence (M,∇, gm) is a statistical manifold.

3.4.2 Conformal Submersion with Horizontal Distribution and Statis-
tical Manifolds

In this subsection, we discuss the conformal submersion with horizontal distribution for
statistical manifolds [22].
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Let (M, gm) and (B, gb) be semi-Riemannian manifolds with affine connections∇ and
∇∗, respectively. First, we prove the following proposition.

Proposition 3.7. Let π : (M, gm) −→ (B, gb) be a conformal submersion. Then, π :

(M,∇) −→ (B,∇∗) is a conformal submersion with horizontal distribution if and only if

π : (M,∇) −→ (B,∇∗) is a conformal submersion with horizontal distribution.

Proof. Now,

X̃gm(Ỹ, Z̃) = 2e2φdφ(X̃)gb(Y, Z) + e2φXgb(Y, Z)

= 2e2φdφ(X̃)gb(Y, Z) + e2φ{gb(∇∗XY, Z) + gb(Y,∇∗XZ)}

and

X̃gm(Ỹ, Z̃) = gm(∇X̃ Ỹ, Z̃) + gm(Ỹ,∇X̃Z̃)

= e2φgb(π∗(∇X̃ Ỹ ), Z) + e2φgb(Y, π∗(∇X̃Z̃)). (3.40)

Since,

gb(π∗(∇X̃ Ỹ ), Z) = gb(∇∗XY, Z)− dφ(Z̃)gb(X, Y )

+{dφ(X̃)gb(Y, Z) + dφ(Ỹ )gb(Z,X)}. (3.41)

From (3.40) and (3.41) we get

gb(π∗(∇X̃Z̃), Y ) = gb(∇∗XZ, Y )− dφ(Ỹ )gb(X,Z)

+{dφ(X̃)gb(Y, Z) + dφ(Z̃)gb(X, Y )}.

Hence, π : (M,∇) −→ (B,∇∗) is a conformal submersion with horizontal distribution.
Converse is obtained by interchanging∇,∇∗ with∇, ∇∗ in the above proof.

Lemma 3.2. Let π : (M, gm) −→ (B, gb) be a conformal submersion and π : (M,∇) −→
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(B,∇∗) be a conformal submersion with horizontal distribution V(M)⊥, then

(∇X̃gm)(X̃1, X̃2) = e2φ(∇∗Xgb)(X1, X2), (3.42)

(∇V gm)(X, Y ) = −gm(SVX, Y ), (3.43)

(∇Xgm)(V, Y ) = −gm(AXV, Y ) + gm(AXV, Y ), (3.44)

(∇Xgm)(V,W ) = −gm(SXV,W ), (3.45)

(∇V gm)(X,W ) = −gm(TVX,W ) + gm(T VX,W ), (3.46)

(∇Ugm)(V,W ) = (∇̂U ĝm)(V,W ), (3.47)

for horizontal vector fields X, Y on M and vertical vector fields U, V,W on M. X̃i are the

horizontal lift of vector fields Xi on B, ĝ is the induced metric on the fibers and SVX =

∇VX −∇VX .

Proof. Now,

(∇X̃gm)(X̃1, X̃2) = X̃gm(X̃1, X̃2)− gm(∇XX̃1, X̃2)− gm(X̃1,∇XX̃2)

= X̃e2φgb(X1, X2)− e2φgb(π∗(∇X̃X̃1), X2)

−e2φgb(X1, π∗(∇X̃X̃2))

= 2e2φdφ(X̃)gb(X1, X2) + e2φXgb(X1, X2)

−e2φgb(π∗(∇X̃X̃1), X2)− e2φgb(X1, π∗(∇X̃X̃2)).

Since

gb(π∗(∇X̃X̃i), Xj) = gb(∇∗XXi, Xj)− dφ(X̃j)gb(X,Xi)

+{dφ(X̃)gb(Xi, Xj) + dφ(X̃i)gb(Xj, X)},

where i, j = 1, 2 and i 6= j, we get

(∇X̃gm)(X̃1, X̃2) = e2φ(∇∗Xgb)(X1, X2).

Similarly, we can prove the other equations.

Now, we prove a necessary and sufficient condition for (M,∇, gm) to be a statistical
manifold for a conformal submersion with horizontal distribution.

Theorem 3.9. Let π : (M, gm) −→ (B, gb) be a conformal submersion and π : (M,∇) −→
(B,∇∗) be a conformal submersion with horizontal distribution H(M) = V⊥(M) and ∇
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be torsion-free. Then, (M,∇, gm) is a statistical manifold if and only if

1. H(SVX) = AXV − AXV .

2. V(SXV ) = TVX − T VX .

3. (π−1(b), ∇̂b, ĝbm) is a statistical manifold for each b ∈ b.

4. (B,∇∗, gb) is a statistical manifold.

Proof. Suppose (M,∇, gm) is a statistical manifold, then∇gm is symmetric. So
(∇V gm)(X, Y ) = (∇Xgm)(V, Y ), where X, Y are horizontal vector fields and V is a ver-
tical vector field. Then, from (3.43) and (3.44) of the above lemma gm(SVX, Y ) =

gm(AXV, Y ) − gm(AXV, Y ). This implies, H(SVX) = AXV − AXV. Similarly, from
(3.45) and (3.46) of the above lemma, we have V(SXV ) = TVX − T VX .

Since ∇gm is symmetric, from (3.47) of the above lemma, we get ∇̂bĝb is symmetric,
so (π−1(b), ∇̂b, ĝbm) is a statistical manifold. Also from (3.42) of the above lemma, we
get (∇X̃gm)(X̃1, X̃2) = e2φ(∇∗Xgb)(X1, X2), where X̃i are the horizontal lift of the vector
fields Xi on B. Since, ∇gm is symmetric ∇∗gb is also symmetric. Hence, (B,∇∗, gb) is a
statistical manifold.

Conversely, if all the four conditions hold then from the above lemma
∇Egm(F,G) = ∇Fgm(E,G), for vector fields E,F and G on M. That is, ∇gm is sym-
metric on M and hence (M,∇, gm) is a statistical manifold.
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Chapter 4

Tangent Bundles and Harmonic Maps of
Statistical Manifolds

Geometry of tangent bundles is a fruitful domain of differential geometry that gives a clear
insight into the classical theory and provides many new problems in the area of differential
geometry. Let M be a Riemannian manifold and π : TM −→M be the tangent map. Mat-
suzoe and Inoguchi [23], have shown that the tangent bundle TM has got various statistical
manifold structures using complete, vertical and horizontal lifts of metric, connection and
the cubic form. In [24], Balan et al. have proved that (TM, ∇̃, gs) is a statistical manifold,
where gs is the Sasaki lift metric.

Harmonic mapping provides a natural way of mapping two manifolds by minimizing
distortion induced by the mapping. A systematic study of harmonic maps was initiated by
Eells and Sampson [51]. Presently, we see an increasing interest in harmonic maps between
statistical manifolds [26], [27]. In [26], Uohashi obtained a condition for the harmonicity
on α-conformally equivalent statistical manifolds. Oproiu [30] obtained conditions for
the tangent map to be harmonic in the case of tangent bundles equipped with the metrics
obtained from the complete lift of metrics and the vertical lift of an appropriate tensor field.

In this chapter, statistical manifold structures on tangent bundles and harmonic maps
between statistical manifolds and tangent bundles were discussed. Note that the tangent
map can be considered as a submersion and we used the results in the geometry of sub-
mersions to obtain geometric structures on tangent bundles. In Section 4.1, we prove a
necessary and sufficient condition for TM to become a statistical manifold with the com-
plete lift connection and the Sasaki lift metric. In Section 4.2, we first look at the definition
of the harmonic map using tension field. Then, prove a necessary and sufficient condition
for the harmonicity of the identity map for conformally-projectively equivalent statistical
manifolds. The conformal statistical submerion is defined which is a generalization of the
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statistical submersion and proved that harmonicity and conformality cannot coexist [28].
In Section 4.3, for statistical manifolds we proved that a smooth map φ : M −→ B is
harmonic with respect to ∇ and ∇∗ if and only if it is harmonic with respect to the conju-
gate connections ∇ and ∇∗. Then, given a necessary condition for the harmonicity of the
tangent map with respect to the complete lift structure on the tangent bundles. Also, prove
π : (M,∇, gm) −→ (B,∇∗, gb) is a statistical submersion if and only if π∗ : (TM,∇c, gcm)

−→ (TB,∇∗c, gcb) is a statistical submersion.

4.1 Statistical Structures on Tangent Bundle

In this section, we discuss the work of Matsuzoe and Inoguchi [23] and Balan et al. [24]
on obtaining the various statistical manifold structures on TM. Then, proved a necessary
and sufficient condition for TM to become a statistical manifold with the complete lift
connection and the Sasaki lift metric [22].

4.1.1 Vertical, Complete and Horizontal Lifts on Tangent Bundles.

In this subsection, we first look at the concept of vertical, complete and horizontal lifts of
vector fields, functions, tensors, metrics and connections. Then, various ways of getting
the statistical manifold structures on the tangent bundle TM are discussed [23], [24].

Let M be an n-dimensional manifold and TM denote the tangent bundle on M, π :

TM −→ M be the natural projection defined by Xx ∈ TxM −→ x ∈ M. Taking a
local coordinate system (U ;x1, ..., xn) on M, the induced coordinate system on π−1(U)

is denoted by (x1, ..xn;u1, ..un). Let (x;u) be a point on TM, denote the kernel of
π∗(x;u) : T(x;u)(TM) −→ TxM by V(x;u)(TM) called the vertical subspace of T(x;u)(TM)

at (x;u). Note that the vertical subspace V(x;u)(TM) is spanned by { ∂
∂u1
, ∂
∂u2
, ... ∂

∂un
}. The

two linear spaces TxM and V(x;u)(TM) have the same dimension, so there is a canonical
linear isomorphism v : TxM −→ V(x;u)(TM) called the vertical lift. That is, for any tan-
gent vector Xx on M with local expression Xx = X i

x
∂
∂xi
|x, the vertical lift Xv

x to TM
is defined by Xv

x = X i
x
∂
∂ui
|u. This definition is independent of the choice of the local

coordinate system.

Definition 4.1. Let f : M −→ R be a smooth function on M and π : TM −→ M be
the natural projection. The vertical lift of f is denoted by f v and is defined as f v = f ◦ π.
For a vector field X = X i ∂

∂xi
on M the vertical lift is denoted by Xv and defined as

Xv = (X i)v ∂
∂ui

.
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Note. The definition of vertical lift of a vector field is independent of the choice of local
coordinate system. Note that, for any X, Y ∈ X (M), [Xv, Y v] = 0.

Let f be a smooth function on M. Then, the vertical lift of df is defined by (df)v =

d(f v), in particular for local coordinate functions xi, (dxi)v = d(xi)v. The vertical lift of a
1-form ω with local expression ω = ωidx

i is defined as ωv = (ωi)
vd(xi)v. The definition

of ωv is independent of the local coordinate system.

The vertical lift operation can be extended to the whole tensor algebra T (M) using the
law (P ⊗Q)v = P v ⊗Qv for any tensor fields P and Q on M.

Now we discuss the complete lift operation to TM. [52, 53, 54]

Definition 4.2. Let f : M −→ R be a smooth map, the complete lift f c of f on TM is
defined as f c = i(df) = ui ∂f

∂xi
. The complete lift Xc on TM of the vector field X on M is

characterized by the formula Xc(f c) = (Xf)c, for all f ∈ C∞(M). In local coordinates,
the complete lift Xc of X = X i ∂

∂xi
has the local expression

Xc = (X i)v
∂

∂xi
+ uj

∂X i

∂xj
∂

∂ui
.

Remark 4.1. From the above formula note that for any point u = (x;u) in TM other than
zero, the set {Xc

u | X ∈ X (M)} is the whole tangent space of TM at u.

Definition 4.3. The complete lift to 1-from ω is defined as

ωc(Xc) = (ω(X))c.

More generally, the complete lift to the full tensor algebra T (M) is given by the rule

(P ⊗Q)c = P c ⊗Qv + P v ⊗Qc,

for tensor fields P and Q on M.

Now, we state certain important formulae related to the vertical and the complete lifts
[55].

1. Let P be a tensor field of type (r, s), r = 0, 1 on M. Then,

P c(Xc
1, · · · , Xc

s) = (P (X1, · · · , X))c, P c(Xv
1 , · · · , Xv

s ) = 0. (4.1)
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2. Let g be a tensor field of type (0, 2) on M. Then,

gc(Xc, Y c) = g(X, Y )c, gc(Xc, Y v) = g(X, Y )v, gc(Xv, Y v) = 0. (4.2)

In particular, if g is a semi-Riemannian metric on M then gc is a semi-Riemannian metric
on TM. The metric gc is called the complete lift metric on TM.

Now, we discuss the complete lift operation of a linear connection.

Definition 4.4. Let ∇ be a linear connection on M, then the complete lift ∇c on TM is
defined as∇c

XcY c = (∇XY )c, for every X, Y ∈ X (M).

Proposition 4.1. [23] Let (M,∇) be a manifold with linear connection∇. Let T and R be

the torsion and the curvature tensor of∇, respectively. Then, the torsion and the curvature

of ∇c are T c and Rc, respectively.

Proof. By definition of complete lift T c(Xc, Y c) = (T (X, Y ))c. Since,

(T (X, Y ))c = (∇XY −∇YX − [X, Y ])c,

= ∇c
XcY c −∇c

Y cX
c − [Xc, Y c],

= Tor∇c(Xc, Y c),

where the Tor∇c is the torsion of∇c. Then,

T c(Xc, Y c) = Tor∇c(Xc, Y c).

That is, torsion of∇c is T c. Similarly the curvature relation can be proved.

Proposition 4.2. [23] Let (M,∇, g) be a statistical manifold. Then (TM,∇c, gc) is a

statistical manifold, moreover the conjugate connection of∇c is (∇c) = (∇)c.

Proof. Since ∇ is torsion free, ∇c also torsion free by proposition (4.1). Now, by the
definition of the complete lift

(∇c
Xcgc)(Y c, Zc) = {(∇Xg)(Y, Z)}c = {(∇Y g)(X,Z)}c = (∇c

Y cg
c)(Xc, Zc).
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Hence∇cgc is symmetric. That is, (TM,∇c, gc) is a statistical manifold. Now,

gc(Y c, (∇c)XcZ
c) = Xcgc(Y c, Zc)− gc(∇c

XcY c, Zc),

= Xc{g(Y, Z)}c − {g(∇XY, Z)}c,

= {Xg(Y, Z)− g(∇XY, Z)}c = {g(Y,∇XZ)}c,

= gc(Y c, (∇)cXcZc).

Hence (∇c) = (∇)c.

Now, we look at the horizontal lifts on the tangent bundle. Let M be a smooth n-
dimensional manifold and ∇ be a torsion free linear connection on M. The vertical sub-
space V(x;u)(TM) of T(x;u)(TM) at (x;u) defines a smooth distribution V on TM called
the vertical distribution. Also, there exists a smooth distribution x −→ H(TM)x depend-
ing on the linear connection∇ such that

T(x;u)(TM) = H(TM)x ⊕ V(x;u)(TM).

This distribution is called the horizontal distribution.

Definition 4.5. Let X be a vector field on M, then the horizontal lift of X on TM is the
unique vector field Xh on TM such that π∗(Xh

(x;u)) = Xπ((x;u)) for all (x;u) ∈ TM. In
local coordinates if X = X i ∂

∂xi
, then

Xh = (X i)v
∂

∂xi
− (Xj)vukΓij,k

∂

∂ui
.

Here Γij,k is the connection coefficient of∇.

Definition 4.6. Let g be a semi-Riemannian metric on M, then the horizontal lift gh on M is
defined as gh(Xh, Y h) = gh(Xv, Y v) = 0 and gh(Xh, Y v) = g(X, Y ), for X, Y ∈ X (M).
The horizontal lift ∇h on TM of linear connection ∇ on M is defined as ∇h

XvY v = 0,
∇h
XvY h = 0,∇h

XhY
v = (∇XY )v, ∇h

XhY
h = (∇XY )h, for X, Y ∈ X (M).

Remark 4.2. Note that gh can be characterized by

gh(x;u)(X̃, Ỹ ) = gx(π∗X̃,KỸ ) + gx(KX̃, π∗Ỹ ). (4.3)

Here the map K : T (TM) −→ TM is defined by

KuXh
u = 0, KuXv

u = Xx,
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called the connection map [56]. Also, note that even if ∇ is torsion-free its horizontal lift
∇h may have non trivial torsion.

Definition 4.7. Let g be a semi-Riemannian metric on (M,∇). The semi-Riemannian met-
ric gs on TM is defined as, gs(x;u)(X

h, Y h) = gx(X, Y ), gs(x;u)(X
h, Y v) = 0, gs(x;u)(X

v, Y v)

= gx(X, Y ). The metric gs is called the Sasaki lift metric.

Note that the Sasaki lift metric gs has the following representation.

gs(x;u)(X̃, Ỹ ) = gx(π∗X̃, π∗Ỹ ) + gx(KX̃,KỸ ). (4.4)

Remark 4.3. In [55], Yano and Ishihara introduced the γ operator for defining the horizontal
lift from the complete lift. Let X be a vector field on M, with local expression X = X i ∂

∂xi
,

∇X = X i
j
∂
∂xi
⊗dxj , whereX i

j = ∂Xi

∂xj
+XkΓij,k. Define γ(∇X) = ujX i

j
∂
∂ui

with respect to
the induced coordinate (x1, ..., xn;u1, ..., un). Then, Xh = Xc−γ(∇X), note that γ(∇X)

is the vertical part of Xc.

The horizontal lift operation can also be extended to T (M) by the rule

(P ⊗Q)h = P v ⊗Qh + P h ⊗Qv,

for tensor fields P and Q on M. Now, we discuss certain properties of horizontal lift
operations connecting covariant derivatives of tensor fields [55]. Let (M,∇) be a manifold
with affine connection then for X ∈ X (M)

1. ∇h
XcP v = (∇XP )v, ∇h

XcP h = (∇XP )h.

2. ∇h
XvP v = 0, ∇h

XvP h = 0.

Remark 4.4. As a consequence of the above properties, Matsuzoe and Inoguchi [23] proved
that if (M,∇, g) is a statistical manifold, then (TM,∇h, gs) or (TM,∇h, gh) is a statistical
manifold if and only if∇g = 0.

Definition 4.8. Let (M,∇, g) be a statistical manifold. Define the tensor field K of type-
(1, 2) by

g(K(X)Y, Z) = C(X, Y, Z) = ∇Xg(Y, Z),

for X, Y, Z in X (M). This tensor field K is called the skewness operator of (M,∇, g).
Since C is symmetric, K(X) is symmetric with respect to g.
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Note. The difference tensor defined in Chapter 2 and the skewness operator defined above
are same. For, consider

KXY = ∇XY −∇XY.

Since
g

∇ = ∇+∇
2

,

KXY = 2(
g

∇XY −∇XY ).

Then KX = 2(
g

∇X −∇X) is a tensor of type (1, 1) that maps Y ∈ TxM to KXY ∈ TxM.

Since
g

∇Xg = 0, we get

(∇Xg)(Y, Z) = −1

2
(KXg)(Y, Z)

=
1

2
(g(KXY, Z) + g(Y,KXZ)). (4.5)

We know that (∇Xg)(Y, Z) is symmetric in X, Y and Z and that g(KXY, Z) is symmetric
inX and Y . This implies g(Y,KXZ)) is symmetric inX and Y . Since∇ and∇ are torsion
free, we get g(Y,KXZ)) is symmetric in X,Z, and therefore in X, Y, Z. Then from (4.5)
we get

g(KXY, Z) = C(X, Y, Z) = ∇Xg(Y, Z)

Hence the difference tensor is same as the skewness operator.

Now let (M, g, C) be a semi-Riemannian manifold with the trilinear form C and the skew-
ness operator K. Define a linear connection∇ by∇ =

g

∇− K
2

, where
g

∇ is the Levi-Civita
connection. Then, ∇ is torsion free and ∇g = C. Hence (M,∇, g) becomes a statistical
manifold.

Definition 4.9. Let (M,∇, g) be a statistical manifold with skewness operator K. The
horizontal lift of K, denoted by Kh, is defined as

Kh(Xh)Y h = (K(X)Y )h, Kh(Xv)Y v = 0,

Kh(Xh)Y v = Kh(Xv)Y h = (K(X)Y )v,

for X, Y ∈ X (M).

Theorem 4.1. [23] Let (M,∇, g) be a statistical manifold with skewness operator K.

Define a linear connection ∇̂ on TM by

∇̃ =
gs

∇− 1

2
Kh,
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where
gs

∇ is the Levi-Civita connection of the Sasaki lift metric gs. Then, the triplet (TM, ∇̃, gs)
is a statistical manifold.

Proof. Consider the cubic form C̃ defined by

C̃(X̃, Ỹ, Z̃) = gs(Kh(X̃)Ỹ, Z̃), for X̃, Ỹ, Z̃ ∈ X (TM).

Then by (4.4) we get

C̃(X̃, Ỹ, Z̃) = g(π∗(K
h(X̃)Ỹ ), π∗Z̃) + g(K(Kh(X̃)Ỹ ),K(Z̃)).

Hence by definition of Kh

C̃(X̃, Ỹ, Z̃) = g(K(π∗X̃)π∗Ỹ, π∗Z̃) + 2g(K(KX̃)KỸ,KZ̃).

Since (M,∇, g) is a statistical manifold, g(K(π∗X̃)π∗Ỹ, π∗Z̃) and g(K(KX̃)KỸ,KZ̃) are
symmetric. This implies C̃(X̃, Ỹ, Z̃) is totally symmetric, hence (TM, ∇̃, gs) is a statistical
manifold.

Proposition 4.3. [23] Let (M,∇, g) be a statistical manifold. Then (TM, Ch, gs) is a

statistical manifold, where Ch is the horizontal lift of the cubic form C of (M,∇, g).

Proof. By definition of horizontal lift (C(X, Y, Z))h = Ch(Xh, Y h, Zh). Since C is sym-
metric, Ch is also symmetric, hence (TM, Ch, gs) is a statistical manifold.

Remark 4.5. Note that the statistical structure on TM obtained in theorem (4.1) is different
form the statistical structure on TM obtained in proposition (4.3), in fact the cubic form C̃

in the proof of the theorem (4.1) is different from Ch.

Theorem 4.2. [23] Let (M,∇, g) be a statistical manifold. Then, (TM, Kh, gh) is a sta-

tistical manifold.

Proof. Let C̃ be the corresponding cubic form of Kh with respect to gh. That is,

C̃(X̃, Ỹ, Z̃) = gh(Kh(X̃)Ỹ, Z̃), for X̃, Ỹ, Z̃ ∈ X (TM).

Now from equation (4.3) we have

C̃(X̃, Ỹ, Z̃) = {C(π∗X̃, π∗Ỹ,KZ̃)+C(π∗X̃,K(Ỹ ), π∗Z̃)+C(KX̃, π∗(Ỹ ), π∗Z̃)}v, (4.6)
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where C is the cubic form with respect to (∇, g). Since (M,∇, g) is a statistical manifold
C is totally symmetric, then from (4.6) C̃ is totally symmetric. Hence (TM, Kh, gh).

Remark 4.6. Since the horizontal liftCh ofC is symmetric, the tangent bundle (TM, Ch, gh)

is also a statistical manifold. Note that this statistical structure is different from the statis-
tical structure obtained in theorem (4.2), in fact the cubic form C̃ is not equal to Ch.

Let (M, g) be an n-dimensional Riemannian manifold, π : TM −→M be the natural
projection. Consider a local coordinate system (U ;x1, ..., xn) on M, then the induced
coordinate system on π−1(U) is (x1, ..xn;u1, ..un). If X = X i ∂

∂xi
, then

Xv = (X i)v
∂

∂ui
, Xh = (X i)v

∂

∂xi
− (Xj)vuk

g

Γij,k
∂

∂ui
,

where
g

Γij,k are the Christoffel symbols of the Levi-Civita connection
g

∇. Also, we have

[Xv, Y v] = 0, [Xh, Y v] = (
g

∇XY )v, [Xh, Y h] = [X, Y ]h − (
g

R(X, Y )Z)v, (4.7)

for X, Y, Z ∈ X (M). Here
g

R denotes the Riemannian curvature of
g

∇.

Let { ∂
∂xi
|(x;u),

∂
∂ui
|(x;u)}, for i = 1, 2, · · · , n, be a basis for T((x;u))(TM), then the

horizontal subspaceH((x;u)) is spanned by { δ
δxi
|(x;u)}, where

δ

δxi
|(x;u)=

∂

∂xi
|(x;u) −uk

g

Γij,k
∂

∂ui
|(x;u) .

To simplify the notations, we use ∂i, δi and ∂i instead of ∂
∂xi
, δ
δxi

and ∂
∂ui

, respectively. Now,
represent the equations in (4.7) using local coordinates as

[∂i, ∂j] = 0, [δi, ∂j] =
g

Γij,k∂k, [δi, δj] = −ur
g

Rk
ijr∂k.

Also, represent the Sasaki lift metric gs as

gs(δi, δj) = gij, gs(δi, ∂i) = 0, gs(∂i, ∂j) = gij.

Let ∇̃ be any torsion-free affine connection on TM. Then, with respect to {δi, ∂i} we
have

∇̃δiδj = Γ̃kijδk + Γ̃kij∂k, ∇̃δi∂j = Γ̃k
ij
δk + Γ̃k

ij
∂k,

∇̃∂i
δj = Γ̃k

ij
δk + Γ̃k

ij
∂k, ∇̃∂i

∂j = Γ̃k
ij
δk + Γ̃k

ij
∂k,
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where Γ̃cab, a, b, c ∈ {1, · · · , n, 1, · · · , n} are smooth functions on TM.

Lemma 4.1. [24] The symmetry of ∇̃ has the following local alternate form:

i) Γ̃k
ij

= Γ̃k
ji

, Γ̃k
ij
− Γ̃k

ji
=

g

Γki,j .

ii) Γ̃kij = Γ̃kji, Γ̃kij − Γ̃kji = −urRk
ijr.

iii) Γ̃k
ij

= Γ̃k
ji

, Γ̃k
ij

= Γ̃k
ji

.

Proof. Since ∇̃ is torsion-free

∇̃δj∂i − ∇̃∂i
δj = [δj, ∂i] =

g

Γki,j∂k.

Then, from the above local representation of ∇̃ we get (i). Similarly, we can prove (ii) and
(iii).

Lemma 4.2. [24] Let (M,∇, g) be a statistical manifold. Then, applying the Codazzi

equations for (TM, ∇̃, gs)

i) ∂igjk − Γ̃rijgrk − Γ̃rikgrj = ∂jgki − Γ̃rjkgri − Γ̃rjigrk = ∂kgij − Γ̃rkigrj − Γ̃rkjgri,

ii) Γ̃rijgrk + Γ̃r
ik
gjr = Γ̃r

jk
gri + Γ̃rjigkr = Γ̃r

ki
grj + Γ̃r

kj
gri,

iii) ∂igjk − Γ̃r
ij
grk − Γ̃r

ik
gjr = −Γ̃r

jk
gri − Γ̃r

ji
grk = −Γ̃r

ki
grj − Γ̃r

kj
gir,

iv) Γ̃r
ij
grk + Γ̃r

ik
grj = Γ̃r

jk
gri + Γ̃r

ji
grk = Γ̃r

ki
grj + Γ̃r

kj
gri.

Proof. Consider
(∇̃δig

s)(δj, δk) = ∂igjk − Γ̃rijgrk − Γ̃rikgrj.

Then by the Codazzi equation

(∇̃δig
s)(δj, δk) = (∇̃δjg

s)(δk, δi) = (∇̃δkg
s)(δi, δj),

we get (i). Also, the equations

(∇̃δig
s)(δj, ∂k) = −Γ̃rijgrk − Γ̃r

ik
gjr

(∇̃δjg
s)(∂k, δi) = −Γ̃r

jk
gri − Γ̃rjigkr

(∇̃∂k
gs)(δi, δj) = −Γ̃r

ki
grj − Γ̃r

kj
gri

83



and the Codazzi equation

(∇̃δig
s)(δj, ∂k) = (∇̃δjg

s)(∂k, δi) = (∇̃∂k
gs)(δi, δj),

imply (ii). Similarly, (iii) and (iv) can be computed.

Proposition 4.4. [24] Let (M,∇, g) be a statistical manifold. Then, (TM, ∇̃, gs) is a

statistical manifold if and only if

(Γ̃rik − Γrik)grj = (Γ̃rjk − Γrjk)gri, (4.8)

Γ̃rijgrk = Γ̃r
kj
gri, (4.9)

Γ̃r
ik
gjr − um

g

Rijmk = Γ̃r
jk
gri, (4.10)

(Γ̃r
ik
−

g

Γrik)gjr = Γ̃r
jk
gri, (4.11)

Γ̃r
ji
grk = Γ̃r

ki
grj, (4.12)

Γ̃r
ik
grj = Γ

r

jkgri, (4.13)

where
g

Rijmk =
g

Rr
ijmgrk.

Proof. Since (M,∇, g) is a statistical manifold, from Codazzi equation of (∇, g)

∂igjk − ∂jgki = Γrikgrj − Γrjkgri. (4.14)

Also from (i) of lemma (4.2),

∂igjk − ∂jgki = Γ̃rikgrj − Γ̃rjkgri. (4.15)

Now from (4.14) and (4.15) we get (4.8). Also from the first equality of (ii) in lemma (4.2)
and from second equality of (ii) of lemma (4.1), we get (4.10). From (ii) of lemma (4.2)

Γ̃rijgrk + Γ̃r
ik
gjr = Γ̃r

ki
grj + Γ̃r

kj
gri (4.16)

and from (i) of lemma(4.1),
Γ̃k
ij

= Γ̃k
ji
. (4.17)

Then, we get (4.9) from (4.16) and (4.17). Now from the second equation of (i) in lemma
(4.1) and first equality of (iii) in lemma (4.2),

∂igjk −
g

Γrijgrk = Γ̃r
ik
gjr − Γ̃r

jk
gri. (4.18)
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Since
g

∇ is the Levi-Civita connection of the metric g,

∂igjk =
g

Γrijgrk +
g

Γrikgjr. (4.19)

From (4.18) and (4.19) we get (4.11). Also, (4.12) is obtained from the last equation (iii)

of lemma (4.2) and form first equation in (iii) of lemma (4.1). From (iv) of lemma (4.2)
and from the second equation of (ii) of lemma (4.1) we get (4.13).

Remark 4.7. We discussed various results regarding the statistical manifold structure on
TM. Matsuzoe and Inoguchi [23], have shown that (TM,∇c, gc), (TM,∇h, gs),
(TM,∇h, gh), (TM, ∇̃, gs), (TM, Ch, gs) and (TM, Kh, gh) are statistical manifolds. In
[24], Balan et al. have proved that (TM, ∇̃, gs) is a statistical manifold. In the next sec-
tion, we give a necessary and sufficient condition for (TM,∇c, gs) to become a statistical
manifold.

4.1.2 Affine Submersion with Horizontal Distribution and Statistical
Manifold Structure on the Tangent Bundle

In this subsection, we obtained a necessary and sufficient condition for TM to become a
statistical manifold with respect to the Sasaki lift metric and the complete lift connection,
using affine submersion with horizontal distribution [22].

Consider the submersion π : TM −→M. Let ∇ be an affine connection on M. Then,
there is a horizontal distributionH such that

T(x;u)(TM) = H(x;u)(TM)⊕ V(x;u)(TM).

for every (x;u) ∈ TM.
Now, we show that the submersion π of TM into M with the complete lift of affine con-
nection is an affine submersion with horizontal distribution.

Proposition 4.5. The submersion π : (TM,∇c) −→ (M,∇) is an affine submersion with

horizontal distribution.

Proof. We need to show that

H(∇c
XhY

h) = (∇XY )h.
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We have Xh = Xc − γ(∇X), then

∇c
XhY

h = ∇c
Xc−γ(∇X)Y

c − γ(∇Y ),

= ∇c
Xc−γ(∇X)Y

c −∇c
Xc−γ(∇X)γ(∇Y ),

= ∇c
XcY c −∇c

γ(∇X)Y
c −∇c

Xcγ(∇Y ) +∇c
γ(∇X)γ(∇Y ).

Using∇c
XvY v = 0 ([23]),

∇c
XhY

h = (∇XY )c − [∇c
γ(∇X)Y

c +∇c
Xcγ(∇Y )]. (4.20)

By definition

(∇XY )c = (∇XY )h + γ(∇(∇XY )). (4.21)

From (4.20) and (4.21)

H(∇c
XhY

h) = (∇XY )h.

Hence the submersion π : (TM,∇c) −→ (M,∇) is an affine submersion with horizontal
distribution.

Proposition 4.6. The submersion π : (TM, gs) −→ (M, g) is a semi-Riemannian submer-

sion.

Proof. Clearly π−1(p) = TpM for all p ∈ M is a semi-Riemannian submanifold of TM
and by definition of gs we have

gs(Xh, Y h) = g(X, Y ).

Hence π is a semi-Riemannian submersion.

Now, we give a necessary and sufficient condition for the tangent bundle to be a statis-
tical manifold with the Sasaki lift metric and the complete lift connection.

Theorem 4.3. (TM,∇c, gs) is a statistical manifold if and only if

1. H(SVX) = AXV − AXV , where SVX = ∇c
VX −∇

c

VX .

2. V(SXV ) = TVX − T VX .
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3. (TpM, ∇̂c, ĝs) is a statistical manifold for each p ∈ M, where ĝs and ∇̂c are the

induced metric and connection on the fibers.

4. (M,∇, g) is a statistical manifold.

X is a horizontal vector field and V is a vertical vector field.

Proof. From propositions (4.5) and (4.6) we get that π : (TM,∇c, gs) −→ (M,∇, g) is
an affine submersion with horizontal distribution. Since gs(XH , Y V ) = 0, takeH(TM) =

V(TM)⊥. First we show that the following equations hold for horizontal vectors X, Y and
vertical vectors U, V,W .

(∇c
V g

s)(X, Y ) = −gs(SVX, Y ), (4.22)

(∇c
Xg

s)(V, Y ) = −gs(AXV, Y ) + gs(AXV, Y ), (4.23)

(∇c
Xg

s)(V,W ) = −gs(SXV,W ), (4.24)

(∇c
V g

s)(X,W ) = −gs(TVX,W ) + gs(T VX,W ), (4.25)

(∇c
Ug

s)(V,W ) = (∇̂c
U ĝ

s)(V,W ), (4.26)

(∇c
X̃
gs)(X̃1, X̃2) = (∇Xg)(X1, X2), (4.27)

where X̃i are the horizontal lift of vector fields Xi on M and SVX = ∇c
VX − ∇

c

VX . To
see (4.22) consider

(∇c
V g

s)(X, Y ) = V gs(X, Y )− gs(∇c
VX, Y )− gs(X,∇c

V Y ),

= gs(∇c

VX, Y )− gs(X,∇c
V Y ),

= −gs(SVX, Y ).

Similarly, we can prove the other equations. Now, suppose (TM,∇c, gs) is a statistical
manifold, then∇cgs is symmetric. From (4.22) and (4.23)

H(SVX) = AXV − AXV.

From (4.24) and (4.25)

V(SXV ) = TVX − T VX

and from (4.26) ∇̂cĝs is symmetric, so (TpM, ∇̂c, ĝs) is a statistical manifold for each
p ∈M. Also from (4.27) the triplet (M,∇, g) is a statistical manifold.
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Conversely, if all the four conditions hold then from the above equations∇cgs is symmetric,
so (TM,∇c, gs) is a statistical manifold.

4.2 Harmonic Maps Between Statistical Manifolds

The motivation to study harmonic maps comes from the applications of Riemannian sub-
mersion in theoretical physics [25]. Harmonic maps formulation of field theories lead to a
geometrical description in the unified field theory program. Presently, we see an increas-
ing interest in harmonic maps between statistical manifolds [26], [27]. In [26], Uohashi
obtained a condition for the harmonicity on α-conformally equivalent statistical manifolds.
In this section, we first look at the definition of the harmonic map using tension field.
Then, prove a necessary and sufficient condition for the harmonicity of the identity map for
conformally-projectively equivalent statistical manifolds. The conformal statistical sub-
mersion is defined which is a generalization of the statistical submersion and proved that
harmonicity and conformality cannot coexist [28].

4.2.1 Harmonic Maps

In this subsection, we discuss the basic ideas to define the tension field and then the defini-
tion of a harmonic map is given [57].

Let (M, gm) and (B, gb) be Riemannian manifolds with dimensions n and m, respec-
tively and let {x1, · · · , xn} be a local coordinate on M. Then, the Riemannian metric gm
induces the natural linear isomorphisms, [ : TpM −→ TpM

∗ and ] : TpM
∗ −→ TpM

defined by

[(Xp) = X[
p =

n∑
i=1

( n∑
i=1

(gm)ij(p)X
j(p)

)
(dxi)p (4.28)

and

](ωp) = ω]p =
n∑
i=1

( n∑
i=1

gijm(p)ωj(p)

)
(
∂

∂xi
)p, (4.29)

where X,ω denotes the vector field and the 1-from on M, respectively. Note that [ and
] are inverses of each other, that is TpM and TpM∗ are isomorphic. Now define a metric
(g∗m)p on TpM∗ by

(g∗m)p(ωp, θp) = (gm)p(ω
]
p, θ

]
p) for ωp, θp ∈ TpM∗. (4.30)

Since ] is linear, g∗m is a metric. Also, gijm = g∗m(dxi, dxi), where gijm is the inverse of (gm)ij .
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Let
gm

∇ denote the Levi-Civta connection on M, define an affine connection
gm

∇
∗

on TM∗

using isomorphisms [ and ], as follows

gm

∇
∗

Xω(Y ) = (
gm

∇Xω
])[(Y )

= (gm)p(∇Xω
], Y )

= X((gm)p(ω
], Y ))− (gm)p(ω

],∇XY ) (using
gm

∇gm = 0)

= Xω(Y )− ω(
gm

∇XY ), (4.31)

where X and ω denote the vector field and 1-form on M. This connection
gm

∇
∗

is called the
dual connection of

gm

∇.

Let φ : M −→ B be a smooth map and π : E −→ B be a vector bundle. Consider
the bundle over M whose fibre over p ∈M is Eφ(p), the fibre of E over φ(p). This bundle
is denoted by π−1(E), called the pullback bundle over M. In particular, if π : TB −→ B

is the tangent bundle, then π−1(TB) is a subbundle of TM, whose fibre over p ∈ M is
Tφ(p)B. Let {y1, · · · , ym} be the local coordinates on B, then at each point p ∈M{( ∂

∂y1
◦ φ
)
(p), · · · ,

( ∂

∂ym
◦ φ
)
(p)

}
(4.32)

form a basis for the fibre Tφ(p)B of φ−1(TB) over p.

Definition 4.10. Let (M, gm) and (B, gb) be two Riemannian manifolds with local coor-
dinates {x1, · · · , xn} and {y1, · · · , ym} , respectively. For a smooth map φ : M −→ B,

define an affine connection ∇̃ on φ−1(TB) from the Levi-Civita connection
gb
∇ on B as

follows
∇̃ ∂

∂xi

( ∂

∂yγ
◦ φ
)

=
gb

∇φ∗(
∂

∂xi
)

∂

∂yγ
. (4.33)

From equations (4.32) and (4.33) we have

∇̃ ∂

∂xi

( ∂

∂yγ
◦ φ
)

=
n∑

α=1

( n∑
β=1

∂φβ

∂xi
(p)

gb

Γαβγ(φ(p))

)( ∂

∂yα
◦ φ
)
, (4.34)

where
gb

Γαβγ are the Christoffel symbols of the Levi-Civita connection
gb

∇ on B.

Now, define an affine connection∇ on the manifold TM∗⊗ φ−1(TB) using
gm

∇∗ and ∇̃
as follows

∇X(ω ⊗W ) = (
gm

∇∗ω)⊗W + ω ⊗ (∇̃XW ), (4.35)
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where ω is a 1-form on M, W ∈ X (φ−1(TB)) and X ∈ X (M). The linearity property
can be verified, also

∇X(fω ⊗W ) = (
gm

∇∗fω)⊗W + fω ⊗ (∇̃XW ) (4.36)

=

(
X(f)ω + f

gm

∇∗Xω
)
⊗W + fω ⊗ (∇̃XW ) (4.37)

= X(f)(ω ⊗W ) + f∇X(ω ⊗W ), (4.38)

proves that∇ is in fact a connection in the tensor product TM∗ ⊗ φ−1(TB).
Consider the smooth map φ : M −→ B, then dφp(= φ∗p) defines a linear map

between TpM onto Tφ(p)B, Since Hom(TpM, Tφ(p)B) is isomorphic to TpM
∗ ⊗ Tφ(p)B

we can consider dφ as a smooth section on the vector bundle TM∗ ⊗ φ−1(TB). Here
Hom(TpM, Tφ(p)B) denotes the set of all linear maps between TpM and Tφ(p)B.

Definition 4.11. Let φ : M −→ B be a smooth map, then the second fundamental form
of φ is defined as the covariant derivative of dφ with respect to the affine connection ∇ on
TM∗ ⊗ φ−1(TB). That is,∇dφ is called the second fundamental form of φ.

Lemma 4.3. Let φ : M −→ B be a smooth map and X, Y ∈ X (M). Then,

∇dφ(X, Y ) = ∇̃Xφ∗Y − φ∗(
gm

∇XY ), (4.39)

where ∇ is the affine connection on TM∗ ⊗ φ−1(TB).

Proof. Consider

(
∇(ω ⊗W )

)
(X, Y ) =

(gm
∇∗Xω ⊗W + ω ⊗ ∇̃XW

)
(Y )

=
(
Xω(Y )− ω(

gm

∇XY )
)
⊗W + ω(Y )⊗ ∇̃XW by (4.31)

= ∇̃X(ω ⊗W )(Y )− (ω ⊗W )(
gm

∇XY ),

where ω is a 1-form on M, W ∈ X (φ−1(TB)) and X ∈ X (M). Then,

∇dφ(X, Y ) = ∇̃Xdφ(Y )− dφ(
g

∇XY ).

That is,
∇dφ(X, Y ) = ∇̃Xφ∗Y − φ∗(

gm

∇XY ).

Hence proved. This may be regarded as another definition of the second fundamental
form.
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Let {e1, · · · , en} be a local orthonormal frame of the tangent space TpM, p ∈M. Trace
of the second fundamental form∇dφ of a smooth map φ : M −→ B is defined as

trace∇dφ(p) =
n∑
i=1

∇dφ(p)(ei, ei). (4.40)

The tensor field τ(φ) = trace∇dφ on φ−1TB is called the tension field of φ.

Definition 4.12. . Let (M, gm) and (B, gb) be two Riemannian manifolds of dimension
n and m, respectively. A smooth map φ : M −→ B is said to be a harmonic map if its
tension field τ(φ) is identically zero; namely,

τ(φ) = trace∇dφ ≡ 0 (4.41)

holds in M. Equation(4.41) is called the equation of harmonic maps.

Now, we look at the coordinate representation for the equation of harmonic maps. Let
{x1, · · · , xn} and {y1, · · · , ym} be the local coordinate systems in M and B, respectively.
With this coordinate, express φ as

φ(x) =
(
φ1(x1, · · · , xn), · · · , φm(x1, · · · , xn)

)
and the tension field τ(φ) of φ as

τ(φ) =
m∑
a=1

τ(φ)a
∂

∂ya
◦ φ, (4.42)

where

τ(φ)a =
n∑

i,j=1

gijm

{
∂2φa

∂xi∂xj
−

n∑
k=1

gm

Γkij
∂φa

∂xk
+

m∑
b,c=1

gb

Γab,c(φ)
∂φb

∂xi
∂φc

∂xj

}

= ∆φa +
n∑

i,j=1

m∑
b,c=1

gijm
gb

Γab,c(φ)
∂φb

∂xi
∂φc

∂xj
, (4.43)

where
gm

Γkij and
gb

Γab,c represents the connection coefficients of the Levi-Civita connection in
M and B, respectively. Therefore, from (4.41) and (4.43) we get the coordinate equation
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of the harmonic maps as

∆φa +
n∑

i,j=1

m∑
b,c=1

gijm
gb

Γab,c(φ)
∂φb

∂xi
∂φc

∂xj
= 0, 1 ≤ a ≤ m.

4.2.2 Harmonic Map between Statistical Manifolds

In this subsection, we first discuss Uohashi’s result on harmonicity of the identity map for
α-conformally equivalent statistical manifolds [26]. We obtained a necessary and sufficient
condition for the harmonicity of the identity map for conformally-projectively equivalent
statistical manifolds. Then, defined the conformal statistical submersion which is a gener-
alization of the statistical submersion and proved that harmonicity and conformality cannot
coexist [28].

Let (M,∇, gm) and (B,∇′ , gb) be two statistical manifolds of dimensions n and m,
respectively. Let {x1, x2, ....xn} be a local coordinate system on M. We set (gm)ij =

gm( ∂
∂xi
, ∂
∂xj

) and [gijm] = [(gm)ij]
−1.

Definition 4.13. A smooth map π : (M,∇, gm) −→ (B,∇′ , gb) is said to be a harmonic
map relative to (gm,∇,∇

′
) if the tension field τ(gm,∇,∇′ )(π) of π vanishes at each point

p ∈M, where τ(gm,∇,∇′ )(π) is defined as

τ(gm,∇,∇′ )(π) =
n∑

i,j=1

gijm

{
∇̂ ∂

∂xi

(
π∗(

∂

∂xj
)

)
− π∗

(
∇ ∂

∂xi

∂

∂xj

)}
, (4.44)

where ∇̂ is the pullback of the connection∇′ of B to the induced vector bundle π−1(TB) ⊂
T (M) and ∇̂ ∂

∂xi

(
π∗(

∂
∂xj

)
)

= ∇′
π∗(

∂

∂xi
)
π∗(

∂
∂xj

).

Note. Note that we are considering the general affine connections here, not necessarily the
Levi-Civita connections as in the Riemannian manifold theory.

Let (M,∇, gm) and (M, ∇̃, g̃m) be statistical manifolds. Then, the identity map id :

(M,∇, gm) −→ (M, ∇̃, g̃m) is a harmonic map relative to (gm,∇, ∇̃) if

τ(gm,∇,∇̃)(id) =
n∑

i,j=1

gijm(∇̃ ∂

∂xi

∂

∂xj
−∇ ∂

∂xi

∂

∂xj
) (4.45)

vanishes identically on M. For α-conformally equivalent statistical manifolds Uohashi
proved the following.
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Proposition 4.7. [26] Let (M,∇, gm) and (M, ∇̃, g̃m) be α-conformally equivalent sta-

tistical manifolds of dimension n ≥ 2. If α = − (n−2)
(n+2)

or φ is a constant function on

M, then the identity map id : (M,∇, gm) −→ (M, ∇̃, g̃m) is a harmonic map relative to

(gm,∇, ∇̃).

Proof. By the definition of α-conformally equivalent statistical manifolds and from the
equation (4.45), for k = 1,2,..n,

gm

(
τ(gm,∇,∇̃)(id),

∂

∂xk

)
= gm

 n∑
i,j=1

gijm

(
∇̃ ∂

∂xi

∂

∂xj
−∇ ∂

∂xi

∂

∂xj

)
,
∂

∂xk


=

n∑
i,j=1

gijm

{
− 1 + α

2
dφ

(
∂

∂xk

)
gm

(
∂

∂xi
,
∂

∂xj

)

+
1− α

2

{
dφ

(
∂

∂xi

)
gm

(
∂

∂xj
,
∂

∂xk

)
+ dφ

(
∂

∂xj

)
gm

(
∂

∂xi
,
∂

∂xk

)}}

=
n∑

i,j=1

gijm

{
− 1 + α

2

∂φ

∂xk
(gm)ij +

1− α
2

(
∂φ

∂xi
(gm)jk +

∂φ

∂xj
(gm)ik

)}

=

(
−1 + α

2
n+

1− α
2

2

)
∂φ

∂xk

= −1

2
((n+ 2)α+ (n− 2))

∂φ

∂xk
.

Therefore, if τ(g,∇,∇̃)(id) = 0, it holds that α = − (n−2)
(n+2)

or φ is a constant function on M.
Hence proved.

Now, we have the following theorem.

Theorem 4.4. Let (M,∇, gm) and (M, ∇̃, g̃m) be conformally-projectively equivalent sta-

tistical manifolds of dimension n. Then, the identity map id : (M,∇, gm) −→ (M, ∇̃, g̃m)

is a harmonic map if and only if φ = n
2
ψ + c, where c is some constant.

Proof. By the definition of conformally-projectively equivalent statistical manifolds and
from the equation (4.45), for k = 1,2,..n

τ(gm,∇,∇̃)(id) =

n∑
i,j=1

gijm

(
∇̃ ∂

∂xi

∂

∂xj
−∇ ∂

∂xi

∂

∂xj

)

=
n∑

i,j=1

gijm

(
−gm(

∂

∂xi
,
∂

∂xj
)gradgmψ + dφ

(
∂

∂xj

)
∂

∂xi
+ dφ

(
∂

∂xi

)
∂

∂xj

)

=

n∑
i,j=1

gijm

(
(−gij)gradgmψ +

∂φ

∂xj

∂

∂xi
+
∂φ

∂xi

∂

∂xj

)
.
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Now,

gm

(
τ(gm,∇,∇̃)(id),

∂

∂xk

)
= −ngm

(
gradgmψ,

∂

∂xk

)
+

k∑
i=1

∂φ

∂xi
δik +

k∑
j=1

∂φ

∂xj
δjk

= −n ∂ψ
∂xk

+
k∑
i=1

∂φ

∂xi
δik +

k∑
j=1

∂φ

∂xj
δjk

= −n ∂ψ
∂xk

+ 2
∂φ

∂xk
. (4.46)

From the equation (4.46), id is harmonic if and only if ∂φ
∂xk

= n
2
∂ψ
∂xk

for all k ∈ {1, 2, ...n}.
Hence, id is harmonic if and only if φ = n

2
ψ + c, where c is some constant.

Now, we define the conformal statistical submersion which is a generalization of the
statistical submersion.

Definition 4.14. Let (M,∇, gm) and (B,∇′ , gb) be two statistical manifolds of dimensions
n and m, respectively (n ≥ m). A submersion π : (M,∇, gm) −→ (B,∇′ , gb) is called a
conformal statistical submersion if there exists a smooth function φ on M such that

gm(X, Y ) = e2φgb(π∗X, π∗Y ), (4.47)

π∗(∇XY ) = ∇′π∗Xπ∗Y +X(φ)π∗X + Y (φ)π∗X − π∗(gradπφ)gm(X, Y ),(4.48)

for basic vector fields X and Y on M.

Note. If φ is a constant, then π is a statistical submersion. Also, note that conformal
statistical submersions are conformal submersions with horizontal distribution.

Next, we prove that harmonicity and conformality cannot coexist.

Theorem 4.5. Let π : (M,∇, gm) −→ (B,∇′ , gb) be a conformal statistical submersion.

Then, π is a harmonic map if and only if φ is constant.

Proof. Assume that φ is a constant, then by equations (4.48) and (4.44) we get π is a
harmonic map. Conversely, assume π is harmonic. Now, consider the equations

τ(π) =
n∑

i,j=1

gijm

{
∇̃ ∂

∂xi

(
π∗(

∂

∂xj
)

)
− π∗

(
∇ ∂

∂xi

∂

∂xj

)}

= nπ∗(gradπφ)− 2
n∑

i,j=1

∂φ

∂xi
gijmπ∗(

∂

∂xj
). (4.49)
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and

gb(τ(π), π∗
∂

∂xk
) = ne−2φgm(gradπφ,

∂

∂xk
)− 2e−2φ

m∑
i,j=1

∂φ

∂xi
gijmgmjk

= ne−2φgm(gradπφ,
∂

∂xk
)− 2e−2φ

(
n∑
i=1

∂φ

∂xi

)

= ne−2φ ∂φ

∂xk
− 2e−2φ

(
n∑
i=1

∂φ

∂xi

)
. (4.50)

Since π is harmonic, from (4.50) we get

n
∂φ

∂xk
= 2

n∑
i=1

∂φ

∂xi
, (4.51)

for each k ∈ {1, 2, ..n}. That is, we have the system of equations
2− n 2 2 . . . 2

2 2− n 2 . . . 2

. . . . . . . . . . . . . . .

2 2 2 . . . 2− n




∂φ
∂x1
∂φ
∂x2

. . .
∂φ
∂xn

 =


0

0

. . .

0

 .
Since for each fixed n the above n×n matrix is invertible we get ∂φ

∂xk
= 0 for all k. Hence,

φ is a constant. Thus, π is a statistical submersion.

4.3 Harmonic Maps between Tangent Bundles of Statisti-
cal Manifolds

Harmonicity of the tangent maps of tangent bundles endowed with the Sasaki lift metric
were studied in [58], [59] for Riemannian manifolds. In [30], Oproiu obtained conditions
for the tangent map to be harmonic in the case of tangent bundles equipped with the metrics
obtained from the complete lift of metrics and the vertical lift of appropriate tensor fields.
In this section, certain properties of the differential of the tangent map is given first. For
statistical manifolds, we proved that a smooth map φ : M −→ B is harmonic with respect
to ∇ and ∇∗ if and only if it is harmonic with respect to the conjugate connections ∇ and
∇∗. Then, given a necessary condition for the harmonicity of the tangent map with respect
to the complete lift structure on the tangent bundles. Also, prove π : (M,∇, gm) −→
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(B,∇∗, gb) is a statistical submersion if and only if π∗ : (TM,∇c, gcm) −→ (TB,∇∗c, gcb)
is a statistical submersion.

4.3.1 Harmonic Maps between Tangent bundles

In this subsection, we first discuss certain properties of the differential of the tangent map.
Then, the result of Oproiu [30] on harmonicity of the tangent map is discussed.

Let (M, g) be an n-dimensional Riemannian manifold with the natural projection map
π : TM −→ M. Let (U ;x1, ..., xn) be the local coordinates on M with the induced
coordinate system (x1, ..xn;u1, ..un) on π−1(U). Note that the vector fields δ

δxi
=
(
∂
∂xi

)h,
for i = 1, · · · , n define a local frame in the horizontal distributionH(TM) on TM defined

by
g

∇ and the vertical fields ∂
∂ui

=

(
∂
∂xi

)v
, for i = 1, · · · , n define a local frame in

the vertical distribution V(TM) = ker π∗. The system of local 1-froms (dxi, δui) for

i = 1, · · · , n on TM defines the local dual frame of the local frame
(

δ
δxi
, ∂
∂ui

)
, where

δui = dui +
g

Γjj,iu
idxj.

Let c be a symmetric tensor field of type (0, 2) on M. Then, define a semi-Riemannian
metric G on TM as follows

G(Xh, Y h) = c(X, Y ), G(Xh, Xv) = G(Y v, Xh) = g(X, Y ), G(Xv, Y v) = 0,

for X, Y ∈ X (M).

Let g = gijdx
idxj and c = cijdx

idxj be the local coordinate expressions of g and c,
respectively. Then, G can be represented in local coordinates as

G = 2gijδu
idxj + cijdx

idxj.

Thus, the semi-Riemannian metric G = gc + cv, where gc is the complete lift of g and
cv is the vertical lift of c. In [30], Oproiu computed the Levi-Civita connection

G

∇ of the
semi-Riemannian metric G as follows.

G

∇XvY v = 0,
G

∇XvY h = 0, ,
G

∇XhY v =

(
g

∇XY

)v
,

G

∇XhY h =

(
g

∇XY

)h
+ A(Xh, Y h), for X, Y ∈ X (M),
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where A is a bilinear map fromH(TM) to V(TM) having the local coordinate expression

A(
δ

δxi
,
δ

δxj
) = Akij

∂

∂uk
; Akij = −

g

R
k

jio +
1

2

(
g

∇ic
k
j +

g

∇jcki −
g

∇kcij

)
. (4.52)

Here
g

R
k

jio =
g

R
k

jihu
h,

g

R
k

jih is the local coordinate expression of the curvature tensor field
g

R

of
g

∇ and
g

∇ic
k
j denotes the covariant derivative of the components of the tensor field c.

Let (B, g′) be a Riemannian manifold with dimension m. Consider a smooth map
φ : M −→ B and φ−1(TB) be the pullback bundle of the tangent bundle TB over M

by φ. We denote ∇̃ the pullback of the Levi-Civita connection
g
′

∇ on B (cf. Definition
(4.10)). Follow the convention that the indices h, i, j, k, l run over the set {1, · · · , n} and
the indices α, β, γ, σ run over the set {1, · · · ,m}. Let (V, yα) be a local coordinate on B,
for simplicity use the same notation ∂

∂yα
, for α = 1, · · · ,m, for the local frames in TB

and the corresponding local frames in φ−1(TB). Let

yα = φα(x1, · · · , xn), for α = 1, · · · ,m

be the local coordinate expression of φ. Then,

φ∗

(
∂

∂xj

)
= φαj

∂

∂yα
where φαj =

∂φα

∂xj

and
∇̃ ∂

∂xi

∂

∂yβ
= φαi

g′

Γγαβ
∂

∂yγ

where
g′

Γ are the Christoffel symbols of
g′

∇.

Consider dφ = φαi dx
i⊗ ∂

∂yα
as a smooth section of the vector bundle TM∗⊗φ−1(TB).

From Lemma(4.3) the second fundamental form

∇dφ(X, Y ) = ∇̃Xφ∗Y − φ∗(
g

∇XY ).

Also from definition (4.12), φ is harmonic map if

τ(φ) = trace∇dφ ≡ 0. (4.53)

In local coordinates τ(φ) can be expressed as

τ(φ)α = gij(∇dφ)αij, (4.54)
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where
(∇dφ)αij = φαij − φαk

g

Γkij +
g′

Γαβγφ
β
i φ

γ
j . (4.55)

Here φαij = ∂2φα

∂xi∂xj
.

Let (M, g) and (B, g′) be two Riemannian manifolds of dimensions n and m, respec-
tively. Consider the tangent bundles TM and TB endowed with the semi-Riemannian met-
rics G = gc + cv and H = g′c + dv, respectively, where c = cijdx

idxj and d = dαβdy
αdyβ

are symmetric tensor fields of type (0, 2) on M and B, respectively. Let
G

∇,
H

∇ be the Levi-
Civita connections of G and H . Denote by (xi;ui) for i = 1 · · ·n the local coordinates
on TM induced from the local coordinates (xi) on M and by (yα; vα) for α = 1 · · ·m the
local coordinates on TB induced from the local coordinates (yα) on B. Let φ : M −→ B

be a smooth map and φ∗ : TM −→ TB be the differential dφ of φ, called the tangent map.
The following lemma is on certain properties of the differential of φ∗.

Lemma 4.4. [29] Let φ : (M, g) −→ (B, g′) be a smooth map and φ∗ : TM −→ TB be

the induced tangent map. Then, for all vector fields X ∈ X (M), we have

φ∗∗

(
Xv

)
=

(
φ∗(X)

)v
(4.56)

φ∗∗

(
Xh

)
=

(
φ∗(X)

)h
+

(
∇dφ(u,X)

)
, (4.57)

where u = ui ∂
∂xi

is considered as an element in TM.

Proof. Let (xi) and (xi, ui) be local coordinates on M and TM, respectively. The local

frames of vector fields on M and TM are given by
{

∂
∂xi

: i = 1, · · · , n
}

and
{(

δ
δxi

; ∂
∂ui

)
:

i = 1, · · · , n
}

, where δ
δxi

=
(
∂
∂xi

)h
= ∂

∂xi
− uk

g

Γij,k
∂
∂ui

and ∂
∂ui

=

(
∂
∂xi

)v
. If (yα)

and (yα, vα) are local coordinates on B and TB respectively, then the local frames of

vector fields on B and TB are given by
{

∂
∂yα

: α = 1, · · · ,m
}

and
{(

δ
δyα

; ∂
∂vα

)
: α =

1, · · · ,m
}

, where δ
δyα

=
(

∂
∂yα

)h
= ∂

∂yα
− vβ

g′

Γγα,β
∂
∂vγ

and ∂
∂vα

=

(
∂
∂yα

)v
. Here vβ =

uj ∂φ
β

∂xj
= ujφβ∗j . Now, we have

φ∗∗

(( ∂
∂xi
)h)

=
∂φα

∂xi
∂

∂yα
+ uj

∂φ∗
α
j

∂xi
−

g

Γkiju
jφ∗

α
k

∂

∂vα
. (4.58)

φ∗∗

(( ∂
∂xi
)v)

= φ∗
α
i

∂

∂vα
. (4.59)
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Since (
φ∗
( ∂
∂xi
))v

= φ∗
α
i

( ∂

∂vα
)

from (4.59) we get

φ∗∗

(( ∂
∂xi
)v)

=

(
φ∗
( ∂
∂xi
))v

.

Hence (4.56) holds. Now consider

∂φα

∂xi
∂

∂yα
=
∂φα

∂xi
( ∂

∂yα
)h

+
g′

Γγαβv
β ∂φ

α

∂xi
∂

∂vγ
.

Substitute this into (4.58) we get

φ∗∗

(( ∂
∂xi
)h)

=

(
φ∗
( ∂
∂xi
))h

+ uj
(
∂φ∗

γ
j

∂xi
+ φ∗

β
j

∂φβ

∂xi

g′

Γγαβ −
g

Γkijφ∗
γ
k

)( ∂

∂uγ
)v
,

=

(
φ∗
( ∂
∂xi
))h

+

(
∇dφ(

∂

u, ∂xi
)

)v
.

Hence (4.57) holds.

Remark 4.8. Using the equations (4.56) and (4.57) of above lemma Oproiu [30] proved
that φ : (M, g) −→ (B, g′) is an isometric immersion if and only if φ∗ : (TM, G) −→
(TB, H) is an isometric immersion.

Let φ∗ : (TM, G) −→ (TB, H) be the tangent map and ∇̂ denotes the pullback con-
nection of the Levi-Civita connection

H

∇. Then, the second fundamental form of φ∗ is
denoted by ∇̂dφ∗ and is defined as,

∇̂dφ∗(E,F ) = ∇̂Eφ∗F − φ∗(
G

∇EF ),

for vector fields E,F ∈ X (TM).
Using equations (4.55), (4.56) and (4.57) ∇̂dφ∗ is represented in local coordinates as

(∇̂dφ∗)(
∂

∂ui
,
∂

∂uj
) = 0, (∇̂dφ∗)(

∂

∂ui
,
δ

δxj
) = (∇̂dφ∗)(

δ

δxj
,
∂

∂ui
) = (∇dφ)αij

∂

∂vα
,

(∇̂dφ∗)(
δ

δxi
,
δ

δxj
) = (∇dφ)αij

δ

δyα
+

[
1

2
Ψα
ij +∇0(∇dφ)αij

]
∂

∂vα
,

(4.60)

where

∇0(∇dφ)αij = uk
[
∂

∂xk
(∇dφ)αij + φγk

H

Γαγβ(∇dφ)βij −
G

Γhik(∇dφ)αhj −
G

Γhkj(∇dφ)αih

]
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and
Ψα
ij =

(
g′

∇γd
α
β +

g′

∇βd
α
γ −

g′

∇αd
γ
β

)
φβi φ

γ
j − φαk

(
g

∇ic
k
j +

g

∇k
yc
k
i −

g

∇kcij

)
.

In [30], Oproiu has proved that

Theorem 4.6. [30] The map φ∗ : (TM, G) −→ (TB, H) is harmonic if and only if

φ : (M, g) −→ (B, g
′
) is harmonic.

Proof. Consider the matrix of G with respect to the local frame ( δ
δxi
, ∂
∂yi

), That is

(Gij) =

[
cij gij

gij 0

]
.

Then,

(Gij)
−1 = (Gij) =

[
0 gij

gij −cij

]
.

Then, by the equation (4.60) the tension field of ϕ is written as

τ(φ∗) = 2(τ(φ))α
∂

∂vα
= 2(τ(φ))v

Hence φ∗ is harmonic if and only if φ is harmonic.

4.3.2 Harmonic Maps between Tangent bundles of Statistical Mani-
folds

For statistical manifolds we prove that a smooth map φ : M −→ B is harmonic with
respect to ∇ and ∇∗ if and only if it is harmonic with respect to the conjugate connections
∇ and ∇∗. Then, give a necessary condition for the harmonicity of the tangent map with
respect to the complete lift structure on the tangent bundle. Also, prove π : (M,∇, gm) −→
(B,∇∗, gb) is a statistical submersion if and only if π∗ : (TM,∇c, gcm) −→ (TB,∇∗c, gcb)
is a statistical submersion.

Definition 4.15. Let (M,∇, gm) and (B,∇∗, gb) be two statistical manifolds. A smooth
map φ : M −→ B is called harmonic with respect to (∇,∇∗) if the tension field τ(∇,∇∗)(φ)

defined with respect to∇,∇∗ vanishes everywhere.

Now, we have
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Theorem 4.7. Let (M,∇,∇, gm) and (B,∇∗,∇∗, gb) be two statistical manifolds and φ :

M −→ B be a smooth map. Assume that φ is harmonic with respect to the Levi-Civita

connections
gm

∇ and
gb

∇ of M and B, respectively. Then, φ is harmonic with respect to∇,∇∗

if and only if it is harmonic with respect to∇,∇∗.

Proof. Since,
∇+∇

2
=

gm

∇ and
∇∗ +∇∗

2
=

gb

∇ (4.61)

we have

gb

∇φ∗Xφ∗Y − φ∗(
gm

∇XY ) =
1

2

[
∇∗φ∗Xφ∗Y − φ∗(∇XY )

]
+

1

2

[
∇∗φ∗Xφ∗Y − φ∗(∇XY )

]
.

(4.62)
Then,

2τ(gm
∇,
gb
∇
)(φ) = τ(∇,∇∗)(φ) + τ(∇,∇∗)(φ). (4.63)

Since φ is harmonic with respect to
gm

∇ and
gb

∇ we have

τ(∇,∇∗)(φ) = −τ(∇,∇∗)(φ). (4.64)

Hence, φ is harmonic with respect to ∇,∇∗ if and only if it is harmonic with respect to
∇,∇∗

Consider a statistical manifold (M,∇, gm), we have (TM,∇c, gcm) is also a statistical
manifold (cf. Proposition (4.2)), where ∇c and gcm are the complete lift of ∇ and gm,
respectively. In the following theorem we prove a necessary condition for the harmonicity
of the tangent map with respect to the complete lift structure on the tangent bundles.

Theorem 4.8. Let (M,∇, gm) and (B,∇∗, gb) be two statistical manifolds and φ : M −→
B be a harmonic map. Then, the tangent map φ∗ : (TM,∇c, gcm) −→ (TB,∇∗c, gcb) is

harmonic with respect to∇c,∇∗c if φ∗∗(Xc) = (φ∗(X))c for X ∈ X (M).

Proof. By the definition of complete lift

∇∗cφ∗∗Xcφ∗∗Y
c − φ∗∗(∇c

XcY c) = ∇∗cφ∗∗Xcφ∗∗Y
c − φ∗∗((∇XY )c). (4.65)
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Since φ∗∗(Xc) = (φ∗(X))c, we get

∇∗cφ∗∗Xcφ∗∗Y
c − φ∗∗(∇c

XcY c) = ∇∗c(φ∗X)C (φ∗Y )C − (φ∗(∇XY ))c (4.66)

=

(
∇∗φ∗Xφ∗Y − φ∗(∇XY )

)c
. (4.67)

Now, since φ is harmonic we get τ(∇c,∇∗c)(φ∗) = 0. That is, φ∗ is harmonic with respect to
∇c,∇∗c.

Recall the definition of the statistical submersion.

Definition 4.16. Let (M,∇, gm) and (B,∇∗, gb) be two statistical manifolds. Then, a
semi-Riemannian submersion π : M→ B is said to be a statistical submersion if

π∗(∇XY )p = (∇∗
X′
Y
′
)π(p),

for basic vector fields X, Y on M which are π-related to X ′ and Y ′ on B and p ∈M.

Remark 4.9. Note that every statistical submersion is a harmonic map.

Now, we have

Proposition 4.8. Let (M,∇, gm) and (B,∇∗, gb) be two statistical manifolds and π : M→
B be a smooth such that π∗∗(Xc) = (π∗(X))c. Then π is a statistical submersion if and

only if π∗ : (TM,∇c, gcm) −→ (TB,∇∗c, gcb) is a statistical submersion.

Proof. Assume that π is a statistical submersion. Now, by the definition of the complete
lift

π∗∗(∇c
XcY c) = π∗∗((∇XY )c).

Since, π∗∗(Xc) = (π∗(X))c we get

π∗∗(∇c
XcY c) =

[
π∗(∇XY )

]c
=

[
∇∗π∗Xπ∗Y

]c
(since, π is a statistical submersion)

= ∇∗cπ∗∗Xcπ∗∗Y
c

Hence, π∗ is a statistical submersion.
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Conversely, assume that π∗ is a statistical submersion. Then

π∗∗(∇c
XcY c) = ∇∗cπ∗∗Xcπ∗∗Y

c. (4.68)

Since, π∗∗(Xc) = (π∗(X))c from (4.68) we get

π∗∗((∇XY )c) = (∇∗π∗Xπ∗Y )c.

That is,

(π∗(∇XY ))c = (∇∗π∗Xπ∗Y )c.

Then π∗(∇XY ) = ∇∗π∗Xπ∗Y , hence π is a statistical submersion.
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Chapter 5

Geometry of Estimation in Statistical Man-
ifolds

In [31], Amari discussed the statistical properties of an estimator in a statistical manifold
and the geometry of exponential and curved exponential family. Amari [31] proved a neces-
sary and sufficient condition for a submanifold of an exponential family to be exponential.
Amari has obtained geometric conditions for the consistency and efficiency of an estimator
in a curved exponential family using ancilliary manifolds [33], [31]. Cheng et al. [34] ob-
tained an MLE algorithm for estimating parameters in the curved exponential family. The
estimator belongs to the gradient-based methods that operate on statistical manifolds.

A statistical model is a family M of probability measures on a measurable space (sam-
ple space) Ω. In the case of a finite dimensional parametrized families of measures, the
theory of statistical manifold structure with the dual connections is well studied. Also a
statistical manifold - a Riemannian manifold with each of whose points is a probability dis-
tribution - can be embedded into the space of probability measures on a finite set. Infinite
dimensional families of probability measures were first considered by Pistone and Sempi
[35]. To deal with the infinite dimensional spaces of probability measures Ay et al.[36]
developed a functional analytic framework. They introduced the notion of parametrized
measure models and obtained the analogue of the structures considered in the finite dimen-
sional information geometry.

In this chapter, estimation of parameters in statistical manifolds, submanifolds of ex-
ponential family, estimation of parameters in the curved exponential family and Fisher-
Neyman sufficient statistic for parametrized model are discussed. In section 5.1, short
account of the statistical properties of an estimator is given. In section 5.2, we show that if
all ∇1- autoparallel proper submanifolds of a ±1- flat statistical manifold M are exponen-
tial then M is an exponential family. Also, we show that if a submanifold of a statistical
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model is an exponential family, then it is a ∇1-autoparallel submanifold [32]. We prove
that the Fisher-Neyman sufficient statistic is invariant under the isostatistical immersions
of statistical manifolds in section 5.3.

5.1 Estimation of Parameters in Statistical Manifolds

In this section, a brief description of the statistical properties of an estimator in a statistical
manifold is given [1].

Let M = {p(x; θ) : θ ∈ Θ ⊂ Rn} be an n-dimensional statistical model parametrized
by θ = [θi], for i = 1, 2, ...n. This may be viewed as an n-dimensional statistical manifold
under appropriate regularity conditions.

Definition 5.1. Let M = {p(x, θ) : θ ∈ Θ ⊆ Rn} be an n-dimensional statistical manifold
and g = 〈.〉 be the Fisher information metric. Let α ∈ R.
Define n3 functions

Γαij,k = Eθ[(∂i∂j`θ +
1− α

2
∂i`θ∂j`θ)∂k`θ]

Then an affine connection ∇α on M is defined by 〈∇α
∂i
∂j, ∂k〉 = Γαij,k, known as Amari’s

α- connection.

Note. If α = 1, then ∇1 is called an exponential connection or e-connection. Also, note
that∇α is flat if and only if∇−α is flat.

Let xN = (x1, · · · , xN) be N independent and identically distributed random variables
drawn from p(x; θ). Then, the joint density of xN is

PN(xN ; θ) =
N∏
t=1

p(xt; θ).

Also, the log-likelihood of the density is

logPN(xN ; θ) =
n∑
t=1

log p(xt; θ).

By viewing xN as a random variable, consider MN = {PN(xN ; θ) : θ ∈ Θ ⊂ Rn} as
an n-dimensional statistical manifold with θ as the coordinate system. Then, the Fisher
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information and Amari’s α- connection of MN in local coordinates are

gNij (θ) = Ngij(θ),

Γ
(α)N
ij,k = NΓ

(α)
ij,k,

where gij(θ) is the component of Fisher information metric on M and Γ
(α)
ij,k is the compo-

nent of α-connection. Note that the geometry of MN is the same as that of M scaled by a
factor N . So the natural basis for the tangent vectors ∂Ni of MN are given by ∂Ni =

√
N∂i,

where ∂i = ∂
∂θi

.

One of the main objective of the estimation problem is to select an appropriate estimator
such that its sampling distribution is concentrated around the actual value of the unknown
parameter θ. An estimator θ̂N is defined as a function of the data point xN given by

θ̂N = θ̂N(xN) = θ̂N(x1, x2, ...xN).

Note that the estimator θ̂N depends on N , but for the notational convenience we denote θ̂N
by θ̂.

Estimation error is given by e = θ̂ − θ and bias of the estimator is given by b(θ) =

Eθ[θ̂] − θ, where Eθ is the expectation with respect to the distribution PN(xN ; θ). An
estimator is said to be unbiased if b(θ) = 0. The mean square error of an estimator is
expressed as the matrix

MSE(θ̂) =

[
Eθ
[
(θ̂i − θi)(θ̂j − θj)

]]
.

The accuracy of an estimator is measured by the variance-covariance matrix Vθ(θ̂) =

[vijθ (θ̂)], where

vijθ (θ̂) = Eθ[(θ̂i − E[θ̂i])(θ̂j − E[θ̂j])].

Note that, if the estimator θ̂ is unbiased then the mean square error is the variance-covariance
matrix of the estimator. That is, MSE(θ̂) = Vθ(θ̂).

The Cramer- Rao inequality [vijθ (θ̂)] ≥ 1
N

[gij], where gij is the inverse of Fisher in-
formation metric and θ̂ is an unbiased estimator, gives a bound of accuracy. An unbiased
estimator θ̂ which achieves Cramer-Rao equality [vijθ (θ̂)] = 1

N
[gij] is called the finite sam-

ple efficient estimator.

So far, we have described the properties of an estimator obtained by a sample of size
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N . The asymptotic theory studies the behaviour of an estimator when N is large. For
describing the finite sample theory the estimator θ̂N is denoted by θ̂. Let {θ̂N , N = 1, 2, ....}
denotes the estimator for asymptotic analysis.

An estimator {θ̂N , N = 1, 2, ....} is said to be consistent if for all θ the estimator
θ̂N(xN) converges in probability to θ (denoted by θ̂N(xN)

p−→ θ ) as N −→∞. That is, for
all θ and for every ε > 0,

lim
N−→∞

Prθ{| θ̂N − θ |> ε} = 0.

The concept of mean consistency is a far more powerful condition than the usual notion of
consistency. An estimator θ̂N is said to be mean consistent if

lim
N−→∞

Eθ[θ̂N ] = θ, lim
N−→∞

∂jEθ[θ̂
i
N ] = ∂jθ

i = δij.

This type of estimator is often known as an asymptotically unbiased estimator.

Remark 5.1. In [33], Amari proved that the coordinate system (θi) of the statistical model
M = {p(x, θ)} has an efficient estimator if and only if M is an exponential family and θ
is m-affine. For more details about asymptotic analysis on statistical manifolds refer, [33],
[1].

5.2 Exponential Family and Estimation Theory

In this section, we first discuss about the geometry of exponential family. In [1], Amari and
Nagaoka obtained a necessary and sufficient condition for a submanifold of an exponential
family to be exponential. We show that if all ∇1-autoparallel proper submanifolds of a
±1-flat statistical manifold M are exponential then M is an exponential family. Also,
we show that if submanifold of a statistical model is an exponential family, then it is a
∇1-autoparallel submanifold [32]. Then a brief account of Amari’s geometric conditions
for the consistency and efficiency of an estimator in a curved exponential family using
ancilliary manifold is given [33], [31]. Also, discussed the work of Cheng et al. [34] on an
iterative maximum likelihood estimator in a curved exponential family.

Let (Ω,B, µ) be a measure space. A parametrized model M = {p(x; θ) : θ ∈ Θ ⊂ Rn}
is called an n-dimensional exponential family, if

p(x, θ) = exp(
n∑
i=1

θiFi(x) + C(x)− ψ(θ)), (5.1)
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where θ = {θ1, · · · , θ2} is an n-dimensional vector parameter called natural parameter,
{C,Fi} are functions on Ω. Here ψ corresponds to the normalization factor. The expecta-
tion parameter ηi is defined as

ηi = Eθ[Fi] =

∫
Ω

Fi(x)p(x; θ)dx. (5.2)

This is also called the dual parameter of θ. In [31], Amari proved that M is a dually flat
space with dual coordinate systems θ and η. Note that the n functions F1(x) · · ·Fn(x) are
random variables, rename the n random variables as follows

xi = Fi(x) (i = 1, · · · , n).

Now, define the probability density function on the random variable x = {x1, x2, .....xn}
with respect to the dominating measure

dµ(x) = exp{C(x)}dx.

Then, the equation (5.1) can be written as

p(x, θ) = exp(
n∑
i=1

θixi − ψ(θ)).

Collection of these distributions is referred as the standard exponential family. Note that
the exponential family is an n-dimensional statistical manifold.

Note. In [31], Amari proved that the exponential family is±1-flat, (that is, flat with respect
to ∇±1 connection). Also, note that the parametrized model which is flat with respect to
±1 connection need not be an exponential family.

Example 5.1. Let q be a smooth probability density function on R and qk be the kth inde-
pendent and identically distributed extension. Then, for

y = (y1, y2, y3, ...yk)t (5.3)

we have
qk(Y ) = q(y1)q(y2)q(y3), ...q(yk). (5.4)

For a regular matrix A ∈ Rk×k and a vector v ∈ Rk, define the probability density function
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on Rk by

p(A, v, x) =
qk(A−1(x− v))

| det(A) |
, (5.5)

which gives the probability distribution for the random variable AY + v when Y is dis-
tributed according to qk(y). Now, define a statistical model

S = {p(A, v, x) : v ∈ Rk}. (5.6)

Then we can easily see that ∂log(p(A,v,x))
∂vi

is constant. So from the definition of Amari’s
α-connection, Γαij,k = 0 and it implies that S is α-flat for all α. But in general S is not an
exponential family.

Definition 5.2. Let (M,∇, gm) be an n-dimensional statistical manifold. A submanifold
S of M is said to be∇-autoparallel if∇XY ∈ X (S) for X, Y ∈ X (S).
1-dimensional autoparallel submanifolds are called geodesics.

Remark 5.2. A necessary and sufficient condition for S to be autoparallel is that ∇∂a∂b ∈
X (S) holds for a, b = 1, · · · ,m, where m is the dimension of S.

Let (M,∇, gm) be an n-dimensional statistical manifold and S be an m-dimensional
submanifold of M then TpS ⊂ TpM for p ∈ S. Now, consider the orthogonal projection
πp : TpS −→ TpM and πp(D) = D, for all D ∈ TpS. Define a connection∇π on S as

(∇π
XY )p = πp(∇XY )p,

for all p ∈ S. Also, define
H(X, Y ) = ∇XY −∇π

XY.

H(X, Y ) is called the second fundamental form or the embedding curvature. Now for each
p ∈ M, let {(∂a)p; 1 ≤ a ≤ m} be a basis for TpS and let {(∂k)p;m + 1 ≤ k ≤ n} be a
basis for TpS

⊥. Then, define m2(n−m) functions {Habk} in the following way

Habk = gm

(
H(∂a, ∂b), ∂k

)
= gm

(
∇∂a∂b, ∂k

)
.

It follows that H = 0 if and only if Habk = 0 for all a, b, k. Also, note that H(X, Y ) = 0 if
and only if S is ∇-autoparallel submanifold of M.

Remark 5.3. In [1], Amari and Nagaoka proved that a submanifold S is autoparllel in a flat
manifold M if and only if S can be expressed as an affine subspace of M with respect to
an affine coordinate system. Also proved that if S is autoparallel, then it is also flat.
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Amari and Nagaoka has proved a necessary and sufficient condition for a submanifold
of an exponential family to be exponential.

Theorem 5.1. [1] Let M be an exponential family and S be a submanifold of M. Then, S

is an exponential family if and only if S is∇1-autoparallel in M.

Proof. Assume that S is autoparallel with respect to ∇1 in M. Then by remark (5.3), S
is an exponential family. Conversely, assume that S is an exponential family. Let M =

{p(x, θ) : θ ∈ Θ ⊂ Rn} and S = {q(x, u) : u ∈ U ⊂ Rm}. By definition of the
exponential family,

p(x, θ) = exp(
n∑
i=1

θiFi(x) + C(x)− ψ(θ))

and

q(x, u) = p(x, θ(u)) = exp{
m∑
a=1

uaGa(x) +D(x)− φ(u)}.

Then

Ga(x)− ∂aφ(u) = ∂a log(q(x, u))

= (∂aθ
i)u∂i log(p(x, θ(u)))

= (∂aθ
i)u{Fi(x)− ∂iψ(θ(u))},

and hence
(∂aθ

i)uFi(x) + λa(u) = Ga(x),

where λa(u) is constant with respect to x. Since Ga(x) does not depend on u and since
{F1, ...., Fn, 1} are assumed to be linearly independent, (∂aθ

i)u is constant with respect to
u for all i and a. Then, from remark (5.3) we get S is autoparallel with respect to ∇1 in
M.

Now, we show that if all ∇1-autoparallel proper submanifolds of a ±1-flat statistical
manifold M are exponential, then M is an exponential family.

Theorem 5.2. Let M = {p(x, θ) : θ ∈ Θ} be a parametrized family which is flat with

respect to∇1 and∇−1. If all∇1-autoparallel submanifolds of M are exponential, then M

is an exponential family.

Proof. Let M = {p(x, θ) : θ ∈ Θ}, be an n-dimensional statistical manifold with dually
flat structure (g,∇1,∇−1), where g is the fisher information metric. Let θ = [θi] and η = [ηj]
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be the coordinate systems of M with respect to ∇1 and ∇−1 respectively. Now, subdivide
the range of index i = 1, 2, ...n into two indexing sets I = {i = 1, 2, ...k} and
II = {i = k + 1, k + 2, ...n}. Let M(CII) be the set of points whose coordinates [θi] in II
are fixed to the constants CII = (Ci

II) for i = k + 1, k + 2, ..n. That is,

M(CII) = {p ∈M : θk+1 = Ck+1
II , θk+2 = Ck+2

II , ...θn = Cn
II}, (5.7)

where CII ∈ Rn−k. Then, this is an affine space with respect to θ-coordinate system, which
implies M(CII) is a∇1-autoparallel submanifold of M. Also, if CII 6= C

′
II , then

M(CII) ∩M(C
′
II) = φ and

⋃
CII

M(CII) = M . Now, by our assumption M(CII) is an
exponential family for all CII . If p(x, θ) ∈ M, then p(x, θ) ∈ M(CII) for some constant
CII , this implies that

p(x, θ) = exp(
k∑
i=1

θixi − ψβ(θ)), (5.8)

where ψβ(θ) defined on Θβ = {θ ∈ Θ | θk+1 = Ck+1
II , θk+2 = Ck+2

II , ...θn = Cn
II}. Now

define φ(θ) = ψβ(θ) if θ ∈ Θβ . Then, we have

p(x, θ) = exp(
k∑
i=1

θixi − φ(θ)) (5.9)

= exp(
k∑
i=1

θixi +
n∑

i=k+1

Ci
IIxi −

k∑
i=1

Ci
IIxi − φ(θ)) (5.10)

= exp(
n∑
i=1

θixi + F (x)− φ(θ)), (5.11)

where F (x) =−
∑k

i=1C
i
IIxi for p(x, θ) ∈M(CII), then M is an exponential family.

Now, we show that if submanifold of a statistical model is an exponential family, then
it is a∇1-autoparallel submanifold.

Theorem 5.3. Let M = {p(x, θ) : θ ∈ Θ} be a statistical manifold with ∇1 connection

and S be a submanifold of M. If S is an exponential family, then S is ∇1-autoparallel

submanifold of M.

Proof. Let M = {p(x, θ) | θ ∈ Θ} and S = {q(x, u)} be a submanifold of M. Let [θi] and
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[ua] be coordinates of M and S, respectively. Suppose S is an exponential family, then

q(x, u) = p(x, θ(u)) = exp{
n∑
a=1

uaG
a(x) +D(x)− φ(u)}. (5.12)

We have,
Γ1
ab,k = Eξ[(∂a∂a`θ)∂k`θ],

where `θ =log(p(x, θ)). Then

∂a∂a`θ = − ∂2φ

∂ua∂ub
.

Therefore, Γ1
ab,k = 0 which implies 〈∇1

∂a
∂b, ∂k〉 = 0, for all k. Hence, Habk = 0, which

implies that S is a ∇1-autoparallel submanifold of M.

Note that in the above theorem we are not assuming that the ambient manifold M is an
exponential family. Next, we discuss the estimation theory in exponential family.

Let xN = {x1, x2, .....xN} be independent and identically distributed random variables
drawn from p(x, θ) ∈M. Then

P (xN ; θ) =
N∏
t=1

p(xt; θ)

=
N∏
t=1

exp(
n∑
i=1

θixti − ψ(θ))

= exp(N{θ · x− ψ(θ)}),

where x = (x1, · · · , xn) is the arithmetic mean given by

xi =
x1
i + · · ·+ xNi

N
, i = 1, 2, · · · , n.

This shows that {pN(xN ; θ)} is also an exponential family with the natural parameters
(θi). Also, note that the joint probability density pN(xN ; θ) depends on the N observations
{x1, · · · , xN} through x. Thus the statistic x is a sufficient statistic for θ and is called the
observed point.
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Now take η̂N = x as an estimator for η. Then,

Eθ[x] = η.

Eθ[(xi − ηi)(xj − ηj)] =
1

N
gij(θ).

Therefore, η̂N = x is an unbiased and efficient estimator for η. As a result, a finite dimen-
sional standard exponential family has a sufficient statistic and an efficient estimate [1],
[38].

Definition 5.3. Let M = {p(x; θ) : θ ∈ Θ ⊂ Rn} be an n-dimensional exponential family.
A subfamily S = {p(x; θ(u)) : u ∈ U ⊂ Rm} of M is called a curved exponential family
with parameter u if

p(x; θ(u)) = exp

( m∑
i=1

θi(u)xi − ψ(θ(u))

)
.

Let xN = (x1, x2, .....xN) be N independent and identically distributed observations
drawn from p(x; θ(u)) ∈ S. This gives an observed point x = (x1, · · · , xn) in the expo-
nential family M and defines a distribution in M whose η coordinate is given by η̂N = x.
But this point need not be in S. Now the estimate of u is obtained by mapping η̂N to S.
That is, fN(η̂N) = ûN is the estimator for u, where fN : M −→ S. This map fN is known
as the estimator. Note that this estimator is depending upon the sample size N .

Definition 5.4. Let fN : M −→ S be an estimator. Define

AN(u) = {η ∈M : fN(η) = u},

which is an (n−m)-dimensional submanifold of M. It is called an estimating submanifold
or an ancillary manifold.

Let
A(u) = lim

N−→∞
AN(u).

Assume that each fN is a continuous function from M to S and f be the limiting estimator
function which determines the limiting estimating submanifold A(u).

Remark 5.4. Let S = {p(x; θ(u)) : u ∈ U ⊂ Rm} be an m-dimensional curved subfamily
of M. In [60], Amari’s geometric conditions on consistency and first order efficiency of an
estimator in a curved exponential family are given as
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• An estimator {ûN , N = 1, 2, ...} for u ∈ S is consistent if and only if η(u) ∈ S is in
the estimating submanifold A(u).

• A consistent estimator {ûN , N = 1, 2, ...} for u ∈ S is first order efficient if and only
if A(u) is orthogonal to M at the intersecting point η(u) in S.

Let M = {p(x; θ) : θ ∈ Θ ⊂ Rn} be an n-dimensional exponential family and
S = {p(x; θ(u)) : u ∈ U ⊂ Rm} be an m-dimensional curved exponential family of M.
The Kullback-Leibler divergence, D(. ‖ .), on M is defined as

D(p(x; θ) ‖ q(x; θ)) =

∫
p(x; θ) log

(
p(x; θ)

q(x; θ)

)
dx.

Let η̂N be the observed point with respect to the independent and identically distributed
sample xN = (x1, · · · , xN) drawn from p(x; θ(u)) ∈ S. Then the Kullback-Leibler diver-
gence from the observed point η̂ to a point η(u) in S is,

D(η̂N ‖ η(u)) = ψ(θ(u)) + ϕ(η̂)− θi(u)η̂Ni

= ϕ(η̂N)− 1

N
logPN(xN ;u),

where ψ and ϕ are potential functions of the exponential family with ∂ψ
∂θi

= ηi and ∂ϕ
∂ηi

= θi,
respectively.

Remark 5.5. In [60], Amari proved that the point which minimizes the divergence was the
orthogonal projection of the point η̂ onto S along a∇−1-geodesic.

Definition 5.5. Let M = {p(x; θ) : θ ∈ Θ ⊂ Rn} be an n-dimensional statistical manifold.
Consider N independent and identically distributed random variables xN = {x1, ...xN}
drawn from p(x; θ). Then, the likelihood function LN(θ) is given by

LN(θ) = PN(xN ; θ) =
N∏
t=1

p(xt; θ). (5.13)

Since log function is a strictly increasing function, maximizing the likelihood function
LN(θ) is equivalent to maximizing log(LN(θ)). The estimator θ̂ is said to be the Maximum
Likelihood Estimator (MLE) denoted by θ̂ML if

θ̂ = argmax
θ∈Θ

LN(θ) = argmax
θ∈Θ

N∑
t=1

log(p(xt; θ))
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Proposition 5.1. [1] The maximum likelihood estimator ûML of the parameter u of the

curved exponential family S = {p(x; θ(u)) : u ∈ U ⊂ Rm} is an asymptotically efficient

estimator.

Proof. Since

D(η̂N ‖ η(u)) = ψ(θ(u)) + ϕ(η̂)− θi(u)η̂Ni

= ϕ(η̂N)− 1

N
logPN(xN ;u).

The point which minimizes the divergence with point η̂N is the point which maximizes
the likelihood PN(xN ;u), and this is the maximum likelihood estimator ûML. Hence from
remark (5.5), the estimating submanifold A(u) of ûML is autoparallel with respect to ∇−1

and orthogonal to S. Hence from remark (5.4) ûML is asymptotically efficient.

In [34], Cheng et al. developed an algorithm to obtain the maximum likelihood estima-
tor for the parameter u of the curved exponential family S using natural gradient descent
on statistical manifolds. Now, we discuss the geometry of this algorithm in detail.

Let S = {p(x; θ(u)) : u ∈ U ⊂ Rm} be a curved exponential family. That is,

p(x;u) = p(x; θ(u)) = exp{
m∑
i=1

θi(u)Fi(x) + C(x)− ψ(θ(u))},

where x is a random variable, θ = {θ1, · · · , θn} is the natural coordinates or canonical
parameters, u denote the local parameter and F (x) = {F1(x), · · · , Fn(x)} are sufficient
statistics for θ = {θ1, · · · , θn}. Let `(θ(u), x) = log p(x; θ(u)) be the log likelihood of
the curved exponential family and J θ the Jacobian matrix of the natural parameter θ as a
function of local parameter u. Then,

J (`(θ(u), x)) = J (
n∑
i=1

θi(u)Fi(x)− ψ(θ(u)))

= J ({θT (u)F (x)− ψ(θ(u))})

= J (θT (u){F (x)− η(u)}),

where η(u) = E[F (x)] and Jψ(θ(u)) = J θT (u)Jθψ(θ) = J θT (u)η(u).

The maximum likelihood estimator ûML of the curved exponential family satisfies the
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following likelihood equation.

J `(ûML) = J log p(x, u) = J θT (ûML)[F (x)− η(ûML)] = 0. (5.14)

Here `(ûML) is an objective function to be maximized with parameter u. In [61], Amari
suggested the use of natural gradient updates for the optimization on a Riemannian mani-
fold. That is,

unew = u+ λG−1(u)J `(u), (5.15)

where λ is a positive learning rate that determines the step size and G(u) denote the matrix
of Riemannian metric of the manifold. Here G is the Fisher information matrix which can
be represented as

G(u) = J θT (u)G(θ)J θ(u),

where G(θ) is the Fisher information matrix with respect to the natural parameter θ. A
recursive MLE of curved exponential family is obtained as follows

u(k+1) = u(k) + λG−1(u(k))J `(u(k))

= u(k) + λG−1(u(k))J θT (u(k))

[
F (x)− η(u(k))

]
, (5.16)

where θ(u) and η(u) are the natural parameter and the expectation parameter of the distri-
bution, respectively and F (x) is the sufficient statistics. Now, the algorithm is summarized
as follows [34].
The natural gradient based iterative MLE algorithm

1. Distribution reparameterization
p(x;u) = p(x; θ(u)) = exp{

∑m
i=1 θ

i(u)Fi(x) + C(x)− ψ(θ(u))}.
Identify the natural parameter θ(u), sufficient statistics F (x) and potential function
ψ(θ(u)).

2. Find expectation parameter η and Fisher information metric G for the curved expo-
nential family p(x; θ(u)).
η(u) = E[F (x)] = Jθψ(θ).
G(θ) = JθJ T

θ ψ(θ).
G(u) = J θT (u)G(θ)J θ(u).

3. Input initial conditions
u0, G(u0) = J θT (u0)G(θ(u(0)))J θ(u(0))
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4. Set step size e(k) > ε > 0, k = 0,
while e(k) > ε

Loop for the (k + 1)th iteration

u(k+1) = u(k) + λG−1(u(k))J θT (u(k))

[
F (x)− η(u(k))

]
G(u(k+1)) = J θT (u(k+1))G(θ(u(k+1)))J θ(u(k+1))

Update step size
e(k+1) = ||(u(k) − u(k+1))||
end

Continue this process until it converges.

Remark 5.6. The natural gradient estimator updates the underlying manifold metric, the
Fisher information matrix G at each iteration, which evaluates the estimate accuracy. For
the cases where the underlying parameter spaces are not Euclidean but are curved the stan-
dard gradient does not represent the steepest descent direction in the parameter space. The
natural gradient updates in the equation (5.15) improve the steepest descent update rule by
taking the geometry of the Riemannian manifold into account to calculate the learning di-
rections. In fact, it modifies the standard gradient direction according to the local curvature
of the parameter space in terms of the Riemannian metric matrix G(u), thus offers faster
convergence than the steepest descent method. The natural gradient approach increases the
stability of the iteration with respect to Newton’s method through replacing the Hessian by
its expected value, that is, the Riemannian metric matrix G(u). In the proposed iterative
MLE algorithm in equation (5.16), an alternative parametrization of the curved exponential
family in terms of the natural and expectation parameters are employed. Through such a
reparametrization, the implementation of the natural gradient updates is facilitated by the
relevant statistics of a curved exponential family.

Now, we discuss the geometrical explanation of the convergence of the non-linear it-
erative estimator in terms of the information geometry [34]. In figure (5.1), let A be the
natural parameter space and B be the dual space. The curved exponential family be rep-
resented by the curve FA = {θ(u) : u ∈ Rm} in A and FB = {η(u) : u ∈ Rm} in
the dual space B. Starting from an initial parameter u(k), the algorithm constructs a vec-
tor Luk = {η̃(u(k)) = F (x) − η(uk)} from the current distribution represented by its
expectation parameter η(u(k)) to the measurement F (x). The projection of η̃(uk) to the
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tangent vector J θ(u(k)) of the natural parameter θ(uk) with respect to the metric G(u(k))

gives the steepest descent gradient (natural gradient) to update the current estimates (where
J θ(u(k)) is represented by the dashed arrow in both A and B, while the natural gradient is
represented by the solid arrow in B ).

natural grradient

Figure 5.1: Convergence of the iterative maximum likelihood estimator algorithm [34].

The iteration continue according to the equation (5.16) until the two vectors η̃(uk) and
J θ(u(k)) are orthogonal to each other. Then, the algorithm achieves convergence with
the steepest descent gradient G−1(uk)J θT (u(k))η̃(uk) vanishes and a solution to the MLE
equation (5.14) is obtained by projecting the data F (x) onto FB orthogonally to J θ(u).

5.3 Parametrized Measure Models and Fisher-Neyman Suf-
ficient Statistic

In this section, we discuss the Fisher-Neyman sufficient statistic for a parametrized measure
model. We show that the Fisher-Neyman sufficient statistic is invariant under isostatistical
immersions of statistical manifolds.

Let (Ω,Σ) be a measurable space, denote

P(Ω) = {µ : µ is a probability measure on Ω}.

M(Ω) = {µ : µ is a finite measure on Ω}.

S(Ω) = {µ : µ is a signed finite measure on Ω}.
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Clearly P(Ω) ⊂ M(Ω) ⊂ S(Ω) and note that S(Ω) is a real vector space. Define, for
µ ∈ S(Ω),

‖ µ ‖TV = sup
n∑
i=1

| µ(Ai) |,

where the supremum is taken over all the finite partitions Ω = A1 ∪ A2 ∪ ... ∪ An with
disjoint sets Ai ∈ Σ. Then, S(Ω) is a Banach space with respect to ‖ . ‖TV . Note that
P(Ω) = {µ ∈ M(Ω) :‖ µ ‖TV = 1}. A subset A ⊂ Ω is called the null set of a measure
µ if µ(A) = 0. Let µ1 and µ2 be two non-negative finite measures on Ω, then µ1 is said to
dominate µ2 (denoted by, µ2 � µ1) if every null set of µ1 is also a null set of µ2.

Fix a measure µ0 ∈M(Ω), then define

P(Ω, µ0) = {µ ∈ P(Ω) : µ� µ0}.

M(Ω, µ0) = {µ ∈M(Ω) : µ� µ0}.

S(Ω, µ0) = {µ ∈ S(Ω) : µ� µ0}.

We identify S(Ω, µ0) with L1(Ω, µ0) by the canonical map

i : S(Ω, µ0) −→ L1(Ω, µ0)

µ → dµ

dµ0

,

where dµ
dµ0

is the Radon-Nikodym derivative of µ with respect to µ0 ([62]). Using this
identification M(Ω, µ0) = {φµ0 : φ ≥ 0} and P(Ω, µ0) = {φµ0 :

∫
Ω
φµ0 = 1}. Also,

note that

‖ φ ‖L1(Ω,µ0)=‖ φµ0 ‖TV .

Definition 5.6. Let V and W be Banach spaces and U ⊂ V be an open subset. A map
φ : U −→ W is called differentiable at x ∈ U , if there exists a bounded linear operator
dxφ ∈ L(V,W ) such that

lim
h−→0

‖ φ(x+ h)− φ(x)− dxφ(h) ‖W
‖ h ‖V

= 0.

In this case, dxφ is called the differential of φ at x. Moreover φ is called continuously
differentiable or shortly a c1−map, if it is differentiable at every x ∈ U and the map
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dφ : U −→ L(V,W ) defined by x −→ dxφ is continuous. Furthermore, a differentiable
map c : (−ε, ε) −→ W is called a curve in W .

Note. Let X ⊂ V be an arbitrary subset and let x0 ∈ X . Then v ∈ V is called a tangent
vector of X at x0 if there is a curve c : (−ε, ε) −→ X such that c(0) = x0 and dc

dt
(0) = v.

The set of all tangent vectors at x0 is called the tangent space of X at x0 and is denoted by
Tx0X .

Remark 5.7. In [63], Ay et al. proved that the tangent space ofM(Ω) and P(Ω) at µ are
S(Ω, µ) and S0(Ω, µ) respectively, where S0(Ω, µ) = {µ ∈ S(Ω, µ) : µ(Ω) = 0}.

5.3.1 Fisher-Neyman Sufficient Statistics and Isostatistical Immer-
sions

In this subsection, we discuss the Fisher-Neyman sufficient statistic for parametrized mea-
sure models. Also, we prove invariants of Fisher-Neyman sufficient statistic under isosta-
tistical immersions.

Definition 5.7. Let (Ω,B) and (Ω
′
,B′) be two measurable spaces. A measurable map k :

Ω −→ Ω
′ is called a statistic. For a statistic there is an induced map k∗ : S(Ω) −→ S(Ω

′
)

defined by k∗µ(A) = µ(k−1(A)), for A in the σ-algebra B′ of Ω
′ .

Note that k∗ : S(Ω) −→ S(Ω
′
) is a bounded linear map which is monotone. That

is, it maps non-negative measures to non-negative measures. Using Jordan decomposition
theorem ([62]) of measures, k∗(P(Ω)) ⊂ P(Ω

′
). Also, from the definition of k∗ we get if

µ1 << µ2, then k∗µ1 << k∗µ2. Hence, k∗ : S(Ω, µ) −→ S0(Ω
′
, k∗µ) is a bounded linear

map.
The elements of S(Ω, µ) are of the form φµ for φ ∈ L1(Ω, µ) and if we write k∗(φµ) =

φ
′
k∗µ for φ′ ∈ L1(Ω

′
, k∗µ), then φ′ is called the conditional expectation of φ given k. This

gives a bounded linear map kµ∗ : L1(Ω, µ) −→ L1(Ω
′
, k∗µ) defined by kµ∗ (φ) = φ

′ .
The pullback of a measurable function φ′ : Ω

′ −→ R is defined as k∗φ′ = φ
′ ◦ k.

If A′ ⊂ Ω
′ and A = k−1(A

′
) we have χA = k∗χA′ and thus k∗µ(A) = µ(k−1(A))

is equivalent to χA′k∗µ = k∗(χAµ) = k∗(k
∗χA′µ). By the linearity it extends to the

step functions on Ω
′ and by the density of step functions in L1(Ω

′
, k∗µ) we have, for any

φ
′ ∈ L1(Ω

′
, k∗µ)

k∗(k
∗φ
′
µ) = φ

′
k∗µ

and hence kµ∗ (k
∗φ
′
) = φ

′ .
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Definition 5.8. Let k : Ω −→ Ω
′ be a statistic and µ′ ∈M(Ω

′
). A k-congruent embedding

is a bounded linear map K∗ : S(Ω
′
, µ
′
) −→ S(Ω) such that

• K∗ is monotone.

• k∗(K∗(ν
′
)) = ν

′ for all ν ′ ∈ S(Ω
′
, µ
′
).

Furthermore, the image of a k-congruent embedding K∗ in S(Ω) is called the k-congruent
subspace of S(Ω).

Example 5.2. Let k : Ω −→ Ω
′ be a statistic and µ ∈ M(Ω) be with µ

′
= k∗µ ∈

M(Ω
′
). Then, the map Kµ : S(Ω

′
, µ
′
) −→ S(Ω, µ) defined by Kµ(φ

′
µ
′
) = k∗φ

′
µ for

φ
′ ∈ L1(Ω

′
, µ
′
) is a k−congruent embedding, since

k∗(Kµ(φ
′
µ
′
)) = k∗(k

∗φ
′
µ)

= φ
′
k∗µ (5.17)

= φ
′
µ
′
.

Definition 5.9. A Markov kernel between two measurable space (Ω,B) and Ω
′
,B′) is a

map K : Ω −→ P(Ω
′
) associating to each ω ∈ Ω a probability measure on Ω

′ such that for
each fixed measurable A′ ⊂ Ω

′ the map

Ω −→ [0, 1], ω −→ K(ω)(A
′
) =: K(ω;A

′
)

is measurable for all A′ ∈ B′ . The Markov morphism induced by K is the linear map

K∗ : S(Ω) −→ S(Ω
′
), K∗µ(A

′
) =

∫
Ω
K(ω;A

′
)dµ(ω).

Use the notationK∗(µ;A
′
) = K∗µ(A

′
). SinceK(ω) ∈ P(Ω

′
), it follows thatK(ω; Ω

′
) =

1, for all ω ∈ Ω, hence K∗µ(Ω
′
) = µ(Ω). Thus,

‖ K∗µ ‖TV =‖ µ ‖TV , for all µ ∈M(Ω).

In particular, a Markov morphism maps probability measures to probability measures. For
a general measure µ ∈ S(Ω), we have |K∗(µ;A

′
)| ≤ K∗(|µ|;A

′
) for allA′ ∈ B′ and hence,

‖ K∗µ ‖TV ≤ ‖ K∗ | µ |‖TV =‖ µ ‖TV , for all µ ∈ S(Ω)

so that K∗ : S(Ω) −→ S(Ω
′
) is a bounded linear map.

Note that the Markov kernel K can be recovered from K∗ using the relation

K(ω) = K∗δ
ω, for ω ∈ Ω,
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where δω denotes the Dirac measure supported at ω ∈ Ω.

Note. From the definition of Markov morphism it is immediate that K∗ preserves the dom-
inance of measure, that is, if µ1 << µ2, then K∗µ1 << K∗µ2. Thus, for each µ ∈ M(Ω)

there is a restriction

K∗ : S(Ω, µ) −→ S(Ω
′
, µ
′
),

where µ′ = K∗µ. This induces a bounded linear map

Kµ
∗ : L1(Ω, µ) −→ L1(Ω

′
, µ
′
), φ −→ φ

′ ,

where φ′ is given by K∗(φµ) = φ
′
µ
′ and φ′ is called the conditional expectation of φ given

K.

Definition 5.10. A Markov kernel K : Ω
′ −→ P(Ω) is called k-congruent for the statistic

k : Ω −→ Ω
′ if k∗K(ω

′
) = δω

′
for all ω′ ∈ Ω

′ .

Remark 5.8. Let k : Ω −→ Ω
′ be a statistic, then there is an induced Markov kernel

Kk : Ω −→ P(Ω
′
) defined by Kk(ω) = δk(ω), so that Kk(ω;A

′
) = χk−1(A′ )(ω). In this

case, Markov morphism induced by Kk coincides with k∗ : S(Ω) −→ S(Ω
′
). Also note

that if K is a k-congruent Markov kernel, then (KkK)∗ is an identity map on S(Ω
′
).

Definition 5.11. Let Ω be a measurable space, a parametrized measure model is a triplet
(M,Ω,p) where M is a Banach manifold and p : M −→M(Ω) ⊂ S(Ω) is a c1-map.

The triplet (M,Ω,p) is called a statistical model if the image of p is contained in P(Ω).
Such a model is said to be dominated by µ0 if the image of p is contained inM(Ω, µ0). In
this case the notation used for this model is (M,Ω, µ0,p).

Remark 5.9. If a parametrized measure model (M,Ω, µ0,p) is dominated by µ0, then there
is a density function p : Ω×M −→ R such that p(ξ) = p(.; ξ)µ0. The density function p
is said to be a regular density if for all V ∈ TξM the partial derivative ∂V p(.; ξ) exists and
lies in L1(Ω, µ0).

Definition 5.12. Let (M,Ω,p) be a parametrized measure model and k : Ω −→ Ω
′ be

a statistic. Suppose that there is a µ ∈ M(Ω) such that p(ξ) = p
′
(k(.); ξ)µ, for some

p
′ ∈ L1(Ω

′
, µ
′
) and hence,

p
′
(ξ) = k∗p(ξ) = p

′
(.; ξ)µ

′
, (5.18)
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where µ′ = k∗µ. Then, k is called a Fisher-Neyman sufficient statistic for the model
(M,Ω,p).

Proposition 5.2. [36] Let (M,Ω, µ0,p) be a parametrized measure model given by the

density function p(ξ) = p(ω; ξ)µ0 and let k : Ω −→ Ω
′

be a statistic with the induced

parametrized measure model (M,Ω
′
, µ
′
0,p

′
), where p

′
(ξ) = k∗P(ξ) and µ

′
0 = k∗µ0, given

by p
′
(ξ) = p

′
(ω
′
; ξ)µ

′
0. Then, k is a Fisher-Neyman sufficient statistic for (M,Ω, µ0,p) if

and only if there is a function r ∈ L1(Ω, µ0) such that p, p
′

can be chosen such that

p(ω; ξ) = r(ω)p
′
(k(ω); ξ) . (5.19)

Proof. Let ξ ∈M be arbitrary, define

Aξ = {ω ∈ Ω : p(ω; ξ) = 0} and Bξ = {ω ∈ Ω : p
′
(k(ω); ξ) = 0}.

Then P(ξ)(Bξ) ≤ P(ξ)(k−1k(Bξ)) = P
′
(ξ)(k(Bξ)) = 0, last equality follows from the

definition of Bξ. Thus, P(ξ)(Bξ) = 0 and hence, Bξ \ Aξ in Ω is a null set with respect to
µ0. Set p(ω; ξ) ≡ 0 on Bξ \Aξ, so that we assume that Bξ \Aξ is empty. That is, Bξ ⊂ Aξ.
Use the convention 0

0
=: 1 to define the measurable function

r(ω; ξ) =
p(ω; ξ)

p′(k(ω); ξ)
.

Now, it is enough to show that r is independent of ξ and has a finite integral if and only if
k is a Fisher-Neyman sufficient statistic.
Assume that k is Fisher-Neyman sufficient statistic. Then, there is a measure µ ∈M(Ω, µ0)

such that p(ξ) = p̃
′
(k(ω); ξ)µ for some p̃′ : Ω

′ ×M −→ R with p̃′(.; ξ) ∈ L1(Ω
′
, µ
′
) for

all ξ. Then,

P
′
(ξ) = k∗P(ξ) = k∗

(
k∗(p̃

′
(.; ξ))µ

)
= p̃

′
(.; ξ)µ

′

by (5.18). Since P(ξ) is dominated by both µ and µ0, assume without loss of generality
that µ is dominated by µ0 and hence, µ′ is dominated by µ′0. Denote

ψ0 =
dµ

dµ0

∈ L1(Ω, µ0) and ψ
′

0 =
dµ
′

dµ
′
0

∈ L1(Ω
′
, µ
′

0).
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Then

p(ω; ξ) =
dP(ξ)

dµ0

=
dP(ξ)

dµ

dµ

dµ0

(ω; ξ) = p̃′(k(ω); ξ)ψ0(ω),

and similarly,

p′(ω′, ξ) = p̃′(ω′; ξ)ψ′0(ω′).

Therefore,

r(ω; ξ) =
p(ω; ξ)

p′(k(ω); ξ)
=

ψ0(ω)

ψ′0(k(ω))
.

This implies r is independent of ξ. Now∫
Ω

r(ω)dµ0 =

∫
Ω

ψ0(ω)

ψ′0(k(ω))
dµ0 =

∫
Ω

k∗
(

1

ψ′0(ω′)

)
dµ

=

∫
Ω′

1

ψ′0(ω′)
dµ′ =

∫
Ω′
dµ′0 = µ0(Ω) <∞.

So r ∈ L1(Ω, µ0).
Conversely, assume that equation (5.19) holds and r ∈ L1(Ω, µ0) then for µ = rµ0 ∈
M(Ω, µ0)

P(ξ) = p(.; ξ)µ0 = p′(k(.); ξ)µ. (5.20)

Hence the proposition follows from the definition of the Fisher-Neyman sufficient statistic.

Theorem 5.4. [36] Let (M,Ω, µ0,p) be a parametrized measure model given by the reg-

ular density function p(ξ) = p(ω; ξ)µ0 and let k : Ω −→ Ω
′

be a statistic. Then, k is a

Fisher-Neyman sufficient statistic for the parametrized measure model if and only if there

exists a function s : Ω
′ ×M −→ R and a function t ∈ L1(Ω, µ0) such that for all ξ ∈M

we have s(ω
′
, ξ) ∈ L1(Ω

′
, k∗µ0) and

p(ω; ξ) = s(k(ω); ξ)t(ω) (5.21)

Proof. If (5.21) holds, let µ = t(ω)µ0 ∈M(Ω, µ0). Then for all ξ

P(ξ) = p(.; ξ)µ0 = s(k(ω); ξ)µ, (5.22)
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hence k is a Fisher-Neyman sufficient statistic for P.

Conversly, if k is a Fisher-Neyman sufficient statistic for P, take t = r and s = p′ in
(5.19. Then (5.21) follows.

Let (M, g, C) be a statistical manifold. A smooth family of probability distributions
p(x; ξ) on a sample space Ω with parameter ξ ∈M is called a probability density for g and
C if

g(ξ;V1, V2) = Eξ

(
∂

∂V1

log p(.; ξ)
∂

∂V2

log p(.; ξ)

)
C(ξ;V1, V2, V3) = Eξ

(
∂

∂V1

log p(.; ξ)
∂

∂V2

log p(.; ξ)
∂

∂V3

log p(.; ξ)

)
,

where Vi ∈ TξM for i = 1, 2, 3.

Definition 5.13. A smooth map f from a statistical manifold (M1, g1, C1) to a statistical
manifold (M2, g2, C2) is said to be an isostatistical immersion if f is an immersion of M1

into M2 such that g1 = f ∗(g2), C1 = f ∗(C2).

Note. Let f : (M1,∇, g) −→ (M2, ∇̃, g̃) be a statistical immersion and C1, C2 be the
cubic forms on M1 and M2, respectively. Then,

C1(X, Y, Z) = (∇Xg)(Y, Z)

= Xg(Y, Z)− g(∇XY, Z)− g(Y,∇XZ)

= f∗Xg̃(f∗Y, f∗Z)− g(∇̃f∗Xf∗Y, f∗Z)− g(f∗Y, ∇̃f∗Xf∗Z)

= C2(f∗X, f∗Y, f∗Z).

Hence f is an isostatistical immersion. Conversely if f is an isostatistical immersion, then f
is a statistical immersion for the statistical structures induced from cubic forms. Thus, the
isostatistical immersion defined above and the statistical immersion (cf. Definition(2.7))
are the same.

Lemma 5.1. [36] Assume that f : (M1, g1, C1) −→ (M2, g2, C2) is an isostatistical im-

mersion. If there exists a measure space Ω and a function p(ω; ξ2) : Ω ×M2 −→ R such

that p is a probability density for the tensors g2 and C2, then f ∗(p)(ω; ξ1) = p(ω; f(ξ1)) is

a probability density for g1 and C1.
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Proof. Since f is an isostatistical immersion we have,

g1(ξ;V1, V2) = g2(h(ξ); f∗(V1), f∗(V2)),

=

∫
Ω

∂

∂f∗V1

log(p(x; f(ξ)))
∂

∂f∗V2

log(p(x; f(ξ)))p(x; f(ξ))dx,

= Ef∗(p)

(
∂

∂V1

log f ∗(p)(.; ξ)
∂

∂V2

log f ∗(p)(.; ξ)

)
.

This implies f ∗(p) is a probability density for g1. Similarly we can prove that f ∗(p) is a
probability density for C1.

Let f : (M1, g1, C1) −→ (M2, g2, C2) be an isostatistical immersion with parametrized
model (M2,Ω, µ,p). That is, p(ξ2) = p(.; ξ2)µ where p(ω; ξ2) : Ω ×M2 −→ R is the
density function. Then, there is an induced parametrized model given by f , denoted by
(M1,Ω, µ,p), where p is given by p : M1 −→ P(Ω) defined as p = p ◦ f . That is,
p(ξ1) = p(f(ξ1)) = p(ω; f(ξ1))µ. Define f ∗(p)(ω; ξ1) = p(ω; f(ξ1)), then f ∗(p)(ω; ξ1) :

Ω×M1 −→ R is the density corresponds to the induced model.

Now, let k : Ω −→ Ω
′ be a statistic then we have two models induced by k and they are

(M2,Ω
′
, µ
′
,p
′
) and (M1,Ω

′
, µ
′
,p
′
), where µ′ = k∗µ, p

′
(ξ2) = k∗p(ξ2) and p

′
= p

′ ◦ f .
Also, if p′(ξ2) = p

′
(ω; ξ2)µ

′ , then p
′
(ξ1) = f ∗(p

′
)(ω; ξ1)µ

′ . Now, we have the following
theorem.

Theorem 5.5. Let k : Ω −→ Ω
′

be a statistic and f : (M1, g1, C1) −→ (M2, g2, C2) be

an isostatistical immersion with parametrized model (M2,Ω, µ,p). Suppose k is a Fisher-

Neyman sufficient statistic with respect to (M2,Ω, µ,p) and (M2,Ω
′
, µ
′
,p
′
). Then, k is a

Fisher-Neyman sufficient statistic with respect to (M1,Ω, µ,p) and (M1,Ω
′
, µ
′
,p
′
).

Proof. Given that k is a Fisher-Neyman sufficient statistic with respect to (M2,Ω, µ,p)

and (M2,Ω
′
, µ
′
,p
′
). By the definition of the Fisher-Neyman sufficient statistic

p(ω; ξ2) = p
′
(k(ω); ξ2).

This implies

f ∗(p)(ω; ξ1) = p(ω; f(ξ1))

= p
′
(k(ω); f(ξ1))

= f ∗(p
′
)(k(ω); ξ1).
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Hence, k is a Fisher-Neyman sufficient statistic with respect to (M1,Ω, µ,p) and (M1,Ω
′
, µ
′
,p
′
).

5.4 Concluding Remarks

Here we first summarize certain significant results that we have obtained and then give a
list of topics to be explored further. In the case of immersions into statistical manifolds
a necessary and sufficient condition for the inherited statistical manifold structures to be
dual to each other is obtained. Then, statistical immersion is defined and proved a nec-
essary condition for a statistical manifold to be a statistical hypersurface. Its converse is
also proved. A necessary and sufficient condition for a statistical immersion into a dually
flat statistical manifold of codimension one to be minimal is given. Also, a necessary con-
dition is obtained for minimal statistical immersion of statistical manifolds equipped with
α-connections. A necessary and sufficient condition for the inherited statistical manifold
structures to be dual to each other is proved for a centro-affine immersion of codimension
two into a dually flat statistical manifold. Then proved that the inherited statistical mani-
fold structure is conformally-projectively flat in this case. We introduced the concept of a
conformal submersion with horizontal distribution for Riemannian manifolds, which is a
generalization of the affine submersion with horizontal distribution. A necessary condition
for the existence of such a map is proved. Then compares the geodesics for a conformal
submersion with horizontal distribution. A necessary and sufficient condition for the hor-
izontal lift of a geodesic to be geodesic is obtained. In the case of conformal submersion
with horizontal distribution, proved a necessary and sufficient condition for (M,∇, gm) to
become a statistical manifold.

We obtained a necessary and sufficient condition for TM to be a statistical manifold
with the complete lift connection and the Sasaki lift metric. Then, proved a necessary and
sufficient condition for the harmonicity of the identity map for conformally-projectively
equivalent statistical manifolds. The conformal statistical submersion is defined which is a
generalization of the statistical submersion and proved that harmonicity and conformality
cannot coexist. Then, given a necessary condition for the harmonicity of the tangent map
with respect to the complete lift structure on the tangent bundles. Also, proved a necessary
and sufficient condition for the tangential map to be a statistical submersion. We show that
if all ∇1-autoparallel proper submanifolds of a ±1-flat statistical manifold M are expo-
nential then M is an exponential family. Then, proved that if submanifold of a statistical
model is an exponential family, then it is a∇1-autoparallel submanifold. Also, we obtained
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that the Fisher-Neyman sufficient statistic is invariant under the isostatistical immersions
of statistical manifolds.
We would like to continue our study in the following topics:

• Geometry of immersions into statistical manifolds in the general codimension case.

• Statistical manifold structures on the cotangent bundles of statistical manifolds [64].

• Harmonic maps between cotangent bundles.

• Estimation theory in the context of submersions.
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