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Abstract

We begin our work by studying the most general class of oscillators, called ‘f -deformed
oscillators’ or ‘f -oscillators’. We define the quadrature operator for the f -deformed alge-
bra and hence obtain the deformed quadrature operator eigenstates. We derived a new set
of polynomials and derived the deformed oscillator wavefunctions in terms of them. The
position probability distributions for three different types of deformations are plotted, and
each is compared with the corresponding non-deformed counterpart. The newly obtained
quadrature operator eigenstates will be helpful for those who are working in the field of
quantum state reconstruction and quantum information processing of deformed states.

Later, we focus mainly on one of the special cases of f -deformation, i.e., the math-type
q-deformation. We inquire into the nonclassical properties of the math-type q-deformed
states. Here we report the study of squeezing in q-deformed squeezed vacuum states, their
superposition, and the superposition of q-deformed squeezed coherent states of a math-type
q-deformed oscillator. Quadrature squeezing, higher-order squeezing, and number squeez-
ing are studied. The analysis reveals that the states exhibit squeezing only for a specific
range of the deformation parameter q and the squeezing parameter r. We find that the
quadrature squeezing coefficient is independent of q, in the q-deformed squeezed vacuum
states. The squeezing vanishes when we go for their superposition. We also studied an-
other nonclassical property, the Husimi Q function, for the above mentioned states. Husimi
Q function reveals that these states are highly nonclassical irrespective of squeezing. The
nonclassicality present in the deformed states is found to be dependent on q, α and r.

We then extend our study of the math-type q-deformed oscillator into its dynamical
behavior by analyzing its expectation values. A primary analysis of the system’s dynamics
hints at the possibility of chaos in it. Although the search for chaos in quantum systems has
been an area of prominent research over the last few decades, the detailed analysis of many
inherently chaotic quantum systems based on expectation values of dynamical variables has
not been reported in the literature. The system is found to be periodic, quasi-periodic, or
chaotic depending on the values of the deformation parameter q and the deformed coherent
amplitude α, thus enabling us to explicitly classify the chaotic nature of the system based
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on these parameters. A further detailed study using recurrence plots, power spectra, first-
return-time distributions, and Lyapunov exponents unambiguously confirmed the chaotic
behavior of the system, existing over a specific range of q and α values.

We outstretch the study of the nonclassicality of a math-type q-deformed system to
quantum entanglement, one of the most discussed and relevant areas of quantum physics.
We deal with the propagation of a single-mode math-type q-deformed field through a non-
linear medium, where the atoms of the medium interact with the deformed field. We mea-
sure the entanglement in terms of von Neumann entropy, and its temporal evolution shows
that the states are entangled for all the possible deformation values. We have considered the
system in two different initial states, whose dynamics exhibit near revivals and fractional
revivals. But the revivals die out even for a slight deformation increase. Thus here we
provide the analysis of a general deformed system, with an additional degree of freedom,
i.e., the deformation parameter q to control its nonlinear and nonclassical properties.
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Chapter 1

Introduction

Nonclassical states of light serve as critical resources for the basic understanding of quan-
tum mechanics and also find applications in fields like quantum computation, quantum
metrology, etc. Nonclassical states, such as entangled and squeezed states are usually gen-
erated using devices like optical parametric oscillators or frequency doublers. They are
also generated in systems like a single-atom laser. A squeezed state of light refers to that
state with an uncertainty smaller than that of a coherent state, having potential applica-
tions in low-noise communications. They find essential applications in gravitational wave
detection [1, 2, 3], optical communications [4], quantum metrology [5], laser interferome-
ters [6], etc. Several recent pieces of research regarding the importance of squeezing in
quantum physics exist. A recent study [7] introduces squeezed comb states which are less
error-prone when subjected to amplitude damping. One of the critical applications of quan-
tum optics, quantum sensing, is found to be enhanced using squeezing techniques [8]. The
authors of another recent work [9] unveil an experiment that can shed some ‘squeezed light’
on dark matter, one of the universe’s greatest mysteries. Apart from squeezing, the idea be-
hind quantum entanglement was developed in the early decades of the 20th century. As one
of the most discussed areas of quantum physics, quantum entanglement continues to puzzle
researchers worldwide. Entanglement finds applications in the emerging fields of quantum
physics such as quantum cryptography [10], quantum metrology [11], superdense coding
[12], quantum teleportation [13], etc. The generation of new quantum states with different
nonclassical properties has increased the investigation of other types of entangled states.
Macroscopic entangled coherent states based on circuit QED [14], Entangled squeezed
states in BEC [15], and bound entangled Gaussian states [16], to mention a few. Since
quantum entanglement has attracted much attention, several important research outcomes
have happened in recent years. Quark and gluon entanglement in the proton is studied and
reported in a recent work [17]. Recently, a quantum processor has been developed [18]
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using the idea of coherent transport of entangled atom arrays, which provides a route to
achieve great goals in fields ranging from simulation to metrology.

Another exciting aspect is the study of nonlinear behavior in quantum systems. Chaos is
a generic term that describes systems with a strong sensitivity towards initial conditions. In
classical chaotic systems such as multiple coupled anharmonic oscillators, asteroid orbits,
double rod pendulums, and so on, a small perturbation in the initial conditions manifests it-
self as an exponential change in the system trajectories over time. Although several chaotic
dynamical systems have been studied in the classical regime, the search for its counter-
part in the quantum regime posed some consequences. Bohr’s correspondence principle,
which states that the behavior of quantum systems reproduces their classical counterparts in
the limit of large quantum numbers, mandates the appearance of chaos in quantum systems.
However, the discreteness of the quantum energy levels and the solutions to the Schrödinger
equation restricts them to a quasi-periodic behavior [19]. As a result, a common approach
has been to quantize existing classical systems and analyze how these systems behave in a
quantized scenario [20, 21]. These systems were reported to show chaotic behavior equiva-
lent to their classical counterparts only for short periods of time. Another relatively popular
methodology in this direction has been identifying chaotic analogs from quantum systems
in the semi-classical limit. However, these systems showed chaos only under limiting con-
ditions [22, 23]. So, inherent quantum chaos is still an unexplored area of quantum physics.
We are interested in studying the nonlinear and nonclassical properties of a quantum har-
monic oscillator with a deformed algebra. The motivation for choosing such a system is
what follows hereafter.

When we learn classical mechanics, it is known to everyone that the harmonic oscil-
lator is one of the most important systems in the whole of physics. It allows us to study
problems ranging from the vibration of strings to the behavior of electronic circuits. The
harmonic oscillator plays a similarly central role in quantum mechanics. In the quantum
world, it allows us to study the properties ranging from the motion of atoms in solids
to the behavior of light. But there is a fundamental reason that the harmonic oscillator
plays a key role; it is very effectively used to exemplify important quantum mechanical
concepts. It is to be noted that the simple harmonic oscillator is an ideal one that does
not fit all of the real-life examples. Considering the deviations or deformations from the
ideal case will be far more advantageous. The deformations in the algebra of a simple
harmonic oscillator have been an exciting area of research over the last few decades. The
most general one is the f -deformation, where the algebra of the oscillator is deformed by
a function f(n). f -deformation is an active area of research; a few are mentioned here.
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The f -deformed Hamiltonian has been studied for the anti-Jaynes-Cummings model, with
applications in quantum optic interferometers [24]. Another recent research shows that
the f -deformed Dirac oscillator can describe the electrons in a nonlinear zig-zag graphene
nanoribbon causes a significant difference between Landau levels in the f -deformed os-
cillator and the non-deformed one [25]. A mathematical procedure to obtain analytical
expressions for a general class of deformed coherent states associated with the different
patterns of the energy spectrum exhibited by the nonlinear f -oscillator was presented in
the literature [26], and deformed photon-added nonlinear coherent states were constructed
using nonlinear coherent states [27]. Even though f -deformation is the most generalized
one of its types, the type of deformation that reported in the literaure for the first time was
one of its special cases, namely ‘physics-type q-deformation’, formulated by A. J. Macfar-
lane [28] where the deformed quantum group SUq(2) was discussed in detail. Some other
special cases of f -deformation, such as math-type q-deformation and (p, q)-deformation,
exist, which will be discussed later.

Although the general deformed f -oscillators with their different classes have generated
much importance in recent years, their wavefunctions remain unknown, which is the prime
motivation to begin our work. A notable attempt has been made to derive a generalized
wavefunction encompassing the Macfarlane and Dubna type oscillators [29]. However, this
expression is limited by its intricate and restricted access to the parameters involved, thus
unable to provide a clear-cut wavefunction to study the system. The analytical wavefunc-
tion of a non-deformed harmonic oscillator can be easily evaluated from the knowledge of
the deformed Hermite polynomials. Unfortunately, an explicit expression for the deformed
Hermite polynomials is unknown when subject to f -deformation, but some attempts have
been made over the years. In another work [30], the authors have tried to approach the prob-
lem by evaluating the analytical form of the q-deformed Hermite polynomial in terms of the
position operator X̂ . This result is also limited by the lack of knowledge of the nature and
form of operator X̂ . However, recently, using the expression for the math-type q-deformed
quadrature operator X̂θ, the expression for math-type q-deformed Hermite polynomial has
been found [31]. The paper [31] deals only with the math-type q-deformed oscillator but
not the general f -deformed case and does not discuss in detail the wavefunctions of the
oscillator. The quadrature wavefunctions of quantum systems are essential for better un-
derstanding physical systems and reconstruction of quantum systems from experiments.
We begin our study by defining the f -deformed quadrature operator and then obtaining
the quadrature wavefunctions for different deformed oscillators with different degrees of
deformation.
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As we move on further, we mainly concentrate on one of the special cases of f -
deformation, the math-type q-deformation, which has acquired more attention in the litera-
ture than any other type of deformation. It is an area of active research in quantum optics.
The math-type q-deformation have been used recently to study the cosmic microwave back-
ground radiation [32]. The energy density distribution of bosons obeying the math-type
q-deformations of the harmonic oscillator algebra has been studied in [33]. A class of Fi-
bonacci oscillators that uses deformed algebras has found applications in the Debye model
to study the thermodynamics of crystalline solids [34] and the Landau diamagnetism [35].
Also, a recent study of the behavior of math-type q-deformed harmonic oscillator clearly
shows the signature of chaos in the system [36]. In the case of math-type q-deformation,
the algebra of the simple harmonic oscillator aa† − a†a = 1 is deformed by a parameter q
(which is a real number) in such a way that the algebra becomes AA† − q2A†A = 1 with
(A,A†) and (a, a†) being the deformed and non-deformed ladder operators respectively.
Since it is crucial to understand the physical meaning and interpretation of such deforma-
tions, several attempts have been made to unfold the same. A work done by Manko et al.
[37] used the Dirac quantization method to study the classical and quantum q-deformed
oscillators and thereby constructed the classical oscillator from its quantum q-deformed
counterpart. Their results conclude that the quantum q-deformed oscillator is a classical
oscillator with a special type of nonlinearity. Another study was done by Gruver [38] on
the dynamical properties of a q-deformed oscillator showed that a q-deformed oscillator is
equivalent to an anharmonic oscillator, and the deformation parameter q is a measure of its
anharmonicity. Another special case of f -deformation, the physics-type q-deformation is
also has some interesting research outcomes. It is reported in the literature that quantum
logic gates have been constructed using physics-type q-deformed harmonic oscillator alge-
bras [39]. It has been shown that physics-type q-deformed bosonic exciton gas constitutes
the high-density limit of Frenkel excitons which may provide valuable insight into Frenkel
excitons inside nanomaterials [40]. The (p, q)-deformed bosons, another particular case of
f -deformed states, have been used to study deformed Bose gases with critical temperature
ratio T p,qc /Tc, which explicitly depends on the deformation parameters p and q [41]. The
solutions of deformed Einstein equations and quantum black holes which use q and (p, q)-
deformed algebras, have been obtained recently [42]. The low-temperature behavior of
deformed fermion gas models has been used to find interactions of quasiparticles that have
applications in nanomaterials [43].

We begin the second part of our work by studying the nonclassical properties of the
math-type q-deformed states. The generalized squeezed states [44] are interesting and re-
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cently gained importance as they provide additional degrees of freedom in a system [45].
The generalized states can be constructed by replacing the ordinary ladder operators with
the generalized ones [46]. Generalized photon-subtracted squeezed vacuum states are al-
ready studied, and their nonclassical properties are investigated [47]. As there exists a wide
variety of nonclassical states of light, we aim to search for nonclassicality in the superposi-
tion of q-deformed states. The linear superposition principle is one of the fundamental con-
cepts of quantum mechanics [48]. The study of the superposition of a variety of squeezed
states is gaining importance in recent years. A study on the nonclassical properties of super-
position of squeezed states in the non-deformed scenario was done recently [49]. Another
study is about the dynamics and decoherence of the nonclassical properties of noncommu-
tative deformed cat states [50]. The nonclassical properties of q-deformed noncommutative
cat states are studied in another work [51]. In another work, the authors study the optical
properties of the superposition of q-deformed coherent states [52]. A recent work [53]
deals with a gravitational cat state (gravcat) where the authors explore the properties of the
two-gravcat system for BECs. Also, the nonlinear dynamics of the superposition of quan-
tum wavepackets are studied for various systems [54]. Our study is a generalization of the
result obtained in the non-deformed scenario [49] to the q-deformed case. We can also find
some other works in the literature which study the nonclassical properties of generalized
squeezed states [55, 56], but they use non-deformed quadrature operators, which is con-
ceptually wrong. Here, we focus on the superposition of two q-deformed squeezed vacuum
states and the superposition of two q-deformed squeezed coherent states and study their
squeezing and nonclassical properties in measures such as quadrature squeezing, higher-
order squeezing, number squeezing, and deformed Husimi Q function.

Later, our study of the dynamical behavior of a math-type q-deformed harmonic os-
cillator ended up revealing the nonlinear behavior in the same system. A pure harmonic
oscillator with energy eigenvalues En has a linear dependence on n. While in the deformed
regime, we observed a nonlinear increase in its energy eigenvalues. It is already given in the
literature that the linear dependence of energy eigenvalues in the case of a non-deformed
oscillator leads to a periodic behavior of the dynamics of its expectation values. Thus we
proceeded with a hint that this nonlinear behavior may show a chaotic nature in this system,
which we have investigated thereafter. It is worth mentioning that some authors used the
expectation values of dynamical variables to study the chaotic behavior of quantum systems
[57, 58, 59]. Here, in the course of our study, we are advancing this analysis by extending it
to the q-deformed systems. The deformation of the Lie algebra engenders unusual proper-
ties in these deformed quantum systems, thus deeming them potential candidates to search
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for chaotic behavior in quantum mechanics. Various tools like the recurrence plots, first
return time distributions, Lyapunov exponents and power spectra helped us in the proper
analysis of the system.

After analyzing the expectation values of the dynamical variables and thereby showing
the signatures of chaos in a math-type q-deformed quantum system, we have focused on a
more detailed study of nonclassical properties of the same. In this part of the research, we
analyze the entanglement dynamics of a q-deformed quantum system. The study of entan-
glement in deformed states is a promising and progressing area of research. The authors
of [60] studied the entanglement of a deformed field interacting with a three-level atom
and tested the observations with experimentally accessible parameters. Nonlinear optical
tomography entangled pair coherent states in a q-deformed oscillator are studied and re-
ported in another recent research [61]. Another recent research [62] reports the study of
quantum scar states from q-deformed Lie algebras using entanglement entropy. Regarding
the study of entanglement, the most important part is to test whether a given quantum state
is entangled. There are different entanglement measures that are being used for the quan-
tum states. They include von-Neumann entropy [63], concurrence [64], negativity [65]
and quantum Fisher information [58]. In light of all the current research, we put forward
the aim of the final part of our research to investigate the entanglement dynamics of the
q-deformed states in the presence of a Kerr-like nonlinear medium. It is important to know
the entanglement dynamics of a deformed system which plays a vital role in quantum in-
formation processing. As we stated earlier, the deformed systems are more favorable than
the ideal non-deformed systems. Even though not yet been achieved experimentally, such
an advantageous system will surely find applications in the near future.

A summary of the contents of the rest of this thesis is given below:

In Chapter (2), we propose the study of the f -deformed quadrature operator and
thereby obtain the energy eigenfunctions of the prominent f -oscillators. We plotted wave-
functions for three different types of deformations. Also, we made a comparison with the
non-deformed oscillator’s wavefunctions.

Chapter (3) reports the study of the squeezing and nonclassicality in the q-deformed
squeezed vacuum states, the superposition of two q-deformed squeezed vacuum states,
and the superposition of two q-deformed squeezed coherent states using deformed quadra-
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ture operators. Despite the quadrature and number squeezing, the analysis of the Husimi
Q-function reveals that these states are highly nonclassical.

In Chapter (4), we report the study of the dynamical behavior of the math-type q-deformed
harmonic oscillator system widely studied in quantum optics. The analysis of expectation
values of dynamical variables carried out in this work clearly shows signatures of inherent
quantum chaos in the system.

Chapter (5) is an extension of the analysis of nonclassical properties of deformed oscil-
lators. Here we discussed the propagation of a single-mode math-type q-deformed field
through a nonlinear medium and studied the entanglement dynamics of the system in terms
of the von Neumann entropy. The system in different initial states is investigated.

Chapter (6) concludes the thesis with a discussion on possible interesting future works.
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Chapter 2

Quadrature operator eigenstates
and energy eigenfunctions of
f -deformed oscillators

2.1 Introduction

“The career of a young theoretical physicist consists of treating the harmonic oscillator in

ever-increasing levels of abstraction”

The quote by Sidney Richard Coleman, the famous American theoretical physicist, said
during one of his lectures at Harvard University, refers to the key role that the harmonic
oscillator plays in all fields of physics.

Using a simple harmonic oscillator to illustrate the basic concepts and methods makes
it one of the most important systems in quantum mechanics. Such a system is important
because it provides general solutions that contribute to the modeling and understanding
of many oscillatory systems, for example, the vibrational motion between two atoms in
a diatomic molecule. Quantum harmonic oscillator finds practical applications in various
fields, such as quantum optics, quantum field theory, nuclear physics, etc.

A pure quantum harmonic oscillator is deformed, so a deformed commutation relation
replaces the usual canonical commutation relation. Considering the importance and the
recent research regarding deformed oscillators, as mentioned in Chapter(1), we propose
the study of f -deformed quadrature operator in this chapter and thereby obtain the energy
eigenfunctions of the prominent f -oscillators. Despite their importance in the literature,
the fact that their wavefunctions remain unknown has become the basic motivation of our
study. Our results will be helpful for quantum state reconstruction and quantum information
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processing.

2.2 The non-deformed harmonic oscillator

The basic Hamiltonian for a pure quantum harmonic oscillator is given by

H =
1

2
(a†a+ aa†), (2.1)

with ~ω = 1, a and a† are the annihilation and creation operators which obey the canonical
commutation relation

[a, a†] = aa† − a†a = I, [a, I] = [a†, I] = 0, (2.2)

where I , is the identity operator.

The number operator N can be defined as N = a†a, where N |n〉 = n|n〉 and |n〉 are
the oscillator energy eigenstates with n = 0, 1, 2, . . . . In terms of N , the Hamiltonian (2.1)
can be rewritten as

H = N +
1

2
, (2.3)

which means the energy eigen values of the non-deformed harmonic oscillator are

E = n+
1

2
(2.4)

with the smallest possible value E0 = 1
2

known as the zero-point energy. (2.4) gives the
quantized energy levels in the system with a difference of E0 from the lower one. The
corresponding energy eigen functions in the position representation are

ψn(x) =
Hn(x)

π
1
4 2

n
2

√
n!
e−inθe−

x2

2 , (2.5)

with Hn(x) being the Hermite polynomial and e−
x2

2

π
1
4

being the ground state wavefunc-
tion ψ0(x). Also, the position and momentum opeartors satisfy the commutation relation
[x, p] = i. The position probability distributions Pn(x) = |ψn(x)|2 corresponding to differ-
ent energy values is shown in figure (2.1).
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Figure 2.1: Position probability distributions of a non-deformed harmonic oscillator for different values of n, and corresponding energy
eigen values.

2.3 Review of f -oscillators

The authors of [66] have defined the operatorAf and its adjointA†f as a nonlinear expansion
of the usual harmonic oscillator operators a and a†:

Af = af(n), A†f = f †(n)a†. (2.6)

The operators Af and A†f in terms of a function f(n) define a new class of oscillators
called as f -oscillators which reduces to the usual harmonic oscillator operators a and a†

when f(n) = I , where Af and A†f satisfy [67]:

[Af , A
†
f ] = φ(n), (2.7)

where φ(n) = f(n+1)f †(n+1)(n+1)−f(n)f †(n)n. They also obey theQ-commutation
relation

[Af , A
†
f ]Q = AfA

†
f −QA†fAf

= f(n+ 1)f †(n+ 1)(n+ 1)−Qf(n)f †(n)n, (2.8)

where Q is a general deformation parameter and different forms of Q provide different
types of deformation; we will be considering a few specific types of deformations in this
paper. The above relation reduces to the canonical commutation relation (2.2) when Q −→
1 and f(n) = I .
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We can now define a new set of eigenstates |n〉f that form a complete orthonormal
basis in the f -deformed Fock space provided that there exists a deformed number operator
Nf = A†fAf with eigenvalue [n]f having the form

[n]f = |f(n)|2n, (2.9)

such that,
Nf |n〉f = A†fAf |n〉f = [n]f |n〉f , f〈m|n〉f = δmn. (2.10)

The action of Af and A†f on the deformed Fock states |n〉f are given by

Af |n〉f =
√

[n]f |n− 1〉f , Af |0〉f = 0 and

A†f |n〉f =
√

[n+ 1]f |n+ 1〉f .
(2.11)

|n〉f is also the eigenstate of the Hamiltonian [67]

Hf =
ω

2

(
A†fAf + AfA

†
f

)
(2.12)

with the eigenvalue

En,f =
ω

2
[(n+ 1)f(n+ 1)f ∗(n+ 1) + nf(n)f ∗(n)] . (2.13)

Now we review some special cases of f -oscillators which we will be considering in our
study:

• The math-type q-deformation obeys the commutation relation [46]:

Amq A
m†

q − q2Am
†

q Amq = I, (2.14)

where, 0 < q < 1 with Q = q2. Here,

[n]mq =
1− q2n
1− q2 , (2.15)

where q is the deformation parameter and the superscript m stands for math-type q-
deformation and we use the same in the rest of the work.
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• The (p, q)-deformation follows the commutation relation [68]:

A(p,q)A
†
(p,q) − pA

†
(p,q)A(p,q) = q−n. (2.16)

Here, Q = p and
[n](p,q) =

q

1− pq (q−n − pn). (2.17)

The subscript (p, q) represents the (p, q)-deformation, where p and q are the defor-
mation parameters.

• The physics-type q-deformation [69] is actually a special case of (2.16) with p = q,
giving us

ApqA
p†

q − qAp
†

q A
p
q = q−n, (2.18)

where q > 1. Here, Q = q and putting p = q in (2.17), we get

[n]pq =
q

1− q2 (q−n − qn), (2.19)

where the superscript p denotes the physics-type q deformation with the deformation
parameter q.

Similar relations can be obtained for other maths-type [70, 71] and physics-type [72] de-
formed oscillators.

2.4 Deformed position and momentum operators

In quantum mechanics, the position and momentum operators x̂ and p̂ are the operators
corresponding to the position and momentum observables of a particle. They are known to
satisfy the canonical commutation relation

[x, p] = i, (2.20)

which forms one of the cornerstones of quantum mechanics. The commutation relation
leads to the position-momentum uncertainity relation of W. Heisenberg,

〈(∆x)2〉〈(∆p)2〉 ≥ 1

4
, (2.21)
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It is a key principle in quantum mechanics which states that if we know exactly where the
particle is placed, we know nothing about its momentum and vice versa.

As we said earlier, the deformations are imposed in such a way that the usual com-
mutation relation is replaced by the deformed one. Consider the position operator Xf and
momentum operator Pf for the f -oscillator in terms of the f -deformed ladder operators
[73, 74]

Xf = α(A†f + Af ), Pf = iβ(A†f − Af ), (2.22)

where α, β ∈ <. In the non-deformed limit, (2.22) reduces to

x =
1√
2

(a† + a), p =
i√
2

(a† − a), (2.23)

which are the non-deformed position and momentum operators respectively. Rearranging
(2.22), we obtain the expressions for Af and A†f in terms of Xf and Pf . Substituting
these expressions for Af and A†f into (2.8), for α = β =

√
1+Q
2

, we obtain the following
commutation relation for the deformed operators Xf and Pf :

[Xf , Pf ] = i[f(n+ 1)f †(n+ 1)(n+ 1)−Qf(n)f †(n)n

−1−Q
1 +Q

(X2
f + P 2

f )]. (2.24)

We can see that the above relation gives distinct deformed algebras for the examples
mentioned in the previous section when their respective functions |f(n)|2 and respective
deformation parameters Q are substituted. Also, the deformed commutation relation (2.4)
reduces to the non-deformed case (2.4) as q → 1.

2.5 The f -deformed quadrature operator and wavefunc-
tions of the f -deformed oscillator

A quadrature operator, also known as a quadrature variable, serves a vital role in quantum
optical systems. The quadrature operator is a function of a phase factor, and it becomes the
position or momentum operator when the phase factor acquires a value 0 or π, respectively.
One can use the homodyne detection method to observe the quadrature operator associated
with a field.

14



The detection setup is briefly discussed here: The figure (2.2) depicts the basic experi-

Figure 2.2: A shematic representation of the balanced homodyne detection setup.

mental setup for the balanced homodyne detection setup. We send a signal (for which the
quadrature is to be measured) that interferes with a local oscillator using a balanced 50:50
beam splitter. The local oscillator provides the phase difference ‘θ’ which can be varied
by adjusting the local oscillator during the measurement. The local oscillator is chosen to
behave classically (which means we can neglect the quantum fluctuations in it); hence we
choose a coherent laser beam for it. After the optical mixing, the split beams are directed
towards two photodetectors. The photocurrents I1 and I2, thus detected, are measured and
subtracted from each other. The resulting quantity contains the interference term of the
signal and the local oscillator, from which the quadrature component can be extracted. The
detector also serves as an amplifier that amplifies the signal above the electronic noises of
the photodiodes, thereby increasing its efficiency to a nearly perfect technical solution.

Quadrature variables such as position and momentum play an important role in the
phase-space representation of quantum mechanics. Wigner function and Husimi Q func-
tion are frequently used quasi-probability distributions which are functions of quadrature
variables. Also, the quadrature wavefunctions of quantum systems are essential for better
understanding physical systems and reconstruction of quantum systems from experiments.

The homodyne quadrature operator corresponds to the non-deformed canonical com-
mutation relation given in (2.2) is [75, 76, 77, 78]

xθ =
1√
2

(ae−iθ + a†eiθ). (2.25)
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where θ is the phase of the local oscillator, such that 0 ≤ θ ≤ 2π. It is easy to see that we
obtain the canonical position and momentum operators x and p when θ = 0 and θ = π/2,
respectively.

The q-deformed homodyne quadrature operator Xθ,q is defined in [31] that reports the
study of optical tomogram of q-deformed coherent states. In a similar way, it can be easily
verified using the photon-number difference in the two output channels of the beam splitter
in homodyne detection setup that the f -deformed homodyne quadrature operator takes the
form

Xθ,f =

√
1 +Q

2
(Afe

−iθ + A†fe
iθ), (2.26)

and it becomes deformed position and momentum operators Xf and Pf when θ = 0 and
θ = π/2, respectively. In the limit, f(n) = I and Q −→ 1, the deformed quadrature
operator Xθ,f reduces to the non-deformed quadrature operator given in (2.25). Using the
definition of the deformed quadrature given above, we find the quadrature wavefunction of
f -oscillator in the following part of the paper.

The eigenstate of the deformed quadrature operator is represented by |Xθ〉f and it has
an eigenvalue Xθ,f given by

X̂θ,f |Xθ〉f = Xθ,f |Xθ〉f . (2.27)

These eigenstates can be represented in the deformed Fock state basis of the f -deformed
oscillator as:

|Xθ〉f =
∞∑
n=0

|n〉ff〈n|Xθ〉f , (2.28)

where,

f〈Xθ|n〉f = Ψn,f (Xθ,f ) (2.29)

is the energy eigenfunction of the f -oscillator for a given deformed eigenstate |n〉f in the
quadrature representation. We obtain the excited state wavefunctions in terms of the ground
state wavefunction in what follows. It will simplify the problem by reducing the unknowns
to just the ground state wavefunction.

The eigenvalue equation (2.27) of the operator Xθ,f allows us to derive a recurrence
relation obeyed by the wavefunctions Ψn,f (Xθ,f ). Using (2.3), (2.26) and (2.27) we get,
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f〈n|Xθ,f |Xθ〉f = Xθ,fΨn,f (Xθ,f ) (2.30)

=

√
1 +Q

2 f
〈n|(Afe−iθ + A†fe

iθ)|Xθ〉f (2.31)

Solving the above equation, we get

f〈n|Xθ,f |Xθ〉f =

√
1 +Q

2

(√
[n+ 1]f e

−iθ Ψn+1,f (Xθ,f ) +
√

[n]f e
iθ Ψn−1,f (Xθ,f )

)
,(2.32)

for n = 1, 2, 3..., and

Xθ,f Ψ0,f (Xθ,f ) =

√
1 +Q

2

(√
[1]f e

−iθ Ψ1,f (Xθ,f )
)
, (2.33)

where Ψn,f (Xθ,f ) is the complex conjugate of the wavefunction corresponding to the de-
formed state |n〉f . The complex conjugate of (2.32) gives us a two term recurrence relation
for Ψn+1(Xθ,f ) in the quadrature representation:

Ψn+1,f (Xθ,f ) =
e−iθ√

[n+ 1]f

[
2√

1 +Q
Xθ,f Ψn,f (Xθ,f )

−
√

[n]f Ψn−1,f (Xθ,f ) e
−iθ
]

(2.34)

for n = 1, 2, 3, ..., with

Ψ1,f (Xθ,f ) =
e−iθ√

[1]f

2Xθ,f√
1 +Q

Ψ0,f (Xθ,f ). (2.35)

Using (2.34) and (2.35), we obtain some of the excited state wavefunctions in the quadra-
ture representation:

Ψ2,f (Xθ,f ) =
e−2iθ√

[2]f

[
2Xθ,f√
1 +Q

(
2Xθ,f√

[1]f (1 +Q)

)
−
√

[1]f

]
Ψ0,f (Xθ,f ), (2.36)
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Ψ3,f (Xθ,f ) =
e−3iθ√

[3]f

[
2Xθ,f√
1 +Q

1√
[2]f

(
2Xθ,f√
1 +Q

2Xθ,f√
[1]f (1 +Q)

−
√

[1]f

)
−
√

[2]f

2Xθ,f√
[1]f (1 +Q)

]
Ψ0,f (Xθ,f ). (2.37)

Similarly, we can obtain any other excited state using the recurrence relation. We observe
that form of the solutions is similar to the solutions obtained for the q-deformed state [31]
with the following changes: q2 has been replaced by a general deformation parameter Q
and [n]f has the value |f(n)|2n.

Now, we can write the analytical expression for the f -deformed Fock state |n〉f in the
quadrature basis as

Ψn,f (Xθ,f ) = e−inθ Jn,f (Xθ,f ) Ψ0,f (Xθ,f ), (2.38)

where Ψ0,f (Xθ,f ) is the ground state wavefunction and the new polynomial Jn,f (Xθ,f ) is
defined by the following recurrence relation:

Jn+1,f (Xθ,f ) =
1√

[n+ 1]f

[
2Xθ,f√
1 +Q

Jn,f (Xθ,f )−
√

[n]f Jn−1,f (Xθ,f )

]
. (2.39)

It is very clear from the above expression that Jn,f (Xθ,f ) is dependent on Q and therefore,
varies for each case that is being studied. The initial two terms of Jn,f (Xθ,f ) are:

J0,f (Xθ,f ) = 1, (2.40)

J1,f (Xθ,f ) =
2Xθ,f√

[1]f (1 +Q)
. (2.41)

Since we have the three-term recurrence relation (2.39), which connects the polynomi-
als, the polynomials are orthogonal according to Favard’s theorem [79]. Also, because of
the relation between the polynomial Jn,f (Xθ,f ) and the orthogonal energy eigenfunctions
Ψn,f (Xθ,f ) in equation (2.38), we can easily see that the polynomials are orthogonal. From
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(2.39), we find the second and third terms of Jn,f (Xθ,f ), as representative examples, to be

J2,f (Xθ,f ) =
4X2

θ,f − (1 +Q)[1]f√
[2]f !(1 +Q)2

, (2.42)

J3,f (Xθ,f ) =
8X3

θ,f − 2(1 +Q)([1]f + [2]f )Xθ,f√
[3]f !(1 +Q)3

, (2.43)

where, [n]f ! = [n]f [n− 1]f ...[1]f . Notice the similarity of the numerators with the Hermite
polynomials. In the limit |f(n)|2 = 1 and Q −→ 1, the recurrence relation

(2.39) reduces to the recurrence relation of the Hermite polynomial:

Hn+1(xθ) = 2xθ Hn(xθ)− 2n Hn−1(xθ). (2.44)

In the above limit, (2.38) also reduces to the quadrature representation of the non-deformed
Fock state |n〉:

Ψn(Xθ,f → xθ) =
Hn(xθ)

π1/4 2n/2
√
n!
e−inθe−x

2
θ/2, (2.45)

where Hn(xθ) is the Hermite polynomial of order n. The ground state in the above limit is
given by:

Ψ0(Xθ,f → xθ) =
e−x

2
θ/2

π1/4
. (2.46)

Now, we can obtain an explicit representation for quadrature operator eigenstates |Xθ〉f
in (2.27), in terms of the orthogonal polynomials Jn,f (Xθ,f ):

|Xθ〉f =
∞∑
n=0

|n〉f f〈n|Xθ〉f = Ψ0,f (Xθ,f )
∞∑
n=0

Jn,f (Xθ,f ) einθ |n〉f , (2.47)

where the expression

f

〈
X
′

θ|Xθ

〉
f

= δ
(
Xθ,f −X

′

θ,f

)
= Ψ0,f (Xθ,f )Ψ0,f (X

′

θ,f )
∞∑
n=0

Jn,f (Xθ,f )Jn,f (X
′

θ,f )

(2.48)

is used to find Ψ0,f (Xθ,f ) numerically. Afterwards, all the higher-order wavefunctions can
be calculated using the equation (2.38) and normalized the wavefunctions numerically.

Using the general expressions derived above, we obtain the polynomials Jn(Xθ,f ) and
wavefunctions Ψn,f (Xθ,f ) for different types of deformations in the next Section.
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2.5.1 Math-type q-deformed oscillator wavefunctions

The math-type q-deformation is introduced in [46]. The deformation is named as ‘math-
type’ because this algebra was used in the mathematical literature over 150 years [80]. For
the math-type q-deformation described by the deformed algebra (2.14), we had seen that
Q = q2 and [n]mq = (1 − q2n)/(1 − q2). Therefore in this case, the q-deformed Fock state
in the quadrature basis becomes

Ψm
n,q(X

m
θ,q) = e−inθ Jmn,q(X

m
θ,q) Ψm

0,q(X
m
θ,q), (2.49)

where, the polynomial Jmn (Xm
θ,q) has reduced to

Jmn+1,q(X
m
θ,q) =

1√
[n+ 1]mq

[
2Xm

θ,q√
1 + q2

Jmn,q(X
m
θ,q)−

√
[n]mq J

m
n−1,q(X

m
θ,q)

]
. (2.50)

From the above equation, an explicit expression for the deformed Fock state in the position
representation (θ = 0) is given by

Ψm
n,q(X

m
q ) = Jmn,q(X

m
q )Ψm

0,q(X
m
q ). (2.51)

In the limit q −→ 1, Ψm
n,q(X

m
q ) reduces to the non-deformed harmonic oscillator posi-

tion wavefunction
Hn(x)

π1/42n/2
√
n!
e−x

2/2. (2.52)

2

(a)

2

(b)

Figure 2.3: (a) ground state and (b) first excited state probability distribution functions for the harmonic oscillator (solid),
a deformed oscillator with q = 0.90 (dotted), q = 0.80 (dash-dotted), and q = 0.30 (dashed) in the case of math type
q-deformation. For q = 0.3, we have included insets in Figures 1(a) and 1(b) to show that wavefunctions go to zero
moderately.

Figures 2.3.(a) and 2.3.(b) show the deformed normalized ground state and first excited
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state position probability densities, respectively, for different deformation values. It can be
seen that as the q value decreases (deformation increases), the peak of the probability curve
increases in both figures. Moreover, in each case as q −→ 1, the probability curve is seen
to become the non-deformed harmonic oscillator probability distribution function.

2.5.2 Physics-type q-deformed oscillator wavefunctions

[28] introduced the physics-type q-deformation, which was used to study quantum groups[81],
lattice models[82], etc. In the physics-type q-deformation described by the algebra (2.18)
with Q = q and [n]pq = q(q−n − qn)/(1− q2), the q-deformed Fock state in the quadrature
basis is given by

Ψp
n,q(X

p
θ,q) = e−inθ Jpn,q(X

p
θ,q) Ψp

0,q(X
p
θ,q), (2.53)

where the polynomial Jnf (X
p
θ,q) has reduced to

Jpn+1,q(X
p
θ,q) =

1√
[n+ 1]pq

[
2Xp

θ,q√
1 + q

Jpn,q(X
p
θ,q)−

√
[n]pqJ

p
n−1,q(X

p
θ,q)

]
. (2.54)

In the position representation the deformed Fock state has the form,

Ψp
n,q(X

p
q ) = Jpn,q(X

p
q )Ψp

0,q(X
p
q ), (2.55)

which reduces to (2.52) when q→ 1.
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Figure 2.4: (a) ground state and (b) first excited state probability distribution functions for the harmonic oscillator (solid),
deformed oscillator with q=1.1 (dashed), q=1.5 (dash-dotted) and q=1.9 (dotted) in the case of physics type q-deformation.

The plots of the normalized position probability densities of the ground state and first

21



excited state for different q values are shown in figures 2.4. (a) and 2.4. (b), respectively.
We find that the probability density for the harmonic oscillator displays the highest peak.
In this case, as the q value increases (deformation increases), the height of the peak is seen
to decrease in contrast to the math-type q-deformation studied in the previous subsection.
Moreover, the curve approaches the distribution function corresponding to the harmonic
oscillator wavefunction as q −→ 1 in both figures.

2.5.3 (p,q)-deformed oscillator wavefunctions

In the case of (p,q)-deformation described by the algebra (2.16) with Q = p and [n](p,q) =
q(q−n−pn)
(1−pq) , the (p,q)-deformed Fock state in the quadrature representation is given by,

Ψn,(p,q)(Xθ,(p,q)) = e−inθ Jn,(p,q)(Xθ,(p,q)) Ψ0,(p,q)(Xθ,(p,q)), (2.56)

where, the polynomial Jnf (Xθ,(p,q)) has reduced to

Jn+1,(p,q)(Xθ,(p,q)) =
1√

[n+ 1](p,q)

[
2Xθ,(p,q)√

1 + p
Jn,(p,q)(Xθ,(p,q))−

√
[n](p,q)Jn−1,(p,q)(Xθ,(p,q))

]
.

(2.57)

In the position representation, the deformed Fock state is given by,

Ψn,(p,q)(Xp,q) = Jn,(p,q)(Xp,q)Ψ0,(p,q)(Xp,q), (2.58)

which reduces to (2.52) when (p,q)→ 1.

The normalized ground state and first excited state position probability densities for
(p,q)-deformation are plotted for the same q value and different p values in figures 2.5.(a)
and 2.5.(b), respectively. We observe that for the same q value, as p increases (deformation
increases), the height of the peak decreases. Further, the densities tend to the harmonic
oscillator probability distribution when (p,q)→ 1.

2.6 Conclusion

We have defined the f -deformed quadrature operator with the help of the homodyne de-
tection method and represented its eigenstates in the f -deformed Fock state basis. The
quadrature operator allowed us to produce a recurrence relation for the wavefunctions,
which allowed us to discover a new class of orthogonal polynomials Jn,f (Xθ,f ). These new
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Figure 2.5: (a) ground state and (b) first excited state probability distribution functions for harmonic oscillator(solid),
deformed oscillator with p=1.3 q=0.5 (dashed), p=1.5 q=0.5 (dash-dotted) and p=1.9 q=0.5 (dotted) in the case of (p,q)-
deformation.

polynomials enabled us to represent the excited state wavefunctions of the f -oscillators in
terms of the ground state wavefunction Ψ0,f (Xθ,f ). The polynomials Jn,f (Xθ,f ) were found
to be similar in properties of the Hermite polynomials Hn(x).

We then considered different types of deformation and studied how the form of the
polynomial Jn,f (Xθ,f ) (and thus the form of the deformed wavefunction Ψn,f (Xθ,f )) varies
with the nature of deformation. Three types of deformed systems, namely math-type q-
deformation, physics-type q-deformation and (p, q)-deformation, were studied by appro-
priate substitution for |f(n)|2 andQ in the expressions for the general f -oscillator. We also
plotted the position probability distributions for the deformed ground state and the first ex-
cited state for each type of deformation studied. By comparing the probability curves for
different values of the deformation parameter in each case, we demonstrated the difference
between the deformed and the non-deformed harmonic oscillator wavefunctions. Quadra-
ture operator eigenstates are required to reconstruct quantum states and process quantum
information using optical tomograms [83, 84, 85, 86]. So our calculation will be useful
for the state reconstruction and quantum information processing of f-deformed quantum
states. Also, we propose a further study of the f -oscillators using the factorization method
discussed in [87].
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Chapter 3

Squeezing and nonclassicality of q-deformed
superposition states

3.1 Introduction

The term ‘nonclassical states of light’ started to appear in physics in the early 1960s. The
name was roughly coined for those states of light which need sophisticated setups for their
production. Some of the best-known examples of nonclassical states are squeezed states,
Schrodinger cat states, entangled states, etc. The most nonclassical of all nonclassical states
of light is the single-photon state. Of course, a criterion determines the nonclassicality of
a state, called the Klauder-Glauber-Sudarsan P -function. If P is positive, the state is a
classical one. On the other hand, the states for which P is negative are nonclassical. There
exists different types of nonclassical behavior exhibited by quantum systems. Squeezing
is an important one among them, which finds aplications in fields where low-noise appli-
cations are needed. Quantum entanglement falls in the same category, mainly for quantum
teleportation, quantum communication, etc.

In optical communication systems, there is a standard quantum limit to the possible re-
duction of noise in a coherent signal called ‘the zero point fluctuations’, because of which
even an ideal laser would still possess quantum noise. Squeezed states have less fluctua-
tions in one quadrature than a coherent state, which is a significant feature. The squeezed
states have a non-positive non-singular Glauber-Sudarshan P -function so that their statis-
tical properties cannot be determined using the techniques analogous to the classical prob-
ability theory, which makes the squeezed states ‘nonclassical’. The low-noise behavior of
squeezed states make them find applications in fields such as gravitational wave detection
[88], in LIGO [89] and VIRGO [4] projects, etc. The field of optical communications is
also greatly benefited from squeezed states [90]. All these applications make their study,
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(a)
(b)

Figure 3.1: (a) Vacuum state and (b) the coherent state in the phase space representation.

generation and detection inevitably important in quantum physics.

Nonclassicality, especially squeezing in deformed states, is a prominent area of re-
search. A deformed system being more generalized than the ideal non-deformed systems,
the study of squeezing in such states will be far more advantageous in relevant fields. Since
we have an additional degree of freedom in the deformed systems (i.e., the deformation
parameter q), we can desirably control the squeezing using q. Here we deal with the math-
type q-deformation, which follows the q-deformed commutation relation (2.14) and we
specifically consider the superposition of two q-deformed squeezed vacuum states, and the
superposition of two q-deformed squeezed coherent states. Among different measures of
nonclassicality, such as squeezing, Husimi Q function, quantum entanglement, etc., we pay
attention to squeezing and Husimi Q function in this chapter. Quantum entanglement of a
math-type q-deformed system will be discussed in one of the forthcoming chapters.

3.2 Squeezing and Husimi Q function

There are different kinds of squeezing that can be observed in quantum systems. They are
quadrature squeezing, higher-order squeezing, and photon number squeezing. All these
serve as measures of nonclassicality. Apart from squeezing, the Husimi Q function is
another measure of nonclassicality in a given system. Each of them is discussed below in
detail:
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(i) Quadrature squeezing and higher-order squeezing

Two operators A1 and A2 (deformed or non-deformed) obeying the commutation relation
[A1, A2] = iA3 will satisfy the unceratinity relation

〈(∆A1)
2〉〈(∆A2)

2〉 ≥ 1

4
|〈A3〉|2. (3.1)

A state of the system is squeezed if either 〈(∆A1)
2〉 ≤ 1

2
|〈A3〉| or 〈(∆A2)

2〉 ≤ 1
2
|〈A3〉|

is true. The conjunction ‘either-or’ is used just because it is not possible to have both the
variances less than 1

2
|〈A3〉|, as it would be a violation of the uncertainity relation.

While considering the quadrature squeezing, the operators A1 and A2 are replaced by
the quadratures x and p, in the case of non-deformed oscillators which satisfy the commu-
tation relation

[x, p] =
i

2
. (3.2)

It implies that the quadrature squeezing exists only if either 〈(∆x)2〉 ≤ 1
4

or 〈(∆p)2〉 ≤ 1
4

is satisfied. The state for which one of these conditions holds is said to have ‘less noise’
in the corresponding quadrature. At the same time, the fluctuations in the other quadrature
will be larger so that the uncertainty relation is not violated.

For an example, let us consider the non-deformed squeezed vacuum state. Squeezed
vacuum states find applications in fields like quantum fluctuations, quantum teleportation
[91, 92] etc. A squeezed vacuum state in the non-deformed algebra can be generated math-
ematically by the action of squeezing operator S(ξ) on the vacuum state:

S(ξ) = exp
(
(ξ∗a2 − ξa†2)/2

)
, |ξ〉 = S(ξ)|0〉, (3.3)

where the squeezing parameter ξ = reiθ, 0 ≤ r < ∞ and 0 ≤ θ ≤ 2π. The operator
S(ξ) is also known as ‘a two-photon generalization of the displacement operator’ since its
action on vacuum state generates a kind of two-photon coherent state.

The squeezed vacuum state can also be represented as [93]:

|ξ〉 =
√

sech(r)
∞∑
n=0

√
(2n)!

2nn!

(
−eiθ tanh(r)

)n |2n〉. (3.4)

When θ = 0, the variances in the quadratures turn out to be,

〈(∆x)2〉 =
1

4
e−2r, 〈(∆p)2〉 =

1

4
e2r. (3.5)
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The squeezing shifts to the p-quadrature when θ = π. It is to be noted that the state yields
minimum uncertainity, i.e., 1

16
when θ = 0. To grab the idea of squeezing more quickly, it

is more convenient to use their graphical representation. For a vacuum state and a coherent
state, fluctuations in both the quadratures are equal, i.e., ∆x = ∆p = 1

2
. It is depicted in

figure (3.1). A representation of squeezed vacuum state for θ = 0 and θ = π is shown
in figure (3.2). A more convenient way to characterize the squeezing is to calculate the
squeezing coefficient Sx:

Sx =
〈(∆x)2〉 − 1

2
|〈[x, p]〉|

1
2
|〈[x, p]〉| . (3.6)

Squeezing exists in x-quadrature if −1 < Sx < 0 and −1 < Sp < 0 indicates that the
p-quadrature is squeezed.

Hong and Mandel [94] introduced the generalization for the concept of quadrature
squeezing, called ‘higher-order squeezing’, which refers to the squeezing in higher-order
moments of a quadrature operator. The parameter given in (3.6) is extended to the general
case of N th order squeezing as

SNx =
〈(∆x)N〉 − (N−1)!!

2
N
2
|〈([x, p])N2 〉|

(N−1)!!
2
N
2
|〈([x, p])N2 〉|

. (3.7)

Same as in the second-order case, −1 ≤ SNx ≤ 0 indicates N th order squeezing.

The f -deformed quadrature operators and their commutation relation are already dis-
cussed in Chapter (2). In the case of math-type q-deformation which we are interested in,
the position and momentum operators become [74, 31]

Xm
q =

√
1 + q2

2
(Am

†

q + Amq ), Pm
q =

i
√

1 + q2

2
(Am

†

q − Amq ), (3.8)

which reduced to (2.4) when q → 1. Also,Amq andAm†q are the q-deformed ladder operators
given by

Amq |n〉mq =
√

[n]mq |n− 1〉mq , Am
†

q |n〉mq =
√

[n+ 1]mq |n+ 1〉mq (3.9)

and obeys the commutation relation (2.14).

A deformed system is said to be quadrature squeezed if either 〈(∆Xm
q )2〉 ≤ 1

2
|〈[Xm

q , P
m
q ]〉
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(a) (b)

Figure 3.2: (a) Squeezed vacuum state with θ = 0 and (b) Squeezed vacuum state with θ = π showing squeezing in different
quadratures.

or 〈(∆Pm
q )2〉 ≤ 1

2
|〈[Xm

q , P
m
q ]〉 holds. The deformed squeezing coefficient SX :

SX =
〈(∆Xm

q )2〉 − 1
2
|〈[Xm

q , P
m
q ]〉|

1
2
|〈[Xm

q , P
m
q ]〉| (3.10)

If −1 < SX < 0, then there exists squeezing in the Xm
q -quadrature. Similar definition can

be used for the Pm
q -quadrature also. Also, when q → 1, (3.10) reduces to the non-deformed

squeezing coefficient 3.6.

As stated in the non-deformed case, the second-order squeezing coefficient (3.10) can
be extended to the general case of N th order squeezing as

SNX =
〈(∆Xm

q )N〉 − (N−1)!!
2
N
2
|〈
(
[Xm

q , P
m
q ]
)N

2 〉|
(N−1)!!

2
N
2
|〈
(
[Xm

q , P
m
q ]
)N

2 〉|
, (3.11)

which reduces to the corresponding non-deformed counterpart (3.7) in the appropriate lim-
its.

Same as in the second-order case, −1 ≤ S ≤ 0 indicates N th order squeezing.

(ii) Number squeezing

The photon number distribution of a coherent state is always Gaussian. A state having
number squeezing is said to exhibit sub-Poissonian statistics, that is, the distribution will
be narrower than that for a coherent state. In other words, the photon number distribution
of the state is narrower than the average number of photons. A more simple way to find the
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nature of photon statistics is to find the Mandel Q-parameter:

Q =
〈(∆n)2〉 − 〈n〉

〈n〉 , (3.12)

where 〈n〉 = 〈a†a〉 and 〈(∆n)2〉 = 〈n2〉 − 〈n〉2. The expression for Q is taken from a
study [95] of photon statistics in the resonance fluorescence. For the Q value in the range
−1 ≤ Q < 0 implies that the statistics of the state are sub-Poissonian. If the value falls in
the range Q > 0, the statistics is super-Poissonian. Also, Q = 0 for a coherent state which
will be Poissonian statistics.

In the case of the math-type q-deformation, the Mandel parameter (3.12) becomes

Q =
〈(∆Nm

q )2〉 − 〈Nm
q 〉

〈Nm
q 〉

, (3.13)

where 〈Nm
q 〉 = 〈Am†q Amq 〉. Here also Q value in the range −1 ≤ Q < 0 indicates number

squeezing.

(iii) Husimi Q function

Husimi function, or Q function [96, 97] is a phase-space probability distribution which can
be defined as the expectation value of the density operator with respect to the coherent state
and is having a positive value for all quantum states. It is a measure of the nonclassicality
of a given state irrespective of squeezing. Husimi function Q can be expressed as:

Q(α) =
1

π
〈α|ρ|α〉 , (3.14)

where |α〉 is the coherent state.

Also, the Q function of the non-deformed coherent state is just a Gaussian, while the
distribution other than a Gaussian-type indicates the nonclassical behaviour of the corre-
sponding state.

The math-type q-deformed Husimi Q function is written as

Q(α) =
1

π
m
q 〈α|ρ|α〉mq , (3.15)
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where |α〉mq is the math-type q-deformed coherent state is given by [70]

|α〉mq = e
− |α|

2

2
q

∞∑
n=0

(α)n√
[n]mq !

|n〉mq , (3.16)

where, e(•)q =
∑∞

n=0
(•)n
[n]mq !

, is the q-deformed exponential function.

As we have discussed the measures of nonclassicality, let us now move on to the states
we are interested in. In the upcoming section, we will be discussing the q-deformed
squeezed states and their superpositions, followed by the results where we ananlyze the
effect of q-deformation on the nonclassicality of each state.

3.3 q-deformed squeezed states and their superpositions

3.3.1 q-deformed squeezed vacuum state and its superposition

A squeezed vacuum state is generated by the action of the squeeze operator (3.2) on the
vacuum |0〉. The action of squeeze operator is in such a way that the photons are created or
destroyed in pairs; hence the resulting squeezed vacuum is called a ‘two-photon coherent
state’. The analytical expression for a non-deformed squeezed vacuum is given in (3.4).
Such a state was experimentally realized in the early 1980s [98]. The schemes employed
for the generation of squeezed states are mainly degenerate parametric down-conversion
and degenerate four-wave mixing [93]. A non-deformed squeezed vacuum state exhibits
quadrature squeezing [93]. The superposition of squeezed vacuum states is discussed in
[49], which shows that squeezing vanishes when we go for their superposition.

When we move on to the deformed regime, f -deformed squeezed state are discussed
in [56]. Now, we can express the math-type q-deformed squeezed vacuum state in the
deformed Fock basis as

|ξ〉mq = Nm
q

∞∑
n=0

(−eiθ tanh(r))n

√
[2n− 1]mq !!

[2n]mq !!
|2n〉mq , (3.17)

where

Nm
q =

(
∞∑
n=0

(tanh(r))2n
[2n− 1]mq !!

[2n]mq !!

)−1/2
. (3.18)

Generalized squeezed vacuum states are already known to be nonclassical [99, 44]. While
dealing with the superposition, we focus on both the quadrature squeezing and photon
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number squeezing. Note that in the generalized case, all the operators are replaced by their
deformed counterpart. In the non-deformed limit, Eq. (3.17) reduces to the non-deformed
squeezed vacuum state 3.4.

Now, let us look at the superposition of two q-deformed squeezed vacuum states given
by,

|ξ〉ms,q = Nm
s,q

(
|ξ〉mq + | − ξ〉mq

)
= Nm

s,q

∞∑
n=0

(eiθ tanh(r))2n

√
[4n− 1]mq !!

[4n]mq !!
|4n〉mq ,

(3.19)

where the normalization constant

Nm
s,q =

(
∞∑
n=0

(tanh(r))4n
[4n− 1]mq !!

[4n]mq !!

)−1/2
. (3.20)

When there’s no deformation (q = 1), (3.19) reduces to the corresponding non-deformed
superposition state.

3.3.2 q-deformed squeezed coherent states and its superposition

Squeezed coherent state is another important class of squeezed state with important ap-
plications in quantum information processing, quantum sensing etc [100, 101]. The non-
deformed squeezed coherent states |α, ξ〉 can be obtained by the action of the displacement
operator D(α) on the squeezed vacuum state:

|α, ξ〉 = D(α)S(ξ)|0〉, (3.21)

where
D(α) = exp

(
αa† − α∗a

)
, (3.22)

and α is the displacement parameter which is a complex number. The squeezed coherent
states and their squeezing properties are studied in [93], which explicitly shows the exis-
tence of quadrature squeezing and photon number squeezing. The superposition of two
squeezed coherent states, their generation, and squeezing properties are discussed in [102].
We use these results as references to compare our results in the following section.

The non-deformed definitions are directly generalized for the math-type q-deformed
ladder operatorsAmq andAm†q . An explicit expression for the q-deformed squeezed coherent
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states is given in [103] in which the authors construct the entangled squeezed states in a
noncommutative space. Thus we have,

|α, ξ〉mq = Nm
q (α, ξ)

∞∑
n=0

I(α, ξ, n)√
[n]mq !

|n〉mq , (3.23)

where

Nm2

q (α, ξ) =

(
∞∑
n=0

|I(α, ξ, n)|2
[n]mq !

)−1
, (3.24)

and the function I(α, ξ, n) is defined by the three-term recurrence relation

I(α, ξ, n+ 1) = αI(α, ξ, n)− ξ[n]I(α, ξ, n− 1), (3.25)

with I(α, ξ, 0) = 1 and I(α, ξ, 1) = α.

Squeezing properties of the q-deformed squeezed coherent states have already studied
in the literature [99]. Similar to the superposition of q-deformed squeezed vacuum states,
we can define the superposition of two q-deformed squeezed coherent states with different
squeezing parameters. The superposition state will be,

|α, ξ〉ms,q = Nm
s,q(α, ξ)

(
|α, ξ〉mq + |α,−ξ〉mq

)
, (3.26)

where

Nm2

s,q (α, ξ) =
(
2 + 2Nm

q (α, ξ)Nm
q (α,−ξ)

×
∞∑
n=0

I(α, ξ, n)I(α,−ξ, n)

[n!]mq

)−1
.

(3.27)

When there’s no deformation, (3.26) reduces to the corresponding non-deformed su-
perposition state

|α, ξ〉s = Ns(α, ξ) (|α, ξ〉+ |α,−ξ〉) . (3.28)

3.4 Results and discussion

Now, let us look into the squeezing and nonclassical behavior of different types of math-
type q-deformed squeezed states and their superpositions and how the nonclassicality of a
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given state depends on the amount of deformation.

3.4.1 q-deformed squeezed vacuum state

3.4.1.1 Quadrature squeezing and higher-order squeezing

The second-order squeezing coefficient can be evaluated as (3.10). For the q-deformed
squeezed vacuum states,

〈
(
∆Xm

q

)2〉 = 〈Xm2

q 〉

=
(1 + q2)

4
Nm2

q

(
1 + tanh(r)2 − 2 cos θ tanh(r)

)
×
∞∑
n=0

(tanh(r))2n
[2n+ 1]mq !!

[2n]mq !!
,

(3.29)

and

〈1
i
[Xm

q , P
m
q ]〉 =

(1 + q2)

2
Nm2

q

(
1− tanh(r)2

)
×
∞∑
n=0

(tanh(r))2n
[2n+ 1]mq !!

[2n]mq !!
.

(3.30)

〈Xm2

q 〉 is calculated using

Xm2

q =

(
1 + q2

4

)(
Am

2

q + Am
†2

q + (1 + q2)Am
†

q Amq + 1
)
. (3.31)

Now, substituting in (3.10), we get SX ,

SX = 2 sinh(r)(sinh(r)− cos θ cosh(r)). (3.32)

The squeezing coefficient is independent of q because the variance and the uncertainty
limit have the same functional dependence on the q value. They are evident from the
definition of SX ((3.10)), (3.29), and (3.30). Following a similar procedure, we can find
out SP also. SX and SP values are then plotted for a range of r values and are depicted
in figure 3.3 and figure 3.4. When θ = 0◦, there is squeezing in the Xm

q -quadrature for all
r values. The squeezing shifts to the Pm

q -quadrature when θ = 180◦. For all the values
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(a) (b)

Figure 3.3: (a) Variation of the squeezing coefficient SX and (b) the variation of SP when θ = 0◦ for the state |ξ〉q . It shows that
squeezing coefficient is the same for all q values.

(a) (b)

Figure 3.4: (a) Variation of the squeezing coefficient SX and (b) the variation of SP when θ = 30◦, for the state |ξ〉q . Squeezing
coefficient is same for any value of q.
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of θ between 0◦ and 180◦, the squeezing in the Xm
q -quadrature gradually vanishes and the

squeezing disappears when θ = 90◦ for both the quadratures. This transition is evident
from the figures, figure 3.3 (a) and figure 3.4 (a). In figure 3.4 (a), there is squeezing in the
Xm
q -quadrature only for a certain range of r values. It is important to note that the squeezing

becomes maximum in the Xm
q -quadrature for θ = 0◦ (and in the Pm

q -quadrature for θ =

180◦) as the deformation and squeezing parameter are increased. Also, it is interesting that
both SX and SP values are found to be independent of the deformation (q value) for a given
θ.

Now, let us move on to the higher order squeezing of the same state. The 4th order
squeezing coefficient in Xm

q -quadrature is given by,

S4
X =

〈(∆Xm
q )4〉 − 3

4
|〈[Xm

q , P
m
q ]2〉|

3
4
|〈[Xm

q , P
m
q ]2〉| , (3.33)

where

〈(∆Xm
q )4〉 = 〈Xm4

q 〉 − 4〈Xm3

q 〉〈Xm
q 〉+ 6〈Xm2

q 〉〈Xm
q 〉2 − 3〈Xm

q 〉4 (3.34)

and the expectation values are taken with respect to |ξ〉mq (Eq. 3.17). Since 〈Xm
q 〉 = 0,

〈(∆Xm
q )4〉 = 〈Xm4

q 〉. Now substituting for Xm
q on terms of Amq and Am†q , we get

〈(∆Xm
q )4〉 =

(1 + q2

4

)2[
〈(Am2

q + Am
†2

q )〉+ 2(1 + q2)〈Am†q Amq 〉

+ 1 + (1 + q2)2〈(Am†q Amq )2〉+ 〈(Am4

q + Am
†4

q )〉
+ 〈Am2

q Am
†2

q 〉+ 〈Am†2q Am
2

q 〉
+ (1 + q2)〈(Am2

q Am
†

q Amq + Am
†

q Amq A
m†2

q )〉
+ (1 + q2)〈(Am†3q Amq + Am

†

q Am
3

q )〉
]
.

(3.35)

We can calculate each term separately and substitute it in (3.35) to obtain 〈(∆Xm
q )4〉. Sim-

ilarly, we can find 〈(∆Pm
q )4〉. Also,

[
Xm
q , P

m
q

]
= 1 +

q2 − 1

q2 + 1
(Xm2

q + Pm2

q ) = 1 +
q2 − 1

2
Am

†

q Amq , (3.36)
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(a) (b)

Figure 3.5: (a) Variation of the squeezing coefficient S4
X when θ = 0◦ (= S4

P when θ = 180◦) and (b) shows the variation of S4
P

when θ = 0◦ (= S4
X when θ = 180◦) with r, for the state |ξ〉mq . In contrast to squeezing, the higher order squeezing is different for

different q values.

and

〈
[
Xm
q , P

m
q

]2〉 =
(q2 + 1)2

4
+ (q4 − 1)

q2 + 1

2
〈Am†q Amq 〉

+
(q4 − 1)2

4
〈(Am†q Amq )2〉.

(3.37)

Substitution of (3.37) and (3.34) in (3.33) gives us the 4th order squeezing coefficient in the
Xm
q -quadrature, and it is plotted for different r values. The same can be performed for the

Pm
q -quadrature.

Figure 3.5 shows the variation of the squeezing coefficients with respect to r. As in the
case of the second order squeezing, here also squeezing exists in the Xm

q -quadrature when
θ = 0◦ and shifts to the Pm

q -quadrature when θ = 180◦ and it can be seen that both these
values are the same. The S4

X values fall in the range −1 ≤ S4 ≤ 0 which means there
is squeezing in Xm

q -quadrature and the positive S4
P values show that there is no squeezing

in the Pm
q -quadrature. It is found that the higher order squeezing coefficient is different

for different q values in contrast to second-order squeezing coefficient. This is due to the
different functional dependence of fourth-order central moment and the uncertainty limit
on q. It is manifested in figure 3.5 as S4

X attains its extreme possible value -1 when we
increase the deformation and squeezing parameter. From the equations it is evident that
〈(∆Xm

q )4〉 = 〈(∆Pm
q )4〉 when θ = 90◦ and hence no squeezing. Following the same

procedure, the squeezing for squeezed vacuum state is also calculated. It is observed that
the squeezing in the deformed case reduces to that in the non-deformed one when q → 1,
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as shown in figure 3.5.

3.4.1.2 Number squeezing

The Mandel Q-parameter for the q-deformed squeezed vacuum states can be calculated
using (3.13), where

〈Nm
q 〉 = Nm2

q

∞∑
n=0

(tanh(r))2n+2
[2n+ 1]mq !!

[2n]mq !!
(3.38)

and

〈Nm2

q 〉 = Nm2

q

∞∑
n=0

(tanh(r))2n
[2n− 1]mq !![2n]mq

[2n− 2]mq !!
. (3.39)

The result is plotted for different values of q and r, shown in figure 3.6. Number squeezing
exists when Q lies between −1 and 0. When a state shows number squeezing, the pho-
ton number distribution becomes sub-Poissonian. Here we can see that there is number
squeezing only for specific q and r. From the plot, it is clear that the number squeezing
becomes more prominent with an increase in the squeezing parameter r and a decrease in
the q value. In other words, number squeezing is significant for a highly deformed state
with a large squeezing parameter. It implies that the state becomes more nonclassical with
an increase in deformation. The number squeezing vanishes completely with q → 1 and
r → 0, when the state approaches a classical state. The Mandel parameter Q is also calcu-
lated for the non-deformed state (3.4) and is found to be coinciding with the deformed case
for q → 1.

3.4.1.3 q-deformed Husimi Q function

The Q function is calculated for the state |ξ〉mq (Eq. (3.17)) using Eq. (3.15):

Q =
1

πeq

∣∣∣Nm
q

∞∑
n=0

(−1)n(eiθ tanh(r))n

√
[2n− 1]mq !!

[2n]mq !!

× (α∗)2n√
[2n]mq !

∣∣∣2, (3.40)

where eq is the q-deformed exponential and Nm
q is given in (3.18). The results are shown in

the figure (3.7). ‘x’ and ‘y’ are the real and imaginary parts of α respectively. It is obvious
that Q is having a non-Gaussian behavior, showing the nonclassical nature of the state |ξ〉mq .
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Figure 3.6: The variation of Q with r for the state |ξ〉mq . Q is different for different q values. The black horizontal line (Q = 0) shows
Poisson statistics. Number squeezing is shown below this line.

The Q is different for different q and r values.

Next, we find the squeezing properties of the superposition of two math-type q-deformed
squeezed vacuum states.

3.4.2 Superposition of two q-deformed squeezed vacuum states

3.4.2.1 Quadrature squeezing and higher-order squeezing

The variance in Xm
q -quadrature is given by

〈(∆Xm
q )2〉 = 〈Xm2

q 〉 − 〈Xm
q 〉2, (3.41)

where 〈Xm
q 〉 is calculated to be zero and 〈Xm2

q 〉 is calculated using (3.31). Calculating
expectation values of each term, we get

〈Am2

q 〉 = 〈(Am†q )2〉 = 0 (3.42)

and

〈Am†q Amq 〉 = |Nm
s,q|2

∞∑
n=0

(tanh(r))4n
[4n− 1]mq !!

[4n− 2]mq !!
. (3.43)
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(a) (b)

Figure 3.7: (a) Q function for q = 0.1 and (b) Q function for q = 0.9 for the state |ξ〉mq , with r = 0.1.

Then the variances in Xm
q and Pm

q quadratures of the state |ξ〉ms,q are calculated and they are
turned out to be the same:

〈(∆Xm
q )2〉 = 〈(∆Pm

q )2〉 =(1 + q2

4

)(
1 + (1 + q2)|Nm

s,q|2
∞∑
n=0

(tanh(r))4n
[4n− 1]mq !!

[4n− 2]mq !!

)
.

(3.44)

This implies that there is no quadrature squeezing. Also, it is obvious that there is no de-
pendence on θ. These observations imply that the nonclassical behavior in the q-deformed
squeezed vacuum states vanishes when we go for their superposition, same as observed in
the non-deformed scenario [49].

Now let us have a look into the corresponding higher-order squeezing. We have the 4th

order squeezing coefficient in Xm
q -quadrature (3.33), and 〈(∆Xm

q )4〉 given in (3.34). In the
case of superposition of two q-deformed squeezed vacuum states (3.19),

〈(∆Xm
q )4〉 = 〈(∆Pm

q )4〉

=
(1 + q2

4

)2(
2(1 + q2)〈Am†q Amq 〉

+ (1 + q2)2〈(Am†q Amq )2〉+ 1

+ 〈(Am4

q + Am
†4

q )〉+ 〈Am2

q Am
†2

q 〉+ 〈Am†2q Am
2

q 〉
)
.

(3.45)

The (3.45) implies that there is no squeezing in both the quadratures. Therefore as in the
case of second-order squeezing, the superposition states are found to have no quadrature
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squeezing in the fourth-order case.

3.4.2.2 Number squeezing

The Mandel parameter Q is plotted for different values of r, which is shown in figure 3.8.
It can be seen that there is no number squeezing for any values of r, when q ≥ 0.9. As
the q value decreases from 0.9 to 0.1, the state begins to show number squeezing for some
values of r. When q = 0.1, there is number squeezing for all values of r. When q → 1, Q
reduces to the non-deformed case which can be determined following the same procedure
and the results are also included in Fig. 3.8. The behavior of the system is thus differs from
that of the non-deformed case which has no number squeezing for any value of r [102]. As
in the earlier case, the state becomes more nonclassical with an increase in q deformation.

Figure 3.8: The variation ofQ with r for the superpsition state |ξ〉ms,q . Q is different for different q values. Number squeezing is shown
below the black horizontal line (Q = 0).

3.4.2.3 q-deformed Husimi Q function

The Q function for the state |ξ〉ms,q is calculated using Eq. (3.15) and is given by,

Q =
1

πeq

∣∣∣Nm
s,q

∞∑
n=0

(eiθ tanh(r))2n

√
[4n− 1]mq !!

[4n]mq !!

(α∗)4n√
[4n]mq !

∣∣∣2, (3.46)

where eq is the q-deformed exponential and Nm
s,q is given in (3.20).

The results are shown in figure (3.9). It can be seen that Q is a non-Gaussian distribu-
tion, showing the nonclassical behavior of the state |ξ〉ms,q. The Q values differ for different
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(a) (b)

Figure 3.9: (a) Q function for q = 0.1 and (b) Q function for q = 0.9 for the state |ξ〉ms,q , with r = 0.1.

q and r.

3.4.3 Superposition of two q-deformed squeezed coherent states

3.4.3.1 Quadrature squeezing and higher-order squeezing

We calculate the squeezing coefficient in the Xm
q -quadrature using (3.10) for the state

|α, ξ〉ms,q. In general α is a complex number but for simplicity we have taken it as a real
one in the calculations. The expectation value of Xm

q is given by

〈Xm
q 〉 =

√
1 + q2Nm2

s,q

(
Nm2

q (α, ξ)
∞∑
n=0

I(α, ξ, n)I(α, ξ, n+ 1)

[n]mq !

+Nm2

q (α,−ξ)
∞∑
n=0

I(α,−ξ, n)I(α,−ξ, n+ 1)

[n]mq !

+Nm
q (α, ξ)Nm

q (α,−ξ)
( ∞∑
n=0

I(α, ξ, n)I(α,−ξ, n+ 1)

[n]mq !

+
∞∑
n=0

I(α, ξ, n)I(α,−ξ, n+ 1)

[n]mq !

))
.

(3.47)

We also find out 〈Xm2

q 〉 to calculate the Xm
q -variance, which is included in the Ap-

pendix (B). In a similar way, we can also find out the variance of Pm
q . The calculation of
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(a) (b)

Figure 3.10: (a) Variation of the squeezing coefficient SX and (b) shows the variation of SP with r for the state |α, ξ〉ms,q . Squeezing
coefficient is different for different q values and we have taken α = 1.

squeezing coefficient demands the term 〈[Xm
q , P

m
q ]〉. 〈[Xm

q , P
m
q ]〉 can be obtained using

〈
Am

†

q Amq

〉
= Nm2

s,q

(
Nm2

q (α, ξ)
∞∑
n=0

I2(α, ξ, n)

[n− 1]mq !

+Nm2

q (α,−ξ)
∞∑
n=0

I2(α,−ξ, n)

[n− 1]mq !

+ 2Nmq(α, ξ)N
m
q (α,−ξ)

∞∑
n=0

I(α, ξ, n)I(α,−ξ, n)

[n− 1]mq !

)
.

(3.48)

Then the squeezing coefficients SX and SP are calculated for different values of r.
The recurrence relation given in (3.25) is not easy to solve analytically, so we worked it
out using numerical methods. As we stated earlier, α values are taken to be real. Also
we choose θ = 0◦. SX and SP values are plotted for α = 1 and are shown in Fig. 3.10.
The results reveal that SX = SP for all r and α values, and hence there’s no squeezing.
Moreover, the squeezing coefficient value approaches the squeezing coefficient in the non-
deformed regime [102] for the state |α, ξ〉ms as q → 1, for any value of α.

The higher-order squeezing in generalized squeezed coherent states is analyzed in [104].
We now focus on the higher-order squeezing of their superposition. The 4th order squeez-
ing coefficient in the Xm

q -quadrature is calculated using (3.33) and (3.34). For the super-
position of two q-deformed squeezed coherent states (3.26), 〈Xm

q 〉 and 〈Xm2

q 〉 are already
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calculated. Also,

〈Xm3

q 〉 =
(1 + q2)

3
2

8

(
2〈Am3

q 〉+ 2〈Amq Am
†

q Amq 〉

+ 2〈Am2

q Am
†

q 〉+ 2〈Am†q Am
2

q 〉
)
.

(3.49)

Now we can get

〈Am3

q 〉 =
√

1 + q2Nm2

s,q

(
Nm2

q (α, ξ)
∞∑
n=0

I(α, ξ, n)I(α, ξ, n+ 3)

[n]mq !

+Nm2

q (α,−ξ)
∞∑
n=0

I(α,−ξ, n)I(α,−ξ, n+ 3)

[n]mq !
+

Nm
q (α, ξ)Nm

q (α,−ξ)
( ∞∑
n=0

I(α, ξ, n)I(α,−ξ, n+ 3)

[n]mq !

+
∞∑
n=0

I(α, ξ, n)I(α,−ξ, n+ 3)

[n]mq !

))
.

(3.50)

Similarly, other terms in (3.49) are also calculated, and we obtain 〈Xm3

q 〉. In a similar
way, we can find out 〈Xm4

q 〉 also to get the corresponding squeezing coefficient in the
Xm
q -quadrature. Following a similar procedure, we can generate the squeezing coefficient

in the Pm
q -quadrature also. The plots are given in figure 3.11. There is squeezing in the

Pm
q -quadrature for all values of q below 0.999, but for a certain range of r values. The

squeezing extends to more r values as the q value decreases. SP → −1 as the deformation
increases show the superposition state has maximum squeezing. Higher-order squeezing
shows that the state is nonclassical even though there is no quadrature squeezing. Since
quadrature and higher-order squeezing are different manifestations of nonclassical states,
they can appear in quantum states independently. The vanishing of second-order squeezing
is already observed in the literature for the states like photon-added coherent states [105],
even and odd coherent states [93], etc., even though an explicit higher-order squeezing
exists. Also, the analysis of quadrature squeezing for the non-deformed superposition state
given in (3.28) shows that the results coincide with that of the deformed case when q → 1,
as shown in figure 3.11.

3.4.3.2 Number squeezing

The Mandel Q-parameter is calculated using (3.13).
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(a) (b)

Figure 3.11: (a) The variation of the squeezing coefficient S4
X and (b) shows the variation of S4

P with r, for the state |α, ξ〉ms,q with
α = 1.

(a) (b)

Figure 3.12: Variation of the Mandel Q-parameter for (a) α = 1 and (b) α = 2, for the state |α, ξ〉ms,q . Q is different for different q
values. The sub-Poissonian behavior is shown below Q = 0 (black horizontal line).
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(a) (b)

Figure 3.13: Q function for q = 0.5 with (a)r = 0.8, α = 0.3 and (b)r = 1.2, α = 0.5 for the state |α, ξ〉ms,q .

For the state |α, ξ〉ms,q,
〈
Am

†
q Amq

〉
is given by (Eq. (3.48)) and

〈
(
Am

†

q Amq

)2
〉 = Nm2

s,q

(
Nm2

q (α, ξ)
∞∑
n=0

I2(α, ξ, n)[n]mq
[n− 1]mq !

+Nm2

q (α,−ξ)
∞∑
n=0

I2(α,−ξ, n)[n]mq
[n− 1]mq !

+ 2Nm
q (α, ξ)Nm

q (α,−ξ)

×
∞∑
n=0

I(α, ξ, n)I(α,−ξ, n)[n]mq
[n− 1]mq !

)
.

(3.51)

Now Q is plotted for various values of r and q, the result is shown in figure 3.12. It is clear
that the Mandel parameter is negative, which means the state |α, ξ〉ms,q has number squeez-
ing. Also, as the deformation increases, Q → −1, means the state achieves maximum
squeezing. When q = 0.999 and any r value, there is no number squeezing. The Mandel
parameter for the corresponding non-deformed case can be determined using (3.28) and it
is matching with that of the deformed one when q → 1. As in the previous cases, the state
shows more sub-Poissonian features with more significant deformation.
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3.4.3.3 q-deformed Husimi Q function

The Q function is calculated for the state |α, ξ〉ms,q using (3.15) and is given by

Q =
1

πeq

∣∣∣Nm
s,q(α, ξ)

∞∑
n=0

[I(α, ξ, n) + I(α,−ξ, n)] (α∗)n√
[n]mq !

∣∣∣2, (3.52)

where Nm
s,q(α, ξ) is given in (3.27).

As shown in figure 3.13, Q is varying in a non-Gaussian pattern, thus the state is nonclassi-
cal in nature. The Q values are different for different q, α and r values.

3.5 Conclusion

This chapter has studied the nonclassicality of q-deformed squeezed states: the deformed
squeezed vacuum states, the superposition of two deformed squeezed vacuum states, and
the superposition of two deformed squeezed coherent states. By analyzing the quadrature
squeezing, higher-order squeezing, number squeezing, and the deformed Husimi Q func-
tion, we have arrived at the following results.

We have shown that the quadrature squeezing coefficients in the q-deformed squeezed
vacuum states are independent of the deformation parameter q. In contrast, the dependence
on q is apparent in the case of their superposition. In contrast to the deformed squeezed vac-
uum states, their superposition lacks quadrature squeezing for any value of the squeezing
parameter r and the deformation parameter q. While analyzing the higher-order squeezing,
we found that the higher squeezing present in the deformed squeezed vacuum states also
vanishes as we go for their superposition. The q-deformed squeezed vacuum states exhibit
maximum squeezing for θ = 0 and θ = 180 as the deformation and squeezing parameters
are increased. Attaining maximum squeezing becomes prominent in its higher-order for
almost all values of q. However, when we look into the superposition of two deformed
squeezed coherent states, it is interesting that there is a fourth-order quadrature squeezing,
whereas there is absolutely no second-order squeezing for any values of q, r, and α. More-
over, the MandelQ parameter calculation reveals the number squeezing in all the deformed
squeezed states considered in this paper, but only for a specific range of q, r, and α values.
Also, for the superposition of two q-deformed squeezed coherent states, the higher-order
squeezing attains its maximum value as q → 0 and r → 1. A similar trend is observed for
the Mandel parameter also. All the results mentioned above in the deformed scenario are
found to be coinciding with the non-deformed case when q → 1, as required.

47



We have also studied the q-deformed Husimi Q function for the q-deformed states.
The deviation from the Gaussian shape is evident in all the Q function plots and is a clear
indicator of its nonclassicality. We found that the Q function depends on the values of
q, r, and α. As q decreases (i.e., more deformation), the Q function becomes closer to
an annular-shaped distribution. It is worth mentioning that the Q function of the most
nonclassical state |n〉, the number state, is annular in shape [93]. Thus, we conclude that the
states are still highly nonclassical despite quadrature squeezing vanishing. In the deformed
states, we have an additional degree of freedom to produce the required nonclassicality in
terms of the deformation parameter q. We can even attain the maximum nonclassicality
possible by adjusting the value of q.
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Chapter 4

Dynamics of observables in a q-deformed
harmonic oscillator

4.1 Introduction

In this chapter, we report the study of the dynamical behavior of math-type q-deformed
harmonic oscillator system which is widely studied in quantum optics [74, 106, 107, 31].
The study of the dynamics of a quantum system plays a crucial role in several fields like
quantum computing, quantum optics, etc. In the study of dynamics of a system, we inves-
tigate how quantum mechanical variables change over time. We are all familiar with the
classical and quantum mechanical harmonic oscillators, which will be reviewed in detail
in the upcoming sections. A quantum mechanical harmonic oscillator possesses discrete
energy levels with energy values En linearly dependent on n, which is observed to be the
reason for its periodic dynamical behavior.

In previous chapters, we have already familiarized ourselves with the idea of math-type
q-deformed oscillators and their algebra. In a preliminary analysis, we observed that the
deformation of the Lie algebra causes the energy eigenvalues of the q-deformed harmonic
oscillator to deviate from the linearly increasing energy eigenvalues of the non-deformed
harmonic oscillator. This hints at the possibility of chaotic behavior in the system, which
we will investigate in this study. As already mentioned in Chapter (1), even though Bohr’s
correspondence principle points at the possibility of the existence of chaos in quantum
systems, inherent quantum chaos is not yet observed, which points to the relevance of the
work included in this chapter.
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4.2 Harmonic oscillator and energy eigenvalues

In classical physics, a simple harmonic oscillator is an object that performs harmonic mo-
tion about an equilibrium position, such as an object with mass vibrating on a spring. The
total energy of such an oscillator is the sum of its kinetic energy K = mu2

2
and potential

energy U = kx2

2
, where k is the spring constant in the system. The motion of the oscillator

is constrained between the turning points, and the lowest energy it may have is zero when
the object is at rest at its equilibrium position, as illustrated in the figure (4.1). The energy
of a classical oscillator thus changes continuously.

Figure 4.1: The energy of a classical harmonic oscillator against its position. The total energy E is the sum of potential and kinetic
energies. A and −A are the turning points at which the kinetic energy of the oscillator is zero.

While moving into the area of quantum physics, the potential energy function acqures
a more general form, U = mω2x2

2
.

The pure quantum harmonic oscillator can be described by the Hamiltonian

H = (1/2)(aa† + a†a), (4.1)

where a, a† correspond to the non-deformed annihilation and creation operators, respec-
tively. In this chapter, we work with the units ~ = ω = 1. It is to be noted that the scaling
of these terms does not affect the results of this study in anyway. Apart from the classi-
cal oscillator, the quantum harmonic oscillator possess discrete energy levels with values
En = (n + 1

2
), which is depicted in figure (2.1) in Chapter 2. It is to be noted that the

energy values have a linear dependence on n. It has been already reported in literature that
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this linear dependence of energy eigenvalues in n gives periodic behaviour in the dynamics
of its expectation values [108].

4.2.1 Energy eigen values of the q-deformed Harmonic Oscillator

The Hamiltonian for a math-type q-deformed harmonic oscillator is given in [109] where
the q-deformed harmonic oscillator and its coherent states are studied. The Hamiltonian

Hm
q =

1

2
(Amq A

m†

q + Am
†

q Amq ), (4.2)

where Amq and its adjoint Am†q are the math-type q-deformed annihilation and creation
operators, respectively. The oscillator described by the Hamiltonian Hm

q is called the q-
deformed harmonic oscillator. The operatorsAmq andAm†q obey the deformed commutation
relation,

Amq A
m†

q − q2Am
†

q Amq = I, (4.3)

where, I is the identity matrix and 0 < q < 1. The Hamiltonian (4.2) has an eigenvalue

Em
q,n =

(
[n]mq +

q2n

2

)
. (4.4)

In the limit of q → 1, [n]mq → n and Em
q,n reduces to En of the non-deformed quantum

harmonic oscillator. In figure (4.2), we can clearly see that the energy values of the q-
deformed harmonic oscillator departs significantly from the linear energy curve of the non-
deformed harmonic oscillator, as the deformation increases. Thus, the nonlinear variation
of the energy eigenvalues with n for q-deformed harmonic oscillator may give rise to other
dynamical properties such as quasi-periodicity and chaos, which is the prime motivation
for this study.

4.3 Time evolution with q-deformation

The canonical position and momentum operators Xm
q and Pm

q for the deformed harmonic
oscillator are given in (3.8), which reduces to the non-deformed x and p when q → 1.
Further, the action of A and A† on the deformed Fock state |n〉q is already described in
Chapter 2. Now, in the next section, we describe the dynamical evolution of the q-deformed
observables Xm

q and Pm
q . To proceed further, let us first analyze how the autocorrelation

function of the system has changed due to the q-deformation.
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(a)

(b)

Figure 4.2: Plot of energy vs n for a (a)non-deformed oscillator and a (b) deformed oscillator with different q values. (b) shows that the
energy eigenvalues are distributed in a nonlinear fashion for the q-deformed oscillator which is in contrast to (a) the linearly distributed
energy eigenvalues of the non-deformed harmonic oscillator.

4.3.1 Time evolved deformed coherent state

The q-deformed coherent state for the deformed harmonic oscillator is already discussed in
(3.16).
Expression for [n]mq can be re-arranged to obtain

q2n = 1 +
(
q2 − 1

)
[n]mq . (4.5)

Using equations (3.16) and (4.5), the time evolved deformed coherent state |α(t)〉mq is de-
rived as,

|α(t)〉mq = e−iH
m
q t|α(0)〉mq ,

= e
− |α|

2

2
q

∞∑
n=0

(α(0))n√
[n]mq !

e
−it

(
[n]mq + q2n

2

)
|n〉mq ,

= e−
it
2 e
− |α|

2

2
q

∞∑
n=0

(α(0))n√
[n]mq !

e−
it
2
[n]mq (q2+1)|n〉mq .

(4.6)

From (4.6), we obtain the autocorrelation function of the time evolved deformed coherent
state:

m
q 〈α(0)|α(t)〉mq = e−|α|

2

q e
−it
2

∞∑
n=0

|α(0)|2n
[n]mq !

e−
it
2
[n]mq (q2+1). (4.7)

The corresponding plot is given in figure 4.3 and compared with the non-deformed one,
from which it is evident that, upon time evolution, the deformed coherent state no longer
retains its coherent form.
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(a) non-deformed (b) q=0.95

Figure 4.3: Plot of autocorrelation function as a function of time for (a) non-deformed harmonic oscillator and (b) deformed one with
|α|2 = 1 and q = 0.95

The dynamical evolution of the expectation values of the deformed position operator
Xm
q and the deformed momentum operator Pm

q are derived as:

〈X(t)〉mq = m
q 〈α(t)|Xm

q (t)|α(t)〉mq ,

=

√
1 + q2

2
e−|α|

2

q

×
∞∑
n=0

{
|α|2n
[n]mq !

α e
it
2 (1+q2)([n]mq −[n+1]mq )

+
|α|2n+1

[n]mq !
α−1 e−

it
2 (1+q2)([n]mq −[n+1]mq )

}
.

(4.8)

〈P (t)〉mq = m
q 〈α(t)|Pm

q (t)|α(t)〉mq ,

= i

√
1 + q2

2
e−|α|

2

q

×
∞∑
n=0

{
|α|2n+1

[n]mq !
α−1 e−

it
2 (1+q2)([n]mq −[n+1]mq )

− |α|
2n

[n]mq !
α e

it
2 (1+q2)([n]mq −[n+1]mq )

}
,

(4.9)

using the expressions of the action of operators Amq and Am†q on the Fock state and (4.6).
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4.3.2 Nature of the time evolved observables

The time evolved observables, in this case, the expectation values of the deformed position
and momentum, produce respective time series when computed numerically. One can per-
form a generic analysis of this series by applying the common procedures followed for a
typical time series data. Here, the nature of these time evolved variables are studied using
four complimentary analysis tools, namely, first-return-time distributions, recurrence plots,
Lyapunov exponents and the power spectra.

4.3.2.1 Recurrence plots:

The analysis of complex systems using recurrence plots is studied in [110] by using the
graphical representation of

Ri,j =

1, if ~xi ≈ ~xj;

0, otherwise.
i, j = 1, 2, ...N, (4.10)

where N is the number of data points under consideration and ~xi ≈ ~xj refers to its equiv-
alence within a designated parameter ε. The simulation of this calculation produces an
N ×N matrix, whose elements are a series of ones and zeroes, with 1 representing points
that lie close to each other. We can classify a given series as periodic, quasi-periodic or
chaotic based on the particular features of its recurrence plots. As a general rule, we may
establish that periodic trajectories are characterized by parallel, equidistant diagonal lines.
Quasi-periodicity is characterised by two or more sets of parallel, diagonal lines. Chaos
is characterized by a single line of identity which may or may not be surrounded by other
short broken lines at random distances from the line of identity.

4.3.2.2 Power spectra

We also utilize the power spectrum of the time series to understand the nature of the non-
linear system better. The power spectra are easily obtained by the technique of fast Fourier
transform of the time series. It is to be noted that in case of a chaotic series, the power
spectrum displays “grassiness" with the spectrum also showing a decreasing trend. Quasi-
periodicity is indicated by peaks which may or may not exhibit splitting [57, 111].
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4.3.2.3 First-return-time distributions:

First-return-time distribution encompasses information about the recurrence of a small
range of values over a large series of datapoints [57, 58]. We construct computational
cells of suitable sizes and determine the frequency of recurrence of datapoints within this
cell. We compute the probability of recurrence and attempt to fit appropriate probability
distributions. Based upon the requirement of ergodicity, from the Poincaré recurrence the-
orem [112], the recurrence time t is found to satisfy an exponential distribution of the form
F1(τ) = (1/τ) e−t/τ , where the mean µ is given by µ−1 = 〈τ〉 [57, 112]. This implies
that the first-return-time distributions which satisfy this relation correspond to ergodic be-
haviour. In the present study, we obtain the first-return-time distribution for cell sizes less
than or equal to 10−3.

4.3.2.4 Lyapunov exponent

The next parameter analysed in this study is the Lyapunov exponent. The Lyapunov expo-
nent (λ) describes the divergence from an initial trajectory, of an almost identical trajectory
produced by an infinitesimal perturbation in the initial conditions. A positive Lyapunov
exponent is indicative of chaos in the system, in which case the trajectories diverge at an
exponential rate defined by the largest Lyapunov exponent λmax of the system as described
in [113] where the method of calculation of Lyapunov exponent is discussed in detail. In
particular, the slope of the graph of ln(d(j)) vs j4 t, where, d(j) stands for the divergence
of the trajectory and j 4 t denotes the time, gives us an idea of the sign of the Lyapunov
exponent and its magnitude. In this study, we use the Rosenstein algorithm [113] to de-
termine the greatest Lyapunov exponent λmax. We also cross verify our calculation of the
Lyapunov exponent using another conventional algorithm called the Wolf algorithm [114].
The results were found to be in agreement with each other.

It must be noted that all these analysis methods ideally complement each others findings
and none of them can be utilized as a confirmation for a system property, on its own. The
results thus we obtained are listed below:
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Figure 4.4: Time evolution of 〈X(t)〉mq for different q values and α = 1.

4.4 Results and Discussion

4.4.1 Analysis of dynamical variations

As a preliminary step, we analyse the autocorrelation function in Fig. 4.3. Here we present
the results obtained for real values of α but our result holds true for any general complex
value of α. If a system is periodic, the respective autocorrelation function is bound to
be periodic. For α = 1 and q = 0.9, the autocorrelation function appears to peak at
random intervals, hinting at the probable chaotic nature of the system for the chosen set of
parameters. Based on this observation, we proceed to investigate further into the properties
of the system.

A qualitative reasoning for the system at hand can be obtained from the plots of its
dynamic evolution and phase space diagrams.

These results, shown in figures (4.4) and (4.5), reinforce our guesses regarding the
chaotic nature of the expectation values. Similar plots have been obtained previously for
physics-type q-deformation in [115], but an analysis in terms of chaos was not performed
on the data in their study. Now, in the present case, an interesting trend is observed when
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Figure 4.5: Phase space diagrams 〈X(t)〉mq vs 〈P (t)〉mq for different q values and α = 1.

the values of α and q are varied. In figure 4.4, we summarize how the dynamic behavior
of the expectation values vary gradually with q for α = 1. In figure 4.4(d) we plot the
data for a longer time (104) to make its nature more clear. All other plots in Fig. 4.4 have
been made for t = 1500 as the nature of the system in these cases is clearly evident with
this data set. On the higher extreme (as q increases/ as deformation decreases), we see that
the behaviour gradually approaches that of a harmonic oscillator, while on the lower end
(as q decreases/ as deformation increases), the behavior first appears chaotic, turns quasi-
periodic and finally progresses towards periodicity. Specifically, this new found periodicity
seems to emerge for values of q ≤ 0.1. As q increases for the same α, the plot of expectation
values vs t appears to get constricted between the given pair of points. This constriction
increases relatively with every step rise in q.

This gradual change appears to be taking the system from periodic to aperiodic behav-
ior. The corresponding behavior is reflected in the phase space diagram by the effective
“order" or “disorder" of the data points. However, the system does not continue to be ape-
riodic, rather as q → 1, its behavior rapidly approaches that of the non-deformed harmonic
oscillator. We study these characteristics of the expectation values in detail in the following
sections quantitatively.
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Figure 4.6: Phase space diagrams for different values of α and q=0.95.

Another interesting dependence of the system dynamics is on the parameter α. In figure
4.6, the phase space plots show specific behaviour depending on α value. We identify that
the typical chaotic behaviour exists only for α > 0.5 when q = 0.95. Below this value of
α, the phase space plot takes on a band-like structure. In the later sections, we will explain
how these band-structures conform to quasi-periodic behaviour. The width of the band is
seen to decrease with α. For lower values of α (typically for |α|2 ≤ 0.1), the behaviour
approaches periodicity. It should be noted that there exists a restriction on α values for a
given value of q [109]:

|α|2 ≤ 1

1− q . (4.11)

When α = 2, due to the limit in equation (4.11), the values of q below 0.75 are not allowed.
For α = 1, (4.11) permits all q values in the range 0 ≤ q ≤ 1. Now let us look at some
more features of the system which will help us to get a better qualitative understanding of
the properties stated above.
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Figure 4.7: Recurrence plots for different q values when α = 1. (a) corresponds to periodic data, (b), (d) correspond to quasi-periodic
data and (c) corresponds to chaotic data.

4.4.2 Recurrence plots

The recurrence plots in figure 4.7, underscores our observations regarding the time series.
Through careful observation, we identify the defining features in the recurrence plots that
classify its behaviour as periodic or aperiodic.

In the figure 4.7, when α = 1 for q = 0.1, the recurrence plot is characterised by
equidistant, parallel diagonals, which is an attribute of periodic systems. For q = 0.2, we
can roughly identify two sets of parallel lines, each set composed of respective equidistant
lines. This denotes the presence of two periods for the corresponding time series, thus
implying a quasi-periodic behaviour. In figure 4.7(c), we can clearly distinguish a line

of identity (as described in the previous section), combined with symmetrically distributed
short broken lines at random distances on both of its sides. At q = 0.99, the system displays
a quasi-periodic behaviour and progresses towards periodicity as q → 1. Thus, we are able
to mark out a clear chaotic regime with the help of these recurrence plots.
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Figure 4.8: Power spectra for α = 2 showing (a) chaotic nature (q = 0.9), and (b) periodic nature (q = 0.999).

4.4.3 Power Spectrum

The power spectrum for the system, in the range of 0.2 < q < 0.99 for α = 1, shows
grassiness and decreasing trend, which is a typical feature of a chaotic power spectrum. An
example of such a spectrum is given in figure 4.8(a). The decreasing trend is in such a way
that initially there is an exponential decay which is followed by a much slower algebraic
decay. The grassiness is more if α = 2 than if α = 1. One expects multiple (and/or
split) peaks in a quasi-periodic power spectrum. As such, we observe, two distinct split
peaks near zero for q = 0.2 when α = 1, thus re-affirming our observations regarding its
quasi-periodic behaviour. Our analysis also shows quasi-periodic behaviour in the range
0.1 < q ≤ 0.2 when α = 1. The resurgence of an exact periodic behaviour is observed
when q ≤ 0.1 for α = 1. For the quasi periodic behaviour arising when α ≤ 0.5 at
q = 0.95, we observe two peaks, affirming the presence of two distinct periods.

Based on the qualitative understanding of the system from the previous sections, we
now move onto the quantitative analysis of the system.

4.4.4 First-return-time distributions

Figure 4.9 presents the first-return-time distributions. The first-return-time plots for those
time series that were observed to produce chaotic behaviour earlier are seen to fit the ex-
ponential probability density function explained in [58]. This points to their ergodic dy-
namical behaviour. When α = 1, traces of chaotic behaviour is observed around q = 0.3

and becomes more evident as q increases. Around this initial chaotic region, although the
distribution resembles an exponential decay, it fits only approximately to the said distri-
bution. The expectation values for α = 1 in the range 0.1 < q ≤ 0.2 seems to exhibit
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Figure 4.9: First-return-time distributions for different values of q and α = 1. (a) corresponds to periodic data, (b), (d) corresponds
to quasi-periodic data and (c) corresponds to chaotic data. The solid black line in the first-return-plot represents the fitted exponential
curve mentioned in section 4.3.2.

a quasi-periodic behaviour, characterised by the distribution of the type shown in figure
4.9(b). In the case of exponential fitting, the mean recurrence time, µ, is found to be large,
thus indicating large time variation before recurrence. For q ≤ 0.1, the behaviour strictly
adheres to periodicity, thus not fitting any special distributions.

Similarly, for low α featuring a band-like phase space structure, the first-return-time
analysis revealed quasi-periodic behaviour. Higher α values produce chaotic behaviour for
a larger range of the allowed q values, while lower α values show more quasi-periodic and
periodic properties for a larger range of q values. Comparing the dynamical behaviour for
α = 1 and α = 2, we find that chaotic behaviour is prevalent for nearly all allowed q values
for α = 2 while it is seen only for 0.2 < q < 0.99 when α = 1. For lower values of α, the
system is periodic for all values of q.

4.4.5 Lyapunov exponent of the time series

The maximum Lyapunov exponents of the time series evaluated for different combinations
of α and q values were found to be positive for those ranges that were deduced to be chaotic
in the previous section. The plot of the logarithm of distance between two closely spaced
trajectories versus time is of particular importance. This curve is ideally expected to be a
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Figure 4.10: Plots showing (a) variation of largest Lyapunov exponent with q value, and (b) the Lyapunov exponent plot for α = 1 and
q = 0.9 showing the chaotic nature of the system.

straight line, whose slope gives the magnitude and sign of the Lyapunov exponent. The plot
for different q values and different α values were determined and plotted, with the results
in agreement with our findings in the previous sections.

The sign of the Lyapunov exponent is unambiguously confirmed to be positive for 0.2 <

q < 0.99 when α = 1, which is a signature of chaos. Further, the slope of the curve for
the periodic and quasi-periodic regime is found to be 0, thus re-affirming our conclusions
regarding their behaviour as well. Figure (4.10a) shows the variation of λmax with q. For
a given value of α, the transition to periodicity is faster in the region of q → 1 than when
q → 0. We also include figure (4.10b) to portray the nature of the curves used to determine
the largest Lyapunov exponents [113]. Here, the linear region is used for the calculation of
the exponent.

As we come to the conclusion, with all the proven results, we provide an approximate
demarcation of the various dynamical regimes in the q − α plane using figure 4.11.

4.5 Conclusion

In this chapter, we attempted to understand how the q-deformation of an ordinary Hamilto-
nian changes the behavior of the system. We find that the q-deformation confers non-linear
properties to the ordinary quantum harmonic oscillator. By studying the dynamics of the
resultant times series obtained for the expectation values of the dynamical variables Xm

q

and Pm
q , we conclude that the system studied exhibits periodic, quasi-periodic and chaotic

behaviour depending on the deformation parameter q and the deformed coherent amplitude
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Figure 4.11: Behaviour of a q-deformed oscillator with respect to α and q values.

α. As the value of α increases, we observe that chaotic nature is the more prominent dy-
namical behaviour. For lower values of α, the dynamical behavior is mostly quasi-periodic
or periodic.

The qualitative verification of the dynamical properties of this system was performed
through recurrence plots and power spectra of the time series. First-return-time distribu-
tions were used to verify the ergodic behavior of the system in the chaotic regimes ob-
tained from the qualitative analysis. The quantitative verification of the above conclusions
using Lyapunov exponents revealed that the exponents are positive in the estimated chaotic
regime and zero in the periodic and quasi-periodic regimes. The magnitude of the Lya-
punov exponents and, thus, the magnitude of the exponential divergence of trajectories is
dependent on the magnitude of the deformation.

Thus, the analysis of expectation values of dynamical variables carried out here clearly
shows signatures of chaos in another quantum system.
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Chapter 5

Entanglement dynamics in q-deformed states

5.1 Introduction

Chapter 3 has already discussed the squeezing properties and Husimi Q function of the
math-type q-deformed oscillators. Another important nonclassical feature of quantum
states is quantum entanglement. It is a physical phenomenon in which two or more parti-
cles interact so that their quantum states cannot be described independently. Even though
quantum entanglement continues to puzzle researchers around the world, it serves as a key
resource for quantum information processing and hence finds applications in fields like
quantum teleportation [116], quantum cryptography [117], superdense coding [118], quan-
tum metrology [11], etc. The study of entanglement in deformed states is a progressing
area of research [60, 61]. Regarding the study of entanglement, the essential part is to test
whether a given quantum state is entangled. There are different entanglement measures that
are being used for the quantum states. They include von-Neumann entropy [63], concur-
rence [64], negativity [65], and quantum Fisher information [119]. Among them, concur-
rence and negativity are used to analyze mixed states, whereas the von Neumann entropy
has been proposed for the study of pure state entanglement. Regarding a non-deformed
system, the study of entanglement dynamics pertaining in the interaction of a single mode
field with atoms of a nonlinear medium is reported in [120], in which entropy of entangle-
ment indicates the existence of revivals and fractional revivals. [120] also reports the study
of entanglement dynamics for different initial states, using the entanglement measures like
subsystem von Neumann entropy, linear entropy, and overlap fidelity. The results show that
entanglement measures significantly depend on the nature of the initial state. Apart from
an ideal non-deformed system, the deformed ones are more advantageous as they consider
the possible deformations in the system. It is really important to know the entanglement
dynamics of a deformed system which plays a vital role in quantum optics and quantum
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information processing.

5.2 Light propagating through a Kerr medium

A linear medium is the one with its refractive index independent of the field transmitting
through it. The medium becomes birefringent when strong laser light is propagated through
a nonlinear isotropic medium. Birefringence is the optical property of a material having a
refractive index that depends on the polarization and propagation direction of light. For
example, the elliptical polarization of a light will get rotated as it passes through a nonlin-
ear medium. The phenomenon by which the refractive index of a medium depends on the
intensity of light passing through it is called the optical Kerr effect (also called “quadratic
electro-optic effect"), and such a medium is called a Kerr medium. It is a nonlinear polar-
ization developed in a medium, which causes a change in its refractive index. The depen-
dence of refractive index on field intensity is given by [121] in which the authors study the
quantum propagation in a Kerr medium,

n = n0 + n1I (5.1)

which is the so-called Kerr law. n0 is the linear index of refraction, n1 is the nonlinear
refractive index and I is the field intensity. Kerr effect exists in crystals, glasses and many
other materials, sometimes in isotropic materials also. In this study, we analyze the propa-
gation of a field throgh a Kerr-like medium, which is described in the model given below.

5.3 The model

Consider the propagation of a single-mode math-type q-deformed field through a Kerr-like
nonlinear medium. We assume a beam splitter kind of interaction between the field modes
and atomic modes of the system. The total Hamiltonian representing the interaction is
taken from [120] dealing with the entanglement dynamics of two-mode states,

Htot = Hm
q +Hatom +Hint, (5.2)

where Hm
q represents the Hamiltonian of the math-type q-deformed field, Hatom represents

the Hamiltonian of the atomic nonlinear medium, and Hint is the Hamiltonian representing
the interaction between the deformed field and the atoms of the nonlinear medium. The
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math-type q-deformation of the field is governed by the Hamiltonian discussed in equation
(4.2). The Hamiltonian of the nonlinear atomic medium is taken as

Hatom = ω
(
b†b+ 1/2

)
+ χb†

2
b2, (5.3)

where b and b† are the atomic ladder operators, ω is the natural frequency of the atomic
field, and χ is the nonlinearity parameter. The interaction between the deformed field and
the atomic medium is represented by the interaction Hamiltonian

Hint = γ(Am
†

q b+ Amq b
†) (5.4)

where γ is the parameter characterizing the strength of coupling between the field and the
atoms. In this paper, we study the time evolution of the above given system governed by
the equation

|ψ(t)〉 = e−iHtott|ψ(0)〉 (5.5)

for different types of initial states. The system dynamics explicitly depend on the initial
states of the system. Thus we assume the deformed field to be initially in the Fock state
|N〉mq and also in the coherent state |α〉mq . Throughout the study, the atom is taken to
be in the ground state |0〉. Also, as a field propagates through a nonlinear medium, the
revivals appear if the nonlinearity of the field is weak. As the nonlinearity increases, the
revival phenomena becomes less noticeable [122]. Hence in the following calculations, we
keep the nonlinearity of the medium to be of a lower value. We are interested in studying
the entanglement dynamics of the system described above in detail. Further analysis is
included in the upcoming sections.

5.4 Entanglement measures and von Neumann entropy

The entanglement measures are used to quantify the amount of entanglement contained in
a given state. There exists a variety of entanglement measures, such as entanglement cost,
distillable entanglement, distance-based measures (for example, relative entropy of entan-
glement), robustness measures, entanglement of assistance, etc. von Neumann entropy is
one of them, and here we are trying to figure out the entanglement in the system in terms
of the von Neumann entropy.

The term von Neumann entropy named after John von Neumann is actually a quantum
mechanical counterpart of the Gibbs entropy of classical statistical mechanics. In general,
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for a quantum system described by a density matrix ρ, the von Neumann entropy S is given
by [63],

S = −Tr(ρln(ρ)). (5.6)

It can be used to measure the entanglement between two subsystems, provided that the
total system is in a pure state. This entropy has become fundamental as it has applications in
areas such as data compression, measures of entanglement, etc. The Von Neumann entropy
of the reduced density matrix for any ubsystems is also called ‘the entropy of entangle-
ment’, which is zero for a pure state and a non-zero value indicates that the subsystem is in
a mixed state, and hence the two subsystems are entangled.

We use the von Neumann entropy of the subsystem Sk as the measure of entanglement,
given by

Sk = −Trk [ρk (t) ln ρk (t)] . (5.7)

where the suffix k stands for the either q or b, depending upon the subsystem considered.
Also, ρk represents the time-dependent reduced density matrix for the subsystem.

5.5 Entanglement dynamics

As the total particle number Ntot = Am
†

q Amq + b†b, is conserved during the interaction
(One can show that [Ntot, Htot] = 0), we choose the basis states as |N − n〉 ⊗ |n〉 ≡
|(N − n)mq ;n〉, where N is the eigenvalue of Ntot. Here N runs from 0 to∞ and n runs
from 0 to N . One can see that 〈(N − n)mq ;n|Htot|(N ′ − n′)mq ;n′〉 = 0 for N 6= N ′.
Hence for a particular N , the total Hamiltonian Htot can be diagonalized in the space of
{|(N − n)mq ;n〉} with n = 0, 1, 2, . . . , N . Let the eigenvalues and eigenvectors of Htot

be λNs and |ψNs〉, respectively. Here the index s designate the eigenvectors in each block
of the Hamiltonian Htot for a particular N , that is, s = 0, 1, 2, . . . , N . The eigenvectors
|ψNs〉 can be expanded in the basis {|(N − n)mq ;n〉} as

|ψNs〉mq =
N∑
n=0

CNs
n |(N − n)mq ;n〉, (5.8)
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with CNs
n = 〈(N − n)mq ;n|ψNs〉. An initial state of the system evolves in time as

|ψ(t)〉 = exp [−iHtot t] |ψ(0)〉 (5.9)

=
∞∑
N=0

N∑
s=0

e−iλNs t〈ψNs|ψ(0)〉|ψNs〉. (5.10)

The time-evolved density matrix of the total system is calculated as

ρtot(t) =
∞∑
N=0

N∑
s=0

∞∑
N ′=0

N
′∑

s′=0

e−i(λNs−λN′s′ ) t

〈ψNs|ψ(0)〉〈ψ(0)|ψN ′s′ 〉|ψNs〉〈ψN ′s′ |. (5.11)

5.5.1 Field initially in the deformed Fock state |N〉mq
Let the field be initially in the Fock state |N〉mq and the atom be in the ground state |0〉.
The corresponding time-evolved reduced density matrix ρmq (t) of the total system can be
written as

ρmq (t) =
N∑
n=0

N∑
s=0

N∑
s′=0

CNs
0 CNs

′

0 CNs
n CNs

′

n

|N − n〉mq mq 〈N − n|, (5.12)

where CNs
0 = 〈Nm

q ; 0|ψNs〉, where the detailed calculation of ρmq (t) is given in the Ap-
pendix (C).
Also,

ρa(t) =
N∑
m=0

N∑
j=0

N∑
s′=0

CNj
0 CNj

′

0 CNj
N−mC

Ns
′

N−m

|N −m〉aa〈N −m|, (5.13)

where CNj
0 = 〈Nm

q ; 0|ψNj〉.
The variation of von Neumann entropy with the deformation parameter q is depicted in

figure(5.1) for different values of N . The initial state chosen is |5〉mq ⊗ |0〉 ≡ |5, 0〉. We
have taken the other parameter values as ω = 1, χ = 0, γ = −π/4, t = 1. The interaction
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Figure 5.1: The variation of von Neumann entropy with q for different values of N , with the values of system parameters representing
the action of a beam splitter.

Hamiltonian (5.4) when γ = −π/4 becomes the unitary operator representing the beam
splitter in the deformed case. The von Neumann entropy for N = 1, 2, 3, 4, 5 are shown in
figure (5.1) for the entire range of possible q values. A considerable variation can be seen
for N = 1 from the other N values. For the lowest N = 1, entropy of the system stays a
constant value equal to 1 for the entire range of possible q values. As q → 1, the entropy
becomes that of corresponding non-deformed cases.

A comparison of entanglement entropy of the system for an initial state |5, 0〉 for dif-
ferent deformations is shown in the figure(5.2). Figure(5.2a) represents the non-deformed
case where the entropy returns to values close to zero at regular intervals of time, which
clearly shows that there exists near revivals exhibited by the entangled states. The values
of parameters are chosen to be ω = 1.0, γ = 1.0, χ = 0.01. In figure (5.2a), it can be
noted that the revival time is approximately 2π. Fractional revivals can be observed around
the times π, 2π

3
and π

2
. We can still observe the near revivals and fractional revivals for

q = 9.99, but not much as pronounced in the case of the non-deformed system. Figure
(5.2b) illustrates the entropy measured in the system for a very small deformation, say
q = 0.9, eventhen the revivals have almost disappeared. The near revivals and fractional
revivals have completely gone while moving to figure (5.2c) where the deformation param-
eter is having value q = 0.7. There are no revivals for q = 0.5. So for a given initial Fock
state, even though the nonlinearity is minimum, the near revivals and fractional revivals
gradually decay as the deformation in the field increases. The revival phenomena disap-
pear even for a very small deformation.

Also, figure (5.3) outline the entropy of a different initial Fock state |10, 0〉. Here
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Figure 5.2: The variation of von Neumann entropy with γt for (a) non-deformed, (b) q = 0.9, (c) q = 0.7, (d) q = 0.5 for the initial
state |5, 0〉.
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Figure 5.3: The variation of von Neumann entropy with γt for (a) non-deformed, (b) q = 0.9, (c) q = 0.7, (d) q = 0.5 for the initial
state |10, 0〉.
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also we choose weak nonlinearity (χ = 0.01). Figure (5.3a) depicts the entropy of non-
deformed |10, 0〉 state. It can be seen that here also the entropy regularly comes to minimum
values indicating the existence of near revivals. Local minima repeating at regular intervals
of time indicates fractional revivals. Even for very small deviation from the non-deformed
case (i.e., for q = 0.99), the near revivals and fractional revivals start to disappear. The
figure (5.3b) shows a further reduction in revivals as the deformation increased to q = 0.9.
As the deformation increases, revivals gradually die out, quiet faster than for the state |5, 0〉
as the figure (5.3c) indicates. Again, the figure (5.3d) illustrates the entropy for q = 0.5

where the revivals have almost disappeared. Also, The entanglement entropy in the system
varies for different defomation as indicated by figures (5.2) and (5.3).

5.5.2 Field initially in the deformed coherent state |α〉q
Another initial states under our consideration are, the atom in the ground state |0〉 and
the field in the deformed coherent state |α〉mq . The corresponding density matrix can be
obtained through the steps described above. The reduced density matrix ρk in this case is
given by,

ρmq (t) =
∞∑
N=0

N∑
s=0

∞∑
N ′=0

N
′∑

s′=0

αN(α∗)N
′√

[N ]![N ′ ]!

CNs
0 CN

′
s
′

0 CNs
n CN

′
s
′

n |N − n〉mq mq 〈N
′ − n| (5.14)

and

ρa(t) =
∞∑
N=0

N∑
j=0

∞∑
N ′=0

N
′∑

j′=0

αN(α∗)N
′√

[N ]![N ′ ]!

CNj
0 CN

′
j
′

0 CNj
N−mC

N
′
j
′

N−m|N −m〉aa〈N
′ −m|. (5.15)

Figure (5.4) depicts the von Neumann entropy for the initial state |α〉mq ⊗ |0〉 ≡ |α; 0〉
for |α|2 = 0.5 and different deformation parameter q. Similar to a Fock state, for the non-
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Figure 5.4: The variation of von Neumann entropy with γt for (a) non-deformed, (b) q = 0.99, (c) q = 0.95, (d) q = 0.90 for the
initial state |α, 0〉 for |α|2 = 0.5.
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Figure 5.5: The variation of von-Neumann entropy with γt for (a) non-deformed, (b) q = 0.99, (c) q = 0.95, (d) q = 0.90 for the
initial state |α, 0〉 for |α|2 = 1.
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deformed case given in figure (5.4a), we can observe that von Neumann entropy returns to
values close to zero which happens at regular intervals of time, showing the near revivals.
Again, we does the calculations for a low value of nonlinearity parameter (χ = 0.01). As
the deformation increases, the observed near revivals and fractional revivals die out even
for a small increase in the deformation, as indicated by the figures (5.4b), (5.4c) and (5.4d)
for q values q = 0.99, q = 0.95 and q = 0.90 respectively. Also it is clear that the entropy
depends on the value of coherent parameter α. Again, the entropy values are plotted for
|α|2 = 1 in figure (5.5) for different deformation, which also shows a similar trend. It is
interesting to see that the entanglement entropy increases as the |α|2 value is increased.

5.6 Conclusion

In summary, we examined the interaction of a math-type q-deformed field with the atoms
of a nonlinear medium through which the field propagates. The entanglement dynamics
in the system is studied in terms of von Neumann entropy. The system in two different
initial states are investigated: the deformed Fock state and the deformed coherent state.
For the initial deformed Fock state, the variation of entropy with deformation for different
values of N is studied, with the system parameters equivalent to the action of a beam
splitter. As the deformation in the system decreases, the entropy gradually tends to the
corresponding non-deformed cases. A more detailed analysis of the entanglement entropy
for different deformation reveals that there exist revivals and fractional revivals in the non-
deformed system. The entropy attains a maximum value which is a constant in each case,
irrespective of the deformation present in the system. But as the deformation increases,
even for a slight rise in deformation, the revivals and fractional revivals decay rapidly. The
analysis is done for smaller values of the nonlinearity parameter where the revivals and
fractional revivals are more visible. A similar effect is observed for the initial deformed
coherent state also, with a dependence on the coherent parameter α. There is a rise in the
amount of entanglement present in the system as the |α|2 value is increased. All the results
clearly show that the entanglement in the system distinctly depends on the deformation. So,
the deformation provides an additional degree of freedom, q, to control the entanglement
dynamics.
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Chapter 6

Conclusion

The non-deformed harmonic oscillator being ideal, the deformed oscillators are advanta-
geous over the non-deformed one. We have included a detailed discussion of our results in
the preceding chapters, each with an all-inclusive summary. Furthermore, our results lead
us to propose some exciting and essential future research.

Our work begins with the discovery of the wavefunctions of the most general f -oscillators,
which includes a newly obtained class of orthogonal polynomials Jn(Xθ), which is in-
cluded in Chapter (2) in detail. The wavefunctions of different types of deformations
(physics-type, math-type, and (p,q)-deformations) are also analyzed, and the position prob-
ability distributions for the ground and first excited state are plotted in each case. The
effect of deformation on the wavefunction is studied. Even though Jn(Xθ) was found to
have similar properties of Hermite polynomials Hn(x), the salient features of Jn(Xθ) are
not known. So, it would be interesting to investigate the properties of Jn(Xθ) in detail,
to have in-depth knowledge of the f -oscillators. The study of the optical tomogram of f -
oscillators will be another fascinating area of research.

Later on, in Chapter (3), we focussed on the math-type q-deformation, and the study
of squeezing revealed the nonclassical behavior of the deformed superposition states in
terms of quadrature squeezing, higher-order squeezing, and photon number squeezing. The
quadrature squeezing independent of the deformation parameter q for deformed squeezed
vacuum states and the vanishing of quadrature squeezing in the superposition states while
having a higher-order squeezing were all interesting results. Also, the number squeezing
persists in all the states considered. The non-Gaussian Husimi Q function reveals that the
states are highly nonclassical irrespective of squeezing. The nonclassicality of the system
is found to be highly dependent on q, α, and r. As the deformation increases, the system is
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observed to be more nonclassical.

Further, the study of dynamics of expectation values of deformed position and mo-
menutm operators in a q-deformed harmonic oscillator included in Chapter (4) ended up
in a conclusion that the system exhibits periodic, quasi-periodic, and chaotic behavior ac-
cording to the values of q and α. We thus discovered a quantum system that is a source
of inherent quantum chaos, with an additional degree of freedom q to control the system
properties. The effects and control of decoherence on such a system will be an exciting
area of future investigation.

The study of the nonclassicality of q-deformed states is extended to quantum entangle-
ment in Chapter (5). The interaction of a math-type q-deformed field with the atoms of a
nonlinear medium is analyzed in detail, for two different initial states. The entanglement
exhibited by the system is measured in terms of von Neumann entropy. The revivals ob-
served in the system are found to be highly dependent on the deformation parameter q. The
study can be extended to the system with different initial states, like the deformed photon-
added coherent states.

The deformed quadrature operator eigenstates that we obtained will be helpful for the
quantum state reconstruction and quantum information processing of deformed states. It
is very important to note that the deformation provides an additional degree of freedom to
the system, i.e., the deformation parameter q, using which we can adjust the nonlinear and
nonclassical properties of the system to achieve the desired results. All the analysis done
for a q-deformed system can also be generalized for the f -deformed one.
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Appendix A

The calculation of Husimi Q-function for
the state |ξ〉mq

As discussed in the Chapter (3), the q-deformed Husimi function Q is

Q(α) =
1

π
m
q 〈α|ρ|α〉mq , (A.1)

where ρ is the density operator and |α〉mq is the q-deformed coherent state given by

ρ = |ξ〉mq mq 〈ξ| (A.2)

and

|α〉mq =
1
√
eq

∞∑
n=0

(α)n√
[n]mq !

|n〉mq , (A.3)

where

eq =
∞∑
n=0

(•)n
[n]mq !

. (A.4)

Now,

Q(α) =
1

π
m
q 〈α|ξ〉mq mq 〈ξ|α〉mq

=
1

π
|mq 〈α|ξ〉mq |2. (A.5)

Let us evaluate the term m
q 〈α|ξ〉mq .

m
q 〈α|ξ〉mq =

1
√
eq
{
∞∑
m=0

(α∗)m√
[m]mq !

q〈m|}Nm
q {

∞∑
n=0

(−eiθtanhr)n
√

[2n− 1]mq !!

[2n]mq !!
|2n〉mq }. (A.6)
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The above given relation exists only when m = 2n. Thus,

m
q 〈α|ξ〉mq =

1
√
eq

∞∑
m=0

Nm
q

(α∗)2n√
[2n]mq !

(−1)n(eiθtanhr)n

√
[2n− 1]mq !!

[2n]mq !!
. (A.7)

Now, substituting (A.7) in (A.5), we get

Q(α) =
1

πeq
|Nm

q

∞∑
m=0

(α∗)2n√
[2n]mq !

(−1)n(eiθtanhr)n

√
[2n− 1]mq !!

[2n]mq !!
|2. (A.8)
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Appendix B

The calculation of 〈Xm2

q 〉 for the deformed
squeezed superposition state |α, ξ〉ms,q

We have,

Xm
q =

√
1 + q2

2
(Am

†

q + Amq ). (B.1)

Thus,

〈Xm2

q 〉 =
1 + q2

4
(〈Am2

q 〉+ 〈(Am†q )2〉+ (1 + q2)〈Am†q Amq 〉+ 1). (B.2)

Now, let us evaluate each term in equation (B.2) separately.

〈Am2

q 〉 = 〈(Am†q )2〉
= m

s,q〈α, ξ|Am
2

q |α, ξ〉ms,q
= Nm2

s,q

(
m
q 〈α, ξ|Am

2

q |α, ξ〉mq + m
q 〈α, ξ|Am

2

q |α,−ξ〉mq
+m
q 〈α,−ξ|Am

2

q |α, ξ〉mq + m
q 〈α,−ξ|Am

2

q |α,−ξ〉mq
)

= Nm2

s,q

(
Nm2

q (α, ξ)
∞∑
n=0

I(α, ξ, n+ 2)I(α, ξ, n)

[n]mq !

+Nm
q (α, ξ)Nm

q (α,−ξ)
∞∑
n=0

I(α, ξ, n+ 2)I(α,−ξ, n)

[n]mq !

+Nm
q (α,−ξ)Nm

q (α, ξ)
∞∑
n=0

I(α,−ξ, n+ 2)I(α, ξ, n)

[n]mq !

+Nm2

q (α,−ξ)
∞∑
n=0

I(α,−ξ, n+ 2)I(α,−ξ, n)

[n]mq !

)
, (B.3)
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where Nm2

q (α, ξ) and Nm2

s,q (α, ξ) are given by (3.24) and (3.27) respectively.
Also,

〈
Am

†

q Amq

〉
= Nm2

s,q

(
Nm2

q (α, ξ)
∞∑
n=0

I2(α, ξ, n)

[n− 1]mq !

+Nm2

q (α,−ξ)
∞∑
n=0

I2(α,−ξ, n)

[n− 1]mq !

+2Nm
q (α, ξ)Nm

q (α,−ξ)
∞∑
n=0

I(α, ξ, n)I(α,−ξ, n)

[n− 1]mq !

)
. (B.4)

Now substituting equations (B.3) and (B.4) in (B.2), we get

〈Xm2

q 〉 =
(1 + q2

4

)
Nm2

s,q

[
Nm2

q (α, ξ)
( ∞∑
n=0

I(α, ξ, n+ 2)I(α, ξ, n)

[n]mq !
+ (1 + q2)

∞∑
n=0

I2(α, ξ, n)

[n− 1]mq !

)
+Nm2

q (α,−ξ)
( ∞∑
n=0

I(α,−ξ, n+ 2)I(α,−ξ, n)

[n]mq !
+ (1 + q2)

∞∑
n=0

I2(α,−ξ, n)

[n− 1]mq !

)
+Nm

q (α, ξ)Nm
q (α,−ξ)

( ∞∑
n=0

I(α, ξ, n+ 2)I(α,−ξ, n)

[n]mq !
+
∞∑
n=0

I(α,−ξ, n+ 2)I(α, ξ, n)

[n]mq !

+2(1 + q2)
∞∑
n=0

I(α, ξ, n)I(α,−ξ, n)

[n− 1]mq !

)]
+
(1 + q2

4

)
. (B.5)
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Appendix C

Calculation of reduced density matrix for
the system with initial state |Nm

q ; 0〉

The time-evolved density matrix can be calculated as

ρtot(t) = |ψ(t)〉〈ψ(t)|

=
∞∑
N=0

N∑
s=0

∞∑
N ′=0

N
′∑

s′=0

e−i(λNs−λN′s′ ) t

〈ψNs|ψ(0)〉〈ψ(0)|ψN ′s′ 〉|ψNs〉〈ψN ′s′ |
(C.1)

For the field initially in the Fock state |N〉mq and the atom be in the ground state |0〉, we
have

ρ(t) =
N∑
s=0

N∑
s′=0

e−i(λNs−λN′s′ ) t〈ψNs|Nm
q ; 0〉〈Nm

q ; 0|ψNs′ 〉|ψNs〉〈ψNs′ |

=
N∑
s=0

N∑
s′=0

e−i(λNs−λN′s′ ) tCNs
0 CNs

′

0 |ψNs〉〈ψNs′ |, (C.2)

where CNs
n = 〈ψNs|(N − n)mq ;n〉.

The reduced density matrix ρk(t) is,
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ρmq (t) = Tra[ρ(t)]

=
∞∑
n=0

a〈n|ρ(t)|n〉a

=
N∑
n=0

N∑
s=0

N∑
s′=0

e−i(λNs−λN′s′ ) tCNs
0 CNs

′

0 〈(N − n)mq ;n|ψNs〉〈ψNs′ |(N − n)mq ;n〉|N − n〉mq mq 〈N − n|

=
N∑
n=0

N∑
s=0

N∑
s′=0

e−i(λNs−λN′s′ ) tCNs
0 CNs

′

0 CNs
N−nC

Ns
′

N−n|N − n〉mq mq 〈N − n| (C.3)

and

ρa(t) = Trq[ρ(t)]

=
∞∑
n=0

m
q 〈n|ρ(t)|n〉mq

=
N∑
n=0

N∑
s=0

N∑
s′=0

e−i(λNs−λN′s′ ) tCNs
0 CNs

′

0 〈nmq ;N − n|ψNs〉〈ψNs′ |nmq ;N − n〉|N − n〉aa〈N − n|

=
N∑
n=0

N∑
s=0

N∑
s′=0

e−i(λNs−λN′s′ ) tCNs
0 CNs

′

0 CNs
n CNs

′

n |N − n〉aa〈N − n|. (C.4)

94


	List of Figures
	Nomenclature
	Introduction
	Quadrature operator eigenstates  and energy eigenfunctions of  f-deformed oscillators
	Introduction
	The non-deformed harmonic oscillator
	Review of f-oscillators
	Deformed position and momentum operators
	The f-deformed quadrature operator and wavefunctions of the f-deformed oscillator
	Conclusion

	Squeezing and nonclassicality of q-deformed superposition states
	Introduction
	Squeezing and Husimi Q function
	q-deformed squeezed states and their superpositions
	Results and discussion
	Conclusion

	Dynamics of observables in a q-deformed harmonic oscillator
	Introduction
	Harmonic oscillator and energy eigenvalues
	Time evolution with q-deformation
	Results and Discussion
	Conclusion

	Entanglement dynamics in q-deformed states
	Introduction
	Light propagating through a Kerr medium
	The model
	Entanglement measures and von Neumann entropy
	Entanglement dynamics
	Conclusion

	Conclusion
	Bibliography
	List of Publications
	Appendices
	The calculation of Husimi Q-function for the state mq
	The calculation of Xqm2 for the deformed squeezed superposition state ,ms,q
	Calculation of reduced density matrix for the system with initial state Nmq;0

