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Abstract
Fractional Calculus (FC) is a branch of mathematics which generalises classical integer-
order calculus to handle integrals and derivatives of arbitrary orders. Recently, the FC has
received attention in various science and engineering fields including control theory. In
control theory, one deals with the modelling, design and analysis of Fractional Order (FO)
systems and controllers, whose dynamics are governed by FO differential equations. In this
thesis, unified tuning expressions of Fractional Order Controllers (FOCs) for the proposed
universal plant structure to meet Wang et al specifications are derived. Further, this work
is extended to tune the parameters of the Complex Coefficient Integer Order Controllers
(CCIOCs) and Complex Coefficient Fractional Complex Order Controllers (CCFCOCs) for
such universal plant. This thesis also investigates the limit cycle prediction using various
methods and its suppression using FOCs for system with multiple nonlinearities.

The thesis start with the proposal of defining plant model having complex coefficients
and complex order derivatives plus dead time as a universal plant structure. Then, uni-

fied tuning expressions of FOCs such as PIα, [PI]α, PDβ , [PD]β and Kc

(
s
ωgc

)α+jβ

are
derived to meet the desired gain crossover frequency, phase margin and Isodamping prop-
erty (Wang et al specifications) for the proposed universal plant structure using its positive
frequency (ω+) information. Two different case studies are simulated to demonstrate the
controller tuning for the proposed structure. Performing the tuning of controllers by con-
sidering ω+ information is applicable only for Integer Order (IO)/FO plants containing
real coefficients which have an even symmetrical magnitude and odd symmetrical phase
behaviour in frequency response.

In general, plant with complex coefficients provides unsymmetrical magnitude and
phase behaviour in its frequency response. Hence, tuning of controllers for universal plants
by considering only its ω+ information alone is not adequate. This type of tuning reduces
stability margins and deteriorates its time response. Therefore, tuning of controllers for
universal plants require both ω+ and negative frequency (ω−) information which in turn
demands complex coefficient controllers.

To address this problem, Complex Coefficient Integer Order Controllers (CCIOCs) and
Complex Coefficient Fractional Complex Order Controllers (CCFCOCs) are proposed.
Unified tuning expressions are derived for CCIOCs by considering both ω+ and ω− in-
formation of such universal plant. In case of CCFCOCs, the controller parameters are
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obtained through optimization technique due to its difficulty in solving by analytical ap-
proach. Numerical simulations are performed for few case studies to demonstrate the pro-
posed CCIOCs and CCFCOCs. The results are compared with real coefficient Integer
Order Controllers (IOCs) and FOCs tuned only in ω+.

Then, the focus is on the prediction of limit cycle using graphical approaches and its
suppression using FOCs for system containing multiple nonlinearities. In practical systems
having separable hard nonlinearities, sustained oscillation is detected at the steady state re-
sponse due to the presence of stable limit cycles. An optimization problem is proposed to
tune IOCs/FOCs parameters for system with multiple nonlinearities to suppress the limit
cycle magnitude in addition to meet the desired closed loop specifications. To extend the
applicability of the existing Nyquist plot for predicting this limit cycle, an Input Dependent
Nyquist Plot (IDNP) is proposed in this work. A servo system with backlash and relay non-
linearities is considered as a case study for limit cycle prediction with obtained FOCs using
an IDNP. The predicted limit cycle information is compared with optimization results, In-
put Dependent Root Locus (IDRL) and are validated through closed loop simulations. It
is found that FOCs have remarkably eliminated the limit cycle oscillation in comparison
to IO PD controller at steady state of the closed loop response. Further, the robustness
of the designed controllers are tested under system parameter uncertainty, disturbance and
measurement noise conditions.
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Chapter 1

Introduction

Classical calculus deals with integer-order differentiation and n-fold integration. Its gener-
alisation to handle integrals and derivatives of arbitrary orders (say for instance, the deriva-
tive of 0.5th order) leads to a branch in mathematics widely known as Fractional Calculus
(FC) [1]. In FC, the word fractional is a misnomer, since the order can be real or com-
plex. In control theory, FC finds applications in modelling, design and analysis of Frac-
tional Order (FO) systems and controllers, whose dynamics are governed by FO differential
equations.

This thesis mainly investigate the tuning of Fractional Order Controllers (FOCs) for
the proposed universal plant structure. The plant structure has complex coefficients and
complex order derivatives plus dead time. Then, unified tuning expressions of FOCs such

as PIα, [PI]α, PDβ , [PD]β and Kc

(
s
ωgc

)α+jβ

are derived to meet Wang et al specifica-
tions using its positive frequency (ω+) information. Further, tuning of parameters of the
Complex Coefficient Integer Order Controllers (CCIOCs) and Complex Coefficient Frac-
tional Complex Order Controllers (CCFCOCs) for such universal plant using its ω+ and
negative frequency (ω−) information are presented. This work also deals limit cycle pre-
diction using various methods and its suppression using FOCs for system with multiple
nonlinearities.

1.1 Literature Survey and Motivation

The thought of FC came into light instantly after the classical calculus is proposed. Its
first appearance is originated in a letter written by Leibnitz to L’Hospital in 1695 [2]. For
more than 300 years, this concept is mainly grown as a pure theoretical area of mathemat-
ics that generalises the integer order calculus to arbitrary orders [1], [3], [4], [5]. During
this period, outstanding contributions are made by very famous mathematicians and some
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of the notable names are L. Euler, J. L. Lagrange, P. S. Laplace, J. B. J. Fourier, J. Li-
ouville, N. H. Abel, B. Riemann, A. K. Grunwald, A. V. Letnikov, J. Hadamard, G. H.
Hardy, etc [6], [7], [8]. These works led to better understanding about the prospects of FC
in characterising the memory and hereditary properties of various materials and processes.
On the other side, the conventional calculus revealed the restricted potential in these re-
gards [9], [10], [11], [12], [13].

Last few decades observed many advancements in the computer technology and also the
progress of numerical methods for finding solutions of fractional-order differential equa-
tions. This stimulated the researchers to find the applications of FC in different science and
engineering fields [4], [14], [15], [16]. The fields include viscoelasticity [17], [18], capac-
itor theory [19], control theory [20], [21], [22], fractals [23], [24], oscillators [25], [26],
polymer physics and rheology [27], [28], bioengineering [29], [30], multipoles and elec-
tromagnetic theory [31], [32], electrochemistry [33], signals and systems [34], and many
more [35], [36], [37], [38], [39].

In control theory, the FC is applied in two ways: 1) System modelling, 2) Controller de-
sign [40], [41], [42], [43], [44]. In the latter application, one designs FOCs whose dynamics
are governed by fractional-order differential equations [45], [46], [47], [48], [13].

The continuous domain Transfer Function (TF) of a FOC has irrational form struc-
ture, which is a ratio of polynomials having arbitrary powers (also known as pseudo-

polynomials [49]). For the rational approximation of such TFs, several methods have been
proposed in the literature. A survey of these methods is found in [50], [51]. Some of the
popular methods include Carlson [52], Charef [53], Matsuda [54], Crone [45], Continued
Fraction Expansion (CFE) [55], [51], Oustaloup [56], etc.

The selection of a particular method for rational approximation depends on factors such
as allowable order of the resultant TF, degree of accuracy in the desired frequency range,
time-domain behaviour, etc. Considering such factors together, it is difficult to claim one
of these methods as the best one [45]. However, among them, the Oustaloup method [56]
is used popularly to obtain a reasonably good rational fit for the given fractional-order
TF within the specified frequency range [57]. A modified version of Oustaloup method
provides better approximation at lower and upper frequency ends, though at the cost of
increased order [57], [58].

Several methods are proposed in the literature for the discretisation of fractional-order
TF as well. The methods include direct discretisation using Al-Alaoui operator via CFE [59],
direct recursive discretisation with Tustin operator, discretisation using backward-difference
operator via Power Series Expansion (PSE) [60], discretisation algorithm based on the
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quadrature formula [61], an approach based on B-splines function [62], etc.

The irrational form TF of FOCs enables them to possess better abilities over their
integer-order counterparts in meeting stringent loop shaping requirements. The FOCs such
as PIα, [PI]α, PDβ , [PD]β , PIαDβ [63], [58], [64] are superclass of their integer coun-
terparts (i.e. PI , PD, PID). Therefore, one expects them to perform better owing to the
design flexibility offered by their additional parameters [21], [60], [65]. For instance, the
PIαDβ controller has additional tuning parameters α, β than the PID, which makes it
better [66].

Design of FOCs has received a considerable attention in the literature from both aca-
demic and industrial point of view [45], [67], [68]. In [69], [70], the design of PIαDβ has
been presented to meet five design specifications (Monje et al specifications) by numeri-

cally solving a constrained optimization problem. The solution in this case is possible with
PIαDβ controller due to its five parameters unlike the conventional PID which has only
three parameters. The above work is further extended in [71] to develop analytical rules
for PIαDβ controllers meeting Monje et al specifications. For this purpose, the change in
the numerically obtained controller parameters due to variations in the plant parameters is
translated into tuning rules by means of least square fitting.

Another interesting work in [72] discusses the superiority of PIαDβ over PID for
controlling fractional-order systems in order to meet desired stability margins. The work
in [73] constructs tuning rules for PIαDβ to minimize the Integral Absolute Error (IAE)
with a constraint on the maximum sensitivity. In [74], it has been shown that under the
given optimization condition of minimizing performance indices such as Integral Time
Absolute Error (ITAE) and Integral Square Error (ISE), the best PIαDβ controller outper-
forms the best PID controller. The work in [75] presents the superiority of PIαDβ over
conventional PID in minimizing IAE and ISE for the cart-servo laboratory set-up.

In the existing fractional control literature, a large number of works are devoted to the
tuning of three-parameter FOCs such as PIα, [PI]α, PDβ and [PD]β . To achieve the
system stability and robustness, these three-parameter FOCs are tuned to meet the Wang
et al specifications: (i) gain crossover frequency, (ii) phase margin and (iii) Isodamping
condition [76], [77], [78], [79], [80], [81], [82], [82], [83], [84], [85], [86]. Gain crossover
frequency and phase margin are selected to have a control over settling time and overshoot
of the closed loop time response respectively. The Isodamping condition ensures constant
overshoot towards variation in system gain. These advantages are utilised in the following
research works to tune the three-parameter controllers for various engineering applications.

The design of PIα and [PI]α controllers for robust velocity servo plant has been pre-
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sented in [76]. The work in [77] considers First Order Plus Dead Time (FOPDT) systems
and designs PIα and [PI]α controllers. The design of PIα and [PI]α controllers for a class
of fractional-order systems which can accurately model many real systems in bioengineer-
ing (e.g. Cole-Cole model [29]) is discussed in [78]. The paper also discusses the design
for fractional horsepower dynamometer. Design of PIα controllers for the class of plants
studied in [87] has been discussed in [79].

Design of PDβ for a class of typical second-order plants is discussed in [80]. Design of
PDβ controller for the position control of dynamometer is presented in [81]. In [82], PDβ

controller is designed systematically for the generalized fractional capacitor membrane
model. The [PD]β controller design is proposed for robust motion control systems in [83]
and for the FC model of membrane charging in [84].

Fractional Complex Order Controller (FCOC) is designed for a DC motor [85] to meet
the desired specifications. Recently, authors proposed a method to obtain a robust FOC
to control a pump in [88] and for an unstable linear active bearing system in [89]. The
controller design is carried out by following Bode’s ideal transfer function as the reference
function to have desired phase margin and robust to gain parameter variation. It is interest-
ing to observe in these works that the tuning expressions of the controllers meeting Wang
et al specifications have been derived by considering a particular plant TF. If one desires to
tune them for some other plant TF, the exercise of deriving the corresponding expressions
needs to be carried out again, which is tedious and work intensive.

Hence, a generalized plant structure with real coefficients and fractional order deriva-
tives is introduced in [90], [91], [92], [93]. A unified tuning expressions are also derived for
such a generalised plant structure which suit for any type of Integer Order (IO)/Fractional
Order (FO) plants. In these papers, controller parameter expressions for fractional struc-
tures PIα, PDβ , [PI]α and [PD]β are obtained which are ready-to-use for any plant TF of
integer or fractional-order with real coefficients. All these tuning techniques are limited to
integer and fractional order derivative models with real coefficients.

In general, physical systems of IO/FO with real coefficients are considered for system
design and analysis. Very few literature present physical systems with complex coefficients
and are reported in: (i) design of asymmetric bandpass and band rejection filters [94], (ii)
whirling shaft, vibrational systems and filters [95], (iii) modelling of three-phase electrical
systems [96], [97], (iv) representation of Coriolis force in mechanics [98] and (v) algo-
rithms for mobile radio communications [99].

Control theory is mainly developed for physical systems with real coefficients. Very
few works are reported on complex coefficient systems in control literature. Some of
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them are: Routh-Hurwitz test for various complex coefficient polynomials are discussed
in [100], [101], [102], [103], [104], [105]. Kharitonov’s stability criterion for complex coef-
ficient interval systems is presented in [106] and it is also used in [107], [108], [109], [110].
Nyquist stability criterion for three phase system with complex coefficient model is ad-
dressed in [96]. In [111], complex root locus is proposed and it is used to analyse the
current control of a three-phase rectifier in the dq reference frame.

On the other hand, controller design for system with complex coefficients are reported
in the following: In [112], state feedback controller is designed for rotational disk vibration
system with minimum energy and better transient response. In [113], [114], complex co-
efficient frequency domain stability analysis for cross coupled anti-symmetrical system is
studied and it is extended to magnetically suspended flywheel rotor system. In [115], [116],
controller design for doubly fed induction machine is presented by employing complex root
locus and Hurwitz test techniques respectively. In [117], ABC frame based complex co-
efficient controllers and filters are proposed to eliminate the current harmonics in order to
improve the current quality of the three-phase grid connected inverter. In [118], authors
proposed to design a controller for cavity field control and Cartesian feedback linearisa-
tion of RF amplifiers which have complex coefficients. In [119], complex coefficient filters
are introduced in the design of sliding mode disturbance observer to eliminate the higher
harmonics which in turn improves the estimation of disturbance without chattering.

Modelling and control of physical plant with complex order derivatives is one of the
emerging fields in control theory. At first, complex order derivative is introduced in [120]
and later in [121], [122], complex valued Maxwell model (complex coefficients and com-
plex order derivatives) is presented to describe the mechanical properties of the viscoelastic
devices. This model predicts the transient and steady state response close to the experimen-
tal results in comparison to real valued Maxwell model. Such viscoelastic characteristic is
widely seen in space applications such as crew module in space flight, end effectors in
robotic arm and viscoelastic dampers in seismic mitigation. Complex state space repre-
sentation, model decomposition and stability condition for commensurate type complex
fractional order systems are studied in [123]. In [124], frequency response for fractional
complex order derivative models are presented. In [125], complex derivative orders are
used to detect multiple faults in machines. Recently, existence and uniqueness of complex
solutions for fractional complex order differential equations are discussed in [126].

Motivated from the above works, a universal plant structure is proposed by incorporat-
ing complex coefficients and complex order derivatives plus dead time as a plant model.
In this thesis, unified controller parameter tuning expressions of FOCs: PIα, [PI]α, PDβ ,
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[PD]β and Fractional Complex Order Controller (FCOC):Kc

(
s
ωgc

)α+jβ

for universal plant
structure to meet Wang et al specifications are derived. Here, the FOCs/FCOC parameters
are obtained by utilising the positive frequency (ω+) information only. It is noted that the
sensitivity and complementary sensitivity functions have very high peak values in nega-
tive frequency (ω−) which in turn reduces its stability margins and equivalent time domain
performance. The reduced performance is due to the negligence of ω− information in the
controller design. Hence for complex valued plants, real valued Integer Order Controllers
(IOCs)/Fractional Order Controllers (FOCs) are not suitable to meet the desired perfor-
mance.

To improve the performance, controller has to be tuned by considering ω− informa-
tion also for complex valued plants. In general, IO/FO plants with real coefficients have
even symmetrical magnitude and odd symmetrical phase behaviour in frequency response.
Whereas, complex valued systems have unsymmetrical magnitude and phase behaviour in
frequency response. Hence, controller should be complex valued and tuning is performed
by including both ω+ and ω− information. This motivates to introduce complex coeffi-
cients in the existing real valued IOCs structure to satisfy the required specifications in
ω+ and ω−. To show the superiority of FOCs, Complex Coefficient Fractional Complex
Order Controllers (CCFCOC) are also proposed for universal plant to meet the Wang et al
specifications in ω+ and ω−.

In engineering systems having separable nonlinearities, sustained oscillation is ob-
served in the system output response at steady state [127]. The sustained oscillation is
due to the presence of stable limit cycles. To study such systems, Describing Function
(DF) analysis is adopted as a tool under the assumption that linear part of the system pro-
vides very good low pass filtering effect [128]. Analysis of system containing more than
one nonlinearity is very challenging. In [129], single composite DF is derived for sys-
tems having nonlinearities in cascade and error caused by this composite DF is evaluated.
In [130], [131], [132], [133], [134], DF for nonlinearities such as friction, static and dy-
namic backlash are obtained using fractional calculus.

In control theory and practice, graphical approaches such as Nyquist plot and root locus
are used to predict the limit cycle behaviour for system with single nonlinearity. In [135],
limit cycle condition is derived for any number of parallel nonlinear elements separated by
linear components possessing strong low pass filter characteristics. However, it fails to pro-
vide the limit cycle stability information. Limit cycle prediction for nonlinear dynamical
systems such as system with nonlinear friction and dynamic backlash using DF analysis is
done in [136]. DF based limit cycle prediction for fractional order (FO) nonlinear systems
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is presented in [137], [138], [139]. Accuracy of digital rational approximations of FO op-
erators to predict the limit cycle using DF method is presented for a system with fractional
order proportional integral derivative controller and plant subject to backlash in [140]. Pre-
diction of limit cycle behaviour using DF contradicted with the time domain results for the
system with relay feedback loop is investigated in [141]. This is due to insufficient filtering
of higher order harmonics in the loop and hence by inserting an additional low pass filter
in the loop, limit cycle prediction using DF is matched with the time domain results.

In [142], a method is presented to control system having backlash and saturation non-
linearities for accurate predictions of limit cycle details and system parameter values to
eliminate oscillations. Stability analysis of systems with multiple nonlinearities using in-
put dependent root locus (IDRL) in concurrence with DF is shown in [143] and its dynam-
ics are displayed using pole-zero configuration. In [144], [145], limit cycle stability for the
systems having multiple nonlinearities (both memory and memoryless) in a single feedback
loop systems is determined through graphical approach under the assumption that the input
to nonlinear element is a sinusoidal function of time. In [146], range of the hydroelectric
system parameters for the stable limit cycle existence is well studied. Robust stability anal-
ysis of Luré systems with multiple nonlinearities [147] through Popov-Lyapunov approach
is presented with the bounded range for individual system parameter uncertainty.

Controller design for sampled data system having single nonlinearity using quantitative
feedback theory (QFT) technique is described in [148] and the applicability of QFT in case
of multiple nonlinearities is unexplored. In [149], limit cycle characteristics and existence
are detailed for a high performance hydraulic actuator and limit cycle is quenched by us-
ing linear controller. Sliding mode controller for stabilizing uncertain nonlinear systems
with multiple inputs containing sector nonlinearities and deadzones is presented in [150].
In [151], sliding mode controller is tuned by using predicted limit cycle details for a FO
system with relay nonlinearity. In [152], [153], [154] effective use of DF for the synthesis
of controllers to meet the desired limit cycle details is studied. DF based tuning of IOCs
and FOCs to suppress the limit cycle magnitude by proposing an optimization problem
is adddressed [155], [156], [93] in addition to meet the desired specifications for system
with single nonlinearity. Few researchers [157], [158] also suggested a FOCs with an anti-
windup feature for plants with input saturation nonlinearity.

In [159], authors detailed the DF based stability analysis for systems with multiple
nonlinearities in both graphical and analytical approach under various input conditions.
In [159], [128], it is inferred that limit cycle prediction is done for the system with nonlin-
earity using Nyquist plot whose linear part of the system is of the form G(s) (independent
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of limit cycle magnitude (X) and frequency (ω)). On the other hand, limit cycle prediction
for system of the form G(s,X) (dependent of X and ω) with nonlinearity using Nyquist
plot is limited.

This motivate to propose an Input Dependent Nyquist Plot (IDNP) to predict the limit
cycle details. Controller design for systems with multiple nonlinearities using DF analysis
is also not explored in the existing literature. Hence, an optimization problem is proposed
to tune the FOC parameters for suppressing the limit cycle oscillation.

1.2 Research Contribution

The research contributions of the thesis are summarized as follows:

(i) FOCs for complex valued systems

• Plant model with complex coefficients and complex order derivatives plus dead
time is proposed as a universal plant structure.

• Unified tuning expressions of FOCs and FCOC parameters are derived for
universal plant structure to meet Wang et al specifications.

• Unified tuning expressions of the proposed CCIOCs parameter are derived for
universal plant to meet the Wang et al specifications in ω+ and ω−.

• CCFCOCs structures are also proposed for universal plant structure and param-
eters are tuned using optimization technique.

• The detailed time domain analysis and frequency domain analysis (sensitivity
and complementary sensitivity) are carried out for the chosen cases to validate
the obtained FOCs, FCOC, CCIOCs and CCFCOCs.

(ii) FOCs for system with multiple nonlinearities.

• IDNP is proposed to predict the limit cycle details for system with multiple
nonlinearities.

• An optimization problem with stability and robustness constraints is proposed
to obtain the controller parameters of FOCs for system with multiple nonlin-
earities to suppress the limit cycle magnitude in addition to meet the desired
closed loop performance.
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• The predicted limit cycle details are compared with the existing IDRL and op-
timization results. The predicted limit cycle information is further validated
through closed loop simulation and the robustness of the controller is verified
by introducing parameter uncertainty, disturbance and measurement noise.

1.3 Organisation of Thesis

• Chapter 2 discusses the preliminaries of FC and its extension to propose TF contain-
ing complex coefficients with complex order derivatives plus dead time as univer-
sal plant structure. It also gives introduction about FOC, FCOC, CCIOCs and
CCFCOCs.

• In chapter 3, a universal plant structure is proposed which accommodates any IO/FO
plant TF. For such a plant, the tuning expressions are derived for PIα, [PI]α, PDβ ,

[PD]β and Kc

(
s
ωgc

)α+jβ

to satisfy the Wang et al specifications. With the help of
numerical examples, the usefulness of the deduced expressions are demonstrated.

• Chapter 4 presents the unified tuning expressions of CCIOCs for the proposed univer-
sal structure to satisfy the constraints both in ω+ and ω−. This work is also extended
to propose CCFCOCs structure and tune its parameters using optimization technique.
Numerical examples are illustrated to show the superiority of the complex coefficient
controllers over real coefficient controllers.

• In chapter 5, IDNP is proposed to predict the limit cycle details for system with
multiple nonlinearities. Servo system with backlash and relay nonlinearities is con-
sidered as a case study to predict the observed limit cycle using the proposed IDNP.
A constrained optimization problem is formulated to suppress the observed limit cy-
cle using IOCs and FOCs in addition to meet the desired closed loop specifications.
Furthermore, its graphical interpretation is presented which is useful to compare the
designed controllers in terms of limit cycle suppression. From the simulation results,
the superiority of FOCs over IOCs is claimed.

• Chapter 6 provides the conclusion and future direction of this research work.
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Chapter 2

Preliminaries of Fractional Calculus

2.1 Introduction

Similar to the generalisation of integer exponents into fractional exponents, the idea of
Fractional Calculus (FC) can be perceived as a natural outgrowth of conventional Integer
Order (IO) calculus. In case of an integer exponent (say) x3 = 1 · x · x · x, its physical
meaning can be interpreted as the multiplication of 1 three times by x. In case of fractional
exponent x5.23, this interpretation is not possible since one cannot conceive the meaning of
multiplying one 5.23 number of times by x. But still, the term x5.23 exists and has definite
value for the given x which is verifiable by infinite series expansion.

In the same way, the meaning of derivatives and integrals of arbitrary orders is arguably
impossible to grasp [160] unlike their IO counterparts. Nevertheless, they still exist as long
as one sticks to the mathematical world alone. Their formulations emerge quite naturally
by extending the notions of IO calculus to arbitrary orders. It is important to note that such
extension can lead to orders which are real or even complex.

Let us consider an infinite sequence of n-fold integrals and nth order derivatives, which
is presented as follows:

. . . ,

t∫
a

dτ2

τ2∫
a

f(τ1)dτ1,

t∫
a

f(τ1)dτ1, f(t),
df(t)

dt
,
d2f(t)

dt2
, . . . (2.1)

The sequence (2.1) can be made continuous by considering the derivatives and integrals
of arbitrary real orders.

In this chapter, we discuss the basics of such FC operations and their applications to the
control theory in terms of development of Fractional-Order Controllers (FOCs).
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2.2 Definitions in Fractional Calculus

The following definitions are used to describe the fractional derivative and integration op-
eration:

1. Riemann-Liouville Fractional Integral [160]

This definition is derived directly from the traditional expression of repeated integra-
tion. For this purpose, it starts with the following Cauchy’s formula for evaluating
nth integration (Jn) of the function f(t):

Jnf(t) =
1

(n− 1)!

t∫
a

(t− τ)n−1f(τ)dτ (2.2)

The subscripts a and t denote the two limits (or terminals [35]) related to the opera-
tion. Since (2.2) contains factorial, it cannot be used for non-integer n. By replacing
the factorial by its analytical expansion i.e. gamma function in order to generalize
(2.2) for all α ∈ R+, we obtain Riemann-Liouville fractional integral JαRL as follows:

JαRLf(t) =
1

Γ(α)

t∫
a

(t− τ)α−1f(τ)dτ (2.3)

where, the gamma function Γ(α) is defined by the integral

Γ(α) =

∞∫
0

e−ttα−1dt (2.4)

Properties

(a) Integration of order, α = 0

J0
RLf(t) = f(t) (2.5)

(b) Repeated Integration

JαRLJ
β
RLf(t) = Jα+β

RL f(t) (2.6)

where, α, β ∈ R+.
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(c) Convolution

Let the φα(t) be defined as:

φα(t) =
tα−1

Γ(α)
(2.7)

Then, (2.3) can be expressed as the following convolution:

JαRLf(t) = φα(t) ∗ f(t) (2.8)

2. Riemann-Liouville Fractional Derivative [10]

The fractional derivative Dα
RL is expressed as:

Dα
RL := DnDα−n = DnJn−αRL (2.9)

where, D denotes derivative operation and (n− 1) < α ≤ n; (n ∈ N).

Therefore, from (2.3) and (2.9), the Riemann-Liouville fractional derivative is ob-
tained as follows:

Dα
RLf(t) =

dn

dtn

 1

Γ(n− α)

t∫
a

f(τ)

(t− τ)α−n+1
dτ

 (2.10)

3. Caputo Fractional Derivative [22]

The fractional derivative Dα
C is expressed as:

Dα
C := Dα−nDn = Jn−αRL Dn (2.11)

Therefore, from (2.3) and (2.11), the Caputo fractional derivative is obtained as fol-
lows:

Dα
Cf(t) = Jn−αRL fn(t) =

1

Γ(n− α)

t∫
a

fn(τ)

(t− τ)α−n+1
dτ (2.12)

4. Grunwald-Letnikov Derivative [74]
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We have the following fundamental definition of nth order derivative (n ∈ N):

Dnf(t) = lim
h→0

1

hn

n∑
k=0

(−1)k
(
n

k

)
f(t− kh) (2.13)

where,

(
n

k

)
=

n!

(n− k)!k!
=

Γ(n+ 1)

Γ(n− k + 1)Γ(k + 1)

The generalization of (2.13) to αth order (α ∈ R+) leads to the following Grunwald-
Letnikov derivative (Dα

GL):

Dα
GLf(t) = lim

h→0

1

hα

[ t−ah ]∑
k=0

(−1)k
(
α

k

)
f(t− kh) (2.14)

where,

(
α

k

)
=

Γ(α + 1)

Γ(α− k + 1)Γ(k + 1)

In (2.14), f(t) is defined over [a, t]. Also,
[
t−a
h

]
truncates

(
t−a
h

)
to integer.

5. Grunwald-Letnikov Integral [160]

Generalization of (2.13) to (−α)th order (α ∈ R+) leads to the following Grunwald-
Letnikov integral (JαGL):

JαGLf(t) = D−αf(t) = lim
h→0

1

h−α

[ t−ah ]∑
k=0

(−1)k
(
−α
k

)
f(t− kh) (2.15)

Using the identity
(−α
k

)
= (−1)k Γ(α+k)

Γ(α)k!
, we rewrite (2.15) as follows:

JαGLf(t) = lim
h→0

hα
[ t−ah ]∑
k=0

Γ(α + k)

Γ(α)k!
f(t− kh) (2.16)
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6. Miller-Ross Sequential Fractional Derivative [10]

It is defined as follows:

Dαf(t) = Dα1Dα2 . . . Dαnf(t) (2.17)

where,

α =
n∑
k=1

αk, 0 < αk ≤ 1 (2.18)

This definition is useful for obtaining fractional derivative of any arbitrary order. The
derivative operator Dα can be Riemann-Liouville or Caputo.

7. Oldham and Spanier [39]

dqf(βx)

dxq
= βq

dqf(βx)

d(βx)q
(2.19)

This makes it suitable for the study of scaling and scale invariance. There is con-
nection between local-scaling, box-dimension of an irregular function and order of
Local Fractional Derivative.

8. Kolwankar and Gangal [39]

Local fractional derivative is defined by Kolwankar and Gangal to explain the be-
havior of continuous but nowhere differentiable function. For 0 < q < 1, the local
fractional derivative at point x = y, for f : [0, 1]→ R is:

Dqf(y) = lim
x→y

dq(f(x)− f(y))

d(x− y)q
(2.20)

Some Important Observations

1. By virtue of its form, the definition (2.14) is utilized for the numerical evaluation
of fractional derivatives. On the other hand, Riemann-Liouville (2.10) and Caputo
(2.12) definitions are useful in finding the fractional derivatives analytically [160].
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2. Grunwald-Letnikov derivative given in (2.14) can also be expressed as follows [10]:

Dα
GLf(t) =

m∑
k=0

f (k)(a)(t− a)−α+k

Γ(−α + k + 1)
+

1

Γ(−α +m+ 1)

t∫
a

(t− τ)m−αf (m+1)(τ)dτ

(2.21)

This is true under the assumption that the derivatives f (k)(t), (k = 1, 2, . . . ,m + 1)

are continuous in the closed interval [a, t] and m is an integer number satisfying the
condition m > α−1. The smallest possible value for m is obtained by the inequality
m ≤ α < m+ 1.

For the above assumptions, Riemann-Liouville fractional derivative given in (2.10)
can also be expressed as follows:

Dα
RLf(t) =

m∑
k=0

f (k)(a)(t− a)−α+k

Γ(−α + k + 1)
+

1

Γ(−α +m+ 1)

t∫
a

(t− τ)m−αf (m+1)(τ)dτ

(2.22)

Therefore, from (2.21) and (2.22), the Grunwald-Letnikov derivative definition (2.14)
is equivalent to the Riemann-Liouville derivative definition (2.10) under the above
discussed assumptions.

3. On substituting n = m + 1, Riemann-Lioville derivative definition (2.22) can be
rewritten as:

Dα
RLf(t) =

n−1∑
k=0

f (k)(a)(t− a)−α+k

Γ(−α + k + 1)
+

1

Γ(−α + n)

t∫
a

(t− τ)n−1−αf (n)(τ)dτ

=
1

Γ(n− α)

t∫
a

f (n)(τ)

(t− τ)α−n+1
dτ +

n−1∑
k=0

f (k)(a)(t− a)−α+k

Γ(−α + k + 1)
(2.23)

Therefore, using (2.7), (2.12), and (2.23), we get:

Dα
RLf(t) = Dα

Cf(t) +
n−1∑
k=0

φk−α+1(t− a)f (k)(a) (2.24)

The equation (2.24) represents the relationship between Riemann-Lioville and Ca-
puto derivatives.
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4. With a = 0, Caputo’s derivative (2.12) of a constant is 0 whereas the Riemann-
Lioville derivative of a constant is unbounded at t = 0. However, if one considers
the lower terminal a as −∞ in the Riemann-Lioville derivative definition (2.10), the
derivative of a constant is 0.

5. Short Memory Principle [10]: It follows from the coefficients in the Grunwald-
Letnikov definition (2.14) that for t >> a, the role of the history of the behavior
of the function f(t) near the lower terminal a can be neglected. This leads to the
following short memory principle which takes into account the behavior of f(t) only
in the recent past, i.e. in the interval [t−L, t] instead of [a, t]; where, L is the memory
length:

Dα
GLf(t) := aD

α
t ≈ t−LD

α
t , (t < a+ L) (2.25)

Thus, according to (2.25), the Grunwald-Letnikov fractional derivative with the fixed
lower terminal a is approximated by the one with moving lower terminal t − L.
Due to this, the number of addends in the approximated derivative definition never
exceeds [L/h]. This simplification, however, leads to some inaccuracy due to loss in
information.

2.3 Laplace Transform of Fractional Derivatives

Laplace transform of the function f(t) is a function F (s) of the complex variable s. The
F (s) is obtained as:

F (s) = L{f(t)} =

∞∫
0

e−stf(t)dt (2.26)

The Laplace transform of fractional derivatives (with the lower terminal a = 0) are as
follows [10]:

1. Laplace Transform of Riemann-Liouville Derivative

L{Dα
RLf(t)} = sαF (s)−

n−1∑
k=0

skD
(α−k−1)
RL f(0) (2.27)

where, F (s) = L{f(t)} and (n− 1) ≤ α < n.
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2. Laplace Transform of Caputo Derivative

L{Dα
Cf(t)} = sαF (s)−

n−1∑
k=0

sα−k−1f (k)(0) (2.28)

where, (n− 1) ≤ α < n.

3. Laplace Transform of Grunwald-Letnikov Derivative (2.21) with a = 0

L{Dα
GLf(t)} = sαF (s) (2.29)

As seen from (2.27), for calculating Laplace transform of Riemann-Liouville deriva-
tive one requires initial conditions D(α−k−1)

RL f(0), which are fractional derivatives. On the
other hand, the Laplace transform of Caputo derivative (2.28) requires initial conditions
f (k)(0), which are IO derivatives. Since such initial conditions can be easily interpreted
from physical data and observations, Caputo derivative is a more practical definition than
Riemann-Liouville derivative.

2.4 Fractional Order Transfer Functions

Fractional Order (FO) differential/integral equation are composed of FO derivatives/integrals.
A system of such equations describes the dynamics of FO processes.

Consider a Linear Time Invariant (LTI) FO system which is governed by the following
FO ordinary differential equation:

anD
αny(t) + an−1D

αn−1y(t) + ...+ a0D
α0y(t) =

bmD
βmu(t) + bm−1D

βm−1u(t) + ...+ b0D
β0u(t)

(2.30)

where, y(t) and u(t) denote output and input signals, respectively.

Also, ai, αi(i = 0, 1, . . . , n), bk, βk(k = 0, 1, . . . ,m) ∈ R; n,m ∈ N.

In (2.30), Caputo’s derivative definition (2.12) is preferred (with a = 0) as it allows
consideration of conventional initial conditions.

The Laplace transform of (2.30) assuming zero initial conditions results into the fol-
lowing Transfer Function (TF):

Y (s)

U(s)
=
bms

βm + bm−1s
βm−1 + ...+ b0s

β0

ansαn + an−1sαn−1 + ...+ a0sα0
(2.31)

18



where, Y (s) = L{y(t)}, U(s) = L{u(t)}
The TF of the form (2.31) represents either a commensurate or a non-commensurate

order system. It is a commensurate order system, if there exists a greatest common divisor
q ∈ R such that αi = qei, βk = qfk; ei, fk ∈ Z. In such case, q is the commensurate order,
which can be rational or irrational.

The discussions on the stability of FO LTI systems and the analytical solutions of FO
ordinary differential equations have been provided in APPENDIX A.

2.5 Continuous Domain Approximation Methods

The fractional-order TFs have irrational form, which is the ratio of pseudo-polynomials,
i.e. polynomials of arbitrary orders. From their approximation using rational functions,
several methods have been proposed in the literature, which are as follows:

1. Carlson [52]

The Carlson rational approximation of the fractional-order term H(s) = [G(s)]α is
obtained recursively as follows:

Hi(s) = Hi−1(s)
(v − 1)(Hi−1(s))v + (v + 1)G(s)

(v + 1)(Hi−1(s))v + (v − 1)G(s)
(2.32)

where, i ∈ N; H0(s) = 1; α = 1
v
. G(s) is a rational function of complex variable

s. The approximation (2.32) is applicable only if v ∈ N. In other words, α can only
assume values 1, 1

2
, 1

3
, 1

4
, etc.

2. CRONE [44]

(CRONE is the (French) acronym of Commande Robuste dOrdre Non-Entier)

For F (s) = sα (0 < α ≤ 1), its CRONE approximation is given as follows:

FCRONE(s) = C0

N∏
n=1

1 + s
ωzn

1 + s
ωpn

(2.33)

where,

19



k =

(
ωh
ωl

) |α|
N

, η =

(
ωh
ωl

) 1−|α|
N

, ωz1 = ωl
√
η

ωpn = ωznk n = 1, 2, ..., N

ωz(n+1) = ωpnη n = 1, 2, ..., (N − 1)

N is order of approximation. [ωl, ωh] is the frequency range of interest. C0 is such
that FCRONE(s) magnitude of 0 decibels (dB) at ω = 1 rad/s.

3. Matsuda [54]

For the Matsuda approximation of F (s) = sα, its gain (|F (jω)|) is found at sev-
eral frequencies. The number of frequencies determines the order of approximation.
Let the frequencies chosen be ω0, ω1, ω2, ..., ωN . Then, the Matsuda approximation
FMatsuda(s) is obtained as follows:

FMatsuda(s) = β0 +
s− ω0

β1 + s−ω1

β2+
s−ω2
β3+...

(2.34)

where,

β0 = d0(ω0), βk =
ωk − ωk−1

dk−1(ωk)− dk−1(ωk−1)

d0(ω) = |ωα|, dk(ω) =
ω − ωk−1

dk−1(ω)− dk−1(ωk−1)

k = 1, 2, ....N

4. Continued Fraction Expansion (CFE) [55]

Let us consider the approximation of F (s) = sα. There are following two categories
of this method:

(a) High CFE (FHighCFE(s))

This is a good approximation for higher frequencies (ω > λ;λ > 0), which is
obtained as follows:

FHighCFE(s) = λα

[
0;

1

1
;
−α s

λ

1
;

{ i(i+α)
(2i−1)2i

s
λ

1
,

i(i−α)
(2i+1)2i

s
λ

1

}n

i=1

]
(2.35)

where, n decides the order of approximation.
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[
p0
q0

; p1
q1

; p2
q2

; p3
q3
...
]

implies the term p0
q0

+ p1
q1+

p2
q2+

p3
q3+...

.

(b) Low CFE (FLowCFE(s))

This is a good approximation for lower frequencies (ω < λ;λ > 0), which is
obtained as follows:

FLowCFE(s) = λα

[
0;

1

1
;
αλ
s

1
;

{ i(i−α)
(2i−1)2i

λ
s

1
,

i(i+α)
(2i+1)2i

λ
s

1

}n

i=1

]
(2.36)

5. Oustaloup [56]

The Oustaloup approximation FOustaloup(s) of F (s) = sα assuming that the expected
fitting range [ωb, ωh] is obtained as follows:

FOustaloup(s) = K
N∏

k=−N

s+ zk
s+ pk

(2.37)

where,

zk = ωb

(
ωh
ωb

) k+N+1
2 (1−α)

2N+1

pk = ωb

(
ωh
ωb

) k+N+1
2 (1+α)

2N+1

K = ωαh

In this method, order of approximation is (2N + 1), which is an odd number (N =

1, 2, . . . ) The following generalized Oustaloup method can be used to obtain the
approximation FGenOustaloup(s) having order, N = 1, 2, . . .

FGenOustaloup(s) = K
N∏
k=1

s+ zk
s+ pk

(2.38)

where,

zk = ωb

(
ωh
ωb

) 2k−1−α
2N

pk = ωb

(
ωh
ωb

) 2k−1+α
2N

K = ωαh
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6. Modified Oustaloup [74]

This method provides a better approximation than Oustaloup method with respect
to both low frequency and high frequency at the cost of increase in the order of
approximation. The modified Oustaloup approximation FModOustaloup(s) of F (s) =

sα is obtained as follows:

FModOustaloup(s) =

(
dωh
b

)α
ds2 + bωhs

d(1− α)s2 + bωhs+ dα

N∏
k=−N

s+ zk
s+ pk

(2.39)

where,

zk =

(
dωh
b

) α−2k
2N+1

, pk =

(
bωh
d

) α+2k
2N+1

In above method, order of approximation is (2N + 1), which is an odd number (N =

1, 2, . . . ). The following generalized modified Oustaloup method can be used to
obtain the approximation FGenModOustaloup(s) having order, N = 1, 2, . . .

FGenModOustaloup(s) =

(
dωh
b

)α
ds2 + bωhs

d(1− α)s2 + bωhs+ dα

N∏
k=1

s+ zk
s+ pk

(2.40)

zk = ωb

(
ωh
ωb

) 2k−1−α
2N

pk = ωb

(
ωh
ωb

) 2k−1+α
2N

7. Chareff [53]

The Chareff approximation FChareff (s) of the irrational TF of the form F (s) =
1

(1+ s
pT

)α
is obtained as follows:

FChareff (s) =

N−1∏
i=0

(
1 + s

zi

)
N∏
i=0

(
1 + s

pi

) (2.41)

22



where, the coefficients are computed for obtaining a maximum deviation of y in dB
from the original magnitude response in the frequency domain as follows:

pi = p0(ab)i, zi = ap0(ab)i, p0 = pT
√
b, a = 10

y
10(1−α) , b = 10

y
10α

The above approximation methods are illustrated with the help of a numerical example
as follows:

Example 2.1. Let us consider the rational approximation of F (s) = s0.5. The numerical

details considered for each method are presented in Table 2.1. The magnitude and phase

Bode plots of s0.5 (i.e. Original) and its rational approximations obtained using differ-

ent methods are shown in Fig. 2.1 and Fig. 2.2 respectively. The Chareff method is not

considered as the TF under consideration is not in the suitable form, i.e. 1
(1+ s

pT
)α

.

Table 2.1: Numerical details for different rational approximation methods

Method Parameters
Carlson i = 2
CRONE N = 3, ωl = 0.01, ωh = 100
Matsuda [ω0, ω1, . . . , ωn] = 15 logarithmically

spaced points between [0.1, 10]
High CFE λ = 1, n = 4
Low CFE λ = 1, n = 4
Oustaloup N = 2, ωb = 0.01, ωh = 100

Modified Oustaloup N = 2, b = 10, d = 9, ωb = 0.01, ωh = 100

The Oustaloup approximation obtained using (2.37) with N = 2 is same as the one

obtained using (2.38) for N = 5. This is because the order of approximation in the formal

case is 2N + 1 and is N in the latter one. The above is true for the modified Oustaloup

approximation as well when obtained using (2.39) and (2.40) .

Although we have different methods for the rational approximation, it is difficult to
claim one of them as the best method [71]. The relative merits of each method depend
on the differentiation order, on whether one is more interested in an accurate frequency
behavior or in accurate time responses, on how large admissible TFs may be, etc. However,
the Oustaloup method is used in many occasions to obtain reasonably good rational fit for
the given fractional-order TF within the specified frequency range [57].
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Figure 2.1: Magnitude Bode Plots for s0.5
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2.6 Complex Order Derivatives

The order of the derivatives need not be real alone, it can be complex in nature. Hence,
the complex order derivative can be written as F (s) = sz; where, z ∈ C; z = α + jβ.
Depending on the sign of α and β, different frequency responses can be realised. The
frequency response of F (s) = sα+jβ is given by:

F (jω) = (jω)α+jβ

= ωα(j)α+jβωjβ

= ωα(ej
πα
2 )(e−

πβ
2 )ωjβ

= ωα(ej
πα
2 )(e−

πβ
2 )(ejβ ln(ω))

= ωα(e−
πβ
2 )(ej

πα
2 )(ejβ ln(ω))

F (jω) = ωαe−
πβ
2 ej(β ln(ω)+πα

2
) (2.42)

The magnitude of F (jω) in decibels (dB) is given by:

|F (jω)|dB = 20log10(|F (jω)|)

= 20αlog10(ω) + 20log10(e−
πβ
2 ) (2.43)

The phase of F (jω) in radians is given by:

∠F (jω) =
πα

2
+ β ln(ω)

=
πα

2
+ β ln(10)log10(ω) (2.44)

From (2.43) and (2.44), it is observed that both magnitude and phase of F (jω) are
linear with log10(ω) and it is seen in Fig. 2.3. It is also noted that the sign of α determines
the slope of the magnitude plot and the sign of β determines the slope of the phase plot.

2.7 Integer Order Approximations of Complex Order Deriva-
tives

Among all the methods mentioned in section 2.5, the most widely used and often the best
performing one is CRONE approximation (2.33).
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Example 2.2. As an example, consider the complex order derivative F (s) = s0.5+j0.5 and

its CRONE approximation is performed using (2.33) over a band of frequency (0.01 to

100 rad/sec) of order N = 10 is given as:

FCRONE(s) =

(0.9902 + j0.009)s10 + (80.45− j18.05)s9 + (1759− j851.7)s8
+(1.286 ∗ 104 − j1.043 ∗ 104)s7 + (3.285 ∗ 104 − j4.239 ∗ 104)s6

+(2.826 ∗ 104 − j6.177 ∗ 104)s5 + (6684− j3.317 ∗ 104)s4 − (207.1 + j6589)s3

− (127 + j474.2)s2 − (6.172 + j11.52)s− (0.06546 + j0.0743)

−(0.06682 + j0.0744)s10 − (6.344 + j11.57)s9 − (132.8 + j477.6)s8

−(273 + j6652)s7 + (6428− j3.356 ∗ 104)s6 + (2.794 ∗ 104 − j6.265 ∗ 104)s5
+(3.277 ∗ 104 − j4.312 ∗ 104)s4 + (1.289 ∗ 104 − j1.065 ∗ 104)s3

+ (1768− j877.1)s2 + (81.06− j19)s+ (1− j1.11 ∗ 10−16)

(2.45)

The approximated form of sα+jβ is a complex coefficient integer order TF. Hence, it

is necessary to draw the frequency response of F (s) both in positive frequency (ω+) and

negative frequency (ω−). Fig. 2.4a and Fig. 2.4b show the magnitude and phase plots

of exact and CRONE approximated form of s0.5+j0.5 respectively for both in ω+ and ω−

frequencies.

2.8 Complex Valued Transfer Function: Universal Plant
Structure

A universal plant structure G(s) in (2.46) is proposed, which can accommodate any known
class of IO/FO/Fractional Complex Order (FCO) with real and / or complex coefficient
plant TFs:

G(s) = K

(
(a0 + jb0)s

α0+jβ0 + (a1 + jb1)s
α1+jβ1 + · · ·+ (am + jbm)s

αm+jβm
)

((c0 + jd0)sγ0+jδ0 + (c1 + jd1)sγ1+jδ1 + · · ·+ (cn + jdn)sγn+jδn)
e−Ls

= K

m∑
i=0

(ai + jbi)s
αi+jβi

n∑
k=0

(ck + jdk)sγk+jδk

e−Ls (2.46)

where, K, ai, bi, αi, βi, ck, dk, γk, δk and L are real constants. L represents time delay
or dead time of the plant. The structure (2.46) can represent any given IO/FO/FCO plant
TF with appropriate choice of its parameters.
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Figure 2.4: Exact and approximated frequency responses of s0.5+j0.5

2.9 Positive and Negative Frequency Analysis of Universal
Plant Structure

Transfer functions with real coefficients and IO/FO have an even symmetrical magnitude
and odd symmetrical phase behaviour in frequency response. The frequency response for
(i) IO/FO plants containing complex coefficients and (ii) fractional complex order plants
containing real/complex coefficients have unsymmetrical magnitude and phase behaviour.
Hence, the proposed universal structure in (2.46) has unsymmetrical magnitude and phase
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behaviour. To illustrate let us consider the transfer function:

G(s) =
(1 + j)s0.2+j0.3

(2 + j3)s2.2+j0.8 + jsj0.2 + 3

The ω+ response of G(s) is given as:

G(jω) =
(1 + j)(jω)0.2+j0.3

(2 + j3)(jω)2.2+j0.8 + j(jω)j0.2 + 3

The ω− response of G(s) is given as:

G(−jω) =
(1 + j)(−jω)0.2+j0.3

(2 + j3)(−jω)2.2+j0.8 + j(−jω)j0.2 + 3

The magnitude and phase plots of G(jω) and G(−jω) are shown in Fig. 2.5a and Fig.
2.5b respectively. It is evident that the frequency response of complex valued systems have
unsymmetrical magnitude and phase behaviour.

2.10 Fractional Order Controllers

Fractional Order Controllers (FOCs) are the ones which possess dynamics that are governed
by FC. Some of the popular LTI FOCs (C(s)) are as follows:

1. Fractional order proportional integral controller

It is of two types,

(a) PIα

C(s) = Kp +
Ki

sα
(2.47)

The other form of PIα is:

C(s) = K1

(
1 +

K2

sα

)
(2.48)

(2.47) and (2.48) are related as: Kp = K1, Ki = K1K2. Both these forms of
PIα controller are used in this thesis.

(b) [PI]α

C(s) =

(
Kp +

Ki

s

)α
(2.49)
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Figure 2.5: ω+ and ω− frequency responses of complex valued TF

The other form of [PI]α is:

C(s) = K1

(
1 +

K2

s

)α
(2.50)

(2.49) and (2.50) are related as: Kp = K
1
α
1 , Ki = K

1
α
1 K2. Both these forms of

[PI]α controller are used in this thesis.

Where, α > 0;Kp, Ki,∈ R.
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For α = 1, (2.47) and (2.49) represent integer PI controller, C(s) = Kp + Ki
s

.

2. Fractional order proportional derivative controller

It is of two types,

(a) PDβ

C(s) = Kp +Kds
β (2.51)

The other form of PDβ is:

C(s) = K1(1 +K2s
β) (2.52)

(2.51) and (2.52) are related as : Kp = K1, Ki = K1K2. Both these forms of
PDβ controller are used in this thesis.

(b) [PD]β

C(s) = (Kp +Kds)
β (2.53)

The other form of [PD]β is:

C(s) = K1(1 +K2s)
β (2.54)

(2.53) and (2.54) are related as: Kp = K
1
β

1 , Ki = K
1
β

1 K2. Both these forms of
[PD]β controller are used in this thesis.

where, β > 0;Kp, Kd ∈ R.

For β = 1, (2.51) and (2.53) represent integer PD controller, C(s) = Kp +Kds.

3. Fractional order proportional integral derivative controller

(a) PIαDβ

C(s) = Kp +
Ki

sα
+Kds

β (2.55)

The other form of PIαDβ is:

C(s) = K1

(
1 +

K2

sα
+K3s

β

)
(2.56)

(2.55) and (2.56) are related as: Kp = K1, Ki = K1K2 and Kd = K1K3. Both
these forms of PIαDβ controller are used in this thesis.
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where, α > 0, β > 0;Kp, Ki, Kd ∈ R.

For α = 1 and β = 1, (2.55) represents integer PID controller, C(s) = Kp + Ki
s

+

Kds.

4. Fractional Complex Order Controller (FCOC): Three parameter third generation
robust CRONE controller handling complex order derivatives is given as [85]:

C(s) = Kc

(
s

ωgc

)α+jβ

(2.57)

where, α, β,Kc,∈ R. ωgc is the gain crossover frequency and α+ jβ is the complex
order of the derivative.

2.11 Complex Coefficient Controllers

Complex Coefficient Integer Order Controllers (CCIOCs) and Complex Coefficient Frac-
tional Complex Order Controllers (CCFCOCs) are proposed in this thesis and are as fol-
lows:

1. Complex Coefficient Integer Order Controllers

(a) Complex Coefficient Proportional Integral (CCPI) controller

C(s) = (Kpr + jKpi) +
(Kir + jKii)

s
(2.58)

where, Kpr, Kpi, Kir, Kii ∈ R.

(b) Complex Coefficient Proportional Derivative (CCPD) controller

C(s) = (Kpr + jKpi) + (Kdr + jKdi)s (2.59)

where, Kpr, Kpi, Kdr, Kdi ∈ R.

(c) Complex Coefficient Proportional Integral Derivative (CCPID) controller

C(s) = (Kpr + jKpi) +
(Kir + jKii)

s
+ (Kdr + jKdi)s (2.60)

where, Kpr, Kpi, Kir, Kii, Kdr, Kdi ∈ R.

32



2. Complex Coefficient Fractional Complex Order Controllers (CCFCOCs)

(a) Complex Coefficient Fractional Complex Order PDγ or PIγ controller like
structure:

C(s) = (K1r + jK1i) +
(K2r + jK2i)

sγr+jγi
(2.61)

(b) Complex Coefficient Fractional Complex Order [PI]α controller like structure:

C(s) =

[
(K1r + jK1i) +

(K2r + jK2i)

s

]αr+jαi
(2.62)

(c) Complex Coefficient Fractional Complex Order [PD]β controller like structure:

C(s) =

[
(K1r + jK1i) + (K2r + jK2i)s

]βr+jβi
(2.63)

(d) Complex Coefficient Fractional Complex Order PIαDβ controller like struc-
ture:

C(s) = (K1r + jK1i) +
(K2r + jK2i)

sαr+jαi
+ (K3r + jK3i)s

βr+jβi (2.64)

where, K1r, K1i, K2r, K2i, K3r, K3i, γr, γi, αr, αi, βr, βi ∈ R.

In this thesis, unified controller parameter expressions are obtained for FOCs defined
in (2.48), (2.50), (2.52), (2.54) and (2.57) to meet Wang et al specifications in chapter 3.
In chapter 4, unified controller parameter expressions are obtained for CCIOCs defined in
(2.58), (2.59) and (2.60) to meet Wang et al specifications in ω+ and ω− for the universal
plant structure. This work is also extended by tuning the CCFCOCs defined in (2.61),
(2.62) and (2.63) through optimization technique. In chapter 5, FOCs such as (2.47), (2.49),
(2.51), (2.53) and (2.55) are tuned to investigate their limit cycle performance for system
with multiple nonlinearities.

2.12 Summary

This chapter covers the preliminaries related to FC and FOCs. The various definitions in
FC and their properties are discussed. The chapter further presents continuous domain
approximation methods which are useful for rationalizing the FO TFs, and it concludes by
providing the TF details of FOCs, FCOC, CCIOCs and CCFCOCs.
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Chapter 3

Fractional Controller Tuning Expressions
for a Universal Plant Structure

3.1 Introduction

In general, researchers use numerous methods to tune Integer Order (IO) and Frational
Order Controllers (FOCs) for the given generalized plant structure. This structure deals
with IO/Fractional Order (FO) plant plus dead time with real coefficients. In specific, the
existing literature widely concentrate on the tuning of three parameter FOCs such as PIα,

[PI]α, PDβ , [PD]β and Fractional Complex Order Controller (FCOC) like Kc

(
s
ωgc

)α+jβ

to meet Wang et al specifications [76]. Few other literature works which provide such con-
troller tuning expressions for a class of Transfer Functions (TFs) like position and velocity
servo system are seen in [80], [83], [81], [85]. On the other hand, some works are reported
for First Order Plus Dead Time (FOPDT) process in [77], [78] and for a class of FO plants
in [84]. In [90], [91], [92], [93], these controller tuning expressions are unified for any class
of real valued IO/FO plants with dead time. Instead of restricting only to real valued IO/FO
plants, if one obtains the controller tuning expressions to a complex valued TFs (accom-
modating all class of TFs), it will greatly reduce the effort required to tune the controllers
for such systems. In this chapter, such unified controller tuning expressions are obtained to
meet Wang et al specifications for the proposed universal plant structure.

The closed loop schematic of the proposed universal plant structure with controller to
meet the required Wang et al specifications are specified in section 3.2. The universal plant
structure is proposed and described in section 3.3. A unified FOCs and FCOC parameter
expressions are derived in section 3.4. To demonstrate the obtained controller tuning for
the defined structure, two different case studies are simulated to meet the desired Wang et
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al specifications in section 3.5.

3.2 Generalised Closed Loop Schematic Representation

Let us consider the closed loop control schematic diagram of the universal plant G(s) with
controller C(s) as shown in Fig. 3.1.

C(s) G(s)
r(t)

_

+ e(t) u(t) y(t)

Figure 3.1: Closed loop schematic diagram of universal plant with controller

To obtain the controller parameter expressions, the following Wang et al specifications
are considered:

1. Gain Crossover Frequency (ωgc):

|Gωgc||C(jωgc)| = 1 (3.1)

2. Phase Margin (φm):

∠Gωgc + ∠C(jωgc) + π = φm (3.2)

3. Robustness to gain variations (i.e. phase flatness at ωgc or Isodamping condition):
This condition ensures constant phase margin irrespective of plant gain variations.

d∠[G(jω)C(jω)]

dω

∣∣∣∣
ω=ωgc

= 0

d[∠G(jω) + ∠C(jω)]

dω

∣∣∣∣
ω=ωgc

= 0

d∠G(jω)

dω

∣∣∣∣
ω=ωgc

+
d∠C(jω)

dω

∣∣∣∣
ω=ωgc

= 0

ψ +
d∠C(jω)

dω

∣∣∣∣
ω=ωgc

= 0 (3.3)
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|Gωgc|, ∠Gωgc and ψ are the magnitude, phase and slope of the phase at ωgc of the

universal plant G(s). |C(jωgc)|,∠C(jωgc) and d∠C(jω)
dω

∣∣∣∣
ω=ωgc

are the magnitude, phase and

slope of the phase at ωgc of the controller C(s).

3.3 Universal Plant Structure

To obtain the unified tuning expressions for the controller C(s) in Fig. 3.1, we propose
a universal plant structure G(s) in (3.4), which can accommodate any known class of
IO/FO/Fractional Complex Order (FCO) with real and/or complex coefficient plant TF:

G(s) = K

(
(a0 + jb0)s

α0+jβ0 + (a1 + jb1)s
α1+jβ1 + · · ·+ (am + jbm)s

αm+jβm
)

((c0 + jd0)sγ0+jδ0 + (c1 + jd1)sγ1+jδ1 + · · ·+ (cn + jdn)sγn+jδn)
e−Ls

= K

m∑
i=0

(ai + jbi)s
αi+jβi

n∑
k=0

(ck + jdk)sγk+jδk

e−Ls

(3.4)

where, K, ai, bi, αi, βi, ck, dk, γk, δk and L are real constants. L represents time delay
or dead time of the plant. The structure (3.4) can represent any given IO/FO/FCO plant
TF with appropriate choice of its parameters. The frequency response function of (3.4) is
given as:

G(s)

∣∣∣∣
s=jω

= K

m∑
i=0

(ai + jbi)(jω)αi+jβi

n∑
k=0

(ck + jdk)(jω)γk+jδk

e−jLω (3.5)

G(jω) = K

m∑
i=0

(ai + jbi)(ω)αie
−πβi

2 ej(βiln(ω)+
παi
2

)

n∑
k=0

(ck + jdk)(ω)γke
−πδk

2 ej(δkln(ω)+
πγk
2

)

e−jLω

G(jω) = K

[
P1 + jQ1

P2 + jQ2

]
e−jLω (3.6)

where,

P1 =
m∑
i=0

ωαie
−πβi

2

[
ai cos

(
βiln(ω) +

παi
2

)
− bi sin

(
βiln(ω) +

παi
2

)]
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Q1 =
m∑
i=0

ωαie
−πβi

2

[
ai sin

(
βiln(ω) +

παi
2

)
+ bi cos

(
βiln(ω) +

παi
2

)]

P2 =
n∑
k=0

ωγke
−πδk

2

[
ck cos

(
δkln(ω) +

πγk
2

)
− dk sin

(
δkln(ω) +

πγk
2

)]

Q2 =
n∑
k=0

ωγke
−πδk

2

[
ck sin

(
δkln(ω) +

πγk
2

)
+ dk cos

(
δkln(ω) +

πγk
2

)]

Then the unified expressions for magnitude, phase and slope of the phase at ωgc of the
universal plant G(s) are obtained in (3.7), (3.8) and (3.9) respectively and are given as:

|Gωgc| = K

[√
P 2

1 +Q2
1

P 2
2 +Q2

2

]∣∣∣∣
ω=ωgc

(3.7)

∠Gωgc =

[
tan−1

(
Q1

P1

)
− tan−1

(
Q2

P2

)
− Lω

]∣∣∣∣
ω=ωgc

(3.8)

ψ =

[(
P1

dQ1

dω
−Q1

dP1

dω

P 2
1 +Q2

1

)
−
(
P2

dQ2

dω
−Q2

dP2

dω

P 2
2 +Q2

2

)
− L

]∣∣∣∣
ω=ωgc

(3.9)

where,

dP1

dω
=

m∑
i=0

ωαie
−πβi

2

[(
aiαi − biβi

ω

)
cos
(
βiln(ω) +

παi
2

)
−
(
aiβi + biαi

ω

)
sin
(
βiln(ω) +

παi
2

)]

dQ1

dω
=

m∑
i=0

ωαie
−πβi

2

[(
aiβi + biαi

ω

)
cos
(
βiln(ω) +

παi
2

)
+

(
aiαi − biβi

ω

)
sin
(
βiln(ω) +

παi
2

)]

dP2

dω
=

n∑
k=0

ωγke
−πδk

2

[(
ckγk − dkδk

ω

)
cos
(
δkln(ω) +

πγk
2

)
−
(
ckδk + dkγk

ω

)
sin
(
δkln(ω) +

πγk
2

)]
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dQ2

dω
=

n∑
k=0

ωγke
−πδk

2

[(
ckδk + dkγk

ω

)
cos
(
δkln(ω) +

πγk
2

)
+

(
ckγk − dkδk

ω

)
sin
(
δkln(ω) +

πγk
2

)]

Remark 3.1. It is further possible to replace the delay term by its generalised form e−Ls
ζ

in (3.4); ζ ∈ C i.e. ζ = ζr + jζi. However, there is no physical meaning of such term exists

in the present literature. Therefore, only the conventional exponential term e−Ls; L ∈ R is

considered in (3.4).

3.4 Fractional Order Controllers and their Unified Tun-
ing Expressions

In this section, unified tuning expressions of three parameter FOCs and FCOC parameters
are obtained for the given universal system to meet the desired specifications (3.1), (3.2)
and (3.3).

3.4.1 Tuning Expressions for FOCs

The unified tuning expressions for three parameter FOCs such as PIα, [PI]α, PDβ , [PD]β

are derived so as to meet Wang et al specifications. The controller structures have been
described in (2.48), (2.50), (2.52) and (2.54) of Section 2.10.

3.4.1.1 Tuning Expressions for PIα and PDβ Controllers

In general, PIα and PDβ controllers given in (2.48) and (2.52) respectively are combined
using the following general expression:

C(s) = K1(1 +K2s
γ) (3.10)

The frequency response of (3.10) is

C(jω) = K1

[(
1 +K2ω

γ cos
(πγ

2

))2

+
(
K2ω

γ sin
(πγ

2

))2
] 1

2

e
jtan−1

[
K2ω

γ sin (πγ2 )
1+K2ω

γ cos (πγ2 )

]

(3.11)
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The magnitude and phase of C(jω) and slope of ∠C(jω) at desired ωgc are as follows:

|C(jωgc)| = K1

[(
1 +K2ω

γ
gc cos

(πγ
2

))2

+
(
K2ω

γ
gc sin

(πγ
2

))2
] 1

2

(3.12)

∠C(jωgc) = tan−1

[
K2ω

γ
gc sin

(
πγ
2

)
1 +K2ω

γ
gc cos

(
πγ
2

)] (3.13)

d∠C(jω)

dω

∣∣∣∣
ω=ωgc

=

γω−1
gc

(
K2ω

γ
gc sin (πγ2 )

1+K2ω
γ
gc cos (πγ2 )

)
(

1 +

[
K2ω

γ
gc sin (πγ2 )

1+K2ω
γ
gc cos (πγ2 )

]2
) ×( 1

1 +K2ω
γ
gc cos

(
πγ
2

)) (3.14)

Using (3.8) and (3.13), specification (3.2) becomes

∠Gωgc + tan−1

[
K2ω

γ
gc sin (πγ

2
)

1 +K2ω
γ
gc cos (πγ

2
)

]
+ π = φm

this implies,

K2 =
ωgc
−γ tanA

sin
(
πγ
2

)
− cos

(
πγ
2

)
tanA

(3.15)

Using (3.9) and (3.14), specification (3.3) becomes

ψ +

γω−1
gc

(
K2ω

γ
gc sin (πγ2 )

1+K2ω
γ
gc cos (πγ2 )

)
(

1 +

[
K2ω

γ
gc sin (πγ2 )

1+K2ω
γ
gc cos (πγ2 )

]2
) ×( 1

1 +K2ω
γ
gc cos

(
πγ
2

)) = 0

−γ tanA

ψωgc(1 + tan2A)
= 1 +K2ω

γ
gc cos

(πγ
2

)
this implies,

K2 =
Hγ − 1

ωγgc cos
(
πγ
2

) (3.16)

Using (3.7) and (3.12), specification (3.1) becomes

|Gωgc|K1

[(
1 +K2ω

γ
gc cos

(πγ
2

))2

+
(
K2ω

γ
gc sin

(πγ
2

))2
] 1

2

= 1
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this implies,

K1 =
1

Hγ|Gωgc|
√

1 + tan2A
(3.17)

where,

A = φm − π − ∠Gωgc

H =
− tanA

ψωgc(1 + tan2A)

By solving (3.15) and (3.16), K2 and γ are obtained. K1 is obtained by substituting γ in
(3.17).

• Case 1: γ < 0

By considering α = −γ, PIα controller defined in (2.48) is obtained and it is given
as

C(s) = K1

(
1 +

K2

sα

)
(3.18)

Then, the controller parameters for PIα given in (2.47) are: Kp = K1 and Ki =

K1K2.

• Case 2: γ > 0

By considering β = γ, PDβ controller defined in (2.52) is obtained and it is given as

C(s) = K1(1 +K2s
β) (3.19)

Then, the controller parameters for PDβ given in (2.51) are: Kp = K1 and Kd =

K1K2.

3.4.1.2 Tuning Expressions for [PI]α

To obtain the unified tuning expressions for [PI]α controller, the structure described in
(2.50) is considered and it is given as:

C(s) = K1

(
1 +

K2

s

)α
(3.20)
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The frequency response of (3.20) is

C(jω) = K1

√1 +

(
K2

ω

)2
α

ejα tan−1(−K2
ω ) (3.21)

The magnitude and phase of C(jω) and slope of ∠C(jω) at desired ωgc are as follows:

|C(jωgc)| = K1

√1 +

(
K2

ωgc

)2
α

(3.22)

∠C(jωgc) = α tan−1

(
−K2

ωgc

)
(3.23)

d∠C(jω)

dω

∣∣∣∣
ω=ωgc

=
α

1 +
(
−K2

ωgc

)2

(
K2

ω2
gc

)
(3.24)

Using (3.8) and (3.23), specification (3.2) becomes

∠Gωgc + α tan−1

(
−K2

ωgc

)
+ π = φm

this implies,

K2 = −ωgc tan

(
A

α

)
(3.25)

Using (3.9) and (3.24), specification (3.3) becomes

ψ +
α

1 +
(
−K2

ωgc

)2

(
K2

ω2
gc

)
= 0

this implies,

K2 =

−ω2
gcψ

(
1 + tan2

(
A
α

))
α

(3.26)

Using (3.7) and (3.22), specification (3.1) becomes

|Gωgc|K1

√1 +

(
K2

ωgc

)2
α

= 1
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this implies,

K1 =
1

|Gωgc|
(√

1 + tan2
(
A
α

))α (3.27)

By solving (3.25) and (3.26), K2 and α are obtained. K1 is obtained by substituting α
in (3.27).

Then the controller parameters for [PI]α given in (2.49) are: Kp = K
1
α
1 and Ki =

K
1
α
1 K2.

3.4.1.3 Tuning Expressions for [PD]β

To obtain the unified tuning expressions for [PD]β controller, the structure described in
(2.54) is considered and it is given as:

C(s) = K1(1 +K2s)
β (3.28)

The frequency response of (3.28) is

C(jω) = K1 (1 + jK2ω)β

C(jω) = K1

(√
1 + (K2ω)2

)β
ejβ tan−1(K2ω) (3.29)

The magnitude and phase of C(jω) and slope of ∠C(jω) at desired ωgc are as follows:

|C(jωgc)| = K1

(√
1 + (K2ωgc)

2

)β
(3.30)

∠C(jωgc) = β tan−1(K2ωgc) (3.31)

d∠C(jω)

dω

∣∣∣∣
ω=ωgc

=
βK2

1 + (K2ωgc)2
(3.32)

Using (3.8) and (3.31), specification (3.2) becomes

∠Gωgc + β tan−1(K2ωgc) + π = φm

this implies,

K2 =
tan
(
A
β

)
ωgc

(3.33)
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Using (3.9) and (3.32), specification (3.3) becomes

ψ +
βK2

1 + (K2ωgc)2
= 0

this implies,

K2 =
−ψ

(
1 + tan2

(
A
β

))
β

(3.34)

Using (3.7) and (3.30), specification (3.1) becomes

|Gωgc|K1

(√
1 + (K2ωgc)

2

)β
= 1

this implies,

K1 =
1

|Gωgc|
(√

1 + tan2
(
A
β

))β (3.35)

By solving (3.33) and (3.34), K2 and β are obtained. K1 is obtained by substituting β
in (3.35).

Then the controller parameters for [PD]β given in (2.53) are: Kp = K
1
β

1 and Kd =

K
1
β

1 K2.

3.4.2 Tuning Expressions for FCOC

The three parameter FCOC like structure described in (2.57) is considered and it is given
as:

C(s) = Kc

(
s

ωgc

)α+jβ

(3.36)

The frequency response of (3.36) is

C(jω) = Kc

(
jω

ωgc

)α+jβ

C(jω) = Kc

(
ω

ωgc

)α (
e
−πβ
2

)
e
j
[
βln
(

ω
ωgc

)
+πα

2

]
(3.37)

The magnitude and phase of C(jω) and slope of ∠C(jω) at desired ωgc are as follows:

|C(jωgc)| = Kce
−πβ
2 (3.38)
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∠C(jωgc) =
πα

2
(3.39)

d∠C(jω)

dω

∣∣∣∣
ω=ωgc

=
β

ωgc
(3.40)

Using (3.8) and (3.39), specification (3.2) becomes

∠Gωgc +
πα

2
+ π = φm

this implies,

α =
2A

π
(3.41)

Using (3.9) and (3.40), specification (3.3) becomes

ψ +
β

ωgc
= 0

this implies,

β = −ωgcψ (3.42)

Using (3.7) and (3.38), specification (3.1) becomes

|Gωgc|Kce
−πβ
2 = 1

this implies,

Kc =
1

|Gωgc|e
πψωgc

2

(3.43)

From (3.41), (3.42) and (3.43) the controller parameters α, β and Kc are obtained to
meet the desired specifications.

Remark 3.2. It is important to note that though the Wang et al specifications ensure the

required positive phase margin at a given gain crossover frequency, they do not guarantee

closed loop stability in general. If there occur multiple gain crossover frequencies, such

restrictive specifications cannot ensure all the phase margins to be positive. Hence, the

generalized derivations presented in this section are useful only for those plants which lead

to closed loop stability. Therefore, closed loop stability should be checked after designing

the controller for Wang et al specifications.
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3.5 Results and Discussions

To validate the proposed unified fractional controller parameter expressions derived in Sec-
tion 3.4, two different case studies are considered. The plant and its desired specifications
are given in Table 3.1.

Table 3.1: Plant and its specifications

Case Plant and specifications

I
Plant: e−0.3s

0.04s1.8+0.6j+1.04s0.8+0.3j+1

specifications: ωgc = 0.5 rad/sec, φm = 57◦

II
Plant: 3+4j

(0.8+0.2j)s1.9+0.4j+(0.5+0.3j)s0.8+0.2j

specifications: ωgc = 5 rad/sec, φm = 60◦

Table 3.2: Tuning results of FOCs and FCOC

Case Plant parameters Controller
Controller
parameters

Controller effort
J =

∫∞
0
|u(t)|2dt

I
K = 1, L = 0.3, a0 = 1,
b0 = 0, c0 = 0.04, d0 = 0,
c1 = 1.04, d1 = 0, c2 = 1,
d2 = 0, α0 = 0, β0 = 0,

γ0 = 1.8, δ0 = 0.6, γ1 = 0.8,
δ1 = 0.3, γ2 = 0, δ2 = 0

PIα
K1 = 0.3785
K2 = 1.4567
α = 1.28

53.981

[PI]α
K1 = 0.2369
K2 = 1.5926
α = 1.3640

54.225

FCOC
Kc = 2.2641
α = −1.0998
β = 0.39012

73.193

II
K = 1, L = 0, a0 = 3,

b0 = 4, c0 = 0.8, d0 = 0.2,
c1 = 0.5, d1 = 0.3, α0 = 0,
β0 = 0, γ0 = 1.9, δ0 = 0.4,

γ1 = 0.8, δ1 = 0.2,

PDβ

K1 = 1.5735
K2 = 0.1313
β = 1.0807

148.104

[PD]β
K1 = 1.5508
K2 = 0.1044
β = 1.4260

25676.274

FCOC
Kc = 4.6155
α = 0.4367
β = 0.5850

13.680

The cases I and II fit in the universal plant structure G(s) by selecting the appropriate
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parameters. By using the derived unified controller expressions, various FOC and FCOC
parameters for the given case studies are simulated in MATLAB [161] and the results are
given in Table 3.2. It is found that PDβ and [PD]β controllers for case I , PIα and [PI]α

controllers for case II doesn't exist and hence not listed in Table 3.2.
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Open loop frequency responses of the case I and case II with all the listed controllers
are plotted as in Fig. 3.2 and Fig. 3.3 respectively. It is seen from the figures that the
desired gain crossover frequency, phase margin and Isodamping conditions are met by the
designed controllers. The Isodamping condition leads to the flatness of the phase response
around the gain crossover frequency.
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Figure 3.4: Plant output responses of case I with listed controllers
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Figure 3.5: Controller output responses of case I with listed controllers

For time domain simulation PIα, PDβ and FCOC are approximated to IO by using
Oustaloup Recursive Algorithm (ORA) [56], [45]. ORA approximation with order (N) 5 is
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used over the frequency band [0.001to1, 000]rad/sec. While [PI]α and [PD]β are realized
by the impulse response invariant discretisation method [162] in time domain which is used
in [84]. Since G(s) is a complex valued function, both real and imaginary responses exist
in time domain. The real part of the closed loop unit step response (y(t)) for case I and case
II are shown in Fig. 3.4 and Fig. 3.6 respectively. The real part of the controller output
(u(t)) for case I and case II are shown in Fig. 3.5 and Fig. 3.7 respectively.
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Figure 3.6: Plant output responses of case II with listed controllers
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To analyse the controller performance, controller effort is selected as a performance
index and shown in Table 3.2. For case I , it is observed that FCOC has more control
effort in comparison to PIα and [PI]α controllers. In case II , FCOC has less control
effort in comparison to PDβ and [PD]β controllers.

Stability and robustness to parameter variations of the cases I and II can be interpreted
from the sensitivity (S) and complementary sensitivity (T ) functions. These functions are
related as S + T = 1 and are given as:

S(jω) =
1

1 +G(jω)C(jω)
;T (jω) =

G(jω)C(jω)

1 +G(jω)C(jω)

Since the universal plant G(s) is a complex valued function, the frequency response is
not conjugate symmetric. Hence, the magnitude ratio plots |S(jω)| and |T (jω)| for case I
and case II are drawn for both positive frequency (ω+) and negative frequency (ω−) [118]
as shown in Fig. 3.8 and Fig. 3.9 respectively.

The peak value of the plots |S(jw)| and |T (jw)| are the maximum sensitivities MS and
MT respectively which give a measure of robustness. MS is referred as largest amplification
of the load disturbances and MT is referred as resonant peak. MS also provides an assured
Gain Margin (GM) and Phase Margin (PM) which determine the stability criteria [163].

MS = max
ω
|S(jω)|;MT = max

ω
|T (jω)|

GM ≥ MS

MS−1
;PM ≥ 2 sin−1

(
1

2MS

)
MS and MT should be in the range of 1.2 to 2.0 and 1 to 1.5 respectively for a good

measure of robustness. MS , MT , Bandwidth (ωBW ) and assured stability margins (GM

and PM) are obtained from Fig. 3.8 and Fig. 3.9 for case I and case II respectively. The
obtained values are listed in Table 3.3 for ω+ and ω−.

From ω+ and ω− analysis, it is observed that MS obtained for PIα, [PI]α are lesser
in comparison to FCOC for case I . This assures lesser GM and PM for FCOC and it
is evident from the oscillatory behaviour as seen in Fig. 3.4. However for case II , MS

obtained for FCOC is lesser in comparison to PDβ and [PD]β . This assures more GM
and PM for FCOC as clearly indicated by more damped response in Fig. 3.6.

It is also inferred that FCOC has larger ωBW and MT than PIα and [PI]α for case
I . This is reflected as lesser rise time and more overshoot for FCOC as shown in Fig.
3.4. Similarly for case II , it is observed that FCOC has larger ωBW and lesser MT than
PDβ and [PD]β . This is reflected as lesser rise time and overshoot for FCOC as shown
in Fig. 3.6. This shows, the superiority of the fractional controllers is plant specific and
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Table 3.3: Observations from |S(jω)| and |T (jω)| plots

Case Controller
Observations from positive

frequency (ω+) analysis
Observations from negative

frequency (ω−) analysis

I
PIα

MS = 1.1951;MT = 1.1816;
GM ≥ 15.7425dB;PM ≥ 49.4636◦

ωBW = 0.7135 rad/sec

MS = 1.9461;MT = 1.9214;
GM ≥ 6.2644dB;PM ≥ 29.7748◦

ωBW = 0.6933 rad/sec

[PI]α
MS = 1.1957;MT = 1.1919;

GM ≥ 15.7214dB;PM ≥ 49.4385◦

ωBW = 0.7471 rad/sec

MS = 1.9461;MT = 1.9274;
GM ≥ 6.2646dB;PM ≥ 29.7753◦

ωBW = 0.7113 rad/sec

FCOC
MS = 1.2384;MT = 1.2259;

GM ≥ 14.3103dB;PM ≥ 47.6241◦

ωBW = 0.7841 rad/sec

MS = 28.6365;MT = 28.4114;
GM ≥ 0.3087dB;PM ≥ 2.0009◦

ωBW = 1.5115 rad/sec

II
PDβ

MS = 1.1349;MT = 1.1290;
GM ≥ 18.4962dB;PM ≥ 52.2778◦

ωBW = 6.9699 rad/sec

MS = 2.7770;MT = 3.0362;
GM ≥ 3.8778dB;PM ≥ 20.7453◦

ωBW = 3.6345 rad/sec

[PD]β
MS = 1.1261;MT = 1.1264;

GM ≥ 19.0147dB;PM ≥ 52.7180◦

ωBW = 6.8180 rad/sec

MS = 2.6514;MT = 2.9064;
GM ≥ 4.1124dB;PM ≥ 21.7394◦

ωBW = 3.6536 rad/sec

FCOC
MS = 1.1429;MT = 1.1396;

GM ≥ 18.0594dB;PM ≥ 51.8868◦

ωBW = 6.9390 rad/sec

MS = 1.4982;MT = 1.3377;
GM ≥ 9.5637dB;PM ≥ 38.9921◦

ωBW = 11.9852 rad/sec

hence the selection of the controller is based on the computation of MS and MT in ω+ and
ω− analysis.

3.6 Summary

In this chapter, a modification is suggested in the existing generalized plant structure by
introducing complex coefficients and complex order derivatives. A unified expressions

are derived for PIα, [PI]α, PDβ , [PD]β and Kc

(
s
ωgc

)α+jβ

controller parameters for the

proposed plant structure to meet the given specifications. Simulations are carried out for
two different plants to validate the obtained unified expressions. Although, the work in
this chapter focuses only on Wang et al specifications for developing the unified tuning
expressions, one may also select any other set of three specifications and adopt the similar
approach to obtain corresponding unified expressions.
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Chapter 4

Complex Valued Controllers for Complex
Valued Plants

4.1 Introduction

In the previous chapter, unified controller tuning expressions are obtained to meet Wang
et al specifications for the complex valued universal plant structure. These controllers
are tuned by considering only the positive frequency (ω+) information of the plant. Per-
forming the tuning of controllers by considering ω+ information is applicable only for
Integer Order (IO)/Fractional Order (FO) plants containing real coefficients which have
an even symmetrical magnitude and odd symmetrical phase behaviour in frequency re-
sponse. The frequency response for (i) IO/FO plants containing complex coefficients and
(ii) fractional complex order plants containing real/complex coefficients have unsymmetri-
cal magnitude and phase behaviour. Tuning of controllers for such plants by considering
its ω+ response alone, produces reduced stability margins and in turn deteriorates its time
response. Hence, tuning of controllers for such plants require both ω+ and negative fre-
quency (ω−)information to have better system response and improved stability margins,
which in turn demands complex coefficient controllers. To address this problem, Complex
Coefficient Integer Order Controllers (CCIOCs) such as CCPI/CCPD/CCPID controllers
and Complex Coefficient Fractional Complex Order Controllers (CCFCOCs) are proposed
in this chapter to meet Wang et al specifications both in ω+ andω− responses of the univer-
sal plant structure.

The closed loop schematic of universal plant structure with required Wang et al spec-
ifications both in ω+ and ω− are specified in section 4.2. The description of the proposed
universal plant structure in ω+ and ω− is presented in section 4.3. A unified tuning ex-
pressions of CCIOCs and real coefficient Integer Order Controllers (IOCs) are derived in
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section 4.4 for the universal plant structure. An optimization problem is also proposed
to tune CCFCOCs in section 4.5. Numerical simulations are performed for different case
studies with the proposed CCIOCs and CCFCOCs in section 4.6.

4.2 Generalized Closed Loop Schematic Representation

The closed loop representation of the universal plant G(s) with controller C(s) is shown in
Fig. 4.1.

C(s) G(s)
r(t)

_

+ e(t) u(t) y(t)

Figure 4.1: Closed loop representation of universal plant with controller

To obtain the controller expressions, the following Wang et al specifications are consid-
ered in both ω+ and ω−:

Positive frequency (ω+):

(i) Gain cross over frequency (ωgc):

|G+
ωgc||C

+
ωgc| = 1 (4.1)

(ii) Phase margin (φm):

∠G+
ωgc + ∠C+

ωgc + π = φm (4.2)

(iii) Phase flatness (Isodamping) at ωgc:

d∠[Gω+Cω+ ]

dω

∣∣∣∣
ω=ωgc

= 0

d∠Gω+

dω

∣∣∣∣
ω=ωgc

+
d∠Cω+

dω

∣∣∣∣
ω=ωgc

= 0

ψ+
ωgc +

d∠Cω+

dω

∣∣∣∣
ω=ωgc

= 0 (4.3)
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Negative frequency (ω−):

(i) Gain cross over frequency (ωgc):

|G−ωgc||C
−
ωgc| = 1 (4.4)

(ii) Phase margin (φm):

∠G−ωgc + ∠C−ωgc − π = −φm (4.5)

(iii) Phase flatness (Isodamping) at ωgc:

d∠[Gω−Cω− ]

dω

∣∣∣∣
ω=ωgc

= 0

ψ−ωgc +
d∠Cω−

dω

∣∣∣∣
ω=ωgc

= 0 (4.6)

[|G+
ωgc|, ∠G

+
ωgc and ψ+

ωgc ] and [|G−ωgc|, ∠G
−
ωgc and ψ−ωgc ] are the magnitude, phase and

slope of the phase at ωgc in ω+ and ω− response of the universal plantG(s) proposed in sec-

tion 4.3 respectively.
[
|C+

ωgc|,∠C
+
ωgc and d∠Cω+

dω

∣∣∣∣
ω=ωgc

]
and

[
|C−ωgc|,∠C

−
ωgc and d∠Cω−

dω

∣∣∣∣
ω=ωgc

]
are the magnitude, phase and slope of the phase at ωgc in ω+ and ω− responses of the con-
troller C(s) respectively.

4.3 Frequency Response of a Universal Plant

The structure of G(s) as given in (3.4) is considered:

G(s) = K

m∑
i=0

(ai + jbi)s
αi+jβi

n∑
k=0

(ck + jdk)sγk+jδk

e−Ls (4.7)

The ω+ response function (Gω+) of (4.7) is given as:
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G(s)

∣∣∣∣
s=jω

= K

m∑
i=0

(ai + jbi)(jω)αi+jβi

n∑
k=0

(ck + jdk)(jω)γk+jδk

e−jLω (4.8)

Gω+ = K

m∑
i=0

(ai + jbi)(ω)αie
−πβi

2 ej(βiln(ω)+
παi
2

)

n∑
k=0

(ck + jdk)(ω)γke
−πδk

2 ej(δkln(ω)+
πγk
2

)

e−jLω

= K

[
Pω+ + jQω+

Rω+ + jSω+

]
e−jLω (4.9)

where,

Pω+ =
m∑
i=0

ωαie
−πβi

2

[
ai cos

(
βiln(ω) +

παi
2

)
− bi sin

(
βiln(ω) +

παi
2

)]
Qω+ =

m∑
i=0

ωαie
−πβi

2

[
ai sin

(
βiln(ω) +

παi
2

)
+ bi cos

(
βiln(ω) +

παi
2

)]
Rω+ =

n∑
k=0

ωγke
−πδk

2

[
ck cos

(
δkln(ω) +

πγk
2

)
− dk sin

(
δkln(ω) +

πγk
2

)]
Sω+ =

n∑
k=0

ωγke
−πδk

2

[
ck sin

(
δkln(ω) +

πγk
2

)
+ dk cos

(
δkln(ω) +

πγk
2

)]

Therefore,

|G+
ωgc| = K

[√
P 2
ω+ +Q2

ω+

R2
ω+ + S2

ω+

]∣∣∣∣
ω=ωgc

(4.10)

∠G+
ωgc =

[
tan−1

(
Qω+

Pω+

)
− tan−1

(
Sω+

Rω+

)
− Lω

]∣∣∣∣
ω=ωgc

(4.11)

ψ+
ωgc =

[(
Pω+

dQω+
dω
−Qω+

dPω+
dω

P 2
ω+ +Q2

ω+

)
−
(
Rω+

dSω+
dω
− Sω+

dRω+
dω

R2
ω+ + S2

ω+

)
− L

]∣∣∣∣
ω=ωgc

(4.12)

where,

dPω+

dω
=

m∑
i=0

ωαie
−πβi

2

[(
aiαi − biβi

ω

)
cos
(
βiln(ω) +

παi
2

)
−
(
aiβi + biαi

ω

)
sin
(
βiln(ω) +

παi
2

)]
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dQω+

dω
=

m∑
i=0

ωαie
−πβi

2

[(
aiβi + biαi

ω

)
cos
(
βiln(ω) +

παi
2

)
+

(
aiαi − biβi

ω

)
sin
(
βiln(ω) +

παi
2

)]

dRω+

dω
=

n∑
k=0

ωγke
−πδk

2

[(
ckγk − dkδk

ω

)
cos
(
δkln(ω) +

πγk
2

)
−
(
ckδk + dkγk

ω

)
sin
(
δkln(ω) +

πγk
2

)]

dSω+

dω
=

n∑
k=0

ωγke
−πδk

2

[(
ckδk + dkγk

ω

)
cos
(
δkln(ω) +

πγk
2

)
+

(
ckγk − dkδk

ω

)
sin
(
δkln(ω) +

πγk
2

)]

Similarly, the ω− response function (Gω−) of (4.7) is given as:

G(s)

∣∣∣∣
s=−jω

= K

m∑
i=0

(ai + jbi)(−jω)αi+jβi

n∑
k=0

(ck + jdk)(−jω)γk+jδk

ejLω (4.13)

Gω− = K

[
Pω− + jQω−

Rω− + jSω−

]
ejLω (4.14)

where,

Pω− =
m∑
i=0

ωαie
πβi
2

[
ai cos

(
βiln(ω)− παi

2

)
− bi sin

(
βiln(ω)− παi

2

)]
Qω− =

m∑
i=0

ωαie
πβi
2

[
ai sin

(
βiln(ω)− παi

2

)
+ bi cos

(
βiln(ω)− παi

2

)]
Rω− =

n∑
k=0

ωγke
πδk
2

[
ck cos

(
δkln(ω)− πγk

2

)
− dk sin

(
δkln(ω)− πγk

2

)]
Sω− =

n∑
k=0

ωγke
πδk
2

[
ck sin

(
δkln(ω)− πγk

2

)
+ dk cos

(
δkln(ω)− πγk

2

)]
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Therefore,

|G−ωgc| = K

[√
P 2
ω− +Q2

ω−

R2
ω− + S2

ω−

]∣∣∣∣
ω=ωgc

(4.15)

∠G−ωgc =

[
tan−1

(
Qω−

Pω−

)
− tan−1

(
Sω−

Rω−

)
+ Lω

]∣∣∣∣
ω=ωgc

(4.16)

ψ−ωgc =

[(
Pω−

dQω−
dω
−Qω−

dPω−
dω

P 2
ω− +Q2

ω−

)
−
(
Rω−

dSω−
dω
− Sω−

dRω−
dω

R2
ω− + S2

ω−

)
+ L

]∣∣∣∣
ω=ωgc

(4.17)

where,

dPω−

dω
=

m∑
i=0

ωαie
πβi
2

[(
aiαi − biβi

ω

)
cos
(
βiln(ω)− παi

2

)
−
(
aiβi + biαi

ω

)
sin
(
βiln(ω)− παi

2

)]

dQω−

dω
=

m∑
i=0

ωαie
πβi
2

[(
aiβi + biαi

ω

)
cos
(
βiln(ω)− παi

2

)
+

(
aiαi − biβi

ω

)
sin
(
βiln(ω)− παi

2

)]

dRω−

dω
=

n∑
k=0

ωγke
πδk
2

[(
ckγk − dkδk

ω

)
cos
(
δkln(ω)− πγk

2

)
−
(
ckδk + dkγk

ω

)
sin
(
δkln(ω)− πγk

2

)]

dSω−

dω
=

n∑
k=0

ωγke
πδk
2

[(
ckδk + dkγk

ω

)
cos
(
δkln(ω)− πγk

2

)
+

(
ckγk − dkδk

ω

)
sin
(
δkln(ω)− πγk

2

)]
Unified controller parameter expressions are obtained for C(s) of the following real

and complex coefficient IOCs to meet Wang et al specifications [86], [81], [85], [91] in
both ω+ and ω−.

• Real coefficient integer order PI/PD/PID controllers

• Complex coefficient integer order PI/PD/PID controllers
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4.4 Tuning of Complex and Real Coefficient IOCs

4.4.1 Unified Tuning Expressions for Complex Coefficient IOCs

In this subsection, unified complex valued integer order PI/PD/PID controller param-
eter expressions are obtained for the given G(s) to meet the required specifications (4.1),
(4.2) and (4.3) in ω+ and also (4.4), (4.5) and (4.6) in ω−.

4.4.1.1 Tuning Expressions for Complex Coefficient PI (CCPI)

The CCPI controller structure given in (2.58) is:

C(s) = (Kpr + jKpi) +
(Kir + jKii)

s
(4.18)

The ω+ and ω− responses (Cω+ and Cω−) are given by

Cω+ = (Kpr + jKpi) +
(Kir + jKii)

jω
(4.19)

Cω− = (Kpr + jKpi) +
(Kir + jKii)

−jω
(4.20)

The magnitude and phase of Cω+ and Cω− at desired ωgc are as follows:

|C+
ωgc| =

√(
Kpr +

Kii

ωgc

)2

+

(
Kpi −

Kir

ωgc

)2

(4.21)

∠C+
ωgc = tan−1

(
Kpi − Kir

ωgc

Kpr + Kii
ωgc

)
(4.22)

|C−ωgc| =

√(
Kpr −

Kii

ωgc

)2

+

(
Kpi +

Kir

ωgc

)2

(4.23)

∠C−ωgc = tan−1

(
Kpi + Kir

ωgc

Kpr − Kii
ωgc

)
(4.24)

Using (4.11) and (4.22), specification (4.2) becomes

∠G+
ωgc + tan−1

(
Kpi − Kir

ωgc

Kpr + Kii
ωgc

)
+ π = φm

this implies, (
Kpi − Kir

ωgc

Kpr + Kii
ωgc

)
= tanA+ (4.25)

61



Using (4.16) and (4.24), specification (4.5) becomes

∠G−ωgc + tan−1

(
Kpi + Kir

ωgc

Kpr − Kii
ωgc

)
− π = −φm

this implies, (
Kpi + Kir

ωgc

Kpr − Kii
ωgc

)
= tanA− (4.26)

Using (4.10) and (4.21), specification (4.1) becomes

|G+
ωgc|

√(
Kpr +

Kii

ωgc

)2

+

(
Kpi −

Kir

ωgc

)2

= 1

this implies,

Kpr +
Kii

ωgc
=

1

|G+
ωgc|
√

1 + tan2A+
= M+ (4.27)

Using (4.15) and (4.23), specification (4.4) becomes

|G−ωgc|

√(
Kpr −

Kii

ωgc

)2

+

(
Kpi +

Kir

ωgc

)2

= 1

this implies,

Kpr −
Kii

ωgc
=

1

|G−ωgc|
√

1 + tan2A−
= M− (4.28)

Solving (4.27) and (4.28),

Kpr =
M+ +M−

2
(4.29)

Kii =
ωgc(M

+ −M−)

2
(4.30)

Substituting (4.29) and (4.30) in (4.25) and (4.26), implies

Kpi =
M+ tanA+ +M− tanA−

2
(4.31)

Kir =
ωgc(M

− tanA− −M+ tanA+)

2
(4.32)
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where,

A+ = φm − π − ∠G+
ωgc

A− = −φm + π − ∠G−ωgc

Equations (4.29), (4.30), (4.31) and (4.32) are the controller parameters of CCPI
which satisfy the specifications (4.1) and (4.2) in ω+ and also (4.4) and (4.5) in ω−.

4.4.1.2 Tuning Expressions for Complex Coefficient PD (CCPD)

The CCPD controller structure given in (2.59) is :

C(s) = (Kpr + jKpi) + (Kdr + jKdi)s (4.33)

The ω+ and ω− responses (Cω+ and Cω−) are given by

Cω+ = (Kpr + jKpi) + (Kdr + jKdi)(jω) (4.34)

Cω− = (Kpr + jKpi) + (Kdr + jKdi)(−jω) (4.35)

The magnitude and phase of Cω+ and Cω− at desired ωgc are as follows:

|C+
ωgc| =

√
(Kpr −Kdiωgc)

2 + (Kpi +Kdrωgc)
2 (4.36)

∠C+
ωgc = tan−1

(
Kpi +Kdrωgc
Kpr −Kdiωgc

)
(4.37)

|C−ωgc| =
√

(Kpr +Kdiωgc)
2 + (Kpi −Kdrωgc)

2 (4.38)

∠C−ωgc = tan−1

(
Kpi −Kdrωgc
Kpr +Kdiωgc

)
(4.39)

Using (4.11) and (4.37), specification (4.2) becomes

∠G+
ωgc + tan−1

(
Kpi +Kdrωgc
Kpr −Kdiωgc

)
+ π = φm

this implies, (
Kpi +Kdrωgc
Kpr −Kdiωgc

)
= tanA+ (4.40)

Using (4.16) and (4.39), specification (4.5) becomes

∠G−ωgc + tan−1

(
Kpi −Kdrωgc
Kpr +Kdiωgc

)
− π = −φm
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this implies, (
Kpi −Kdrωgc
Kpr +Kdiωgc

)
= tanA− (4.41)

Using (4.10) and (4.36), specification (4.1) becomes

|G+
ωgc|
√

(Kpr −Kdiωgc)
2 + (Kpi +Kdrωgc)

2 = 1

this implies,

Kpr −Kdiωgc =
1

|G+
ωgc|
√

1 + tan2A+
= M+ (4.42)

Using (4.15) and (4.38), specification (4.4) becomes

|G−ωgc|
√

(Kpr +Kdiωgc)
2 + (Kpi −Kdrωgc)

2 = 1

this implies,

Kpr +Kdiωgc =
1

|G−ωgc|
√

1 + tan2A−
= M− (4.43)

Solving (4.42) and (4.43),

Kpr =
M+ +M−

2
(4.44)

Kdi =
M− −M+

2ωgc
(4.45)

Substituting (4.44) and (4.45) in (4.40) and (4.41),

Kpi =
M+ tanA+ +M− tanA−

2
(4.46)

Kdr =
M+ tanA+ −M− tanA−

2ωgc
(4.47)

Equations (4.44), (4.45), (4.46) and (4.47) are the controller parameters of CCPD
which satisfy the specifications (4.1) and (4.2) in ω+ and also (4.4) and (4.5) in ω−.

4.4.1.3 Tuning Expressions for Complex Coefficient PID (CCPID)

The CCPID controller structure given in (2.60) is:

C(s) = (Kpr + jKpi) +
(Kir + jKii)

s
+ (Kdr + jKdi)s (4.48)
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The ω+ and ω− responses (Cω+ and Cω−) are given by

Cω+ = (Kpr + jKpi) +
(Kir + jKii)

jω
+ (Kdr + jKdi)(jω) (4.49)

Cω− = (Kpr + jKpi) +
(Kir + jKii)

−jω
+ (Kdr + jKdi)(−jω) (4.50)

The magnitude and phase of Cω+ and Cω− at desired ωgc are as follows:

|C+
ωgc| =

[(
Kpr +

Kii

ωgc
−Kdiωgc

)2

+

(
Kpi −

Kir

ωgc
+Kdrωgc

)2 ] 1
2

(4.51)

∠C+
ωgc = tan−1

(
Kpi − Kir

ωgc
+Kdrωgc

Kpr + Kii
ωgc
−Kdiωgc

)
(4.52)

|C−ωgc| =
[(

Kpr −
Kii

ωgc
+Kdiωgc

)2

+

(
Kpi +

Kir

ωgc
−Kdrωgc

)2 ] 1
2

(4.53)

∠C−ωgc = tan−1

(
Kpi + Kir

ωgc
−Kdrωgc

Kpr − Kii
ωgc

+Kdiωgc

)
(4.54)

Using (4.11) and (4.52), specification (4.2) becomes

∠G+
ωgc + tan−1

(
Kpi − Kir

ωgc
+Kdrωgc

Kpr + Kii
ωgc
−Kdiωgc

)
+ π = φm

this implies,

Kpi − Kir
ωgc

+Kdrωgc

Kpr + Kii
ωgc
−Kdiωgc

= tanA+ (4.55)

Using (4.16) and (4.54), specification (4.5) becomes

∠G−ωgc + tan−1

(
Kpi + Kir

ωgc
−Kdrωgc

Kpr − Kii
ωgc

+Kdiωgc

)
− π = −φm

this implies,

Kpi + Kir
ωgc
−Kdrωgc

Kpr − Kii
ωgc

+Kdiωgc
= tanA− (4.56)

Using (4.10) and (4.51), specification (4.1) becomes
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|G+
ωgc|
[(

Kpr +
Kii

ωgc
−Kdiωgc

)2

+

(
Kpi −

Kir

ωgc
+Kdrωgc

)2 ] 1
2

= 1

this implies,

Kpr +
Kii

ωgc
−Kdiωgc =

1

|G+
ωgc|
√

1 + tan2A+
= M+ (4.57)

Using (4.15) and (4.53), specification (4.4) becomes

|G−ωgc|
[(

Kpr −
Kii

ωgc
+Kdiωgc

)2

+

(
Kpi +

Kir

ωgc
−Kdrωgc

)2 ] 1
2

= 1

this implies,

Kpr −
Kii

ωgc
+Kdiωgc =

1

|G−ωgc|
√

1 + tan2A−
= M− (4.58)

From (4.57) and (4.58),

Kpr =
M+ +M−

2
(4.59)

Kii

ωgc
−Kdiωgc =

M+ −M−

2
(4.60)

Substituting (4.57) in (4.55) and (4.58) in (4.56),

Kpi −
Kir

ωgc
+Kdrωgc = M+ tanA+ (4.61)

Kpi +
Kir

ωgc
−Kdrωgc = M− tanA− (4.62)

From (4.61) and (4.62),

Kpi =
M+ tanA+ +M− tanA−

2
(4.63)

Kir

ωgc
−Kdrωgc =

M− tanA− −M+ tanA+

2
(4.64)

Then, the slope of ∠Cω+ and ∠Cω− at desired ωgc are obtained as:

d∠Cω+

dω

∣∣∣∣
ω=ωgc

=

(
Kir
ω2
gc

+Kdr

)
− tanA+

(
−Kii
ω2
gc
−Kdi

)
M+(1 + tan2A+)

(4.65)

d∠Cω−

dω

∣∣∣∣
ω=ωgc

=

(
−Kir
ω2
gc
−Kdr

)
− tanA−

(
Kii
ω2
gc

+Kdi

)
M−(1 + tan2A−)

(4.66)

66



Using (4.12) and (4.65), specification (4.3) becomes

ψ+
ωgc +

(
Kir
ωgc

+Kdrωgc

)
− tanA+

(
−Kii
ωgc
−Kdiωgc

)
ωgcM+(1 + tan2A+)

= 0 (4.67)

Eliminating Kdr and Kdi in (4.67) using (4.60) and (4.64),

2Kir

ωgc
− M−(tanA− − tanA+)

2
+

2Kii

ωgc
tanA+ = −ψ+

ωgcωgcM
+(1 + tan2A+) (4.68)

this implies,

Kir +Kii tanA+ = H1 (4.69)

where,

H1 =
ωgc[−2ψ+

ωgcωgcM
+(1 + tan2A+) +M−(tanA− − tanA+)]

4

Using (4.17) and (4.66), specification (4.6) becomes

ψ−ωgc +

(
−Kir
ωgc
−Kdrωgc

)
− tanA−

(
Kii
ωgc

+Kdiωgc

)
ωgcM−(1 + tan2A−)

= 0 (4.70)

Eliminating Kdr and Kdi in (4.70) using (4.60) and (4.64),

−2Kir

ωgc
+
M+(tanA− − tanA+)

2
− 2Kii

ωgc
tanA− = −ψ−ωgcωgcM

−(1 + tan2A−) (4.71)

this implies,

−Kir −Kii tanA− = H2 (4.72)

where,

H2 =
ωgc[−2ψ−ωgcωgcM

−(1 + tan2A−) +M+(tanA+ − tanA−)]

4

Solving (4.69) and (4.72),

Kii =
H1 +H2

tanA+ − tanA−
(4.73)

Kir =
−(H1 tanA− +H2 tanA+)

tanA+ − tanA−
(4.74)
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Substituting (4.73) in (4.60) and (4.74) in (4.64), we get

Kdi =

(
H1 +H2

ω2
gc(tanA+ − tanA−)

)
−
(
M+ −M−

2ωgc

)
(4.75)

Kdr =

(
−H1 tanA− −H2 tanA+

ω2
gc(tanA+ − tanA−)

)
+

(
M+ tanA+ −M− tanA−

2ωgc

)
(4.76)

Equations (4.59), (4.63), (4.73), (4.74), (4.75) and (4.76) are the controller parameters
of CCPID which satisfy the specifications (4.1), (4.2) and (4.3) in ω+ and also satisfy
(4.4), (4.5) and (4.6) in ω−.

4.4.2 Unified Tuning Expressions for Real coefficient IOCs

The unified tuning expressions of the real coefficient IO PI/PD/PID controllers for the
universal plant G(s) are obtained by considering only the ω+ response of G(s).

4.4.2.1 Tuning Expressions for PI Controller

Similar to the procedure adopted for CCPI controller, the tuning expressions for PI con-
troller are obtained by using the ω+ response and are given below:

Ki = −Kpωgc tan
(
A+
)

(4.77)

Kp =
1

|G+
ωgc|
√

1 + tan2A+
(4.78)

where,

A+ = φm − π − ∠G+
ωgc

Equations (4.77) and (4.78) are the controller parameters of PI which satisfy the spec-
ifications (4.1) and (4.2) in ω+ only. The detailed derivation is given in APPENDIX B.1

4.4.2.2 Tuning Expressions for PD Controller

Similar to the procedure adopted for CCPD controller, the tuning expressions for PD
controller are obtained by using the ω+ response and are given below:

Kd =
K1 tanA+

ωgc
(4.79)
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Kp =
1

|G+
ωgc|
√

1 + tan2A+
(4.80)

where,

A+ = φm − π − ∠G+
ωgc (4.81)

Equations (4.79) and (4.80) are the controller parameters of PD which satisfy the spec-
ifications (4.1) and (4.2) in ω+ only. The detailed derivation is provided in APPENDIX B.2

4.4.2.3 Tuning Expressions for PID Controller

Similar to the procedure adopted for CCPID controller, the tuning expressions for PID
controller are obtained by using the ω+ response and are given below:

Kp =
1

|G+
ωgc|
√

1 + tan2A+
(4.82)

Ki =
Kpωgc

2

(
−ψ+

ωgcωgc(1 + tan2A+)− tanA+
)

(4.83)

Kd =
Kp

2ωgc

(
tanA+ − ψ+

ωgcωgc(1 + tan2A+)
)

(4.84)

Substituting K1 in (4.83) and (4.84), Ki and Kd are obtained respectively. Equations
(4.82), (4.83) and (4.84) are the controller parameters of PID which satisfy the specifica-
tions (4.1), (4.2) and (4.3) in ω+ only. The detailed derivation is provided in APPENDIX
B.3

4.5 Tuning of Complex Coefficient FCOCs

Further to show the superiority of the fractional controllers, this work is extended to tune
the proposed CCFCOCs defined in (2.61), (2.62) and (2.63) to meet the Wang et al speci-
fications (4.1), (4.2) and (4.3) in ω+ and (4.4), (4.5) and (4.6) in ω−. Obtaining a unified
expressions of CCFCOC parameters are tedious and hence, an optimization technique is
used.

The following constrained optimization problem is proposed to tune the controller pa-
rameters by minimising the controller effort of the closed loop system shown in Fig. 4.1.
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Minimize
(Controller Parameters)

J =

∫ ∞
0

|u(t)|2dt

subject to:

1. Positive frequency (ω+):

(i) Gain cross over frequency (ωgc) :

|G+
ωgc||C

+
ωgc| = 1 (4.85)

(ii) Phase margin (φm) :

∠G+
ωgc + ∠C+

ωgc + π = φm (4.86)

(iii) Phase flatness (Isodamping) at ωgc :

d∠[Gω+Cω+ ]

dω

∣∣∣∣
ω=ωgc

= 0 (4.87)

2. Negative frequency (ω−):

(a) Gain cross over frequency (ωgc) :

|G−ωgc||C
−
ωgc| = 1 (4.88)

(b) Phase margin (φm) :

∠G−ωgc + ∠C−ωgc − π = −φm (4.89)

(c) Phase flatness (Isodamping) at ωgc :

d∠[Gω−Cω− ]

dω

∣∣∣∣
ω=ωgc

= 0 (4.90)

4.6 Results and Discussions

In general, Complex Coefficient Transfer Functions (CCTF) are represented as two input
two output system [118]. The illustration of realising the CCTF and its usage for simulating
the case studies are discussed in the following section.
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4.6.1 Case studies for CCIOCs

Three different case studies are selected to demonstrate the advantages of the proposed
unified complex valued IOCs.

In order to represent the universal plant defined in (4.7), first its complex order deriva-
tives has to be approximated using Oustaloup Recursive Algorithm (ORA) [45] to obtain
its equivalent CCTF form. Then the obtained CCTF of plant is written as:

G(s) = Gr(s) + jGi(s)

Similarly, the complex coefficient IOCs defined in (4.18), (4.33) and (4.48) are repre-
sented as:

C(s) = Cr(s) + jCi(s)

where, Cr(s) =
C(s) + C∗(s)

2
and Ci(s) =

C(s)− C∗(s)
2j

Here, C∗(s) is the conjugated form of C(s). The action of complex coefficient IOCs on
the error signal e(t) = er(t) + jei(t) giving u(t) = ur(t) + jui(t) and the action of CCTF
on the signal u(t) = ur(t) + jui(t) giving y(t) = yr(t) + jyi(t) are illustrated in the Fig.
4.2.
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Figure 4.2: CCTF representation in closed loop

The plant and its required specifications are shown in Table 4.1; where, case I and case
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II are chosen from Chapter 3.

Table 4.1: Plant and its specifications

Case Plant and specifications

I
Plant: e−0.3s

0.04s1.8+0.6j+1.04s0.8+0.3j+1

specifications: ωgc = 0.5 rad/sec, φm = 57◦

II
Plant: 3+4j

(0.8+0.2j)s1.9+0.4j+(0.5+0.3j)s0.8+0.2j

specifications: ωgc = 5 rad/sec, φm = 60◦

III
Plant: 3+4j

(0.8+0.2j)s1.1+0.2j+(0.5+0.3j)

specifications: ωgc = 5 rad/sec, φm = 60◦

The derived real and complex valued IOC parameter expressions are used to obtain the
controller parameters for these case studies and are listed in Table 4.2.

Fig. 4.3, Fig. 4.5 and Fig. 4.7 show the ω+ and ω− Bode magnitude responses of case
I , case II and case III with the stable controllers in the Table 4.2 respectively. Fig. 4.3
and Fig. 4.7 also presents the zoomed responses near ωgc. Fig. 4.4, Fig. 4.6 and Fig. 4.8
show the ω+ and ω− Bode phase responses of case I , case II and case III with the stable
controllers in the Table 4.2 respectively.

It is clearly seen that magnitude and phase responses for plant with real valued IOCs
satisfy the required specifications in ω+ but not in ω−. This is due to the unsymmetrical
behaviour of the plant not getting compensated by the real valued IOCs having symmetrical
behaviour. Hence, it necessitates to design a complex valued IOCs to satisfy the constraints
simultaneously in both ω+ and ω−.

For simulation, unit step reference input r(t) = rr(t) + jri(t) = 1 + j0 is applied to
the closed loop shown in Fig. 4.2. To obtain the unit step response of the universal plant
with obtained controllers, ORA is carried out for the approximation of the fractional order
terms in the plant structure. Frequency band of [0.001 to 1, 000] rad/s with order (N) 5 is
selected for approximation. Even though the tuned controllers for each case study satisfy
the required specifications, stability of the closed loop system is not guaranteed. Hence for
further discussion, only stable controllers for different case studies are considered.

Sensitivity (S) and complementary sensitivity (T ) functions [163] are used to study the
stability and the robustness to parameter uncertainty of the case I , case II and case III . S
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Table 4.2: Tuning results of real and complex valued IOCs

Plant parameters Controller Controller parameters
Controller effort

(J =
∫∞

0
|u(t)|2dt)

Case:I

K = 1, L = 0.3, a0 = 1,
b0 = 0, c0 = 0.04, d0 = 0,
c1 = 1.04, d1 = 0, c2 = 1,
d2 = 0, α0 = 0, β0 = 0,

γ0 = 1.8, δ0 = 0.6, γ1 = 0.8,
δ1 = 0.3, γ2 = 0, δ2 = 0

PI Kp = −0.1916;Ki = 0.6059 22.026

CCPI
Kpr = 0.1146;Kpi = 0.0783
Kir = 0.6450;Kii = −0.1531

21.412

PD Kp = −0.1916;Kd = −2.4234

does
not exist

CCPD
Kpr = 0.1146;Kpi = 0.0783
Kdr = −2.580;Kdi = 0.6124

PID
Kp = −0.1916;Ki = −0.4631;

Kd = −4.2757

CCPID
Kpr = 0.1146;Kpi = 0.0783
Kir = 2.1217;Kii = −0.4822
Kdr = 5.9067;Kdi = −1.3164

Case:II

K = 1, L = 0, a0 = 3,
b0 = 4, c0 = 0.8, d0 = 0.2,
c1 = 0.5, d1 = 0.3, α0 = 0,
β0 = 0, γ0 = 1.9, δ0 = 0.4,

γ1 = 0.8, δ1 = 0.2,

P I Kp = 1.4249;Ki = −5.8325
does

not existCCPI
Kpr = 2.8899;Kpi = −1.8493
Kir = −15.0791;Kii = −7.3249

PD Kp = 1.4249;Kd = 0.2333 64.671

CCPD
Kpr = 2.8899;Kpi = −1.8493
Kdr = 0.6032;Kdi = 0.2930

524.575

PID
Kp = 1.4249;Ki = 0.5641;

Kd = 0.2559
does

not exist
CCPID

Kpr = 2.8899;Kpi = −1.8493
Kir = −8.6711;Kii = 1.9710
Kdr = 0.2563;Kdi = 0.3718

Case:III

K = 1, L = 0, a0 = 3,
b0 = 4, c0 = 0.8, d0 = 0.2,
c1 = 0.5, d1 = 0.3, α0 = 0,
β0 = 0, γ0 = 1.1, δ0 = 0.2,

γ1 = 0, δ1 = 0,

P I Kp = 0.4365;Ki = 2.7086 0.945

CCPI
Kpr = 0.8734;Kpi = −0.2091
Kir = 1.6633;Kii = −2.1842

0.2725

PD Kp = 0.4365;Kd = −0.1083 23.868

CCPD
Kpr = 0.8734;Kpi = −0.2091
Kdr = −0.0665;Kdi = 0.0874

12.631

PID
Kp = 0.4365;Ki = 2.4214;

Kd = −0.0115
1.011

CCPID
Kpr = 0.8734;Kpi = −0.2091
Kir = 0.5896;Kii = −2.1471
Kdr = −0.0429;Kdi = 0.0015

2.822

and T functions are given as :

S(jω) =
1

1 +G(jω)C(jω)
;T (jω) =

G(jω)C(jω)

1 +G(jω)C(jω)

MS = max
ω
|S(jω)|;MT = max

ω
|T (jω)|

GM ≥ MS

MS−1
;PM ≥ 2 sin−1

(
1

2MS

)
where, MS and MT are the maximum sensitivities of |S(jw)| and |T (jw)| plots re-

spectively. MS provides the maximum amplification factor of the load disturbances and
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Figure 4.3: Open loop magnitude responses of case I with PI and CCPI in ω+ and ω−
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Figure 4.4: Open loop phase responses of case I with PI and CCPI in ω+ and ω−

MT describes the resonant peak. Assured Gain Margin (GM) and Phase Margin (PM)

are computed from MS which defines the stability margins [163]. For a good measure of
robustness, MS and MT should lie in the range of 1.2 to 2.0 and 1 to 1.5 respectively.

|S(jω)| and |T (jω)| plots for real valued IOCs are shown in Fig. 4.9 for case I , Fig.
4.13 for case II , Fig. 4.17, Fig. 4.21 and Fig. 4.25 for case III . Similarly, |S(jω)| and
|T (jω)| plots for complex valued IOCs are shown in Fig. 4.10 for case I , Fig. 4.14 for
case II , Fig. 4.18, Fig. 4.22 and Fig. 4.26 for case III . MS , MT , Bandwidth (ωBW ) and
guaranteed stability margins (GM and PM) are obtained from |S(jω)| and |T (jω)| plots
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Figure 4.5: Open loop magnitude responses of case II with PD and CCPD in ω+ and
ω−
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Figure 4.6: Open loop phase responses of case II with PD and CCPD in ω+ and ω−

for plant with real and complex valued IOCs of all three cases. These values are computed
for both ω+ and ω− and are listed in Table 4.3.

Since G(s) is a complex valued function, both real and imaginary responses exist in
time domain. The real part of the closed loop unit step responses are shown in Fig. 4.11
for case I , Fig. 4.15 for case II and Fig. 4.19, Fig. 4.23 and Fig. 4.27 for case III
respectively.

The real part of the controller output responses are shown in Fig. 4.12 for case I , Fig.
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Figure 4.7: Open loop magnitude responses of case III with all controllers in ω+ and ω−
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Figure 4.8: Open loop phase responses of case III with all controllers in ω+ and ω−

4.16 for case II and Fig. 4.20, Fig. 4.24 and Fig. 4.28 for case III respectively.

For case I , it is observed that both MS and MT obtained for CCPI are lesser in com-
parison to PI from ω+ and ω− analysis. This assures increased GM and PM for CCPI
which is seen as a reduced overshoot in Fig. 4.11. It is also observed that CCPI has larger
ωBW than PI which is reflected as lesser rise time in Fig. 4.11.

Similar trend is observed for CCPD in comparison to PD of case II , CCPI in com-
parison to PI of case III and CCPID in comparison to PID of case III except CCPD
in comparison to PD of case III . In case III , CCPD controller assures better stability
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Figure 4.9: Sensitivity plots of case I with PI in ω+ and ω−
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Figure 4.10: Sensitivity plots of case I with CCPI in ω+ and ω−

margins and provides lesser bandwidth than PD. However, CCPD and PD introduce
error at steady state and hence, deteriorates the tracking performance.

Controller effort is computed for all cases with stable controllers as shown in Table 4.2.
Since, tuning of real valued IOCs are performed by considering only ω+ and whereas com-
plex valued IOCs are tuned by considering both ω+ and ω−, the comparison of controller
efforts for various controllers are not performed.

From the above analysis, it is observed that CCPI , CCPD and CCPID simultane-
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Figure 4.11: Plant output responses of case I with PI and CCPI
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Figure 4.12: Controller output responses of case I with PI and CCPI

ously satisfy the required specifications in ω+ and ω−. It also provides improved stability
margins and time response than real valued IOCs. Hence, only complex valued IOCs have
to be selected for complex valued plants.
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Figure 4.13: Sensitivity plots of case II with PD in ω+ and ω−
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Figure 4.14: Sensitivity plots of case II with CCPD in ω+ and ω−
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Figure 4.15: Plant output responses of case II with PD and CCPD
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Figure 4.16: Controller output responses of case II with PD and CCPD
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Figure 4.17: Sensitivity plots of case III with PI in ω+ and ω−
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Figure 4.18: Sensitivity plots of case III with CCPI in ω+ and ω−
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Figure 4.19: Plant output responses of case III with PI and CCPI
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Figure 4.20: Controller output responses of case III with PI and CCPI
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Figure 4.21: Sensitivity plots of case III with PD in ω+ and ω−

10−2 10−1 100 101 102 103

Frequency, ω(rad/sec)

0

0.5

1

1.5

2

2.5

M
a
g
n
it
u
d
e

|S(jω)| and |T (jω)| plots of case III with CCPD

|S|ω+

|S|ω−

|T |ω+

|T |ω−

Figure 4.22: Sensitivity plots of case III with CCPD in ω+ and ω−
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Figure 4.23: Plant output responses of case III with PD and CCPD
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Figure 4.24: Controller output responses of case III with PD and CCPD
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Figure 4.25: Sensitivity plots of case III with PID in ω+ and ω−
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Figure 4.26: Sensitivity plots of case III with CCPID in ω+ and ω−
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Figure 4.27: Plant output responses of case III with PID and CCPID
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Figure 4.28: Controller output responses of case III with PID and CCPID
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Table 4.3: Observations from |S(jω)| and |T (jω)| plots of real and complex valued IOCs

Case Controller ω+ analysis ω− analysis

I
PI

MS = 1.6140;MT = 1.0495;
GM ≥ 8.3947dB;PM ≥ 36.0932◦

ωBW = 1.0743 rad/sec

MS = 2.0510;MT = 1.7045;
GM ≥ 5.8072dB;PM ≥ 28.2198◦

ωBW = 0.7923 rad/sec

CCPI
MS = 1.3632;MT = 1.1003;

GM ≥ 11.4874dB;PM ≥ 43.0332◦

ωBW = 0.8534 rad/sec

MS = 1.3073;MT = 1.0961;
GM ≥ 12.5771dB;PM ≥ 44.9746◦

ωBW = 0.7599 rad/sec

II
PD

MS = 1.1717;MT = 1.1088;
GM ≥ 16.6798dB;PM ≥ 50.5193◦

ωBW = 7.1400 rad/sec

MS = 2.5927;MT = 2.8473;
GM ≥ 4.2323dB;PM ≥ 22.2378◦

ωBW = 3.5856 rad/sec

CCPD
MS = 1.0620;MT = 1.4243;

GM ≥ 24.6792dB;PM ≥ 56.1757◦

ωBW = 6.3149 rad/sec

MS = 1.0335;MT = 1.2966;
GM ≥ 29.7816dB;PM ≥ 57.8659◦

ωBW = 6.5724 rad/sec

III

PI
MS = 1.1150;MT = 1.1642;

GM ≥ 19.7332dB;PM ≥ 53.2873◦

ωBW = 6.6067 rad/sec

MS = 17.8246;MT = 18.0907;
GM ≥ 0.5015dB;PM ≥ 3.2148◦

ωBW = 5.6490 rad/sec

CCPI
MS = 1.0783;MT = 1.3797;

GM ≥ 22.7799dB;PM ≥ 55.2515◦

ωBW = 7.4259 rad/sec

MS = 1.0626;MT = 1.2537;
GM ≥ 24.5907dB;PM ≥ 56.1369◦

ωBW = 6.6383 rad/sec

PD
MS = 3.0017;MT = 2.5733;

GM ≥ 3.5194dB;PM ≥ 19.1775◦

ωBW = 1101.80 rad/sec

MS = 2.1354;MT = 2.0664;
GM ≥ 5.4868dB;PM ≥ 27.0834◦

ωBW = 20.24 rad/sec

CCPD
MS = 2.3614;MT = 1.5776;

GM ≥ 4.7838dB;PM ≥ 24.4488◦

ωBW = 60.74 rad/sec

MS = 1.2244;MT = 1.2281;
GM ≥ 14.7393dB;PM ≥ 48.2058◦

ωBW = 15.70 rad/sec

PID
MS = 1.1592;MT = 1.1456;

GM ≥ 17.2433dB;PM ≥ 51.1033◦

ωBW = 6.9302 rad/sec

MS = 14.3505;MT = 14.5842;
GM ≥ 0.6274dB;PM ≥ 3.9934◦

ωBW = 5.7158 rad/sec

CCPID
MS = 1.4670;MT = 1.6017;

GM ≥ 9.9424dB;PM ≥ 39.8554◦

ωBW = 14.6506 rad/sec

MS = 1.1806;MT = 1.1632;
GM ≥ 16.3085dB;PM ≥ 50.1142◦

ωBW = 7.1434 rad/sec
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4.6.2 Case Study for CCFCOCs

To demonstrate the usage of CCFCOCs, case II defined in Table 4.1 is used. The following
values are selected as design specifications and bounds for controller parameters: ωgc =

5 rad/sec, φm = 60◦,Kpr ∈ [−10, 10],Kpi ∈ [−10, 10],Kir ∈ [−10, 10],Kii ∈ [−10, 10],
Kdr ∈ [−10, 10], Kdi ∈ [−10, 10], α ∈ [−1, 1] and β ∈ [−1, 1].

The fmincon() solver available in MATLAB [161] is used to solve the optimization
problem repeatedly with sufficiently large number of randomly selected initial guesses.
For each controller case, 2000 random initial guesses are taken and the corresponding con-
verged values are found to be unique. The results of the proposed optimization problem are
presented in Table 4.4 and these controllers are the only possible outcomes of the chosen
case study. To show its superiority, these results are compared with the corresponding real
coefficient FOCs obtained in chapter 3 for the same case study shown in Table 3.2 and are
listed in Table 4.4.

Table 4.4: Tuning results of real and complex valued FOCs

Plant parameters Controller Controller parameters
Controller effort

(J =
∫∞

0
|u(t)|2dt)

Case:II

K = 1, L = 0, a0 = 3,
b0 = 4, c0 = 0.8, d0 = 0.2,
c1 = 0.5, d1 = 0.3, α0 = 0,
β0 = 0, γ0 = 1.9, δ0 = 0.4,

γ1 = 0.8, δ1 = 0.2,

CCPDβr+jβi

Kpr = 0.4408;Kpi = −0.6003
Kdr = 1.1850;K2i = −0.5314
βr = 0.6019; βi = 0.3347

6.9185

PDβ Kp = 1.5735;Kd = 0.2066
β = 1.0807

148.104

CC[PD]βr+jβi
Kpr = 0.2644;Kpi = −0.7629
Kdr = 0.2945;Kdi = −0.6107
βr = 0.5793; βi = 0.4616

47.6554

[PD]β
Kp = 1.360;Kd = 0.1420;

β = 1.4269
25676.274

Fig. 4.29 and Fig. 4.31 show the ω+ and ω− Bode magnitude response of case II with
the listed controllers in the Table 4.4 respectively. Fig. 4.30 and Fig. 4.32 show the ω+ and
ω− Bode phase response of case II with the listed controllers in the Table 4.4 respectively.

It is noted that magnitude and phase responses for plant with real valued FOCs satisfy
the required specifications in ω+ but not in ω−. This is due to the unsymmetrical behaviour
of the plant not getting compensated by the real valued FOCs having symmetrical be-
haviour. Hence, it necessitates to design a complex valued FOCs to satisfy the constraints
simultaneously in both ω+ and ω−.

|S(jω)| and |T (jω)| plots for CCPDβr+jβi and PDβ for case II are shown in Fig.
4.33 and Fig. 4.34 respectively. Similarly, |S(jω)| and |T (jω)| plots for CC[PD]βr+jβi
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Figure 4.29: Open loop magnitude responses of case II with CCPDβr+jβj and PDβ

controllers in ω+ and ω−
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Figure 4.30: Open loop phase responses of case II with CCPDβr+jβj and PDβ con-
trollers in ω+ and ω−

and [PD]β for case II are shown in Fig. 4.35 and Fig. 4.36 respectively.

MS , MT , Bandwidth (ωBW ) and guaranteed stability margins (GM and PM) are also
obtained from these |S(jω)| and |T (jω)| plots. These values are computed for both ω+

and ω− and are listed in Table 4.5.

To obtain the time response characteristics, ORA is extended for the approximation of
CCPDβr+jβi and CC[PD]βr+jβi . The real part of the closed loop unit step responses are
shown in Fig. 4.37 for case II with CCPDβr+jβi and PDβ controllers. The real part of
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Figure 4.31: Open loop magnitude responses of case II with CC[PD]βr+jβj and [PD]β

controllers in ω+ and ω−
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Figure 4.32: Open loop phase responses of case II with CC[PD]βr+jβj and [PD]β con-
trollers in ω+ and ω−

the closed loop unit step responses are shown in Fig. 4.39 for case II with CC[PD]βr+jβi

and [PD]β controllers.

The real part of the controller output responses are shown in Fig. 4.38 for case II with
CCPDβr+jβi and PDβ controllers. The real part of the controller output responses are
shown in Fig. 4.40 for case II with CC[PD]βr+jβi and [PD]β controllers.

For case II , it is observed that both MS and MT obtained for CCPDβr+jβi are lesser
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Figure 4.33: Sensitivity plots of case II with CCPDβr+jβj in ω+ and ω−
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Figure 4.34: Sensitivity plots of case II with PDβ in ω+ and ω−

in comparison to PDβ from ω+ and ω− analysis. This assures increased GM and PM for
CCPDβr+jβi which is seen as a reduced overshoot in Fig. 4.37. It is also observed that
CCPDβr+jβi has larger ωBW than PDβ which is reflected as lesser rise time in Fig. 4.39.
Similar trend is also observed for CC[PD]βr+jβi in comparison to [PD]β of case II .

Controller effort is computed for case II with controllers as shown in Table 4.2. Since,
tuning of real valued FOCs are performed by considering only ω+ and whereas complex
valued FOCs are tuned by considering both ω+ and ω−, the comparison of their controller
efforts are not performed.

From the above analysis, it is observed that CCPDβr+jβj and CC[PD]βr+jβj simulta-
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Figure 4.35: Sensitivity plots of case II with CC[PD]βr+jβj in ω+ and ω−
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Figure 4.36: Sensitivity plots of case II with [PD]β in ω+ and ω−

neously satisfy the required specifications in ω+ and ω−. It also provides improved stabil-
ity margins and better time response than real valued FOCs. Hence, only complex valued
FOCs or complex valued IOCs have to be selected for complex valued plants.
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Table 4.5: Observations from |S(jω)| and |T (jω)| plots of real and complex valued FOCs

Case Controller ω+ analysis ω− analysis

II

CCPDβr+jβi

MS = 1.1469;MT = 1.1412;
GM ≥ 17.8507dB;PM ≥ 51.6931◦

ωBW = 7.0763 rad/sec

MS = 1.1502;MT = 1.1480;
GM ≥ 17.6845dB;PM ≥ 51.5356◦

ωBW = 7.0684 rad/sec

PDβ

MS = 1.1349;MT = 1.1290;
GM ≥ 18.4962dB;PM ≥ 52.2778◦

ωBW = 6.9699 rad/sec

MS = 2.7770;MT = 3.0362;
GM ≥ 3.8778dB;PM ≥ 20.7453◦

ωBW = 3.6345 rad/sec

CC[PD]βr+jβi
MS = 1.1485;MT = 1.1460;

GM ≥ 17.7667dB;PM ≥ 51.6139◦

ωBW = 7.0183 rad/sec

MS = 1.1594;MT = 1.1598;
GM ≥ 17.2344dB;PM ≥ 51.0943◦

ωBW = 7.2825 rad/sec

[PD]β
MS = 1.1261;MT = 1.1264;

GM ≥ 19.0147dB;PM ≥ 52.7180◦

ωBW = 6.8180 rad/sec

MS = 2.6514;MT = 2.9064;
GM ≥ 4.1124dB;PM ≥ 21.7394◦

ωBW = 3.6536 rad/sec
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Figure 4.37: Plant output responses of case II with CCPDβr+jβj and PDβ
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Figure 4.38: Controller output responses of case II with CCPDβr+jβj and PDβ
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Figure 4.39: Plant output responses of case II with CC[PD]βr+jβj and [PD]β
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Figure 4.40: Controller output responses of case II with CC[PD]βr+jβj and [PD]β

4.7 Summary

In this chapter, complex valued integer order PI/PD/PID controllers are proposed for the
universal plant structure. The unified expressions of complex and real valued IOCs are
derived for complex valued universal plant to meet the desired specifications. Three dif-
ferent complex valued case studies are chosen to validate the obtained complex and real
valued IOCs. It is observed that only complex valued IOCs with plant had the ability to
satisfy the constraints both in ω+ and ω−. Also, complex valued IOCs have better stability
and robustness to parameter uncertainty than real valued IOCs which is observed from its
sensitivity and complementary sensitivity analysis. Due to this, an improved frequency do-
main and equivalent time domain performance are achieved. Hence, complex valued IOCs
are suggested for controlling complex valued plants. To show the superiority of fractional
controllers, this work is further extended to tune the proposed CCFCOCs to satisfy the
constraints both in ω+ and ω− through optimization technique.
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Chapter 5

Limit Cycle Prediction and Suppression
for System with Multiple Nonlinearities

5.1 Introduction

In engineering, system with nonlinearities (backlash, relay, saturation, etc.,) experiences
an undesirable behaviour at steady state under closed loop operation. It is termed as limit
cycle oscillation which is of constant magnitude and frequency. Describing Function (DF)
analysis tool is used to study such systems under the assumption that linear part of the
system provides very good low pass filtering effect [128]. DF is a first order harmonic
approximation of the nonlinearities [164] and it is used to predict the limit cycle details ei-
ther graphically or analytically. In this chapter, graphical approach techniques such as root
locus and Nyquist plot are dealt to predict the limit cycle information for system with non-
linearity. Root locus and Nyquist plot are well established techniques to predict the limit
cycle details for system with single separable nonlinearity [159]. In [143], Input Dependent
Root Locus (IDRL) is proposed to predict the limit cycle for system with multiple nonlin-
earities but there is no literature existing in case of Nyquist plot for system with multiple
nonlinearities. Hence, an Input Dependent Nyquist Plot (IDNP) is proposed in this chapter
to predict the limit cycle for system with multiple nonlinearities. These predicted details
are compared with IDRL and verified under the closed loop simulation. Controller design
for these system with multiple nonlinearities using DF analysis is also not explored in the
existing literature. Hence, an optimization problem is also proposed in this chapter to tune
the integer order controllers (IOCs) and Fractional Order Controllers (FOCs) to suppress
the limit cycle oscillation in addition to meet desired transient specifications.

At first, the existing DF method based limit cycle prediction using root locus and
Nyquist plot for system with single nonlinearity are described in section 5.2. The extension
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of these predicting methods to predict the limit cycle information for system with multiple
nonlinearities are discussed in section 5.3. The general closed loop schematic representa-
tion of system with multiple nonlinearities is described in section 5.4. As a case study to
validate the proposed IDNP, servo position control system is considered and described. To
suppress this limit cycle, an optimization problem is proposed to obtain IOCs and FOCs
in addition to meet the desired closed loop specifications. Section 5.5 discusses about the
usage of the proposed IDNP to predict the limit cycle information for the servo system
with the all the obtained controllers from the proposed optimization problem. Further in
section 5.6, simulation is carried out to test the servo system under parameter uncertainty,
disturbance and measurement noise conditions to observe the robustness of the designed
controllers.

5.2 System with Single Nonlinearity

Closed loop schematic of linear system G(s) in series with single separable nonlinearity
(N(X) is the DF of the memoried or non-memoried nonlinearity and X is the limit cycle
magnitude) is shown in Fig. 5.1. Due to this nonlinearity, the closed loop system experi-
ences an undesirable limit cycle oscillation at steady state. The prediction of this limit cycle
details using the well established graphical approaches such as root locus and Nyquist plot
techniques are explained in the below subsections.

OutputReference

_
+

System with single nonlinearity

( )sG ( )XN

Figure 5.1: System with single nonlinearity

5.2.1 Limit Cycle Prediction using Root Locus

To have limit cycle oscillation at steady state, the closed loop poles of the root locus should
occur at the imaginary axis [159]. For the block diagram shown in Fig. 5.1, the open loop
transfer function (OLTF) is given as: G(s)N(X). Since the OLTF is a function of X , the
closed loop poles vary with different value of X . For such system, IDRL [143] is used to
predict the limit cycle information.
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To predict the limit cycle details using IDRL, the movement of the closed loop poles
of this open loop transfer function for different values of X ranging from 0 to∞ have to
be observed. This pole movement forms a locus connecting all the operating points in the
increasing direction of X and the number of locus drawn is equal to the number of closed
loop poles. Limit cycle is ensured if there is an intersection between the locus drawn and
the imaginary axis. Limit cycle is characterised by the value of X for which the locus
crosses the imaginary axis as limit cycle magnitude X0 and the crossing jω value on the
imaginary axis as limit cycle frequency ω0. If there is a crossing, then one has to check the
stability of the limit cycle by applying the perturbation technique at the crossing point.
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Figure 5.2: Limit cycle prediction using root locus

Let us consider a system with two numbers of closed loop poles which vary with the
value of X . The movement of these poles in the increasing direction for a range of X :

[Xmin to Xmax] as shown in Fig. 5.2. It is found that one of the loci (P1) is completely in
the left half of the s-plane and the other locus (P2) crosses the imaginary axis at two points
A : (XA, ωA) and B : (XB, ωB) which is responsible for the limit cycle oscillation. This
crossing ensures the limit cycle existence and the stable limit cycle is found by using the
perturbation technique at the points A and B.

On giving a small perturbation to X (say XA + δXA) at point A, it is observed that
the pole moves from stable left half of s-plane to unstable right half of s-plane which in
turn increases the limit cycle magnitude X . Here, the pole moves away from the crossing
point A and hence, point A is an unstable limit cycle point. Similarly, on giving a small
perturbation to X (say XB + δXB) at point B, it is observed that the pole moves from
unstable right half of s-plane to stable left half of s-plane which in turn decreases the limit
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cycle magnitude X . Here, the pole comes back again to the crossing point B and hence,
point B is a stable limit cycle point.

Here, the limit cycle is characterised by the value of XB as limit cycle magnitude X0

and the corresponding jω2 crossing value on the imaginary axis as limit cycle frequency
ω0.

5.2.2 Limit Cycle Prediction using Nyquist Plot

In case of linear systems to have limit cycle oscillation at steady state, the Nyquist plot of
the linear system should pass through the critical point (−1, j0) [128]. If the Nyquist plot
of the linear system encloses the critical point (−1, j0), then the system is unstable and
if the Nyquist plot of the linear system is enclosed by the critical point (−1, j0), then the
system is stable.

But, in case of system shown in Fig. 5.1, the critical point is no longer (−1, j0). Here,
the critical point is −1

N(X)
which is obtained from the characteristic equation of the closed

loop system [159]. The critical point can be on the negative real axis in case of nonlinearity
without memory and can be in the third quadrant in case of nonlinearity with memory.
Then, the condition for the limit cycle occurrence is:

G(s)

∣∣∣∣
s=jω0

= − 1

N(X)

∣∣∣∣
X=X0

(5.1)

From equation (5.1), it is obvious that the possibility of a limit cycle oscillation depends
on the intersection of the Nyquist plot of G(s) at particular frequency ω and −1

N(X)
locus at

particular X [128], [159]. There can be single or multiple sets of (X,ω) are possible to
ensure the intersection condition (5.1). This single or multiple crossing points indicate the
presence of stable and unstable limit cycle points. Hence, to find the stable limit cycle
point, one has to perform the stability analysis at the crossing points. To check the stability
of the limit cycle, a small perturbation to X is applied at the crossing point. Due to per-
turbation, if the updated single critical point −1

N(X+δX)
encloses the Nyquist plot of G(s),

then the observed crossing point is a stable limit cycle with magnitude X and frequency ω.
Otherwise, the observed crossing point is an unstable point. This limit cycle is character-
ized by the value of X on −1

N(X)
as limit cycle magnitude X0 and the value of ω on G(jω)

as limit cycle frequency ω0.

Let us consider the Fig. 5.3 showing the intersection of the Nyquist plot ofG(s) and the
locus −1

N(X)
drawn for a range ofX . It has two crossing pointsA : (X1, ω1) andB : (X2, ω2)
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Figure 5.3: Limit cycle prediction using Nyquist plot

which satisfy the condition (5.1) ensuring limit cycle oscillation. The stable limit cycle is
found by using the perturbation technique at the points A and B.

On giving a small perturbation to X (say X1 + δX1) at point A, it is observed that the
updated critical point C : −1

N(X1+δX1)
is enclosed by the Nyquist plot G(s). Hence, this

point A is an unstable limit cycle point. Similarly, on giving a small perturbation to X (say
X2 + δX2) at point B, it is observed that the updated critical point D : −1

N(X2+δX2)
is not

enclosed by the Nyquist plot G(s). Hence, this point B is a stable limit cycle point.

Here, the limit cycle is characterised by the value of X2 as limit cycle magnitude X0

and the value of ω2 as limit cycle frequency ω0.

5.3 System with Multiple Nonlinearities

In case of system with multiple nonlinearities, the position of the nonlinearities can be
anywhere in the loop. In this work, linear system with feedback nonlinearity connected in
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series with another nonlinearity is considered as system with multiple nonlinearities.
Linear system with feedback nonlinearity is represented as G1(s,X) and the series

nonlinearity is represented by its DF N(X) (where, X is the limit cycle magnitude). Its
closed loop schematic is shown in Fig. 5.4.

OutputReference
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System with multiple nonlinearities

( )XsG ,1 ( )XN

Figure 5.4: Representation of system with multiple nonlinearities

Generally, the limit cycle prediction for such systems are performed using root locus
and Nyquist plot. In case of root locus, the characteristic equation obtained for the open
loop systemG1(s,X)N(X) and for the systemG(s)N(X) are functions ofX only. Hence,
the same approach explained in section 5.2.1 is adopted to predict the limit cycle details.

5.3.1 Limit Cycle Prediction using Proposed IDNP

Limit cycle prediction for the closed loop system shown in Fig. 5.4 is not possible with
the existing Nyquist plot approach. It is because the linear part of the system G1(s,X) is a
function of limit cycle magnitude X and hence the TF varies with each value of X . Due to
the variation in TF, the Nyquist plot keeps varying and the crossing of the resultant Nyquist
plot with the corresponding critical point −1

N(X)
is of interest to predict the limit cycle details.

The crossing X of the critical point −1
N(X)

is characterised as limit cycle magnitude and the
crossing frequency of the Nyquist plot of G1(s,X) for the same X is characterised as
limit cycle frequency. To ensure the limit cycle occurrence, Nyquist plot of G1(s,X) is
drawn for the selected value of X and it is examined whether the corresponding critical
point −1

N(X)
lies on the Nyquist plot of G1(s,X). If the above condition is not met, choose

different set of X and examine for the above condition. Once the possibility of limit cycle
occurrence is ensured, then its stability needs to be checked by giving small perturbation to
X at the crossing point. After giving a small perturbation toX (sayX+δX), if the updated
single critical point −1

N(X+δX)
is not enclosed by the corresponding updated Nyquist plot of

G1(s,X + δX), then the observed crossing point gives a stable limit cycle with magnitude
X and frequency ω. Otherwise, the observed crossing point is an unstable point.
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Figure 5.5: Stability analysis of G1(s,X) with −1
N(X)

using IDNP

The stability analysis of the observed limit cycle using IDNP is shown in the Fig. 5.5.
Consider the Nyquist plot of G1(s,X1) drawn for the selected value of X1 and the corre-
sponding single critical point −1

N(X1)
lies on the Nyquist plot. This crossing is shown as A

and to assess the stability a small perturbation is given to X1 at this point A. After a small
perturbation, the updated single critical point −1

N(X1+δX1)
lies at the point C. It is found that

the corresponding updated Nyquist plot of G1(s,X1 + δX1) encloses the critical point cC.
This shows that the observed crossing point A is an unstable limit cycle point. Similarly,
the Nyquist plot of G1(s,X2) is drawn for the selected value of X2 and the corresponding
single critical point −1

N(X2)
lies on the Nyquist plot. This crossing is shown as B and a small

perturbation is given to X2 at this point B for checking the stability. By giving a small
perturbation, the updated single critical point −1

N(X2+δX2)
lies at the point D. It is found that

the corresponding updated Nyquist plot of G1(s,X2 + δX2) does not enclose the critical
point D. This shows that the observed crossing point B is a stable limit cycle point.
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5.4 Generalised Block Diagram Representation

The OLTF G(s,X) is the representation of the system containing multiple nonlinearities.
The closed loop control schematic of the system G(s,X) with controller C(s) is shown in
Fig. 5.6.

OutputReference

_
+

System
Controller

)(sC ),( XsG

Figure 5.6: Closed loop control system representation

This system G(s,X) experiences limit cycle oscillation at steady state due to the pres-
ence of multiple nonlinearities under closed loop operation. Prediction of this limit cycle
details using graphical approaches (IDRL and proposed IDNP) and its suppression by im-
plementing controller C(s) are seen in this chapter.

5.4.1 System Description

A servo system with separable backlash and relay like nonlinearities is considered for con-
troller design and limit cycle prediction as shown in Fig. 5.7. Due to these nonlineari-
ties, system experiences limit cycle oscillation x(t) at steady state and for analysis these
nonlinearities are replaced by their equivalent describing functions Nb(X) and Nr(X1) as
follows [164]:

Nb(X) =

(
1

π

)(
π

2
+ θ + 0.5 sin(2θ)− j cos2 θ

)
(5.2)

Nr(X1) =
4M

πX1

(5.3)

where, θ = sin−1

[
1−

(
2H

X

)]
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Figure 5.7: Closed loop schematic diagram of servo system with multiple nonlinearities

X = peak value of the signal x(t)

X1 = peak value of the signal x1(t)

= Xω

M = saturation value of relay output

H = half of the backlash gap

Then, the open loop complex gain of the system shown in the Fig. 5.7 at steady state is
given by:

C(s)G(s,X)

∣∣∣∣
s=jω

=
C(s)KNb(X)

s(s+ a+ 4M
πXω

)

∣∣∣∣
s=jω

(5.4)

5.4.2 Proposed Optimization Problem

The schematic diagram shown in Fig. 5.7 is further deduced to have a OLTF model of the
form C(s)G1(s,X) in series with single nonlinearity Nb(X) as shown in Fig. 5.8.
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Figure 5.8: System model of the form C(s)G1(s,X) in series with nonlinearity Nb(X)

105



The main objective of the optimization problem is to minimize the controller output at
steady state and it is systematized as a nonlinear constrained optimization problem :

Minimize
(Controller Parameters,X0,ω0)

∣∣∣∣X0Nb(X0)C(jω0)

∣∣∣∣
subject to:

1. Nyquist condition for limit cycle occurrence:

C(s)G1(s,X)

∣∣∣∣
X=X0,s=jω0

=
−1

Nb(X)

∣∣∣∣
X=X0

(5.5)

2. Loeb's condition for limit cycle stability [159]:

The characteristic equation of the closed loop system shown in Fig. 5.8 is given by

U(X,ω) + jV (X,ω) = 1 + C(s)G1(s,X)Nb(X) = 0

Then, the stability condition is

∂U

∂X

∂V

∂ω
− ∂U

∂ω

∂V

∂X

∣∣∣∣
X0,ω0

> 0 (5.6)

3. Gain cross over frequency (ωgc) specification:

|C(s)G(s)|s=jωgc = 1 (5.7)

4. Phase margin (φm) specification:

π + ∠[C(s)G(s)]

∣∣∣∣
s=jωgc

= φm (5.8)

5. Sensitivity S(s): Robust output disturbance rejection performance,

|S(jω)|dB =

∣∣∣∣ 1

1 + C(jω)G(jω)

∣∣∣∣
dB

< A,∀ω ≤ ωl (5.9)

6. Complementary sensitivity T (s): Robust measurement noise rejection performance,

|T (jω)|dB =

∣∣∣∣ C(jω)G(jω)

1 + C(jω)G(jω)

∣∣∣∣
dB

< B, ∀ω ≥ ωh (5.10)
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7. Assured stability margins: MS and MT should be in the range of 1.2 to 2.0 and 1 to 1.5

respectively for a good measure of robustness [163]. Hence, the followings maximum
limits are selected as constraints.

(i)MS ≤ 2 (5.11)

(ii)MT ≤ 1.5 (5.12)

where, MS = max
ω
|S(jω)|; andMT = max

ω
|T (jω)|. Then, the assured stability mar-

gins are:
GM ≥ MS

MS−1
;PM ≥ 2 sin−1

(
1

2MS

)
8. Relation on ω0 and ωgc:

ω0 < ωgc (5.13)

Remark 5.1. The alternating component of x(t) at steady state is a sinusoidal signal of

peak magnitude X0 and frequency ω0. This implies,

x(t)|AC = X0 sin(ω0t)

Then the output of a backlash nonlinearity under first order harmonic approximation is

given by

y(t)|AC = |X0Nb(X0)| sin(ω0t+ ∠[Nb(X0)])

Then the controller output at steady state is given by

u(t)|AC = |X0Nb(X0)C(jω0)| sin(ω0t+ ∠[Nb(X0)]− π + ∠[C(jω0)])

Hence, the optimization problem is proposed as minimization of
∣∣∣∣X0Nb(X0)C(jω0)

∣∣∣∣ at

steady state with stability and robustness constraints to tune C(s).

Remark 5.2. The impact of nonlinearities are mostly seen at steady state. To nullify the

effect of Nb(X) in the feed forward path, its gain must be 1∠0◦. This is possible only for

X = ∞ and in turn Nr(X1) becomes 0. Hence, it is assumed that Nb(X) = 1∠0◦ and

Nr(X1) = 0 in equation (5.4) to have C(s)G(s,X) as C(s)G(s) in equations (5.7), (5.8),
(5.9) and (5.10).
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5.5 Results and Discussions

In this section, limit cycle details are predicted by graphical approaches such as IDRL and
proposed IDNP. Further, these predicted results are compared with the optimization results
and verified through closed loop simulations for the system with:

• PID controller: C(s) =
(
Kp + Ki

s
+Kds

)
• [PI]α controller defined in (2.49): C(s) =

(
Kp + Ki

s

)α
• [PD]β controller defined in (2.53): C(s) = (Kp +Kds)

β

• PIαDβ controller defined in (2.55): C(s) =
(
Kp + Ki

sα
+Kds

β
)

For illustration, the following values are selected as system parameters: M = 0.1,
H = 0.5, a = 0.7 and K = 5. The following values are selected as design specifications
and bounds for controller parameters: ωgc = 5 rad/sec, φm = 60◦, ωl = 0.01 rad/sec,
ωh = 50 rad/sec, A = −20 dB, B = −20 dB, Kp ∈ [0, 10], Ki ∈ [0, 10], Kd ∈ [0, 10],
α ∈ [0, 1], β ∈ [0, 1], X0 ∈ [0.5001, 1], ω0 ∈ [0.001, 4.99]. The controller, which is the
outcome of this proposed optimization for the selected value of ωl and ωh has to ensure
the rejection of (i) the load disturbance signal less than the selected ωl and (ii) the high
frequency measurement noise signal greater than the selected ωh.

5.5.1 Solutions to Constrained Optimization Problem

The parameters of the controllers are obtained from the proposed optimization problem
for suppressing the limit cycle magnitude. In general, the proposed optimization problem
in section 5.4.2 is non-convex in nature which is tedious to solve analytically. Hence, a
numerical approach is chosen. However, due to the existence of local minima, it usually
leads to the sub-optimal solutions. Therefore, it is mandatory to solve the optimization
problem repeatedly with sufficiently large number of randomly selected initial guesses.

The fmincon() solver available in MATLAB [161] is used for this purpose which simu-
lates Sequential quadratic programming algorithm. For each controller case, 2000 random
initial guesses are taken and the corresponding converged values are found to be unique.
The results of the proposed optimization problem are presented in Table 5.1.

It is found that PD, PDβ and [PD]β are the only unique controllers obtained for the
selected PID, PIαDβ and [PD]β controller structures respectively which meet the desired
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Table 5.1: Optimization results

Selected
controller
structure

Obtained
unique

controller

Optimization results
Controller Parameters Limit cycle details

Kp Ki Kd α β
Magnitude

X0

Frequency
ω0 rad/sec

PID PD 3.1062 0.0000 0.7960 – – 0.6800 2.3727
PIαDβ PDβ 1.9640 0.0000 1.1027 0.0000 0.8221 0.5625 1.2204
[PD]β [PD]β 2.8144 0.0000 1.8729 0.0000 0.7101 0.5576 1.1052

specifications. Other controllers such as PI , PIα and [PI]α do not exist for the proposed
optimization problem.

5.5.2 Limit Cycle Prediction for Servo System using IDRL

To perform limit cycle prediction using IDRL, the obtained controllers have to be proper
and integer order TF. The proper and integer form of obtained controllers are given as
follows :

• PD controller : PD = Kp +Kds. It is improper due to Kds. It is made biproper by
including a filter coefficient (N = 1000). Then the PD controller structure becomes:

PD = Kp +
KdNs

s+N

= 3.1062 +
796s

s+ 1000

=
799.1062s+ 3106.2

s+ 1000

• For simulating the fractional order controllers (FOCs): PDβ = Kp + Kds
β and

[PD]β = [Kp +Kds]
β , Oustaloup Recursive Approximation (ORA) [56] with order

(N) 4 is used over a band of frequency [0.001 to 1000 rad/sec]. The approximated
FOCs are biproper [165] and are as follows:

– PDβ Controller:
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PDβ = Kp +
Kds

β

10−3sβ + 1

= 1.9640 +
1.1027s0.8221

10−3s0.8221 + 1

=

251.6s9 + 8.041 ∗ 104s8 + 4.725 ∗ 106s7 + 6.447 ∗ 107s6
+2.449 ∗ 108s5 + 2.907 ∗ 108s4 + 9.808 ∗ 107s3

+ 7.996 ∗ 106s2 + 1.409 ∗ 105s+ 445.5

s9 + 931.5s8 + 1.735 ∗ 105s7 + 6.98 ∗ 106s6
+6.073 ∗ 107s5 + 1.14 ∗ 108s4 + 4.604 ∗ 107s3

+ 3.976 ∗ 106s2 + 7.126 ∗ 104s+ 226.4

– [PD]β Controller:

[PD]β =

[
Kp +

Kds

0.001s+ 1

]β
=

[
2.8144 +

1.8729s

0.001s+ 1

]0.7101

=

100.5s9 + 1.78 ∗ 104s8 + 7.151 ∗ 105s7 + 9.791 ∗ 106s6
+6.247 ∗ 107s5 + 2.178 ∗ 108s4 + 4.431 ∗ 108s3

+ 5.267 ∗ 108s2 + 3.4 ∗ 108s+ 9.221 ∗ 107

s9 + 421.1s8 + 3.969 ∗ 104s7 + 1.056 ∗ 106s6
+1.051 ∗ 107s5 + 5.033 ∗ 107s4 + 1.303 ∗ 108s3

+ 1.88 ∗ 108s2 + 1.424 ∗ 108s+ 4.43 ∗ 107

For the given case study, the closed loop characteristic equation of the system with
designed controllers are functions of X and ω. Hence, the root locus approach explained
in section 5.2.1 is adopted for predicting the limit cycle details.

Here, OLTF is given as: G1(s,X)Nb(X). To predict the limit cycle details, the move-
ment of the closed loop poles of this open loop transfer function for the selected ω is drawn
by ranging the values of X from 0 to ∞. This pole movement forms a locus connecting
all the operating points in the increasing direction of X and the number of locus drawn is
equal to the number of closed loop poles. Limit cycle is ensured if there is an intersection
between the locus drawn and the imaginary axis. Limit cycle is characterised by the value
of X for which the locus crosses the imaginary axis as limit cycle magnitude X0. And the
crossing jω value on the imaginary axis matching with the selected ω is termed as limit
cycle frequency ω0. If there is a crossing, then one has to check the stability of the limit
cycle by applying the perturbation technique at the crossing point.

The limit cycle prediction for servo system with the obtained controllers using IDRL is
shown in Fig. 5.9, Fig. 5.10 and Fig. 5.11. Table 5.2 shows the predicted limit cycle details
using IDRL. For simulating fractional order PDβ and [PD]β controllers, ORA [56] with
order (N) 4 is used over a band of frequency [0.001 to 1000 rad/sec].
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Figure 5.9: Intersection of family of IDRL of PDG1(s,X)Nb(X) with jω axis
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Figure 5.10: Intersection of family of IDRL of PDβG1(s,X)Nb(X) with jω axis

Table 5.2: Comparison of limit cycle details of system with obtained controllers using
IDRL

System with Limit cycle details
Magnitude, X0 Frequency, ω0 rad/sec

PD 0.6797 2.3712
PDβ 0.5640 1.2280

[PD]β 0.5540 1.0390

It is observed that the predicted limit cycle magnitude for system with PD, PDβ and
[PD]β controllers are closely matching with optimization results presented in Table 5.1. It
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Figure 5.11: Intersection of family of IDRL of [PD]βG1(s,X)Nb(X) with jω axis

is also noted that the predicted limit cycle frequency obtained from PD, PDβ match with
optimization results. However, a small deviation is found in the limit cycle frequency for
system with [PD]β in comparison with optimization results.

5.5.3 Limit Cycle Prediction for Servo System using IDNP

Proposed IDNP is used to predict the limit cycle for the system with FOCs and IOCs. Let
C(s) be PD controller and the limit cycle condition (5.4) can be rewritten as:

PDG1(s,X) =
K(Kp +Kds)

s(s+ a+ 4M
πXω

)

∣∣∣∣
X0,ω0

=
−1

Nb(X)

∣∣∣∣
X0

(5.14)

For illustration, the selected set of (X,ω) are : X = [0.51545; 0.53; 0.55; 0.6799;
0.9] and ω =[0.454; 1.5; 2; 2.3729; 5]. From Fig. 5.12, it is found that crossing takes
place for curves corresponding to two sets of (X,ω). First crossing takes place when
(X1, ω1) : (0.51545, 0.454). For an increase in X from this point, it is found that the
Nyquist plot of PDG1(s,X1 + δX1) encloses the critical point −1

Nb(X1+δX1)
and hence the

system produces an unstable limit cycle oscillation. Second crossing takes place when
(X4, ω4) : (0.6799, 2.3729). For an increase in X from this point, it is found that the
critical point −1

Nb(X4+δX4)
is not enclosed by the Nyquist plot of PDG1(s,X4 + δX4) which

produces stable limit cycle oscillation with magnitude X0 = X4 = 0.6799 and frequency
ω0 = ω4 = 2.3729 rad/sec. Similarly, the analysis can be done with PDβ and [PD]β with
set of (X,ω) values.
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Figure 5.12: Intersection of family of IDNP of PDG1(s,X) with −1
Nb(X)

Fig. 5.13 shows the family of IDNP drawn for the system with PDβ (with Oustaloup
approximation) controller. The selected set of (X,ω) are: X =[0.53 ; 0.5626 ; 0.8] and
ω =[1.2; 1.2227; 2]. The observed stable limit cycle details are: X0 = X2 = 0.5626 and
ω0 = ω2 = 1.2227 rad/sec.
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Figure 5.13: Intersection of family of IDNP of PDβG1(s,X) (with Oustaloup approxi-
mation) with −1

Nb(X)

Further, simulation is carried out for PDβ by avoiding Oustaloup approximation. In
order to predict the limit cycle details without any approximation of PDβ , it is realized as
follows:
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PDβ

∣∣∣∣
s=jω

= Kp +Kds
β

∣∣∣∣
s=jω

= Kp +Kd(jω)β

= Kp +Kdω
β(j)β

= Kp +Kdω
β

[
cos
(π

2

)
+ j sin

(π
2

)]β
= Kp +Kdω

β

[
cos

(
πβ

2

)
+ j sin

(
πβ

2

)]
=

[
Kp +Kdω

β cos

(
πβ

2

)]
+ j

[
Kdω

β sin

(
πβ

2

)]
=

[
K2
p +K2

dω
2β + 2KpKdω

β cos

(
πβ

2

)] 1
2

∠

[
tan−1

(
Kdω

β sin
(
πβ
2

)
Kp +Kdωβ cos

(
πβ
2

))]

PDβ

∣∣∣∣
s=jω

=

[
K2
p +K2

dω
2β + 2KpKdω

β cos

(
πβ

2

)] 1
2

e
jtan−1

(
Kdω

β sin(πβ2 )
Kp+Kdω

β cos(πβ2 )

)
(5.15)

Using (5.15), the family of IDNP drawn for the system with PDβ (without Oustaloup
approximation) controller is shown in Fig. 5.14. The selected set of (X,ω) are: X =[0.53

; 0.5623 ; 0.8] and ω =[1.2; 1.2182; 2]. The predicted limit cycle details are : X0 = X2 =

0.5623 and ω0 = ω2 = 1.2182 rad/sec. From the results, it is observed that the predicted
limit cycle details obtained with and without Oustaloup approximation for PDβ controller
are close to the optimization results.
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Figure 5.14: Intersection of family of IDNP of PDβG1(s,X) (without Oustaloup approx-
imation) with −1
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Fig. 5.15 shows the family of IDNP drawn for the system with [PD]β (with Oustaloup
approximation) controller. The selected set of (X,ω) are : X =[0.53; 0.5533; 0.7] and
ω =[1; 1.0432; 2]. The observed stable limit cycle details are: X0 = X2 = 0.5533

and ω0 = ω2 = 1.0432 rad/sec. It is found that the predicted limit cycle magnitude
matches with the optimization result, but the frequency deviates slightly which is similar to
prediction using IDRL.
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Figure 5.16: Intersection of family of IDNP of [PD]βG1(s,X) (without Oustaloup ap-
proximation) with −1
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By avoiding Oustaloup approximation for [PD]β , it is realized as follows :
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[PD]β
∣∣∣∣
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= (Kp +Kds)
β

∣∣∣∣
s=jω

= (Kp + jKdω)β

=
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∠
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tan−1

(
Kdω

Kp

)])β
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s=jω

=
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K2
p +K2

dω
2

]β
2

e
jβtan−1

(
Kdω

Kp

)
(5.16)

Using (5.16), the family of IDNP drawn for the system with [PD]β (without Oustaloup
approximation) controller is shown in Fig. 5.16. The selected set of (X,ω) are: X =[0.53;
0.5575; 0.7] and ω =[1; 1.1037; 2]. The observed limit cycle details are : X0 = X2 =

0.5575 and ω0 = ω2 = 1.1037 rad/sec. These predicted limit cycle magnitude and fre-
quency closely match with the optimization results.
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Figure 5.17: Intersection of family of IDNP of C(s)G1(s,X) for PD, PDβ and [PD]β

with −1
Nb(X)

Fig. 5.17 shows the IDNP drawn for the system with PD, PDβ and [PD]β controllers.
It is observed that [PD]β has highly suppressed the limit cycle magnitude when compared
to other controllers.

5.5.4 Limit Cycle Verification Using Closed Loop Simulation

The closed loop simulation for the system shown in Fig. 5.7 is performed by constructing
a SIMULINK patch-up to verify the limit cycle details.
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The closed loop system considered in Fig. 5.7 is nonlinear and the effect of the non-
linearity is present both in transient and steady state. In order to validate the obtained
controllers in the closed loop simulation, the effect of nonlinearity during transient has to
be nullified [156] (i.e. Nb(X) = 1∠0◦ and Nr(X1) = 0) which in turn satisfy the con-
straints (5.7), (5.8), (5.9) and (5.10) and hence, appropriate command input r(t) should be
selected. It is found that, beyond the step reference input r(t) = 25u(t), the effect of non-
linearity during transient is highly suppressed and mimics the linear simulation response.
This ensures the validation of these constraints during the course of optimization process.

In this work, closed loop simulation for the system shown in Fig. 5.7 is performed
with step command input (magnitude = 30). During transient, the value of X and ω are
19 and 2.2065 rad/sec respectively for the step input r(t) = 30u(t). Hence, the value of
Nb(X) = 0.9933∠−1.8821◦ andNr(X1) = 0.003036 during transient. Since we designed
the controller to meet the loop performance for N(X) = 1∠0◦ and Nr(X1) = 0, the
transient responses for this reference with linear and nonlinear simulation match closely as
can be seen from Fig. 5.18.
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The transient portion is approximated as a sinewave with peak
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Figure 5.18: Linear and nonlinear simulation of servo system

It is found that the system with PD controller produces sustained oscillation magnitude
Y = X0 − H = 0.1188 at steady state with limit cycle magnitude X0 = 0.6188 and
frequency ω0 = 1.9570 rad/sec. This limit cycle behaviour is completely eliminated for
system with PDβ and [PD]β controllers as shown in the Fig. 5.19. The zoomed view of
the plant output y(t) during transient is shown in Fig. 5.20 and during steady state is shown
in Fig. 5.21. It must be noted that Oustaloup approximation is considered for fractional-
order term. The order of approximation is taken as 4 and is considered over the band of
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Figure 5.19: Closed loop response of system with PD, PDβ , [PD]β controllers

frequency [0.001, 1000] rad/sec. The respective controller output is shown in Fig. 5.22.
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Figure 5.20: Zoomed view of Fig. 5.19 during transient

5.5.5 Limit Cycle Performance Comparison with Various Controllers

The predicted limit cycle details (X and ω) from IDRL, proposed IDNP and optimization
results are shown in Table 5.3. It is found that the predicted limit cycle details for system
with PD and PDβ controllers using graphical approaches matched with the optimization
results. Whereas in the case of system with [PD]β controller, the predicted limit cycle
magnitude using graphical approaches alone matched with the optimization results but not
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Figure 5.21: Zoomed view of Fig. 5.19 during steady state
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Figure 5.22: Controller response of system with PD, PDβ , [PD]β controllers

the limit cycle frequency. A small deviation was observed in the predicted limit cycle
frequency using IDRL in comparison with IDNP and optimization results. It is due to the
Oustaloup approximation of [PD]β . This shows IDNP is superior to IDRL in the case of
limit cycle prediction for system with [PD]β controller.

These predicted limit cycle details (X and ω) are validated through closed loop simu-
lation. In case of system with PD controller, it is observed that the predicted values are
not that close to the closed loop simulation values. This is due to the reduction in the
low pass filtering effect [141] of the system with obtained unique PD controller through
PID structure. Whereas in case of system with fractional controllers PDβ and [PD]β ,
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Table 5.3: Comparison of limit cycle details

System
with

Limit cycle
details

Graphical approach
Optimization

results

Closed loop simulation
(actual values)

IDRL

IDNP
(Proposed) Limit cycle

oscillation
x(t)

Sustained
oscillation
y(t)

Controller
effort

J =
∫∞

0
|u(t)|2dtwith

Oustaloup
without

Oustaloup

PD
Magnitude

X0
0.6797 — 0.6799 0.6800 0.6188 0.1188

3.321 ∗ 104

Frequency
ω0 rad/sec

2.3712 — 2.3729 2.3727 1.9570 1.9570

PDβ

Magnitude
X0

0.5640 0.5623 0.5623 0.5625 Limit cycle
does not exist

Limit cycle
does not exist

2.171 ∗ 104

Frequency
ω0 rad/sec

1.2280 1.2227 1.2182 1.2204

[PD]β
Magnitude

X0
0.5540 0.5533 0.5575 0.5576 Limit cycle

does not exist
Limit cycle

does not exist
1.274 ∗ 104

Frequency
ω0 rad/sec

1.0390 1.0432 1.1037 1.1052

this undesirable limit cycle behaviour is completely eliminated at steady state. However,
the proposed optimization and prediction methods depict the presence of limit cycle. The
limit cycle existence is assured by optimization results and graphical approaches under the
assumption that the closed loop system offers very good low pass filtering effect. In real-
ity, system with the controllers PDβ and [PD]β have offered poor low pass filtering effect
which makes limit cycle prediction through graphical approaches and optimization inaccu-
rate. Further, it is observed that [PD]β requires lesser control effort than the other obtained
controllers.

5.6 Robustness Verification

In this section, performance of the system with designed controllers are observed under
parameter uncertainty, disturbance and noise conditions. The detailed sensitivity and com-
plementary sensitivity analysis are also carried out for the selected case study.

5.6.1 Performance Study under Parameter Uncertainty

To study the performance of the system with various designed controllers under parameter
uncertainty, ±15% variation is imposed for the system parameters a,K,M and H around
its nominal value. Table 5.4 shows the transient specifications and limit cycle oscillation
details of system with PD, PDβ and [PD]β controllers under ±15% variation of system
parameters. It is observed that there is no significant variation in its transient specifications
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and limit cycle details from the nominal value.

Table 5.4: Performance study under parameter variation

System
with

Parameter variations
Transient

specifications
Limit cycle

details

a K M H
ωgc

rad/sec
φm
deg

Magnitude
X0

Frequency
ω0 rad/sec

PD
0.595 4.25 0.085 0.425 4.46 56.40 0.6210 1.8318
0.70 5.00 0.100 0.500 5.00 60.00 0.6188 1.9570
0.805 5.75 0.115 0.575 5.54 63.10 0.6159 2.0466

PDβ

0.595 4.25 0.085 0.425 4.45 57.80
Limit cycle
doesn’t exist

0.70 5.00 0.100 0.500 5.00 59.90
0.805 5.75 0.115 0.575 5.54 61.60

[PD]β
0.595 4.25 0.085 0.425 4.43 57.90

Limit cycle
doesn’t exist

0.70 5.00 0.100 0.500 4.99 59.60
0.805 5.75 0.115 0.575 5.54 60.90

5.6.2 Performance Study under Disturbance

To analyse the performance of the system under plant output disturbance, a slow time
varying signal shown in Fig. 5.23 of frequency ω = 0.01 rad/sec is applied between
40th−50th sec. Fig. 5.24 shows the output responses of the system under output disturbance
condition and observed that all the designed controllers are capable to reject the effect of
output disturbance. Fig. 5.25 shows the zoomed view of the system response y(t).
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Figure 5.23: Low frequency disturbance signal
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Figure 5.24: Closed loop system response
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Figure 5.25: Zoomed view of Fig. 5.24 during disturbance

5.6.3 Performance Study under Noise

To analyse the effect of measurement noise in the closed loop system, a Gaussian noise
signal shown in Fig. 5.26 of Mean = 0 and Standard Deviation = 0.1 is introduced between
40th− 50th sec. The output response of the system under noise with various controllers are
shown in Fig. 5.27 and its zoomed response is shown in Fig. 5.28. It is seen from the
response that the measurement noise is completely eliminated for all controllers.
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Figure 5.27: Closed loop system response

5.6.4 Sensitivity and Complementary Sensitivity Analysis

The robustness measures MS , MT , assured stability margins (GM and PM) and Band-
width (ωBW ) are obtained from Fig. 5.29 for system with all controllers and are shown in
Table 5.5. The obtained values are within the limits specified in the proposed optimization
problem for tuning various controller parameters. Since, sensitivity and complementary
sensitivity analysis are carried (i) with the negligence of nonlinearities during transient
period and (ii) without carrying out the approximation of FOCs, the comparison of the
obtained results with the actual closed loop simulation results are not attempted.
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Figure 5.28: Zoomed view of Fig. 5.27
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Figure 5.29: |S(jω)| and |T (jω)| plots of system with controllers

Table 5.5: Observations from |S(jω)| and |T (jω)| plots

System with From |S(jω)| plot From |T (jω)| plot

PD
MS = 1.0546;

GM ≥ 25.7171 dB ; PM ≥ 56.6030◦
MT = 1.2665;
ωBW = 6.8210

PDβ MS = 1.1163;
GM ≥ 19.6453 dB; PM ≥ 53.2201◦

MT = 1.1891;
ωBW = 7.0117

[PD]β
MS = 1.1376;

GM ≥ 18.3449 dB; PM ≥ 52.1445◦
MT = 1.1768;
ωBW = 7.1226
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5.7 Summary

In this chapter, an optimization problem is presented to tune the FOCs and IOC parameters
to suppress the limit cycle magnitude by meeting the desired closed loop specifications
for system with multiple nonlinearities. To predict the limit cycle for the system with
the obtained unique controllers PD, PDβ and [PD]β controllers, an IDNP is developed.
These predicted results are compared with optimization results, IDRL and are validated
through closed loop simulation. It is also observed that the performance of the system with
the designed controllers are robust towards system parameter uncertainty, disturbance and
noise conditions.
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Chapter 6

Conclusions and Future Scope

This research work deals with fractional controllers for complex valued systems and system
with multiple nonlinearities.

The summary of this research work is as follows:

(i) A modified plant structure comprising complex coefficient plus fractional complex
order plant with dead time model was proposed as a universal plant structure. A uni-
fied Fractional Order Controllers (FOCs) and Fractional Complex Order Controller
(FCOC) parameter expressions were derived for the proposed plant structure to meet
the Wang et al specifications. Simulations were carried out for two different plants
to validate the obtained unified expressions.

(ii) Complex Coefficient Integer Order Controllers (CCIOCs) were proposed for the uni-
versal plant structure. The unified expressions of CCIOCs and real valued Integer
Order Controllers (IOCs) were derived for complex valued universal plant to meet
the desired specifications. Three different complex valued case studies were cho-
sen to validate the obtained CCIOCs and real valued IOCs. It was observed that only
CCIOCs with plant had the ability to satisfy the constraints both in positive frequency
(ω+) and negative frequency (ω−). Also, CCIOCs had better stability and robustness
to parameter uncertainty than real valued IOCs which was observed from its sensi-
tivity and complementary sensitivity analysis. Due to this, an improved frequency
domain and equivalent time domain performance were achieved. Hence, CCIOCs
were suggested for controlling complex valued plants. To show the superiority of
fractional controllers, tuning of complex coefficient fractional complex order con-
trollers are proposed to satisfy the constraints both in ω+ and ω− through optimiza-
tion technique. The proposed structure with unified controller expressions obtained
in (i) and (ii) greatly reduce the effort of controller tuning for control engineering
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practitioners.

(iii) Superiority of FOCs were investigated in achieving better limit cycle suppression
in comparison with IOCs for system with multiple nonlinearities. Servo position
control system with backlash and relay nonlinearities was chosen as a case study
for system with multiple nonlinearities. An optimization problem was formulated to
tune IOCs and FOCs in addition to meet desired closed loop specifications. It is ob-
served that limit cycle got eliminated in the case of system with FOCs in comparison
with IOCs. Further, Input Dependent Nyquist Plot (INDP) is also proposed to predict
the limit cycle for system with multiple nonlinearities and results are compared with
existing input dependent root locus, optimization results and are validated through
closed loop simulation. This investigation made an effective use of Describing Func-
tion (DF) of the nonlinearity for design and analysis of control systems.

The future directions of the research work carried out in this thesis are as follows:

• The obtained unified expressions of IOCs, FOCs, CCIOCs and FCOC can be (i)
exercised on real time systems having viscoelastic property (ii) extended to include
stability constraints to tune controllers and (iii) incorporated in the existing MATLAB
toolbox.

• Improving the accuracy of the limit cycle prediction by incorporating the higher or-
der harmonic information of the loop through DF matrix approach [166] for system
with multiple nonlinearities. Using the higher order harmonic information, a bet-
ter controller can be designed. Another possible future work is to predict the limit
cycle details for universal plant structure with multiple nonlinearities using IDNP.
The other potential future directions are extending the proposed way of limit cycle
prediction and suppression for multiple input multiple output systems with multiple
nonlinearities.
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Appendix A

Some Important Properties in Fractional
Calculus

A.1 Stability of Fractional Order Linear Time Invariant
Systems

For the stability of class of fractional order Linear Time Invariant (LTI) systems having
commensurate order q ∈ (0, 1], the following theorem must be satisfied:

Figure A.1: Pictorial representation of Matignon’s stability

Matignon’s stability theorem [167]: The fractional-order TF G(s) = Z(s)
P (s)

is stable if

and only if the following condition is satisfied in s-plane (Pictorial representation has been
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shown in Fig. A.1):

|∠(σi)| > q
π

2
,∀σi ∈ C, P (σi) = 0 (A.1)

where, σ := sq

For integer-order LTI systems, q = 1. Therefore, (A.1) becomes |∠(σi)| > π
2
, which

means that all the roots of the characteristic polynomial must be located on the left half of
the complex plane.

A.2 Analytical Solution of Fractional Order Differential
Equations

In the solution of integer-order calculus equations, the exponential function ez plays an im-
portant role. In case of fractional-order calculus equations, exponential function is replaced
by the Mittag-Leffler function. The two-parameter Mittag-Leffler function is defined as fol-
lows [168]:

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
; (α > 0, β > 0) (A.2)

For β = 1, (A.2) results into the following one-parameter Mittag-Leffler function:

Eα(z) := Eα,1(z) =
∞∑
k=0

zk

Γ(αk + 1)
(A.3)

It can be followed from (A.2) that:

E1,1(z) = ez, E2,1(z) = cosh(
√
z), E1,2(z) =

ez − 1

z
, E2,2(z) =

sinh(
√
z)√

z
, etc. (A.4)

The following Laplace transform identity holds true [39]:

L{tαk+β−1E
(k)
α,β(atα)} =

sα−βk!

(sα − a)k+1
(A.5)

where,

E
(k)
α,β =

d(k)

dt(k)
Eα,β
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The property (A.5) is useful while obtaining the analytical solution of fractional order
differential equation using Laplace transform method. The following example is considered
for demonstration:

Example 2 Find solution of:

D
1
2
RLf(t) + a1f(t) = 0 (A.6)

given that, D
− 1

2
RLf(0) = C.

Solution: On taking the Laplace transform of (A.6) using (2.27), implies

s
1
2F (s)−D−

1
2

RLf(0) + a1F (s) = 0

Therefore,

F (s) =
C

s
1
2 + a1

(A.7)

On taking inverse Laplace transform of (A.7) using (A.5), implies

f(t) = Ct−
1
2E 1

2
, 1
2
(−a1

√
(t))
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Appendix B

Unified Controller Tuning Expressions for
Real Valued Integer Order Controllers

Real valued Integer Order Controllers (IOCs) such as PI/PD/PID controller parameter
expressions are obtained for the given G(s) to meet the required specifications (4.1), (4.2)
and (4.3) in ω+ only.

B.1 Tuning Expressions for PI Controller

The PI controller structure is given as:

C(s) = Kp +
Ki

s
(B.1)

Its positive frequency response (Cω+) is given by

Cω+ = Kp +
Ki

jω
(B.2)

The magnitude and phase of Cω+ at desired ωgc are as follows:

|C+
ωgc| =

√
K2
p +

(
−Ki

ωgc

)2

(B.3)

∠C+
ωgc = tan−1

(
−Ki

Kpωgc

)
(B.4)

Using (4.11) and (B.4), specification (4.2) becomes

∠G+
ωgc + tan−1

(
−Ki

Kpωgc

)
+ π = φm
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this implies,

Ki = −Kpωgc tan
(
A+
)

(B.5)

Using (4.10) and (B.3), specification (4.1) becomes

|G+
ωgc|Kp

√
1 +

(
−Ki

Kpωgc

)2

= 1

this implies,

Kp =
1

|G+
ωgc|
√

1 + tan2A+
(B.6)

where, A+ = φm−π−∠G+
ωgc . Equations (B.5) and (B.6) are the controller parameters

of PI which satisfy the specifications (4.1) and (4.2) in ω+ only.

B.2 Tuning Expressions for PD Controller

The PD controller structure is given as:

C(s) = Kp +Kds (B.7)

Its positive frequency response (Cω+) is given by

Cω+ = Kp + jKdω (B.8)

The magnitude and phase of Cω+ at desired ωgc are as follows:

|C+
ωgc| =

√
K2
p + (Kdωgc)2 (B.9)

∠C+
ωgc = tan−1

(
Kdωgc
Kp

)
(B.10)

Using (4.11) and (B.10), specification (4.2) becomes

∠G+
ωgc + tan−1

(
Kdωgc
Kp

)
+ π = φm

this implies,

Kd =
Kp tanA+

ωgc
(B.11)
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Using (4.10) and (B.9), specification (4.1) becomes

|G+
ωgc|Kp

√
1 +

(
Kdωgc
Kp

)2

= 1

this implies,

Kp =
1

|G+
ωgc|
√

1 + tan2A+
(B.12)

Equations (B.11) and (B.12) are the controller parameters of PD which satisfy the
specifications (4.1) and (4.2) in ω+ only.

B.3 Tuning Expressions for PID Controller

The PID controller structure is given as:

C(s) = Kp +
Ki

s
+Kds (B.13)

Its positive frequency response (Cω+) is given by

Cω+ = Kp +
Ki

jω
+ jKdω (B.14)

The magnitude and phase of Cω+ and slope of ∠Cω+at desired ωgc are as follows:

|C+
ωgc| =

√
K2
p +

(
Kdωgc −

Ki

ωgc

)2

(B.15)

∠C+
ωgc = tan−1

(
Kdωgc − Ki

ωgc

Kp

)
(B.16)

d∠Cω+

dω

∣∣∣∣
ω=ωgc

=
Kd + Ki

ω2
gc

Kp

[
1 +

(
Kdωgc−

Ki
ωgc

Kp

)2 ] (B.17)

Using (4.11) and (B.16), specification (4.2) becomes

∠G+
ωgc + tan−1

(
Kdωgc − Ki

ωgc

Kp

)
+ π = φm

Kdωgc − Ki
ωgc

Kp

= tanA+
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this implies,

Kd −
Ki

ω2
gc

=
Kp tanA+

ωgc
(B.18)

Using (4.10) and (B.15), specification (4.1) becomes

|G+
ωgc|Kp

√√√√1 +

(
Kdωgc − Ki

ωgc

Kp

)2

= 1

this implies,

Kp =
1

|G+
ωgc|
√

1 + tan2A+
(B.19)

Using (4.12) and (B.17), specification (4.3) becomes

ψ+
ωgc +

Kd + Ki
ω2
gc

Kp

[
1 +

(
Kdωgc−

Ki
ωgc

Kp

)2 ] = 0

this implies,

Ki =
Kpωgc

2

(
−ψ+

ωgcωgc(1 + tan2A+)− tanA+
)

(B.20)

Substituting (B.20) in (B.18), implies

Kd =
Kp

2ωgc

(
tanA+ − ψ+

ωgcωgc(1 + tan2A+)
)

(B.21)

Substituting (B.19) in (B.20) and (B.21), Ki and Kd are obtained respectively. Equa-
tions (B.19), (B.20) and (B.21) are the controller parameters of PID which satisfy the
specifications (4.1), (4.2) and (4.3) in ω+ only.
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