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Abstract
A stochastic modelling approach takes into account the inherent uncertainties during the
design of engineering systems. The additional statistical information that a stochastic
model provides when compared with a deterministic model, leads to a comprehensive
description and optimum design of the system; thereby improving its reliability. On the
other hand, a stochastic approach also increases the model complexity and requires a higher
computational effort to obtain the system response when compared with a deterministic
approach. Numerical method such as B-spline wavelet on the interval (BSWI) based
wavelet finite element method (WFEM) has shown to be efficient in dealing with the
issues of low convergence as encountered in a conventional finite element method (FEM).
At the same time, the underlying properties of wavelets could also be used to develop
algorithms in the stochastic framework which could alleviate the issues related to accuracy
and mapping of random field mesh that are encountered in FEM.

Based on the preceding notion, the current thesis at first proposes a background cell
based Gauss quadrature numerical integration approach for BSWI WFEM. In the proposed
approach, background cells are placed over each BSWI element and Gauss quadrature
rule is defined for each of these cells. During the analysis, background cells of various
lengths are used for evaluating the integrals for various combination of order and resolution
of BSWI scaling functions. The dimensions of the background cells are varied and its
effect on the condition number and sparseness of the element stiffness matrix is studied
for one dimensional (1D) (bar, beams) and two dimensional (2D) plane stress problems.
Further, a detailed analysis to understand the effect of number of Gauss points within each
background cell on the accuracy of the results is done.

The development of stochastic BSWI WFEM algorithms for linear static problems
in 1D (bar), beams (based on Euler-Bernoulli and Timoshenko beam theory) and 2D
plane elasto-statics (plane stress) is shown in the thesis wherein, the spatial variation of
modulus of elasticity is modelled as a homogeneous random field. BSWI scaling functions
are used for the discretization of the random field. The response statistics are obtained
using the perturbation approach. Numerical examples are solved based on the proposed
background cell integration scheme. The results from perturbation approach are compared
with that obtained from Monte Carlo simulation (MCS). A parametric study is also done
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to understand the effect of coefficient of variation values and correlation length parameters
on the response statistics. For 1D problem in particular, results from proposed stochastic
WFEM method are compared with those found using stochastic FEM wherein random
field discretization is done using Lagrange shape functions. Furthermore, normalized
computational times for the execution of perturbation approach and MCS based on WFEM
are evaluated and compared with those obtained for FEM.

In addition to the aforementioned formulations, the thesis shows the construction
of beam elements by incorporating von Kármán nonlinear strains using BSWI WFEM.
The mathematical model is developed in both the deterministic as well as the stochastic
framework. An algorithm for evaluating the derivatives of response quantities from
nonlinear equilibrium equations is derived. The results are analyzed accordingly for
different boundary conditions. Results show that BSWI WFEM can be used as an alternate
numerical tool for developing an efficient and rigorous stochastic based algorithms.
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Chapter 1

Introduction

1.1 Motivation

During the design of engineering structural systems, maximizing the safety levels and
minimizing the cost incurred, becomes one of the key objectives. A deterministic approach
with a factor of safety does not provide adequate information to maximize the safety of
the system. On the other hand, a stochastic approach takes into account the inherent
uncertainties that exist in its material properties, loads, geometry, operating environments,
etc., during the design and analysis stage of the system. It provides additional statistical
information about the system which leads to a more comprehensive description and
optimum design of the system, thereby improving its reliability [1] [2]. On the downside,
a stochastic approach increases the model complexity and requires a higher computational
effort to obtain the solution of the system response as compared to a deterministic approach.
However, the advent of powerful computational resources during the past few decades has
led to an extensive research in the field of stochastic mechanics [3]. Nonetheless, due to
the growing complexity in the system design, there is a need for the development of more
efficient and elegant stochastic based numerical methods.

The randomness that exists in the input parameters varies not only for different samples
but also at different points in the domain of its respective sample. Hence, mathematical
models which consider a random field by incorporating correlation properties of input
random parameters are needed for the calculation of response statistics in the analysis.
Over the years, due to the versatility of finite element method (FEM) [4] for solving
stochastic partial differential equations, extensive research has gone into the development
of stochastic finite element methods (SFEM) [3], wherein a stochastic mesh is generated to
discretize the input random field and calculate the response statistics [5–14]. However,
the high mesh dependency of FEM creates difficulties in mapping the random field
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discretization to response discretization [15] [16]. Moreover, the accuracy and reliability
of the method is a cause for concern. The rate of convergence decreases significantly in
FEM by the presence of singularities due to stress concentration and crack. Convergence
issues in FEM are usually addressed by h, p and h-p refinements. Babuska and Guoś [17]
pioneering work gives a theoretical understanding of these refinements. However, low
convergence rate, higher computational effort and re-meshing are some of the limitations
that are associated with h, p and h-p refinements respectively. Hence, there is a need for the
development of stochastic based numerical methods, which can address these limitations
of FEM.

Meshless methods have been used in the stochastic analysis [18–21] to alleviate the
mesh dependency of FEM. Wavelet finite element method (WFEM) is another alternate
numerical tool which has gained the interest of the research community in recent times,
and has shown to reduce the issues related to FEM considerably. Over the past few
decades, there has been a widespread research into the development of wavelet based
numerical methods in many areas of scientific importance [22]. Wavelets are mathematical
functions that can be used to approximate other functions at different levels of resolution.
The multiresolution analysis (MRA) [23–25] property that wavelets possess leads to the
development of a hierarchy of solutions during the approximation process. Wavelets have a
compact support and are localized in space, which leads to a refinement of solution locally
in the regions of high gradient [26]. Therefore, issues such as slow convergence in the
vicinity of high gradients and re-meshing in adaptive mesh sensitive problems, that are
encountered in conventional FEM can be avoided using wavelet based numerical methods.
There exist different wavelet based numerical methods in the literature [22]. Among these
B-spline wavelet on the interval (BSWI) based WFEM has gained wide prominence. This
can be attributed to the underlying properties of BSWI [24] [27] that make it more efficient
as compared to other wavelet based numerical methods in dealing with boundary value
problems elegantly. The aforementioned properties of wavelets can make it an efficient
and a reliable mathematical tool, which can be used for nonlinear analysis in structural
mechanics problems. Moreover, it can have wide applications in the field of stochastic
mechanics, where material properties and loads appear to be random fields or variables.
The next section presents a brief outline of the thesis.
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1.2 Outline of the thesis

The thesis is divided into six chapters. Chapter 1 presents the motivation for pursuing the
current thesis. Chapter 2 presents a detailed literature review on wavelets. The review
focuses on wavelet based Galerkin methods used for solid mechanics problems. Research
works leading up to the current state of research are discussed. Literature review is followed
by a brief introduction to wavelets and its properties. Further, a description of BSWI and
its construction is also provided. The research objectives of the thesis are set and the scope
of the study is defined in this chapter. Chapter 3 presents a methodology for evaluating
the integrals involved in BSWI WFEM. In line with element free Galerkin method [18],
multiple background cells are proposed to use over each element for numerical integration
using Gauss quadrature. Numerical examples, based on one dimensional (1D) and two
dimensional (2D) plane elasto-statics and beams based on Euler-Bernoulli beam theory
(EBT) and Timoshenko beam theory (TBT) are solved. Suggestions on selection of
background cells and Gauss quadrature points along with order and resolution of B-spline
scaling functions for different class of problems, to obtain a well-conditioned stiffness
matrix are given. Chapter 4 proposes the formulation of stochastic BSWI WFEM for 1D
and 2D problems in elasto-statics and beams wherein, the spatial variation of modulus
of elasticity is modelled as a homogeneous random field. Random field discretization
is done using BSWI scaling functions. Perturbation approach is used to calculate the
response statistics and the results are validated using Monte Carlo simulation (MCS). For
1D problem in particular, results from proposed stochastic WFEM method are compared
with those found using SFEM. Chapter 5 presents the formulation of stochastic BSWI
based WFEM for beams by incorporating von Kármán nonlinear strains. In both Chapter
4 and Chapter 5, numerical examples of beams based on EBT and TBT are solved during
the study. BSWI scaling functions are used for the discretization of the random field and
the response statistics that are obtained using the perturbation approach, are compared with
that obtained from MCS and SFEM. Chapter 6 is the concluding chapter which provides
with an overview to the current thesis, highlights the major contribution of the thesis and
suggestions for future work.
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Chapter 2

Literature review

The current chapter gives an introduction to wavelets and its properties. This is followed
by a comprehensive literature review on wavelet based Galerkin methods used for solid
mechanics problems. A brief introduction to the properties of semi-orthogonal BSWI is
given and the reasons that make BSWI more efficient as compared to other wavelets are
also discussed.

2.1 Wavelets and multiresolution analysis

Wavelets are a class of functions that can be used in data representation and approximation
of other functions by satisfying certain mathematical requirements [28]. There are two
ways to understand the concept of wavelets; Mallat [29, 30] approached wavelets and
its properties from a signal processing perspective; whereas Morlet [31–33], Meyer [34],
and Daubechies [23, 25] approached it from a functional space perspective. In a signal
processing perspective, wavelet transform works as a filter which acts upon an input signal
to give an output signal [35]. Here, data can be represented by components of different
frequency and each component can be studied with the desired resolution matched to its
scale. Thus, local representation of functions in both frequency (space) and time is possible.
However, from a functional space point of view, wavelet basis can be constructed by the
realization of a multiresolution analysis (MRA) [23]. In MRA, concept of basis functions
and scale varying basis functions are the keys [36]. The idea behind MRA is to approximate
a function as a limit of successive approximations; as shown in Figure 2.1, each having a
different resolution till a smoothed version of it is obtained [23].

Thus, MRA is a nested sequence {Vj}j∈Z of closed subspaces of L2(IR). If a function
φ ∈ V0 known as the scaling function generates MRA {Vj}j∈Z of L2(IR) then {φ(.−k)}k∈Z
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Figure 2.1: Multiresolution analysis showing nested sequence of closed subspaces

forms a Riesz basis of V0. By setting,

φj,k(x) = 2j/2φ(2jx− k), j, k ∈ Z (2.1)

it follows that, for each integer value of j the family {φj,k}k∈Z is also a basis of {Vj}j∈Z

[24]. Additionally, a complementary subspace {Wj}j∈Z of subspace {Vj}j∈Z also exists.
Moreover, the Hilbert space L2(IR) can be decomposed into a direct sum of closed
subspaces {Wj}j∈Z, using a function ψ known as the wavelet function. Here, each subspace
Wj is the closure in L2(IR) of the linear span of collection of functions, by taking ψ as,

ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z (2.2)

Thus, L2(IR) can be decomposed as a direct sum of the spaces Wj in the sense that
every function f ∈ L2(IR) has a unique decomposition;

f(x) = ....+ g−2(x) + g−1(x) + g0(x) + ...., (2.3)

where, gj ∈ {Wj}j∈Z [24]. Moreover, if ψ is an orthogonal wavelet, then the subspace Wj

of L2(IR) are mutually orthogonal, which implies < gj, gl > = 0, j 6= l, where, gj ∈ Wj &
gl ∈ Wl. Then the corresponding subspace can be written as,

Vj := ....⊕Wj−2 ⊕Wj−1 ⊕ ...., j ∈ Z (2.4)
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Based on the above discussions, the properties of MRA can be summarized as follows:

.... ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ .... (2.5)

closL2(
⋃
j∈Z

Vj) = L2(IR) (2.6)

⋂
j∈Z

Vj = 0 (2.7)

Vj+1 = Vj ⊕Wj (2.8)

f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1, j ∈ Z (2.9)

and

f(x) ∈ Vj ⇐⇒ f(x− k) ∈ Vj, j ∈ Z (2.10)

Equation 2.5 shows that the subspace {Vj}j∈Z is completely nested within the next
subspace {Vj+1}j∈Z. Equation 2.6 shows that a function f ∈ L2(IR) can be approximated
as a series of successive approximations by a nested sequence {Vj}j∈Z of closed subspaces
of L2(IR). When the resolution is decreased, the details of the approximating function f
are reduced. Eventually, when the resolution goes to 0, all the details are lost; which is
deduced from Equation 2.7. More importantly, Equation 2.8 indicates that the orthogonal
sum (provided the wavelet function leads to an orthogonal decomposition of {Wj}j∈Z) of
complementary subspace {Wj}j∈Z with {Vj}j∈Z form the next higher subspace {Vj+1}j∈Z.
It can also be concluded that the complementary subspaces {Wj}j∈Z capture the finer
details of {Vj+1}j∈Z, whereas the coarse details are obtained by {Vj}j∈Z. Equation 2.9
and Equation 2.10 represent the scale invariant and shift invariant conditions respectively.
Equation 2.9 indicates that if a function f(x) ∈ Vj then a scaled version of the same
function f(2x) ∈ Vj+1. Consequently, as the scale is increased, the approximation of the
function gets better due to MRA. Finally, Equation 2.10 shows that, translates of a function
remain in the same subspace {Vj}j∈Z. Several factors like desired order of numerical
accuracy, computational speed and scale decoupling govern the choice for choosing an
ideal wavelet basis function. However, some of the most desirable features for any wavelet
include [35, 37];
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Compact support: ideal for resolving high gradients, implementation of adaptive
refinement schemes and faster computation.
Vanishing moments: Vanishing moments measure the local regularity (indicates the number
of its continuous derivatives) of a function. A wavelet function is said to have n vanishing
moments if it satisfies, ∫ ∞

−∞
xkψ(x)dx = 0, k = 0, 1...n− 1 (2.11)

Most often, classification of wavelets takes place by the number of vanishing moments. All
wavelets must satisfy Equation 2.11 for k = 0.
Orthnormality: The wavelets ψj,k(x) form an orthonormal basis if

〈ψj,k(x), ψp,q(x)〉 = δj,pδk,q (2.12)

for all j, k, p, q ∈ Z and δj,p, δk,q are the kronecker delta.
Semi-orthnormality: The wavelets ψj,k(x) form a semi-orthonormal basis if

〈ψj,k(x), ψp,q(x)〉 = 0 (2.13)

j 6= p for all j, k, p, q ∈ Z.
Polynomial degree: A polynomial can be matched exactly up to a certain degree by
choosing the appropriate wavelet basis. Moreover, the accuracy of the polynomial
expansion that the wavelet basis can match is reflected in the number of vanishing moments
of the wavelet.

In conclusion, the properties of wavelets make it a viable mathematical tool for many
engineering applications such as in the study of earthquake, wind and ocean engineering
[38], turbulence studies, data compression algorithms, study of galaxies [39], for statistical
applications and data analysis [40, 41], in image compression and modulation channel
coding [42, 43], etc. Moreover, these properties also make wavelets a feasible tool
for numerical solution of differential equations and so find its wide applications in the
development of wavelet based Galerkin methods which will be discussed in detail in the
next section.
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2.2 Wavelet Galerkin method

Wavelets have an advantage over the standard polynomial or trigonometric basis while
using with the Galerkin method since they form MRA, which facilitates fast switching
of resolution levels and functional bases. In wavelet based Galerkin methods the trial
function and weighting function are approximated using either scaling functions or both
scaling and wavelet functions. Owing to these desirable properties of wavelets, wavelet
Galerkin method (WGM) has been widely used since the early 1990’s. However, it is
difficult to incorporate boundary conditions for a wavelet series expansion on a bounded
domain [44, 45]. The difficulty arises because wavelet bases are defined on the real line,
which is unbounded and when these bases are used for solving boundary value problem
on the interval by restricting them to the bounded interval; it gives rise to an instability
problem [46]. As a result, several researchers have proposed novel methods for treating
the boundary conditions in an elegant way. Anderson et al. [47], Monasse and Perrier [48]
and Cohen and Masson [49] suggested methods by which wavelets were modified at the
boundaries of the domain. However, these methods were not able to satisfactorily handle
general boundary conditions in 2D or three dimensional (3D) domains [50].

1D counterpart of Helmholtz’s partial differential equation was solved using
Daubechies wavelets by Amaratunga et al. [26], in which Dirichlet boundary conditions
were implemented using the capacitance matrix method, which was proposed by
Proskurowski and Widlund [51]. Qian and Weiss [52] used WGM for the numerical
solution of the Helmholtz equation in non-separable 2D geometry and defined a
wavelet-capacitance matrix method for treating boundary conditions which overcomes
the limitations of the capacitance matrix method. WGM was extended to solve general
boundary value problems by Amaratunga and Williams [35], wherein wavelets were
adapted to an interval using an extrapolation method called wavelet extrapolation.
Boundary conditions were enforced in partial differential equations when wavelets were
defined on an interval. WGM was applied to two point boundary value problems of
second order elliptical equations by Xu and Shann [53]. A new approach was suggested
in this paper wherein, instead of using Daubechies wavelets directly as trial functions,
their anti-derivatives were chosen. The suggested advantages were that the singularity
is smoothed in wavelets, boundary condition can be easily handled and the underlying
orthogonality of wavelets can be used to construct efficient algorithms.

Bertoluzza et al. [46] suggested two separate techniques for treating dirichlet boundary
conditions with WGM and wavelet collocation method for solving differential equation
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Figure 2.2: Problem domain of interest is embedded into a larger simple domain known
as fictitious domain

on the interval [0, 1]. In the first technique as proposed by Bertoluzza et al. [46],
MRA on the interval using Daubechies scaling functions were used to impose dirichlet
boundary conditions without instabilites; and in the second technique proposed by the same
authors, autocorrelation function of the Daubechies scaling functions were used to impose
the boundary conditions. Another approach that was widely used, to deal with general
boundary conditions was the fictitious domain method. In this method, an original domain
of interest was embedded into a larger simple domain as shown in Figure 2.2, and then
boundary conditions were imposed via penalty parameters or Lagrange multipliers using
the WGM approach.

Diaz [54], proposed a fictitious domain approach to address large scale boundary value
problems defined on domains of simple geometry. Boundary conditions were imposed via
Lagrange multipliers. This approach was extended to topology optimization examples in
3D elasticity by DeRose Jr and Diaz [55]. However, it was pointed out by Jang et al. [50]
that the imposition of boundary conditions via penalty parameters or Lagrange multipliers
becomes difficult in the framework of adaptive multi-scale WGM. Hence, a fictitious
domain based formulation was proposed by them, in which no penalty term or Lagrange
multiplier was used for the adaptive multi-scale WGM. One may refer to Glowinski et
al. [56, 57], Wells Jr and Zhou [58] and DeRose Jr G. [59] for more information on the
fictitious domain approach. Implementation of WGM for 2D elastoplasticity problems
using Daubechies wavelets was discussed in a series of papers by Liu et al. [60–62]. It was
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noted that the approximation by Daubechies wavelet was non-interpolatory in nature [60],
and lacked Kronecker delta properties in scaling functions and wavelet functions [61].
A new method for evaluation of integrals was proposed to deal with general boundaries
and improve the efficiency and accuracy of solution. Additionally, analogous to meshless
methods, essential boundary conditions were implemented using Lagrange multipliers.
Numerical examples illustrated that the method was effective and stable and could be used
for solving complicated deformation problems. B-spline wavelets based WGM was also
used for large deformation problems [63] and boundary value problems [64]. It was noticed
that unlike Daubechies wavelet that does not have an explicit functional form and has a
relatively low computational efficiency; B-spline functions were simple and easy to work
with. Spline wavelet bases have a closed form expression in both the time and frequency
domain, which easily facilitates their manipulation. They have a compact support and
optimal time-frequency localization can be achieved. B-spline scaling functions are also
the most regular scaling functions and have the best approximation properties as compared
to all the other known wavelets of a given order [37, 65].

B-spline basis functions were used in WGM for elasto-statics problems based on a
voxel approach in a series of papers by Tanaka et al. [66–68]. Voxel approach [69–71]
is a virtual meshless approach in which element connectivity information is not needed
in the input data but elements are used in the computation. This is because the problem
domain is discretized by using elements having identical configurations and properties. As
a result, voxel elements have a common element stiffness matrix and it is not necessary
to store a global stiffness matrix as it can be easily assembled from the common element
stiffness matrix of voxel elements when the body is homogeneous. Tanaka et al. [68] also
noted that when penalty formulation was adopted in the fictitious domain framework to
enforce essential boundary conditions the global stiffness matrix became ill conditioned
which subsequently lead to convergence issues. Hence, an alternative method to fictitious
domain approach was suggested in which basis functions were eliminated selectively so
that the ones remaining were linearly independent. This approach was combined with
X-FEM to solve fracture mechanics problems in the papers by Tanaka et al. [72, 73]. In
other study, WGM was also used for 1D structural problem in the presence of elastic-plastic
damage behaviour [74, 75]. Venini and Morana [74] used linear shape functions of finite
element framework as the scaling functions and the wavelet functions were chosen as given
by Goubet [76], whereas biorthogonal spline wavelet and Daubechies wavelet were used
by Navarro et al. [75] in their study. In the literature, 2D Hat interpolation wavelets have
also been used as the trial functions in WGM formulation. Kim et al. [77] proposed
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adaptive multi-scale WGM using 2D Hat interpolation wavelets to solve plane elasticity
problems and multi-scale topology design optimization, Jang et al. [50,78] used it for shape
optimization based on wavelet adaptive analysis and extended it to 2D elliptic problems in
general domains. 2D Hat interpolation wavelets were also used for thin-walled box beam
analysis by Kim and Jang [79].

A combined wavelet based mesh-free (MF) method was proposed by Yang et al. [80] for
solving electromagnetic field problems and later, to solve the forward problem in electrical
impedance tomography by Yousefi et al. [81]. Here, the solution domain was divided
into three sub-domains as finite element (FE) sub-domain, MF sub-domain and FE-MF
sub-domain having mutual influences. Daubechies wavelet scaling functions were used
as the trial functions to approximate the unknown function in MF domain. The scaling
functions of B-spline wavelet were also used as the basis of the moving least square method
to construct the meshless interpolation function in [82], wherein h-adaptive meshless
local Petrov-Galerkin (MLPG) method for solving Mindlin plate and shell problems was
presented. Additionally, Afsari and Movahhedi [83] used wavelet based meshless method
(radial point interpolation method) for simulation of conducting materials and Xia and
Ren [84] used element free Galerkin method (EFGM) with a wavelet basis. Xu et al. [85]
used cubic B-spline wavelet as the weight function in meshless method and employed it to
study 1D and 2D structures whereas Chen et al. [86] presented MLPG method employing
B-spline wavelet basis functions for the displacement field variable of membrane structures.

Traditional wavelet based numerical methods rely on uniform grids for analysis.
However, more recently, Liu and Din [87] proposed a WGM in which the analysis was
carried out on non-uniform grids as well. An isoparametric analysis approach was adapted
wherein, the function approximation based on Daubechies wavelet scaling functions were
implemented on B-spline patches that were used to describe the problem domain. Another
interesting study was done by Kamiński [88], who modelled interface defects and structural
non-homogeneities in uni-directional periodic composites. Here, an algebraic combination
of the Haar wavelet, Mexican hat and harmonic wavelets was proposed to describe
analytically the material properties (heat conductivity and capacity, Young modulus, mass
density). Computational studies were carried out that highlighted the crucial role of the
interface in the macro-scale behaviour of even unidirectional composites.

The usage of wavelets in the framework of stochastic processes can be traced back to
Wornell [89], who used orthonormal wavelet bases to construct for scaling processes from a
set of uncorrelated random variables. Two main aspects of numerical methods for problems
wherein parameters are observed to be random fields are random field approximation and
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response approximation. Zeldin and Spanos [90] have shown that Daubechies wavelet
bases can be used effectively to model random fields. Karhunen-Loéve (KL) expansion
technique is known to be an efficient technique for random field discretization. Phoon et
al. [91] and Proppe [92,93] implemented a wavelet Galerkin approach using basis functions
of Haar wavelets to solve the Fredholm integral equation involved in KL expansion
technique. Further, Phoon et al. [94] showed that use of a wavelet-Galerkin scheme for
determination of Eigen-solutions in KL expansion is computationally equivalent to using
wavelets directly for stochastic expansion of a Gaussian process. However, the drawback
of using KL expansion is that the values of true variance are underpredicted [95]. Angulo
and Ruiz-Medina [96] addressed an inverse problem wherein an input random field is
derived from the observation of an output random field using the orthogonal expansion
of second-order random fields in terms of a wavelet basis. Le Maitre et al. [97] constructed
an uncertainty quantification scheme based on Polynomial Chaos (PC) representations, in
which a Haar or a Legendre basis was used for the orthogonal projection of uncertain
data and solution variables. Kamiński [98] showed a stochastic perturbation approach
to the wavelet based analysis. Later, Spanos et al. [99] estimated the power spectrum
of non-stationary stochastic processes using dyadic, generalized, and filtered harmonic
wavelets. Andreev [100], investigated the numerical aspects of the stochastic Galerkin
method when applied to linear stochastic PDEs. A discretization procedure was developed
based on a spectral expansion of the solution into orthogonal polynomials induced by the
KL expansion. The spatial variable was discretized using the piecewise linear and quadratic
spline wavelet-Galerkin bases which lead to well-conditioned system matrices.

It can be concluded that WGM has found widespread application in many engineering
problems. Several researchers have proposed novel methods to treat wavelets at the
boundaries. When WGM is used for geometry with non-uniform boundary or with
non-homogeneous boundary conditions, the implementation may become cumbersome
and rigorous [22]. Computational effort also increases when wavelets, which have no
explicit expression, are used in the analysis because a separate algorithm is needed for the
evaluation of integrals of products of wavelet basis functions, with or without derivatives,
known as connection coefficients; which will be discussed next.

2.2.1 Connection coefficients

When wavelets are used in the numerical analysis, a scenario that is encountered is the
evaluation of connection coefficients, which are integrals of products of wavelet basis
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functions, with or without derivatives [101]. When there is no explicit expression for
the scaling and wavelet functions (as in the case of Daubechies wavelet), then accurate
evaluation of the connection coefficients becomes a priority. One of the first papers on this
was by Latto et al. [102], who developed the procedure for the evaluation of these integrals
on (−∞,∞). This method uses the scaling relation, normalization condition and moment
conditions of the wavelets. Beylkin [103] found exact and explicit representations for basic
operators like derivatives, Hilbert transform, shifts, etc. in orthonormal bases of compactly
supported wavelets.

However, in order to deal with bounded intervals, Romine and Peyton [101] and Lu
et al. [45] provided two different methods. According to Romine and Peyton [101], the
method developed by Latto et al. [102] does not provide the correct inner product near
the end points of a bounded interval, making the implementation of boundary conditions
difficult. Therefore, a procedure for calculating the correct inner product was suggested
wherein, the connection coefficients obtained by Latto et al. [102] were modified at the
boundaries. On the other hand, Lu et al. [45] modified the interval and used the connection
coefficients as obtained by Latto et al. [102] directly by considering a fictitious boundary
approach.

Several papers have been published [104–107] involving the development of algorithms
for the exact evaluations of connection coefficients on a bounded interval. Chen et
al. [108], presented a method to calculate connection coefficients at different scales
(multiscale connection coefficients) for stiffness matrices and load vectors. Based on it, an
algorithm of multiscale lifting computation was developed and its validity and effectiveness
via multiscale lifting scheme were demonstrated via numerical examples. Jones et al.
[109], presented an algorithm for the computation of triple product integrals involving
Daubechies scaling functions. When WGM was used to solve differential equations
involving non-linearity or parameters with field variable dependence, then triple product
integrals were encountered. An alternative way to compute the connection coefficients
was suggested more recently by Bulut [110]. The algorithm relies on the scaling and
translation relation of the functions; whereas the existing algorithms involve scaling
relation, normalization condition and moment conditions.

It can be concluded that when there is no explicit expression for the scaling and wavelet
functions (as in the case of Daubechies wavelet), then accurate evaluation of the connection
coefficients becomes a priority. Thus, the evaluation of connection coefficients further adds
to the computational effort. However, the computational effort can be reduced if wavelets
that have an explicit expression are used in the numerical analysis. This way, numerical
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integration techniques such as Gauss quadrature method can be used for approximating the
integrals [68, 111]. In addition, few researchers [112–114] have also noted that derivation
of connection coefficients can only be obtained for integration in global coordinates and it
tends to fail when the integrand involves a variant Jacobian.

Besides, the development of numerical methods based on WGM, widespread research
has also gone into the development of WFEM, which will be reviewed in detail, in the next
section.

2.3 Wavelet finite element method

Over the years, several researchers have worked on the development of WFEM
elements and their application to structural problems. WFEM is one such numerical
technique in which instead of using the traditional polynomial interpolation, scaling and
wavelet functions of wavelets are used to form the shape functions over the elements.
Different wavelet scaling and wavelet functions (B-spline, Trigonometric, Hermitian and
Daubechies, etc.) have been used to form the FEM shape functions, some of which have
been discussed here.

2.3.1 Daubechies WFEM

One of the first works that employed Daubechies wavelet basis functions to construct a
class of finite elements was by Ko et al. [115]. The constructed elements could be used
to represent a class of irregular domains in higher dimensions via tensor products. Youhe
et al. [116], proposed a method for calculating higher order differentials of Daubechies
scaling functions and applied it to the numerical analysis of boundary-value problems with
order higher than 2, eventually demonstrating on beam bending and plate structures. A
weak form formulation was developed by Ho et al. [117], wherein a jump function approach
for dealing with discontinuous derivatives was suggested. In this approach additional shape
functions were introduced in the sub-regions where discontinuities occurred. Daubechies
wavelet based Euler-beam element, thin plate and Mindlin Reissner plate element were
constructed in a series of papers by Ma et al. [118], Chen et al. [119], Martin and Vampa
[120] and Diaz et al. [121].

Daubechies wavelet was also used for the formulation of wavelet based spectral finite
element (WSFE). WSFE was developed by Mitra and Gopalakrishnan [122] for studying
elastic wave propagation in 1D connected waveguides. The advantages of the proposed
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method over FFT (fast Fourier transform)-based spectral element methods (SEM) were
highlighted. Longitudinal and flexural wave propagation in a rod, beam and frame
structures were studied; along with impact force identification. It was also used to extract
the wave characteristics (spectrum and dispersion relation for these waveguides) in [123].
Studies of wave propagation in higher order composite beams [124], isotropic plates [125],
damage detection in a composite beam with embedded de-lamination [126] and more
recently, 2D and 3D anisotropic and non-homogeneous structures [127] were carried out
using WSFE.

2.3.2 Trignometric WFEM

Trigonometric wavelets have also found their place in the construction of WFEM.
Trigonometric wavelets have approximating capabilities of a trigonometric function along
with desirable features of wavelets. Moreover, the Hermite interpolation characteristic
of the trigonometric wavelet helps in dealing with boundary conditions. One of the first
papers on this was by Quak [128]. Later, He and Ren formulated Trigonometric WFEM
for beams in [129] and for thin elastic plates in [130]. One may refer to the papers by
Shan and Du [131] and Gao and Jiang [132] for more information on the application
of Trigonometric wavelets for elliptical boundary value problems and Fredholm integral
equations respectively.

2.3.3 Hermitian WFEM

Hermite cubic splines were also used to construct wavelets on the interval [0, 1] by Jia
and Liu [133]. Hermite cubic spline wavelets on the interval (HCSWI) were used for the
analysis of shafts [134] and bending of thin plates [135]. Xue et al. [136] constructed 2D
Hermitian plane wavelet element and applied it in wave propagation and load identification
in rod and Timoshenko beam problems. Moreover, Hermitian Mindlin plate wavelet
element was proposed by Xue et al. in [137]. However, a major drawback of this approach
is that HCSWI scaling functions and wavelets need truncation at the boundaries, except for
the homogeneous boundary conditions [22]. Hence, Xue et al. [138] suggested a modified
Hermitian wavelet finite element. Due to the restrictions at the boundaries, existing Hermite
interpolation wavelet base do not have a transformation matrix, but with the modified
method a transformation can be obtained and modified Hermitian scaling function can be
used to interpolate the field functions in wavelet finite element which otherwise, would not
have been possible.
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Hermite WFEM based on second generation cubic Hermite multi-wavelets was also
proposed for damage detection via adaptive-scaling in frame structures using beam type
finite element [139], for spatially and dynamically varying structural modelling scales [140]
and for thin plates [141]. The traditional (first generation) wavelets are the dyadic translates
and dilates of a single function called the mother wavelet. However, second generation
wavelets (SGW) are not necessarily translates and dilates of each other but do possess all
the desirable properties of first generation wavelets [142]. They can be custom designed
depending on application. Traditional wavelets cannot be constructed on complicated,
irregularly spaced meshes as they are the dyadic translates and dilates of a single function
on a regularly spaced grid over a theoretically infinite or periodic domain. Hence, to deal
with the deficiencies of the traditional wavelets, SGW are needed. SGW were used for
solving elliptic partial differential equations (PDE’s) over irregularly spaced meshes on
bounded domains by D’Heedene et al. [143]. Furthermore, Wang et al. [144] proposed
SGW based finite element method for solving PDEs with high gradients and singularity.

In addition to the class of wavelets mentioned so far, scale-orthogonal wavelets from
general finite element interpolation functions were presented in the papers by Amaratunga
and Sudarshan [145] and Sudarshan et al. [146]. These wavelets, unlike classical
hierarchical bases, are scale-orthogonal with respect to a given inner-product which results
in block diagonal stiffness matrices and computation of solution in an efficient manner.

2.3.4 B-spline WFEM

One of the earliest papers which discusses about employing the spline wavelets expansions
as the shape function for finite element analysis with a fixed mesh was by Chen and
Wu [112]. It was proposed for vibration analysis of frame structures and later extended
to membrane vibration analysis [113]. Han et al. [147], adopted the B-spline wavelet
scaling functions for the construction of the element displacement interpolation functions.
The detailed formulation of typical spline wavelet elements such as plane beam element,
in-plane triangular element, in-plane rectangular element, tetrahedral solid element, and
hexahedral solid element was presented. In addition, spline wavelet formulation for thin
plate bending was also developed [148].

The theory of spline wavelets for whole square integrable real space L2(IR) was
developed in papers by Chui and Wang [149–151]. Spline wavelets are semi-orthogonal.
These wavelets retain inter-scale orthogonality and there is no necessity for the basis
functions to be orthogonal to its translates within the same resolution level. As a result,
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this allows for symmetry and antisymmetry and for deriving explicit formulae for the
spline wavelets. If the spline wavelets defined on L2(IR) are used as interpolating
functions, it would lead to numerical instability [46]. Moreover, it is difficult to apply
boundary conditions explicitly when these bases are used for solving boundary value
problem [44, 45]. Therefore, to incorporate boundary conditions, spline wavelet bases
were constructed for the bounded interval [0, 1] which came to be known as BSWI [27].
The algorithm for fast decomposition and reconstruction of BSWI was given by Quak
and Weyrich [152] and BSWI scaling and wavelet functions were used by Goswami et
al. [37] for solving first kind integral equations. The construction of BSWI over [0, 1] is
predominantly based on classical spline theory. The advantage of spline approach is that
it readily adapts to the case of the bounded interval [0, 1] by introducing multiple knots at
the endpoints. Therefore, no truncation is needed when the function on L2(IR) is restricted
to [0, 1]. With suitable adaptation at the endpoints, most of the concepts of the B-spline
MRA of L2(IR) can be carried over to [0, 1] [27, 37].

B-splines used in BSWI are the basis functions for the splines, which are constructed
by taking piecewise polynomial segments and joining these segments together at points
known as knots. For a given knot sequence that is used in the construction of B-splines, if
there are no multiple knots in the sequence, the smoothness of the curve remains same at all
the knots. However, if multiple knots exist in the knot sequence, the smoothness decreases
at the points with multiple knots where knot coalescence takes place, and elsewhere it
remains unaffected. During the construction of BSWI a certain order of overall smoothness
is obtained. The continuity of B-splines depends on its order in such a way that B-splines
with order m are in Cm−2 continuity [111]. The dependency of the knot sequence on
order m and resolution j used in BSWI were shown in the papers by [37, 111], wherein
{ξjk}

2j+m−1
k=−m+1 is a knot sequence with ξ being the local co-ordinate used for mapping the

domain [a, b] onto [0, 1]. The local co-ordinate ξ can be defined as ξ = (x − a)/(b − a).
The knot sequence on the interval [0, 1] is given by [27],

{ξjk} =


0, −m+ 1 ≤ k < 1

2−jk, 1 ≤ k < 2j

1, 2j ≤ k ≤ 2j +m− 1

(2.14)

The knot sequence defined in 2.14 can be used to obtain the explicit expression for
the basis functions in subspace Vj for B-splines of order m and scale j > 0 given by the
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recursive relation [27, 153, 154] as,

Bj
m,k(ξ) =

ξ − ξjk
ξjk+m−1 − ξ

j
k

Bj
m−1,k(ξ) +

ξjk+m − ξ
ξjk+m − ξ

j
k+1

Bj
m−1,k+1(ξ) (2.15)

such that,

Bj
1,k(ξ) =

1, k ≤ ξ ≤ k + 1

0, otherwise
(2.16)

suppBj
m,k(ξ) = [ξjk, ξ

j
k+m] (2.17)

The basis functions Bj
m,k(ξ) contain multiple knots at 0 and 1 and correspond to cardinal

B-splines at mth order and j scale from the inner knots. The cardinal B-splines are
used as the inner scaling functions φjm,k(ξ) for j scale, mth order BSWI. Chui and Quak
[27] categorized BSWI scaling functions as the boundary scaling functions that exist at
boundary points 0 and 1 on the domain and inner scaling functions that are just dilation
and translations of cardinal B-spline. The corresponding wavelets can be constructed by
utilizing the scaling functions eventually. In the scenario when 2j < 2m − 1 no inner
wavelets are inherited from the MRA of L2(IR) and so, the effects of endpoints 0 and 1
cannot be separated. However, if 2j ≥ 2m − 1, there exists at least one inner wavelet
whose support lies completely in [0, 1]. With suitable adaptation at the endpoints, MRA
generated by the B-splines in BSWI on L2(IR) is carried over to [0, 1] elegantly without
loss of accuracy. The explicit expressions for scaling and wavelet functions for j scale, mth

order BSWI are given as [111],

φjm,k(ξ) =



φlm,k(2
j−lξ), k = −m+ 1, ...,−1

(0 boundary scaling function)

φlm,2j−m−k(1− 2j−lξ), k = 2j −m+ 1, ..., 2j − 1

(1 boundary scaling function)

φlm,0(2j−lξ − 2−lk), k = 0, ..., 2j −m

(inner scaling function)

(2.18)
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ψjm,k(ξ) =



ψlm,k(2
j−lξ), k = −m+ 1, ...,−1

(0 boundary wavelet function)

ψlm,2j−2m−k+1(1− 2j−lξ), k = 2j − 2m+ 2, ..., 2j −m

(1 boundary wavelet function)

ψlm,0(2j−lξ − 2−lk), k = 0, ..., 2j − 2m+ 1

(inner wavelet function)

(2.19)

where,

supp ψjm,k(ξ) =



[0, (2m− 1 + k)2−j]

(0 boundary wavelets)

[k2−j, 1]

(1 boundary wavelets)

[k2−j, (2m− 1 + k)2−j]

(inner wavelets)

(2.20)

If j0 is the scale for which 2j ≥ 2m− 1 is satisfied, then for each j > j0 the corresponding
wavelets can be obtained by substituting l = 0 in the Equations 2.18-2.20.

Xiang et al. [111], constructed 1D C0 and C1 type BSWI elements for structural
analysis. To solve plane elastomechanics and moderately thick plate problems, a class
of C0 type plate elements were also constructed [114] based on 2D tensor product of
BSWI. Several papers have been published which have shown the construction of different
BSWI based elements. Wavelet based truncated conical shell element was developed by
Xiang et al. [155] using compactly supported semi-orthogonal BSWI to solve axisymmetric
problems. In their papers, Xiang et al. [156] also constructed BSWI thin plate element and
BSWI flat shell element by the assembly of BSWI plane elastomechanics and Mindlin
plate elements [157]. Further, it has been shown in the preceding papers that, due to the
MRA and two scale relation property of wavelets, (1 or 2 BSWI elements) are sufficient to
discretize the physical domain, control (increase or decrease) the nodal refinement without
changing the order and solve the problem accurately.

Chen et al. [158] presented a wavelet based multiscale element using BSWI for the
adaptive finite element analysis by constructing 2D C0 type multiscale BSWI elements by
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means of lifting scheme. Zhong and Xiang [159], formulated BSWI elements to study
the stability of plates and shells and the static displacement of 3D elastic problems. Xu et
al. [160] constructed BSWI transition elements with 7 and 10 nodes for multi-scale analysis
of foundations. Meanwhile, BSWI have also been used in the formulation of curved
beam element [161], construction of Rayleigh Euler rotating beam element to analyze
rotor bearing system [162] and curved shell elements (cylindrical shells, doubly-curved
shallow shells and hyperbolic paraboloidal shells) [163]. Shen et al. [164] suggested an
adaptive strategy by moving the nodes, which was based on the principle that number of
nodes in certain region is proportional to the error in that region. Analysis of buckling
of plates based on Reissner-Mindlin theory was carried out by Yang et al. [165] using a
BSWI Mindlin element. Geng et al. [166] proposed a high frequency vibration analysis
of thin plate based on wavelet multi-elements method using C1 type B-spline Kirchhoff
plate (C1BKP) element. Oke and Khulief [167] studied the vibration analysis of composite
pipes with internal wall defects due to erosion-induced surface degradation. Moreover,
static, free vibration and buckling analysis of functionally graded beam (based on TBT)
and functionally graded plates was also done by Zuo et al. in their papers [168, 169].

A multivariable wavelet finite element method (MWFEM) for 1D structural problem
was proposed by Zhang et al. [170]. It is based on a multivariable generalized
variational principle wherein, generalized displacement, strain and stress are considered as
independent variables and interpolated separately. MWFEM is obtained when wavelets are
used in the multivariable finite element method framework. One may refer to the series of
papers by Shen et al. [171–174] for more information on the development of multivariable
finite elements for beam, plate and shell. Based on multivariable generalized variational
principle, multivariable BSWI-based elements for thin plates [175], for Reissner-Mindlin
plates [176], for hyperboloid shell and open cylindrical shell [177], for flexible skew thin
plate analysis [178] and for shallow hyperbolic shell [179] were constructed. Furthermore,
Han et al. [180] formulated MWFEM to resolve the bending problems of thick plates based
on the Hellinger Reissner generalized variational principle wherein, interpolating wavelets
were used to represent the generalized field functions of thick plates.

In other study, the construction of a wavelet element method (WEM) for 1D, 2D and 3D
cases was given by Canuto et al. [181, 182]. In WEM, biorthogonal wavelet systems on a
general bounded domain were obtained by combining SEM’s philosophy with biorthogonal
wavelet system. In this, a general domain is split into sub-domains. Each sub-domain is
mapped onto a single reference hypercube. Then, tensor product of scaling functions and
wavelet functions is defined on the unit interval, to be used on the reference domain.

20



BSWI based WFEM has also been popular in the structural crack identification
[183–186] analysis of stress intensity factors in a cracked plane plate [187] and analysis
of laminated plates and shells [188, 189]. Moreover, BSWI elements were used for elastic
wave propagation in 1D structures [190] in which cracked axial rod and Timoshenko beam
BSWI elements were constructed. It was also used for elastic wave propagation in intact
membranes and notched membranes [191] and for the analysis of elastic wave propagation
in arches [192] to understand wave motion in curved structures. Xiang et al. [187] using
BSWI WFEM, proposed a new approach for the analysis of stress intensity factors (SIFs)
for cracked plane plate. BSWI plane elastomechanical plate element was used to develop a
numerical method to calculate the elastic band structures of 2D phononic crystals (2DPCs),
composed of square lattices of solid cuboids in a solid matrix [193]. Spline wavelet-based
FEM along with MCS was also used for bending analysis of plates by Han et al. [194]
when parameters are random variables. Further, Zhang et al. [195] used BSWI based finite
element method by combining with MCS for structural analysis.

From the review of literature on WGM and WFEM, it can be concluded that WFEM
is an accurate and an efficient methodology for solving boundary value problems. Further,
among all the different wavelets, BSWI have been popular and widely used because of
its underlying properties which make it more efficient and user friendly. It can be also
be concluded that the MRA and two scale relation property of wavelets facilitates fast
switching of resolution levels and functional bases. As a result, the physical problem can
be discretized using less number of WFEM elements (1 or 2 elements) and by varying the
scale/resolution, the nodal refinement within an element can be controlled without changing
the order. From an industrial application point of view, the usage of fewer elements
vastly reduces the burden of mesh assembly and also the programming effort needed in the
pre-processing stage of the analysis. Further, controlling the nodal discretization without
changing the order within an element can also ease the computational effort needed in
certain cases as opposed to conventional FEM. In addition, in the stochastic framework,
due to the high mesh dependency of FEM, the mapping of the random field discretization
to response discretization becomes cumbersome and wavelets could provide an alternative
via alleviating the mesh dependency to an extent.

The existing literature does not discuss about mathematical modelling of beams
and plate elements incorporating von Kármán nonlinear strains or any other geometric
nonlinearity using BSWI WFEM. Further, it is found that works on random field modelling
using BSWI WFEM, when the formulation is done in a stochastic framework do not
exist. Even though BSWI WFEM has been used with MCS for structural analysis
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(process involves random variables and not random fields); MCS makes the whole process
computationally expensive and is not a viable option. Moreover, it is noted that no
guidelines are provided for the numerical integration in the framework of BSWI WFEM.
On account of the preceding discussion and extensive literature study that has been done,
the objective and scope of the current thesis is formulated and presented in the forthcoming
sections.

2.4 Objective of the work

The main research objective of the current thesis is the development of a stochastic WFEM
for solving problems in structural mechanics wherein material properties are modelled as a
random field.

2.5 Scope of the thesis

The scope of the work encompasses;

• Proposing a numerical integration scheme based on Gauss quadrature and guidelines
for the same to be used for BSWI WFEM.

• A stochastic BSWI WFEM formulation for problems in elasto-statics in which
random field discretization is done using wavelet based shape function method.

– Problems involving C0 continuity elements (1D bar, 2D plane stress/strain).

– Problems involving beam elements based on Euler-Bernoulli and Timoshenko
beam theories.

• A deterministic BSWI FEM formulation for beam analysis by incorporating von
Kármán nonlinear strains.

• A stochastic BSWI WFEM formulation for beam analysis by incorporating von
Kármán nonlinear strains in which random field discretization is done using wavelet
based shape function method.
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2.6 Conclusion

In the current chapter, an extensive literature review has been done; based on which, the
main research objective and scope of the work has been established. In the next chapter,
a methodology is proposed for the evaluation of integrals in BSWI WFEM using Gauss
quadrature.
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Chapter 3

Numerical integration for BSWI WFEM
using a background cell approach

The current chapter discusses about evaluating the integrals involving BSWI, in wavelet
finite element formulations, using Gauss quadrature. It is essential to be noted that the
existing literature does not discuss about the methodology used for the implementation of
Gauss quadrature and its effect on the accuracy of results in the context of BSWI WFEM.
Moreover, to the best of author’s knowledge, use of background cell based integration
scheme for BSWI WFEM has not been reported in the literature. Hence, it demands
an in-depth discussion on the quantitative aspects of numerical integration for BSWI
WFEM for different class of problems, which does not exist in the literature. Therefore, a
numerical integration scheme is proposed wherein, background cells are placed over each
BSWI element and Gauss quadrature rule is defined for each of these cells. The nodal
discretization used for BSWI WFEM element is independent to the selection of number
of background cells used for the integration process. During the analysis, background
cells of various lengths are used for evaluating the integrals for various combination of
order and resolution of BSWI scaling functions. Numerical examples based on 1D and 2D
plane elasto-statics are solved. Problems on beams based on EBT and TBT under different
boundary conditions are also examined. Furthermore, the condition number and sparseness
of the formulated stiffness matrices are analyzed.
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3.1 Formulation of 1D and 2D BSWI elements

The equilibrium equations and boundary conditions for small displacements in linear
elastic solids are,

∇ · σ + b = 0 in Ω (3.1)

σ · n = t on Γt (natural boundary conditions) (3.2)

u = u on Γu (essential boundary conditions) (3.3)

Here, σ =Dε is the stress vector,D is the material property matrix, ε = ∇su is the strain
vector, u is the displacement vector, b is the body force vector, t and u are the vectors
of prescribed surface tractions and displacements respectively, n is a unit normal to the
domain Ω, Γt and Γu are the portions of boundary Γ, where tractions and displacements are
prescribed respectively. ∇ = { ∂

∂x1
, ∂
∂x2
, ...} is the vector of gradient operators and ∇su is

the symmetric part of ∇u.

3.1.1 Bar and beam elements

In BSWI WFEM, the problem domain Ω is divided into sub-domains Ωi{i = 1, 2, 3...}.
Each Ωi is mapped onto element solving domain Ωe = ξ, ξ ∈ [0, 1], where instead of using
the traditional polynomial interpolation, scaling or scaling and wavelet functions of BSWI
are used to form the shape functions over the elements Ωe. Here, ξ is the local co-ordinate
used for solving 1D BSWI on [0, 1] along x axis as shown in Figure 3.1.

Figure 3.1: Distribution of nodes in 1D BSWI WFEM element
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3.1.1.1 1D BSWI WFEM bar element

The generalized functional of potential energy for a bar element with Young’s modulus E
is:

Π =

∫ xb

xa

1

2
EA

(
du0

dx

)2

dx−
∫ xb

xa

f(x)u0dx−
nd∑
i=1

Qiu0(xi) (3.4)

Here, f(x) is the distributed load,Qi are the generalized lumped nodal forces, nd is the total
number of nodes per BSWI wavelet finite bar element, and u0 is the axial displacement.
The formulation of a BSWI WFEM bar element was given by Xiang et al. [111]. One
BSWI bar element with C0 continuity is divided into n = 2j +m− 2 segments and n+ 1

nodes as shown in Figure 3.2, where m, j are the order and resolution of BSWI scaling
functions respectively.

Figure 3.2: Distribution of nodes and DOF for one bar element with C0 continuity using
m = 2, j = 3

The unknown axial displacement field of a bar element in the element solving domain ξ is
approximated in terms of wavelet scaling functions as [111],

u0(ξ) =
2j−1∑

k=−m+1

ajm,kφ
j
m,k(ξ) = ϕae (3.5)

where, ϕ =
{
φjm,−m+1(ξ).....φj

m,2j−1
(ξ)
}

is row vector of BSWI scaling functions, ae =

{a1, a2......an+1}T is column vector of wavelet coefficients that needs to be determined.
The unknown axial displacement field function is expressed in terms of C0 element type
transformation matrix and physical degrees of freedom (DOF) as,

u0(ξ) = ϕ (Re)−1 ue = ϕT eue = Neue (3.6)
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where,
ue = Reae

Re =
{
ϕT (ξ1) ϕT (ξ2)....ϕT (ξn+1)

}T
ue = {u1 u2.....un+1}T

T e = (Re)−1

Ne = ϕT e


(3.7)

Substituting Equation 3.6 into the weak form and invoking the stationary condition for
variation of admissible displacements, element solving equations are obtained as,

Keue = F e (3.8)

where,

Ke =
EA

lex

∫ 1

0

(T e)T
(
dϕ

dξ

)T (
dϕ

dξ

)
(T e) dξ

F e = lex

∫ 1

0

f(ξ) (T e)T (ϕ)T dξ +

nd∑
i=1

Qe
i (T e)T (ϕ)T (ξi)

 (3.9)

3.1.1.2 1D BSWI WFEM Euler-Bernoulli beam element

The generalized functional of potential energy for an Euler-Bernoulli beam element is:

Π =

∫ xb

xa

1

2
EI

(
−d

2w0

dx2

)2

dx−
∫ xb

xa

q(x)w0dx−
ne∑
i=1

Qe
iw0 (xi)

−
∑
k=1,ne

M e
k

dw0

dx
(xk)

(3.10)

Here, w0 is the transverse deflection, I is the second moment of area, q(x) is the distributed
transverse load per unit length, Qi are the generalized lumped transverse nodal forces, Mk

are the bending moments and ne is the total number of nodes per BSWI wavelet finite
Euler-Bernoulli beam element. The formulation of a BSWI WFEM Euler-Bernoulli beam
element can be found in the paper by Xiang et al. [111]. One BSWI EBT beam element
with C1 continuity is divided into n = 2j +m−4 segments and n+1 nodes with end nodes
having both transverse and rotational DOF and internal nodes having only transverse DOF
as shown in Figure 3.3, where m, j are the order and resolution of BSWI scaling functions
respectively.
The unknown transverse displacement field function of Euler-Bernoulli beam element is
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Figure 3.3: Distribution of nodes and DOF for one BSWI EBT based beam element with
C1 continuity using m = 4, j = 3

approximated in terms of wavelet scaling functions as,

w0(ξ) =
2j−1∑

k=−m+1

bjm,kφ
j
m,k(ξ) = ϕbe (3.11)

Here, ϕ =
{
φjm,−m+1(ξ).....φj

m,2j−1
(ξ)
}

is row vector of BSWI scaling functions, be =

{b1, b2......bn+1}T is column vector of wavelet coefficients that needs to be determined. The
unknown transverse displacement field function can be expressed in terms of C1 element
type transformation matrix and physical DOF as,

w0(ξ) = ϕ (Re)−1we = ϕT ewe = Newe (3.12)

where,

we = {w1, θ1, w2......wn+1, θn+1}T

θ =
1

le

(
dw0 (ξ1)

dξ

)
, θn+1 =

1

le

(
dw0 (ξn+1)

dξ

)
T e = (Re)−1

Re =

{
ϕT (ξ1)

1

le

(
dϕT (ξ1)

dξ

)
ϕT (ξ2).....ϕT (ξn+1)

1

le

(
dϕT (ξn+1)

dξ

)}T
Ne = ϕT e


(3.13)

Upon substituting the displacement field of Equation 3.12 into the weak form and invoking
the stationary condition for variation of admissible displacements, the element solving
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equations for BSWI WFEM Euler-Bernoulli beam element can be obtained as,

Kewe = F e (3.14)

where,

Ke =
EI

l3ex

∫ 1

0

(T e)T
(
d2ϕ

dξ2

)T (
d2ϕ

dξ2

)
(T e) dξ

F e = lex

∫ 1

0

q (ξ) (T e)T (ϕ)T dξ −
ne∑
i=1

Qe
i (T e)T (ϕ)T (ξi)−∑

k=1,ne

M e
k (T e)T (ϕ)T (ξi)


(3.15)

3.1.1.3 1D BSWI WFEM Timoshenko beam element

The generalized functional of potential energy for a Timoshenko beam element is:

Π =

∫ xb

xa

1

2
EI

(
−dθx
dx

)2

dx+

∫ xb

xa

KsGA

2

(
dw0

dx
− θx

)2

dx−∫ xb

xa

q(x)w0dx−
nf∑
i=1

Qe
iw0 (xi)−

∑
i=1,nf

M e
i θx (xi)

(3.16)

Here, θx is the slope; however, it is not equal to θ defined in Equation 3.13 as θx is not
equal to dw0

dx
in TBT. Ks is the shear correction coefficient, G is the shear modulus and

nf is the total number of nodes per BSWI wavelet finite Timoshenko beam element. Rest
of the variables discussed in the context of Euler-Bernoulli beam element are applicable
for Timoshenko beam element as well. The formulation of a BSWI WFEM Timoshenko
beam element can also be found in the paper by Xiang et al. [111]. One BSWI TBT beam
element with C0 continuity is divided into n = 2j +m− 2 segments and n+ 1 nodes with
each node having both transverse and rotational DOF as shown in Figure 3.4, where m, j
are the order and resolution of BSWI scaling functions respectively.
Here, the unknown transverse and rotational displacement field functions are approximated
independently in the element solving domain ξ in terms of linear or quadratic wavelet
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Figure 3.4: Distribution of nodes and DOF for one BSWI TBT based beam element with
C0 continuity using m = 2, j = 3

scaling functions as,

w0(ξ) =
2j−1∑

k=−m+1

ajm,kφ
j
m,k(ξ) = ϕae

θx(ξ) =
2j−1∑

k=−m+1

bjm,kφ
j
m,k(ξ) = ϕbe


(3.17)

where, ϕ =
{
φjm,−m+1(ξ).....φj

m,2j−1
(ξ)
}

is row vector of BSWI scaling functions, ae, be

are column vector of wavelet coefficients that needs to be determined. The unknown
displacement field function is expressed in terms of C0 element type transformation matrix
and physical DOF as,

w0(ξ) = ϕ (Re)−1we = ϕT ewe = Newe

θx(ξ) = ϕ (Re)−1 θex = ϕT eθex = Neθex

}
(3.18)

where,
we = Reae, θex = Rebe

Re =
{
ϕT (ξ1) ϕT (ξ2)....ϕT (ξn+1)

}T
T e = (Re)−1 , Ne = ϕT e

 (3.19)

Upon substituting Equation 3.18 into the weak form and invoking the stationary condition,
the element solving equations for BSWI WFEM Timoshenko beam element can be
obtained as,

KeW e = F e (3.20)
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where,

Ke =

[
Ke

1K
e
2

Ke
3K

e
4

]

W e =

{
we

θeT

}
,F e =

{
F ed

0

}
+

{
F el

Me
l

}


(3.21)

such that,

Ke
1 =

KsGA

lex
(T e)T

(∫ 1

0

(
dϕ

dξ

)T (
dϕ

dξ

)
dξ

)
(T e)

Ke
2 = −KsGA (T e)T

(∫ 1

0

(
dϕ

dξ

)T
(ϕ) dξ

)
(T e)

Ke
3 =

(
Ke

2

)T
Ke

4 =
EI

lex
(T e)T

(∫ 1

0

(
dϕ

dξ

)T (
dϕ

dξ

)
dξ

)
(T e) +

KsGAlex (T e)T
(∫ 1

0

(ϕ)T (ϕ) dξ

)
(T e)

F ed =

∫ 1

0

lexq (ξ) (T e)T (ϕ)T dξ

F el =

nf∑
i=1

Qe
i (T e)T (ϕ)T (ξi)

Me
l =

∑
i=1,nf

M e
i (T e)T (ϕ)T (ξi)



(3.22)

3.1.2 2D BSWI plane stress element

In BSWI WFEM, the problem in 2D domain Ω is divided into sub-domains Ωi(i = 1, 2...)

where, each Ωi is then mapped into the standard 2D element solving domain Ωe = ξ, η

such that, ξ, η ∈ [0, 1] as shown in Figure 3.5. Here, ξ, η are the local co-ordinates used for
solving 2D BSWI on [0, 1]. For a BSWI scaling function of order m and resolution j , the
2D element solving domain Ωe is discretized into (n + 1)2 nodes where, n = 2j + m − 2

segments on each side. Instead of using the traditional polynomial interpolation, 2D tensor
product of scaling or scaling and wavelet functions of BSWI are used to form the shape
functions over the elements Ωe in 2D domain.
The generalized functional of potential energy for a sub-domain Ωi in a 2D plane stress
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Figure 3.5: Distribution of nodes in 2D plane stress element

problem can be written as,

Π =

∫
Ωi

1

2
εTDεtdxdy −

∫
Ωi

uTbtdxdy −
∫

Γi

uTptdΓ−
nep∑
i=1

uTi Fi (3.23)

such that, b is the body force column vector, u is the displacement vector, t is the uniform
thickness and p is the column vector of surface traction in x and y directions respectively.
Fi is column vector of point forces, ui is the column vector of point displacements at the
point of application of forces and nep is the total number of nodes per 2D BSWI plane
elasto-statics element. The formulation of a BSWI WFEM plane elasto-statics element
was given by Xiang et al. [114].
The displacement field function in the local co-ordinate system can be approximated as,

u0(ξ, η) = ϕce

v0(ξ, η) = ϕde

}
(3.24)

where, ϕ is obtained by taking 2D tensor product of BSWI scaling functions in the element
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solving domain Ωe as,

ϕ = ϕ1 ⊗ϕ2

ϕ1 =
{
φjm,−m+1(ξ).....φj

m,2j−1
(ξ)
}

ϕ2 =
{
φjm,−m+1(η).....φj

m,2j−1
(η)
}

ce = {c1, c2.....cn+12}
T

de = {d1, d2.....dn+12}
T


(3.25)

Here, ϕ1,ϕ2 are the rows vectors combined by the scaling functions for order m and
resolution j and ce,de , are the column vector of wavelet coefficients to be determined. By
making appropriate substitutions, the 2D elemental transformation matrix can be obtained
as,

ue = Rece

ve = Rede

Re = T e1 ⊗ T
e
2

T e1 =
{
ϕT1 (ξ1) ϕT1 (ξ2)....ϕT1 (ξn+1)

}T
T e2 =

{
ϕT2 (η1) ϕT2 (η2)....ϕT2 (ηn+1)

}T


(3.26)

Upon simplification, the equations for displacement field in the standard element solving
domain can be replaced as,

u0(ξ, η) = ϕT (Re)−1 ue = Nue

v0(ξ, η) = ϕT (Re)−1 ve = Nve

}
(3.27)

By using the principle of minimum potential, the element stiffness matrix and force vector
(for a unit thickness) can be obtained as,

KeUe = F e (3.28)
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where,

Ke =

[
Ke

1K
e
2

Ke
3K

e
4

]

Ue =

{
ue

ve

}
,F e =

{
Pa

e

Pb
e

}


(3.29)

such that,

Pa
e = (Re)−1

(∫
S

pxϕ
TdS +

∫
Ω

bxϕ
TdΩ +

n∑
i=1

(Re)−1ϕ(ξi, ηi)
TFix

)

Pb
e = (Re)−1

(∫
S

pyϕ
TdS +

∫
Ω

byϕ
TdΩ +

n∑
i=1

(Re)−1ϕ(ξi, ηi)
TFiy

)
 (3.30)

and,

Ke
1 =

E

1− ν2

(
A11

1 ⊗A
00
2 +

1− ν
2
A00

1 ⊗A
11
2

)
Ke

2 =
E

1− ν2

(
νA10

1 ⊗A
01
2 +

1− ν
2
A01

1 ⊗A
10
2

)
Ke

3 = (Ke
2)T

Ke
4 =

E

1− ν2

(
A00

1 ⊗A
11
2 +

1− ν
2
A11

1 ⊗A
00
2

)


(3.31)

with,

A00
1 =

((
T e1
)−1
)T (

lex

∫ 1

0

(ϕ1)T (ϕ1) dξ

)((
T e1
)−1
)

A01
1 =

((
T e1
)−1
)T (∫ 1

0

(ϕ1)T
(
dϕ1

dξ

)
dξ

)((
T e1
)−1
)

A10
1 =

((
T e1
)−1
)T (∫ 1

0

(
dϕ1

dξ

)T
(ϕ1) dξ

)((
T e1
)−1
)

A11
1 =

((
T e1
)−1
)T ( 1

lex

∫ 1

0

(
dϕ1

dξ

)T (
dϕ1

dξ

)
dξ

)((
T e1
)−1
)



(3.32)

Analogous toAij
1 (i, j = 0, 1),Aij

2 (i, j = 0, 1) can be found out using ley, dη,T e2 ,ϕ2. The
essential boundary conditions are implemented by setting the corresponding DOF to the
respective value and eliminating them from the system of equations.

The element stiffness matrices formulated for respective element types as given in
Equations 3.8,3.14,3.20 and 3.28 for all the sub-domains can be assembled to form the
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corresponding algebraic set of global equilibrium equations. To evaluate the integrals
defined in these equations, numerical integration needs to be employed. In the next section,
a detailed discussion on the proposed background cell based Gauss quadrature numerical
integration in the context of BSWI WFEM is given.

3.2 Background cell-based numerical integration for
Gauss quadrature

Gauss quadrature numerical integration scheme is used for evaluating the integrals in BSWI
WFEM. In a BSWI WFEM element, the total number of internal nodes and their position
within an element changes when the resolution is varied. Concurrently, the support domain
of the scaling function associated with the nodes also moves. Hence, implementation
of Gauss quadrature rules invites additional troubles. In EFGM, where only nodes exist
in the problem domain for modelling field quantity, a background cell based approach
is implemented to carry out the numerical integrations involved [18]. In the current
section, a similar approach is proposed to use for every element in BSWI WFEM. In this
methodology, background cells are placed over every BSWI WFEM element. The length
of the background cell can be independent of the position and number of nodes in a BSWI
WFEM element as shown in Figure 3.6.
The element shown in Figure 3.6 is constructed using quadratic order scaling functions
m = 3 and resolution j = 3. Figures 3.6a-3.6c show the placement of 1, 2 and 4
background cells respectively, over a 1D BSWI C0 element with Gauss points within each
cell. Likewise, Figure 3.6d shows a background cell whose dimensions are selected such
that the length of each cell is equal to the distance between adjacent WFEM element nodes.

In the present study, both two-point integration and one-point integration is attempted,
in which, two Gauss points per background cell and one Gauss point per background cell
are considered respectively, for solving the numerical examples. The arrangement of Gauss
points, nodes and background cells for a two-point integration and one-point integration
schemes over a 1D BSWI element for quadratic order scaling functions with m = 3 and
resolution j = 3 is shown in Figure 3.7. The distribution of nodes and Gauss points in a
single C0 2D element domain for two-point and one-point integration using a background
cell whose vertices coincide with the BSWI WFEM element nodes with m = 2 and
resolution j = 2 is shown in Figure 3.8. It is to be noted that, in contrast with FEM where
every single element is mapped to a single cell and Gauss points are also placed within the
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(a) 1 background cell

(b) 2 background cells

(c) 4 background cells

(d) cells coincide with nodes

Figure 3.6: Distribution of background cell with Gauss points for a 1D C0 continuity
element with m = 3, j = 3

same element, in the proposed approach for BSWI WFEM, every element takes multiple
cells and the quadrature rule is stated for the cell. When BSWI WFEM elements have
irregular geometry, they need to be mapped on to a regular parent element in the element
solving domain. Following which, a background cell is used over the regular element in the
element solving domain for integration. A few numerical examples are solved in the next
section and the accuracy of results is studied by varying the dimension of the background
cell and also using one-point and two-point integration schemes in the process.
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(a) Two Gauss points per background cell (b) One Gauss points per background cell

Figure 3.7: Distribution of Gauss points for two- and one-point integration in a 1D C0

continuity element for m = 3, j = 3

(a) Two-point integration (b) One-point integration

Figure 3.8: Distribution of Gauss points for two-point and one-point integration in a 2D
C0 continuity element for m = 2, j = 2

3.3 Numerical examples

Three numerical examples are solved to understand the merits and demerits of background
cell-based numerical integration. Results from WFEM are compared with the available
analytical solutions for different order of scaling functions and resolutions.
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3.3.1 1D Bar with a linear body force

In this example, a 1D bar with a linear body force b(x) = x as shown in Figure 3.9 is
considered. The bar withLength(L) = 100mm andArea = 1mm2 is fixed at one end. The
material of the bar is considered to be isotropic with Young’s modulus E = 1 × 105MPa.
The entire domain of the bar is modelled using one BSWIC0 element. The resulting system
of integral equations, as given in Equation 3.9, is solved by selecting different background
cell dimensions as detailed in Figure 3.6. Both two-point and one-point integration schemes
as shown in Figure 3.7 are attempted. Table 3.1 show the condition number of the stiffness
matrix obtained by two-point Gauss integration scheme, when background cells of different
dimensions are used with scaling functions of various order and resolutions.

As observed from Table 3.1, when 1 and 2 background cells are used; it results in
a badly scaled and ill-conditioned stiffness matrix, thereby giving erroneous results for
different order of scaling functions and resolutions except for m = 2, j = 2 with 2
background cells. The erroneous results can be attributed to the reason that when a
fewer background cells are used, there will be fewer Gauss points used for integration
and the positioning of these Gauss points makes them lie outside the local support
of scaling function. Hence, it will have less or no contribution to the corresponding
stiffness coefficient. The sparseness of the corresponding stiffness matrices using two-point
integration for different dimension of background cell are shown in Figures 3.10-3.13. It
can be seen from Figures 3.10a-3.10c that because of insufficient number of Gauss points
when 1 background cell is used, stiffness matrix with linear scaling functions have few
non-zero values. However, with quadratic scaling functions, the stiffness matrix is fully
populated as shown in Figures 3.10d-3.10f, but ill-conditioned as given in Table 3.1. The
sparseness of stiffness matrices obtained by using linear scaling function, when 2 and 4
background cells are used for integration is shown in Figures 3.11 and 3.12, respectively.

Figure 3.9: One end fixed bar subjected to linear body force b(x)

It can be observed from these figures and Table 3.1 that for m = 2, j = 2 with two
background cells and for m = 2, j = {2, 3} with four background cells, the stiffness
matrices become banded and well-conditioned. In all these three cases, it is found that at
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Table 3.1: Condition number of stiffness matrix for 1D bar with linear body force,
obtained using two-point integration

m, j 1 cell 2 cell 4 cell cell coincide
2,2 ∞ 29.28 29.28 29.28
2,3 ∞ ∞ 113.49 113.50
2,4 ∞ ∞ ∞ 437.69
3,2 7.69×1016 3.11×1016 80.05 81.90
3,3 1.53×1020 1.99×1018 2.28×1016 330.20
3,4 4.77×1027 3.92×1021 2.43×1017 1887.44

least one Gauss point lies inside the local support of scaling functions. However, when
quadratic scaling functions with two and four background cells are used, the stiffness
matrices are found to be fully populated and ill-conditioned. The sparseness pattern
obtained in this case is same as that of single background cell as shown in Figure 3.10.
Meanwhile, for m = 3, j = 2 with four background cells, where every support of scaling
function is found to possess at least one Gauss Point, stiffness matrix is found to be
well-conditioned. The last case considered for the dimension of the background cell is
wherein, the vertices of the background cells coincide with the nodes of a BSWI WFEM
element and Gauss points are placed within each of the background cell. In this case, using
two-point integration, it is observed that because of sufficient number of Gauss points, the
stiffness matrices are well conditioned as observed from the values in Table 3.1. Figure
3.13 also shows the sparseness of the stiffness matrices for the present case using linear
scaling functions. The stiffness matrices are found to be fully populated when quadratic
scaling functions are used with different dimensions of the background cell. This can be
reasoned to the fact that because of the extended local support of the quadratic scaling
functions, they overlap each other. Hence, there are always Gauss points which contribute
to the local stiffness coefficient. However, when the contribution from some of the Gauss
points is less, it results in a badly scaled stiffness matrix as seen with one, two and four
background cells.

The condition number of the stiffness matrices when background cell of different
dimension are used with different order and resolution, using one-point integration scheme
is shown in Table 3.2. It can be observed from Table 3.2 that when one, two and four
background cells are used, the stiffness matrix is badly scaled and ill-conditioned for
different order and resolutions except at m = 2, j = 2 using four background cells.
However, when background cell coinciding with the nodes is used, the stiffness matrix
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(a) m = 2, j = 2

(b) m = 2, j = 3

(c) m = 2, j = 4

(d) m = 3, j = 2

(e) m = 3, j = 3

(f) m = 3, j = 4

Figure 3.10: Sparseness of stiffness matrix for linear and quadratic scaling functions at
different resolutions using one background cell with two-point integration

obtained for all the order and resolution are well-conditioned. From the analysis done so
far, it can be concluded that a background cell whose vertices coincide with the element
nodes leads to a well-conditioned stiffness matrix and, hence, selected to further analyze the
displacement and stresses. One- and two-point integration schemes are used for numerical
integration. Linear (order m = 2) and quadratic (order m = 3) scaling functions are used
with resolutions j = {2, 3, 4} to calculate axial displacement, axial stress and relative error
in displacement norm. The axial displacements (δ) obtained by using two-point integration
and one-point integration is shown in Figure 3.14a and Figure 3.14b, respectively. They
are in good agreement with the analytical solution, which is given by:

δ(x) =
1

E
{−x

3

6
+ 5000x} (3.33)

The axial stresses (σxx) obtained, when two-point integration is used, are shown in
Figure 3.15a. Here, erroneous results are produced by all the resolutions when linear
BSWI scaling functions are used. However, accurate results are obtained, even at lower
resolutions, with quadratic BSWI scaling functions. The axial stresses (σxx) calculated,
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(a) m = 2, j = 2 (b) m = 2, j = 3 (c) m = 2, j = 4

Figure 3.11: Sparseness of stiffness matrix for linear scaling functions at different
resolutions using two background cells with two-point integration

(a) m = 2, j = 2 (b) m = 2, j = 3 (c) m = 2, j = 4

Figure 3.12: Sparseness of stiffness matrix for linear scaling functions at different
resolutions using four background cells with two-point integration

Table 3.2: Condition number of stiffness matrix for 1D bar with linear body force,
obtained using one-point integration

m, j 1 cell 2 cell 4 cell cell coincide
2,2 ∞ ∞ 29.28 29.28
2,3 ∞ ∞ ∞ 113.50
2,4 ∞ ∞ ∞ 437.69
3,2 ∞ 8.13×1019 1.68×1017 88.08
3,3 3.28×1037 3.06×1022 2.70×1019 329.21
3,4 2.70×1038 4.56×1030 1.25×1025 1350.10

with one-point Gauss quadrature for integration, are shown in Figure 3.15b. In this case
also, linear BSWI scaling functions gives an error and accurate results are obtained only
when quadratic BSWI scaling functions at higher resolutions are used. A convergence
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(a) m = 2, j = 2 (b) m = 2, j = 3 (c) m = 2, j = 4

Figure 3.13: Sparseness of stiffness matrix for linear scaling functions at different
resolutions when vertices of background cells coincide with nodes and two-point

quadrature rule is used for integration

(a) Using 2 point integration

(b) Using 1 point integration

Figure 3.14: Displacement δ of bar along x axis using linear and quadratic BSWI scaling
functions

study based on relative error in the displacement norm using linear and quadratic BSWI
scaling functions with different resolutions for one- and two-point integrations is shown in
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Figure 3.16. The relative error in displacement norm is given as,

ru =
‖unum − uexact‖
‖uexact‖

(3.34)

where, ‖u‖ =
(∫

Ω
uTudΩ

) 1
2 .

It is observed from Figure 3.16 that when one-point integration is used, the error is around
3 % for m = 2, j = 2 and it decreases to 0.2 % at higher resolution j = 4. But with
a higher order m = 3, j = 2, the error is reduced to 1.5 %. When two-point integration
is used, the error is found to be less than 1 % even at lower order and resolution. Hence,
it can be reasoned from this example that the user needs to find a balance between the
increasing computational effort and accuracy of the solution when choosing between one-
and two-point integration schemes.

(a) Using 2 point integration

(b) Using 1 point integration

Figure 3.15: Axial stress (σxx) along x axis using linear and quadratic BSWI scaling
functions
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Figure 3.16: Relative error in the displacement norm for one- and two-point integration
scheme

3.3.2 Thin beam under different boundary conditions

3.3.2.1 Based on Euler-Bernoulli beam theory

In this example, a cantilever and a simply supported beam with a uniformly distributed load
(UDL) q(x) = 1N/mm as shown in Figures 3.17 and 3.18 is considered for analysis. In
both the cases, the Young’s modulus is considered to be E = 2× 105MPa. The geometric
dimensions of the beam are taken as, span L = 100mm; and cross-sectional dimensions,
b, h = 1mm. The entire domain of the beam is modelled using one BSWI WFEM
Euler-Bernoulli beam element. The length of the background cell is varied as explained
in Figure 3.6 and analysis is carried out. The condition number of stiffness matrices, after
removing the rows and columns corresponding to essential boundary conditions, obtained
for these background cells with different order and resolution of BSWI scaling function is
tabulated in Tables 3.3 and 3.4 for cantilever and simply supported beam under uniformly
distributed load (UDL) respectively.

Figure 3.17: A cantilever beam with a uniformly distributed load

The numerical integration is performed using a two-point integration scheme. It is
observed from both Tables 3.3 and 3.4 that the stiffness matrix becomes ill-conditioned
when one, two and four background cells are used for solving the integrals of Equation 3.15
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Figure 3.18: A simply supported beam with a uniformly distributed load

Table 3.3: Condition number of stiffness matrix constructed using two-point integration,
for cantilever beam based on EBT

m, j 1 cell 2 cell 4 cell cell coincide
3,2 5.08×1018 5.88×1004 5.88×1004 5.88×1004

3,3 1.96×1020 1.64×1018 3.05×1005 3.30×1005

3,4 9.18×1023 1.48×1019 6.78×1017 2.16×1006

4,2 4.70×1017 2.52×1018 7.06×1004 7.06×1004

4,3 6.47×1017 1.03×1017 5.32×1018 2.33×1005

4,4 1.99×1020 1.09×1018 6.10×1017 9.11×1005

Table 3.4: Condition number of stiffness matrix constructed using two-point integration
for simply supported beam based on EBT

m, j 1 cell 2 cell 4 cell cell coincide
3,2 8.35×1018 4.47×1003 4.47×1003 3.21×1003

3,3 8.65×1020 1.00×1018 2.92×1004 2.87×1004

3,4 5.29×1023 1.63×1019 7.78×1017 2.25×1005

4,2 1.60×1017 9.62×1016 5.78×1003 5.78×1003

4,3 5.25×1017 2.13×1017 4.93×1017 2.31×1004

4,4 2.59×1020 1.11×1018 6.01×1018 9.83×1004

except for the cases m = 3, j = 2 with two background cells and m = 3, j = {2, 3},m =

4, j = 2 with four background cells. The reason that is given for the ill-conditioning of
the stiffness matrix in the previous example is applicable for the current example as well.
When a background cell whose vertices coincide with the element nodes is used, it can
be observed from Tables 3.3 and 3.4 that the stiffness matrices are well-conditioned. The
condition number of the element stiffness matrix calculated using one-point integration for
cantilever and simply supported case is shown in Tables 3.5 and 3.6. It is observed from
Tables 3.5 and 3.6 that the stiffness matrices are ill-conditioned for all the dimensions of
the background cells using different order and resolutions except for m = 3, j = 2 when
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four background cells are used. Hence, for further analysis to study the deflection and
slope, a background cell whose vertices coincide with the element nodes is considered
with two-point integration. Here, it is also noted that the element stiffness matrix remains
fully populated at all the dimensions of the background cells whose figures are not shown
here.

Table 3.5: Condition number of stiffness matrix constructed using one-point integration,
for cantilever beam based on EBT

m, j 1 cell 2 cell 4 cell cell coincide
3,2 9.14×1017 1.48×1019 5.88×1004 4.73×1017

3,3 1.57×1019 5.36×1018 2.82×1018 4.11×1017

3,4 1.17×1022 2.62×1023 6.93×1018 1.41×1018

4,2 6.74×1033 2.42×1018 6.64×1017 6.64×1017

4,3 2.72×1049 5.34×1018 2.06×1017 2.95×1017

4,4 8.05×1039 2.42×1035 3.44×1033 5.47×1017

Table 3.6: Condition number of stiffness matrix constructed using one-point integration,
for simply supported beam based on EBT

m, j 1 cell 2 cell 4 cell cell coincide
3,2 8.29×1017 1.32×1018 4.47×1003 1.59×1017

3,3 1.66×1018 1.14×1019 1.68×1018 1.25×1017

3,4 6.09×1021 3.34×1022 1.26×1019 9.08×1016

4,2 1.65×1033 2.63×1017 5.69×1017 5.69×1017

4,3 1.52×1034 6.74×1017 2.97×1017 1.49×1017

4,4 2.60×1023 2.96×1020 1.27×1018 1.67×1017

Quadratic and cubic BSWI scaling functions with resolution j = {2, 3, 4} are used to
plot transverse deflection, slope and relative error in displacement norm for a cantilever and
a simply supported beam under UDL. The deflection plots using two-point integration for
cantilever and simply supported beams are shown in Figures 3.19 and 3.20. The analytical
solution for the deflections of a cantilever and simply supported beams under UDL is given
as [196],
Cantilever:

δ(x) =
q

24EI
{x4 − 4Lx3 + 6L2x2} (3.35)
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Simply supported:

δ(x) =
q

24EI
{L3x− 2Lx3 + x4} (3.36)

It is observed from Figures 3.19 and 3.20 that WFEM results are in good agreement with the
analytical solution. Further, even at lower resolutions, accurate results are obtained when
cubic BSWI scaling functions are used. The variation of slope along x axis for cantilever
and simply supported beams are shown in Figures 3.21 and 3.22. It is observed that the
slope is captured accurately when cubic BSWI scaling functions are used for the analysis
of a cantilever beam. But, in the case of a simply supported beam, the error is low when
quadratic scaling functions at lower resolutions are used.

Figure 3.19: Variation of deflection (δ) along x axis using quadratic and cubic BSWI
scaling functions for cantilever beam

Figure 3.20: Variation of deflection (δ) along x axis using quadratic and cubic BSWI
scaling functions for simply supported beam

The relative error in displacement norm is shown in Figure 3.23. From Figure 3.23, it
can be concluded that, for quadratic BSWI scaling functions, as the resolution is increased,
the error reduces from 27 % to 5 % for a cantilever beam and 17 % to 3.5 % for a simply
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Figure 3.21: Variation of slope (dδ/dx) along x axis using quadratic and cubic BSWI
scaling functions for cantilever beam

Figure 3.22: Variation of slope (dδ/dx) along x axis using quadratic and cubic BSWI
scaling functions for simply supported beam

Figure 3.23: Relative error in the displacement norm obtained using two-point integration
scheme

supported beam. However, when cubic BSWI scaling functions are used, the maximum
error encountered is less than 0.48× 10−2 % for a cantilever beam and 0.04 % for a simply
supported beam among all the resolutions j = {2, 3, 4}.
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3.3.2.2 Based on Timoshenko beam theory

When thin beams are analyzed based on TBT, in FEM a numerical issue known as shear
locking is encountered. To overcome this issue, reduced integration of shear terms in
stiffness matrix is suggested [4]. Here, BSWI WFEM beam element formulated on TBT is
investigated for the effect of the integration scheme on the accuracy of results and on shear
locking. The material and geometric properties considered here are same as those were
in the case of an Euler-Bernoulli beam. Only the depth h is varied to obtain L/h ratio of
100 (thin beam limit) [197]. Two different cases of integration schemes are considered. In
one of the cases, namely 2pt, all the terms of Equation 3.22 are integrated using two-point
integration, while in the other case namely 1pt, only the shear terms are integrated using
one-point integration and the rest of the terms with two-point integration. Also, for this
study, only one configuration of background cells whose vertices coincide with element
nodes as shown in Figure 3.6d is selected for analysis as usage of other configuration of
background cells led to ill-conditioning of stiffness matrices because of the reasons already
discussed in the context of Euler-Bernoulli beam. It can be seen from Table 3.7 that the
stiffness matrices are well-conditioned at all the orders and resolutions using the selected
background cell configuration for both two- and one-point integration schemes.

Table 3.8 shows the relative error in displacement norm using two- and one-point
integration for cantilever and simply supported boundary conditions. It is observed from
Table 3.8 that when linear BSWI scaling functions are used with two-point integration, the
error is high for all the resolutions because of the existence of shear locking. However,
when quadratic BSWI scaling functions are used at higher resolution, the error is reduced
to less than 1 % for both the boundary conditions as observed from Table 3.8. When
one-point integration is used it is observed from Table 3.8 that for both the beams and for
all the orders and resolutions of scaling functions, the error is reduced to a large extent.
For linear BSWI scaling function, the error is reduced to 2 % at j = 2 and 0.13 % for
j = 4, for a cantilever beam. For a simply supported beam, the error reduces to 1.09 %
using linear scaling function for j = 4. It is observed from Table 3.8 that when quadratic
scaling functions are used with 1 point integration, the error is 0.84% and 5.28 % at j = 2

for the cantilever and simply supported cases; and at j = 4 it is only 0.06 % and 0.4
% for the same. Hence, the error can be significantly reduced and shear locking effects
can be tackled easily when one-point Gauss quadrature is used in the background cells for
integrating shear terms, while modelling slender beams using a TBT element.
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Table 3.7: Condition number of stiffness matrix constructed using two- and one-point
integration based on TBT for cantilever (C) and simply supported (SS)

L/h = 100 m=2,j = 2 m=2,j = 3 m=2,j = 4 m=3,j = 2 m=3,j = 3 m=3,j = 4
C, 2 pt 2.22×1005 7.55×1005 2.59×1006 3.78×1007 4.60×1007 6.19×1007

SS, 2 pt 1.82×1004 7.59×1004 2.91×1005 3.50×1006 4.53×1006 6.93×1006

C, 1 pt 4.22×1007 3.79×1007 3.48×1007 5.07×1007 5.77×1007 9.16×1007

SS, 1 pt 3.38×1006 3.78×1006 3.91×1006 4.61×1006 5.97×1006 1.03×1007

Table 3.8: Relative % error in displacement norm obtained from two- and one-point
integration based on TBT for cantilever (C) and simply supported (SS)

L/h = 100 m=2,j = 2 m=2,j = 3 m=2,j = 4 m=3,j = 2 m=3,j = 3 m=3,j = 4
C, 2 pt. 99.49 98.02 92.85 27.90 4.58 0.375
SS, 2 pt. 99.55 98.09 92.64 16.77 6.98 0.68
C, 1 pt. 2.11 0.54 0.136 0.84 0.23 0.06
SS, 1 pt. 17.08 4.42 1.09 5.28 1.51 0.412

3.3.3 A plate with a hole under uniaxial tension

In this example, a plate with a hole under uniaxial far field tensile loading is considered for
analysis. Only a quarter portion of the plate is modelled because of symmetry as shown
in Figure 3.24 having dimensions L = 5mm, b = 6mm and radius of hole (a = 0.1mm).
The plate is considered as isotropic with E = 2 × 105MPa, ν = 0.3, and pulled with a
uniformly distributed tensile load on top edge F = 1000N/mm2. The analytical solution
is given as [198]:

σr =
F

2
(1− a2

r2
) +

F

2
(1 +

3a4

r4
− 4a2

r2
) cos(2θs)

σθs =
F

2
(1 +

a2

r2
)− F

2
(1 +

3a4

r4
) cos(2θs)

τrθs = −F
2

(1− 3a4

r4
+

2a2

r2
) sin(2θs)


(3.37)

The domain of the quarter plate is discretized using two 2D BSWI C0 elements as seen
in Figure 3.24. Background cells are used over each of the two BSWI elements in the
element solving domain for integration of Equations 3.29-3.32. Analogous to the 1D case,
the condition numbers of the stiffness matrices are calculated for the current 2D problem

50



Figure 3.24: Plate with a hole under uniaxial far field tensile loading

and are shown in Tables 3.9 and 3.10 for different dimensions of the background cell with
two- and one-point integration rule, respectively. It should be noted that background cells
are used over each of the two BSWI WFEM elements used in the present problem.

It is observed from Table 3.9 that when one, two and four background cells per element
are used with two-point integration, the condition number obtained is observed to be very
high, especially for higher resolutions. However, when the length of the background cell is
reduced further, by equating to the distance between adjacent nodes of the BSWI element,
the stiffness matrices obtained are well-conditioned. The aforementioned observation can
be attributed to the reason that as the length of background cell is reduced, the support
of scaling functions possesses sufficient number of Gauss points, thereby resulting in
a well-conditioned matrix. The condition number of stiffness matrices when one-point
integration is used is shown in Table 3.10. It is noted that the condition number from
one-point integration is higher when compared with the same obtained using two-point
integration at different dimensions of the background cell except for m = 2, j = 1 with
four background cells. Hence, two-point integration is considered for further analysis in
the current example.

The sparseness of the stiffness matrices constructed with one, two and four background
cells per elements using two-point integration is shown in Figures 3.25, 3.26 and 3.27.
It can be noted that for linear scaling functions, as the resolution is increased the Gauss
points lying outside the support of scaling functions have no contribution to the element
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Table 3.9: Condition number of stiffness matrix for 2D plate with a hole, obtained using
two-point integration

m, j 1 cell 2 cell 4 cell cell coincide
2,2 8.24×1004 1.18×1002 1.40×1002 1.18×1002

2,3 1.08×1067 3.86×1005 7.36×1002 7.36×1002

2,4 ∞ 2.12×1086 2.15×1006 4.58×1003

3,2 1.89×1019 6.01×1002 6.45×1002 6.00×1002

3,3 7.72×1022 9.46×1018 2.97×1003 3.11×1003

3,4 1.18×1028 4.84×1023 1.56×1019 2.43×1004

Table 3.10: Condition number of stiffness matrix for 2D plate with a hole, obtained using
one-point integration

m, j 1 cell 2 cell 4 cell cell coincide
2,2 ∞ 4.64×1004 1.10×1002 4.64×1004

2,3 ∞ ∞ 2.56×1005 2.56×1005

2,4 ∞ ∞ ∞ 1.60×1006

3,2 2.55×1034 5.78×1018 5.71×1002 1.18×1005

3,3 1.47×1070 6.00×1033 1.14×1019 1.58×1006

3,4 8.68×1045 1.86×1031 6.71×1033 3.10×1008

stiffness coefficient. However, when quadratic scaling functions are used with single
background cell, stiffness matrices are found to be fully populated for all resolutions as
shown in Figure 3.25. Moreover, for all other cases of background cell considered, the
sparseness of stiffness matrix formulated with quadratic scaling function, is found to be
same as that of single background cell and hence not shown here. It can be concluded
from the results obtained so far that background cells with their vertices coinciding with
the element nodes results in well-conditioned stiffness matrices by means of two-point
Gauss quadrature, and hence, is selected for further analysis of current numerical example.
The stress concentration factor (Kt) based on hoop stress along the edge θs = pi/2 (i.e.
y = 0) is studied and compared with the analytical solution given by Sadd [198]. Figure
3.28 shows the distribution of nodes over the plate using m = 3, j = 3 and Figure 3.29
shows the variation of Kt plotted along bottom edge y = 0 for the current example. It is
observed that, the stress concentration factor Kt = 3 is accurately captured using quadratic
BSWI scaling functions. On the contrary, with linear BSWI scaling functions results are
underestimated even at higher resolutions. The computational effort will be high when
two-point integration is used at high resolutions in a 2D domain as number of Gauss points
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becomes two times that in one 1D cell. Nonetheless, because of their localized functions
in space and multiresolution properties, wavelets offer a solution to the problems related to
slow convergence in the vicinity of high gradients and re-meshing, which otherwise would
have required an even higher computational effort at pre-processing stage with FEM.

(a) m = 2, j = 1

(b) m = 2, j = 2

(c) m = 2, j = 3

(d) m = 3, j = 1

(e) m = 3, j = 2

(f) m = 3, j = 3

Figure 3.25: Sparseness of stiffness matrix for linear and quadratic scaling functions at
different resolutions when one background cell per element is used for integration
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(a) m = 2, j = 1 (b) m = 2, j = 2 (c) m = 2, j = 3

Figure 3.26: Sparseness of stiffness matrix for linear scaling functions at different
resolutions when two background cells per element is used for integration

(a) m = 2, j = 1 (b) m = 2, j = 2 (c) m = 2, j = 3

Figure 3.27: Sparseness of stiffness matrix for linear scaling functions at different
resolutions when four background cells per element is used for integration

Figure 3.28: Distribution of nodes over the plate with a hole using m = 3, j = 3
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Figure 3.29: Stress concentration factor (Kt) plotted along y = 0 with linear and
quadratic BSWI scaling functions using two-point integration

3.4 Conclusion

In the current chapter, a background cell-based Gauss point integration approach is
proposed for BSWI WFEM. Background cells are placed over the BSWI WFEM element
solving domain and Gauss points are positioned inside each background cell. The
dimensions of the background cells are varied and its effect on the condition number and
sparseness of the element stiffness matrix is studied for 1D and 2D problems. Further, the
detailed analysis of effect of number of Gauss points within each background cell on the
accuracy of the results is also done. Upon analyzing the results of the background cell
approach on various numerical examples, it is observed that for both 1D and 2D problems
background cell whose vertices coincide with the element nodes with an appropriate
selection of quadrature points always results in a well-conditioned stiffness matrix for
all the order and resolutions. The present study suggest to have sufficient number of
Gauss points in the support domain of scaling functions for constructing a well-conditioned
stiffness matrix.

For 1D problem with C0 continuity, both two- and one-point integration schemes
performed well when background cells whose vertices coincide with the element nodes
are used. But, in the case of an Euler-Bernoulli beam, one-point integration results in
an ill-conditioned stiffness matrix because of insufficient number of Gauss points and
only two-point integration is able to give a well-conditioned stiffness matrix and accurate
results. Further in the case of a TBT used for thin beams, it is observed that relative error
in displacement norm is less when one-point quadrature is used for integrating the shear
terms alone in comparison with the error encountered when two-point integration is used
for all the terms at a given order and resolution. Finally, a 2D plate with a hole subjected
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to far field stress is considered for analysis. Here, with background cell coinciding with
element nodes, two-point integration gives accurate results in comparison with one-point
integration. In all other cases, it is found that support domain of scaling functions does not
possess sufficient number of Gauss points and, hence, leads to ill-conditioned matrices.

To conclude, the current chapter shows that the accuracy of the solution for the
given order and resolution of BSWI scaling function is improved when the size of the
background cells is decreased and more number of Gauss points, as encountered in
two-point integration approach is used. This invariably leads to a more computational
effort at higher resolutions, but this disadvantage is overcome by the MRA properties of the
wavelets which aid in reducing its computational effort in highly mesh sensitive problems
as seen in plate with a hole problem.

Hence, the proposed background cell based numerical integration scheme for BSWI
WFEM, in which a background cell whose vertices coincide with the element nodes is used
to evaluate the integrals in the forthcoming formulations. The stochastic BSWI WFEM
formulation for problems in elasto-statics and beams is shown in the next chapter.
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Chapter 4

Stochastic BSWI WFEM formulation for
linear problems in elasto-statics

The current chapter presents the formulation of stochastic BSWI based WFEM for 1D
and 2D problems in elasto-statics and beams wherein, the spatial variation of modulus
of elasticity is modelled as a homogeneous random field. Numerical examples of beams
based on EBT and TBT are solved during the study. BSWI scaling functions are used
for the discretization of the random field and the response statistics are obtained using
the perturbation approach. The results from perturbation approach are compared with that
obtained from MCS. A parametric study is also done to understand the effect of different
coefficient of variation (CV) values and correlation length parameters on the response
statistics. For 1D problem in particular, results from proposed stochastic WFEM method
are compared with those found using SFEM wherein random field discretization is done
using Lagrange shape functions. Furthermore, normalized computational times for the
execution of perturbation approach and MCS based on WFEM are evaluated and compared
with those obtained for FEM.

4.1 Formulation of stochastic BSWI element for
elasto-statics and beams

In the current work, the Young’s modulus is considered as a spatially varying homogeneous
random field. Consequently, the equilibrium equations given in Equation 3.1, and the
generalized functional of total potential for 1D and 2D problems as given in Equation
3.4 and Equation 3.23 will also become stochastic in nature and hence the response
too. This necessitates for modelling of random fields present in the physical system. In
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order to simplify the algebraic equations required to estimate the statistics, it is a general
practice to transform the field to a Gaussian field before modelling [20]. In the current
study E(x) is modelled using a homogeneous Gaussian field. However, to demonstrate
that the proposed method also works for non-Gaussian fields, E(x) is modelled using a
homogeneous lognormal field for 1D numerical examples (bar and beam). If E(x) is a
Gaussian random field with mean µE , it can be written as [20],

E(x) = µE (1 + α(x)) (4.1)

where, α(x) is the zero mean Gaussian field with exponential auto-covariance kernel given
as,

Γα = σ2
αexp

[
−

(
n∑
i

|∆i|
ci

)]
(4.2)

Here, n ∈ <n, ∆i is the distance between 2 points xa, xb along i, ci is the correlation length
parameter which determines the statistical correlation of field variable in the domain and
σα is the standard deviation of zero mean random field, which can be expressed in terms of
σE of E(x) as,

σα = σE/µE (4.3)

However, when E(x) is a homogeneous lognormal field with mean µEl
and standard

deviation σEl
, it is expressed in terms of α(x) as,

E(x) = Clexp (α(x)) (4.4)

with,

Cl =
µ2
El√

µ2
El

+ σ2
El

(4.5)

The auto-covariance kernel for α(x) is written as [199],

Γα = ln

(
1 +

σ2
El

µ2
El

)
exp

[
−

(
n∑
i

|∆i|
ci

)]
(4.6)

A transformation to Gaussian field from other distributions can be done using suitable
transformation models [200]. To evaluate the integrals defined in Equation 3.9 and
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Equation 3.32, an explicit expression for E(x), and hence α(x) as a function of
spatial coordinates is necessary. But α(x) being a random field does not possess an
explicit expression and hence requires an approximation. Generally, this is done by
approximating a function over a set of random variables distributed in the domain obtained
by discretization of the field and is known as random field discretization [8, 90, 201, 202].
In the current work, it is proposed to use a shape function method for random field
modelling. Shape function method is found to give better approximation when compared
to KL expansion technique [95]. Shape function method using Lagrange interpolation
and moving least square shape functions has been employed in SFEM [3] and stochastic
meshless methods [20] respectively. In the present study, it is proposed to use wavelet
functions to model both the random field and response.

4.1.1 Stochastic BSWI WFEM bar element

On similar lines, as the displacement field is approximated in Equation 3.5, the unknown
Gaussian random field can be approximated in the element solving domain ξ in terms of
wavelet scaling functions as,

α(ξ) =

2jr−1∑
k=−mr+1

bjrmr,k
φjrmr,k

(ξ) = ϕRb
e (4.7)

where, ϕR =
{
φjrmr,−mr+1(ξ).....φjr

mr,2jr−1
(ξ)
}

is row vector of BSWI scaling functions,

be =
{
bjrmr,−mr+1, b

jr
mr,−mr+2.....b

jr
mr,2jr−1

}T
is column vector of wavelet coefficients that

needs to be determined and mr, jr are the order and resolution of BSWI scaling functions
selected for modelling the random field. The subscripts R, r used here denote that the
function or variable used is associated with random field. It can be noted from Equation
3.5 and Equation 4.7 that the order and resolution that is used for the discretization of the
displacement field and random field can be different from each other. The unknown random
field function can be expressed in terms of C0 element type transformation matrix as,

α(ξ) = ϕR
(
Re
R

)−1
αeR = ϕRT

e
Rα

e
R (4.8)

where, αeR =
{
α1R, α2R, ....α(n+1)R

}T is the set of random variables distributed over
the domain of the element. Thus, element stiffness coefficients and hence the element
displacements will become functions of random variables αeR and in general Equation 3.8

59



can be written as,

Ke(αeR)ue(αeR) = F e (4.9)

Here, Ke is the elemental stochastic stiffness matrix. When E(x) is modelled as
homogeneous Gaussian field as given in Equation 4.1, the Ke in Equation 3.9 can be
written as,

Ke =
µEA

lex

∫ 1

0

(T e)T
(
dϕ

dξ

)T (
dϕ

dξ

)
(T e) dξ+

µEA

lex

∫ 1

0

(
ϕRT

e
Rα

e
R

)
(T e)T

(
dϕ

dξ

)T (
dϕ

dξ

)
(T e) dξ

 (4.10)

When E(x) is modelled as a homogeneous lognormal field as given in Equation 4.4, the
Ke in Equation 3.9 can be written as,

Ke =
µEl

A

lex

√
1 +

σ2
El

µ2El

∫ 1

0

exp(ϕRT
e
Rα

e
R)

(T e)T
(
dϕ

dξ

)T (
dϕ

dξ

)
(T e) dξ


(4.11)

The element stochastic stiffness matrices as given in Equations 4.9 for all the sub-domains
can be assembled to form the algebraic set of respective global stochastic equilibrium
equations as,

K(αR)U(αR) = F (4.12)

Next, the formulation of stochastic BSWI WFEM plane elasto-statics element is shown.

4.1.2 Stochastic BSWI WFEM plane elasto-statics element

The unknown Gaussian random field can be approximated by taking 2D tensor product
of BSWI scaling functions on the same lines as the displacement field is approximated in
Equation 3.24 as,

α(ξ, η) = ϕRg
e (4.13)
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where,
ϕR = ϕ1R ⊗ϕ2R

ϕ1R =
{
φjrmr,−mr+1(ξ).....φjr

mr,2jr−1
(ξ)
}

ϕ2R =
{
φjrmr,−mr+1(η).....φjr

mr,2jr−1
(η)
}

ge =
{
g1, g2.....g(n+1)2

}T


(4.14)

The unknown random field function can be expressed in terms of C0 element type 2D
transformation matrix as,

α(ξ, η) = ϕR
(
Re
R

)−1
αeR = N2α

e
R (4.15)

such that,

Re
R = T e1R ⊗ T

e
2R

T e1R =
{
ϕT1R(ξ1) ϕT1R(ξ2)....ϕT1R(ξn+1)

}T
T e2R =

{
ϕT2R(η1) ϕT2R(η2)....ϕT2R(ηn+1)

}T
 (4.16)

Thus, element stiffness coefficients and hence the element displacements will become
functions of random variables αeR. When E(x) is modelled as a homogeneous Gaussian
field, theKe in Equation 3.28 can be written as,

Ke(αeR)Ue(αeR) = F e (4.17)

where,

Ke =

[
Ke

1 K
e
2

Ke
3 K

e
4

]
+

µE
1− ν2

∫ 1

0

∫ 1

0

(
N2α

e
R

)
Ke
βdξdη (4.18)

Here, Ke
1 , Ke

2 , Ke
3 and Ke

4 are the components of deterministic matrix as given in
Equation 3.31-3.32. Futher,Ke

β can be simplified as,

Ke
β =

[
Ke
β1 K

e
β2

Ke
β3 K

e
β4

]
(4.19)
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such that,

Ke
β1 =

ley
lex

(
dN1

dξ

)T (
dN1

dξ

)
+
lex
ley

(
1− ν

2

)(
dN1

dη

)T (
dN1

dη

)
Ke
β2 = ν

(
dN1

dξ

)T (
dN1

dη

)
+

(
1− ν

2

)(
dN1

dη

)T (
dN1

dξ

)
Ke
β3 = ν

(
dN1

dη

)T (
dN1

dξ

)
+

(
1− ν

2

)(
dN1

dξ

)T (
dN1

dη

)
Ke
β4 =

lex
ley

(
dN1

dη

)T (
dN1

dη

)
+
ley
lex

(
1− ν

2

)(
dN1

dξ

)T (
dN1

dξ

)


(4.20)

The element stochastic stiffness matrices as given in Equations 4.17 for all the sub-domains
can be assembled to form the algebraic set of respective global stochastic equilibrium
equations on the same lines as shown in Equation 4.12.

4.1.3 Stochastic BSWI WFEM EBT based beam element

In the formulation of stochastic BSWI WFEM EBT based beam element, E(x) is
modelled as a homogeneous random field, w0(ξ) is expressed in terms of C1 type element
transformation matrix and α(ξ) is expressed in terms of C0 type element transformation
matrix. On similar lines, as the deflection field is approximated in Equation 3.11, the
unknown random field can be approximated in the element solving domain in terms of
BSWI wavelet scaling functions and expressed in terms of elemental transformation matrix.
The element stiffness coefficients and hence the element deflections will become functions
of random variables αR and 3.14 can be written as,

Ke(αeR)we(αeR) = F e (4.21)

When E(x) is modelled as a homogeneous Gaussian field as given in Equation 4.1, Ke in
Equation 3.15 can be written as,

Ke =
µEI

l3ex

∫ 1

0

(T e)T
(
d2ϕ

dξ2

)T (
d2ϕ

dξ2

)
(T e) dξ

+
µEI

l3ex

∫ 1

0

(
ϕRT

e
Rα

e
R

)
(T e)T

(
d2ϕ

dξ2

)T (
d2ϕ

dξ2

)
(T e) dξ

 (4.22)

and when E(x) is modelled as a homogeneous lognormal field as given in Equation 4.4,
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Ke in Equation 3.15 can be written as,

Ke =
µEl

I

l3ex

√
1 +

σ2
El

µ2El

∫ 1

0

exp(ϕRT
e
Rα

e
R)

(T e)T
(
d2ϕ

dξ2

)T (
d2ϕ

dξ2

)
(T e) dξ


(4.23)

The element stochastic stiffness matrices as given in Equations 4.21 for all the sub-domains
can be assembled to form the algebraic set of respective global stochastic equilibrium
equations on the same lines as Equation 4.12.

4.1.4 Stochastic BSWI WFEM TBT based beam element

In the formulation of stochastic BSWI WFEM TBT based beam element, E(x) is modelled
as homogeneous random field and both w0(ξ) as well as α(ξ) are expressed in terms of
C0 type element transformation matrix. On similar lines, as the unknown transverse and
rotational displacement field functions are approximated in Equation 3.17, the unknown
random field can also be approximated in the element solving domain in terms of BSWI
wavelet scaling functions and expressed in terms of elemental transformation matrix. The
element stiffness coefficients and hence the element deflections will become functions of
random variables αR and Equation 3.20 can be written as,

Ke(αeR)W e(αeR) = F e (4.24)

Further, when E(x) is modelled as a homogeneous random field, G(x) is also modelled
as a homogeneous random field from the relation G(x) = E(x)/2(1 + ν) where, ν is the
deterministic Poisson’s ratio. When E(x) is modelled as a homogeneous Gaussian field as
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given in Equation 4.1, the components ofKe in Equation 3.21 and 3.22 can be written as,

Ke
1 =

KsµGA

lex
(T e)T

(∫ 1

0

(
dϕ

dξ

)T (
dϕ

dξ

)
dξ

)
(T e)

+
KsµGA

lex
(T e)T

(∫ 1

0

(
ϕRT

e
Rα

e
R

)(dϕ
dξ

)T (
dϕ

dξ

)
dξ

)
(T e)

Ke
2 = −KsµGA (T e)T

(∫ 1

0

(
dϕ

dξ

)T
(ϕ) dξ

)
(T e)

−KsµGA (T e)T
(∫ 1

0

(
ϕRT

e
Rα

e
R

)(dϕ
dξ

)T
(ϕ) dξ

)
(T e)

Ke
3 =

(
Ke

2

)T
Ke

4 =
µEI

lex
(T e)T

(∫ 1

0

(
dϕ

dξ

)T (
dϕ

dξ

)
dξ

)
(T e) +

KsµGAlex (T e)T
(∫ 1

0

(ϕ)T (ϕ) dξ

)
(T e)

+
µEI

lex
(T e)T

(∫ 1

0

(
ϕRT

e
Rα

e
R

)(dϕ
dξ

)T (
dϕ

dξ

)
dξ

)
(T e) +

KsµGAlex (T e)T
(∫ 1

0

(
ϕRT

e
Rα

e
R

)
(ϕ)T (ϕ) dξ

)
(T e)



(4.25)

When E(x) is modelled as a homogeneous lognormal field as given in Equation 4.4, the
components ofKe in Equation 3.21 and 3.22 can be written as,

Ke
1 =

KsClA

2(1 + ν)lex
(T e)T

(∫ 1

0

exp(ϕRT
e
Rα

e
R)
(
dϕ

dξ

)T (
dϕ

dξ

)
dξ

)
(T e)

Ke
2 = − KsClA

2(1 + ν)
(T e)T

(∫ 1

0

exp(ϕRT
e
Rα

e
R)
(
dϕ

dξ

)T
(ϕ) dξ

)
(T e)

Ke
3 =

(
Ke

2

)T
Ke

4 =
ClI

lex
(T e)T

(∫ 1

0

exp(ϕRT
e
Rα

e
R)
(
dϕ

dξ

)T (
dϕ

dξ

)
dξ

)
(T e) +

KsClAlex
2(1 + ν)

(T e)T
(∫ 1

0

exp(ϕRT
e
Rα

e
R) (ϕ)T (ϕ) dξ

)
(T e)



(4.26)

where, Cl is obtained from Equation 4.5. The element stochastic stiffness matrices as
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given in Equations 4.24 for all the sub-domains can be assembled to form the algebraic set
of respective global stochastic equilibrium equations on the same lines as Equation 4.12.

4.1.5 Stochastic BSWI WFEM for elastic buckling of columns

The generalized functional of potential energy governing static buckling of columns is
given as,

Π =

∫ L

0

1

2
EI

(
d2w0

dx2

)2

dx−
∫ L

0

Pc
2

(
dw0

dx

)2

dx (4.27)

where, Pc is the axial compressive load and rest of the parameters are same as considered
in Equation 3.10. Here, one BSWI WFEM beam element based on EBT, as given in 3.1.1.2
is used for modelling the deflection field. Upon substituting the deflection field of Equation
3.12 into the weak form and invoking the stationary condition for variation of admissible
deflections, the solution of static buckling of columns is obtained in the form of an Eigen
value problem as,

[Ke − PcGe]we = 0 (4.28)

where, Ke is the elemental stiffness matrix as given in Equation 3.14 and Ge is the
elemental geometric stiffness matrix given as,

Ge =
1

lex

∫ 1

0

(T e)T
(
dϕ

dξ

)T (
dϕ

dξ

)
(T e) dξ (4.29)

The Eigen values Pc from Equation 4.28 correspond to the buckling loads and the Eigen
vectors we correspond to the mode shapes.

When the Young’s modulus E(x) is modelled as a spatially varying homogeneous
random field, the generalized functional of total potential as given in Equation 4.27 along
with response, will also become stochastic in nature. Thus, element stiffness coefficients,
Eigen values and Eigen vectors will become functions of random variables αeR and
Equation 4.28 becomes a stochastic Eigen value problem that can be written as,

[
Ke(αeR)− Pc(αeR)Ge

]
we(αeR) = 0 (4.30)

Here,Ke is the elemental stochastic stiffness matrix for beams based on EBT formulation
as given in Equations 4.22 and 4.23. The element stiffness matrices Ke and Ge are
obtained for all the sub-domains and assembled together to obtain a global stochastic
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Eigen value problem. From the global stochastic equilibrium equations, the second
moment characteristics of deflections are calculated using the perturbation method which
is discussed in the next section.

4.2 Perturbation method

A Gaussian random field can be completely described by the mean, variance and
auto-correlation function of its random variables. The response statistics aids to understand
how the uncertainties in the input are propagating through the mechanical system. Several
methods (perturbation method, weighted integral method, quadrature method) exist for
the calculation of the second moment response statistics. However, from among these
perturbation method has been selected due to its simplicity, good accuracy and low
computational cost when compared with other methods used for calculating second
moment statistics [95].

On the contrary, it is well known that the second order perturbation approach based
on Taylor series expansion provides accurate results in comparison with MCS only when
the CV is kept around 15-20%. Kamiński proposed the generalized stochastic perturbation
approach [203] for any order of Taylor series expansion wherein, higher order moments and
coefficients are calculated to recognize the resulting distributions of structural response
and allow for larger input coefficient of variation (20-25%). A method based on an
ad hoc expansion of the displacement response with respect to random variables, which
claim to maintain good accuracy even at high degree of uncertainty was proposed by
Falsone and Impollonia [204, 205]. However, the issue with the higher order methods
is that it also increases the computational effort. Further, in cases wherein, the deviation
between the results obtained from second order perturbation method and MCS is around
5%, there is no substantial gain in accuracy with higher order methods. Moreover, since
uncertainty in most of the engineering materials can be accounted with a CV of up to 20%,
second order perturbation methods are sufficient to calculate the statistics with acceptable
accuracy. Hence, in the present thesis classical perturbation approach based on Taylor
series expansion, only first and second order truncation, is considered to investigate the
performance of the proposed method.

Perturbation method uses the expansion of the global stiffness matrix and the
displacement vector via Taylor series [3, 20, 206]. It is based on the assumption that
the variance of the random field should be small. Let Λ = {αi}Ni=1 is a vector of zero
mean random variables representing the random field in the global domain Ω. The Taylor
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series expansion of global stiffness matrix K and displacement vector U (in case of
beams/columns it isW ) can be obtained as,

K = K0 +
N∑
i=1

KI
i αi +

1

2

N∑
i=1

N∑
j=1

KII
ij αiαj + ....., (4.31)

U = U0 +
N∑
i=1

U I
i αi +

1

2

N∑
i=1

N∑
j=1

U II
ij αiαj + ....., (4.32)

Upon substitution into equilibrium equations and equating the terms with the same order
the following equations are obtained,

U0 = K−1
0 F0,

U I
i = −K−1

0

(
KI
iU0

)
,

U II
ij = −K−1

0

(
KI
iU

I
j +KI

jU
I
i +KII

ij U0

)
 (4.33)

where, K0, U0 and F0 are evaluated at K(0), U(0) and F (0) respectively; and (.)Ii =
∂(.)
∂αi

∣∣∣
Λ=0

and (.)IIij = ∂2(.)
∂αi∂αj

∣∣∣
Λ=0

. By applying expectation and variance operators on
Eq.4.32, first and second order perturbation approximations can be obtained as,
First order approximation

µU = U0,

γU =
N∑
i=1

N∑
j=1

U I
i

(
U I
j

)T
Γα (αi, αj)

 (4.34)

Second order approximation

µU = U0 +
1

2

N∑
i=1

N∑
j=1

U II
ij Γα (αi, αj) ,

γU =
N∑
i=1

N∑
j=1

U I
i

(
U I
j

)T
Γα (αi, αj) +

1

4

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

U II
ij

(
U II
kl

)T {Γα (αi, αl) Γα (αj, αk) +

Γα (αi, αk) Γα (αj, αl)}



(4.35)

Similarly, statistics of other response functions of interest, like stresses and strains can also
be found out. Further, the study can also be extended to a reliability analysis on the same
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lines as shown in Rahman and Rao [207].

4.2.1 Perturbation approximation for buckling of columns

In addition to the Taylor series expansion of the global stiffness matrix and displacement
vector (Eigen vector) as shown in Equations 4.31 and 4.32, the perturbation method for
buckling of columns uses the expansion of the axial compressive load (Eigen values), which
is also a function of random variables. The Taylor series expansion of the Eigen values is
given as,

Pc = Pc0 +
N∑
i=1

Pc
I
iαi +

1

2

N∑
i=1

N∑
j=1

Pc
II
ij αiαj + ....., (4.36)

where, Pc0 is the deterministic value evaluated at Pc(0). The partial derivatives of Eigen
values PcIi and Pc

II
ij with respect to the random variables can be obtained as follows.

Upon substituting the Taylor series expansion of the global stiffness matrix, Eigen values
and Eigen vectors as given in Equations 4.31, 4.32 and 4.36 respectively into the global
stochastic Eigen value problem and rearranging the terms of the same order, the following
equations are obtained,

[K0 − Pc0G]W0 = 0 (4.37)

[K0 − Pc0G]W I
i +

[
KI
i − Pc

I
iG
]
W0 = 0 (4.38)

[K0 − Pc0G]W II
ij +

[
KI
i − Pc

I
iG
]
W I

j +
[
KI
j − Pc

I
jG
]
W I

i +[
KII
ij − Pc

II
ijG

]
W0 = 0

 (4.39)

Here, [K0 − Pc0G] is symmetric, which leads to,

[K0 − Pc0G] = [K0 − Pc0G]T (4.40)

By pre-multiplying Equations 4.38 and 4.39 withW0
T and using 4.40 leads to,

[(K0 − Pc0G)W0]T W I
i +W0

T
[
KI
i − Pc

I
iG
]
W0 = 0 (4.41)

68



[(K0 − Pc0G)W0]T W II
ij +W0

T
[
KI
i − Pc

I
iG
]
W I

j +W0
T
[
KI
j − Pc

I
jG
]
W I

i +

W0
T
[
KII
ij − Pc

II
ijG

]
W0 = 0


(4.42)

Equation 4.41 can be simplified as,

Pc
I
i =

[
W0

TGW0

]−1 [
W0

TKI
iW0

]
(4.43)

Upon substituting Equation 4.43 into 4.41, W I
i can be obtained, which can be further

substituted into Equation 4.42 to obtain,

Pc
II
ij =

[
W0

TGW0

]−1
(
W0

T
[
KI
i − Pc

I
iG
]
W I

j +W0
T
[
KI
j − Pc

I
jG
]
W I

i +

W0
TKII

ijW0

)

(4.44)

By substituting Equation 4.44 into 4.42, W II
ij can be obtained. Further, by applying the

expectation and variance operators on the first order or second order approximation of
Equation 4.36 and by substituting PcIi and PcIIij from Equation 4.43 and 4.44 respectively,
the first and second order statistics of critical buckling load (µPcr , γPcr) can be obtained on
the same lines as given in Equations 4.34 and 4.35. Similarly, statistics of other response
functions of interest, like W can also be found out. In the next section, a few 1D and
2D numerical examples are solved based on the preceding formulations and the results are
analyzed.

4.3 Numerical examples

4.3.1 Numerical examples for 1D bar and 2D plane elasto-statics

Three numerical examples are solved based on the proposed stochastic BSWI WFEM
formulations for 1D and 2D problems in elasto-statics. Once the response statistics are
calculated via perturbation method, the results are compared with the statistics obtained
from MCS.
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4.3.1.1 One-dimensional bar with a linear body force

In this example, a 1D bar with a linear body force b(x) = x as shown in Figure 3.9
in chapter 3 is considered for analysis. Two cases are studied in which the modulus of
elasticity is modelled as a homogeneous random field with a Gaussian distribution as given
by Equation 4.1; and with a lognormal distribution as given in Equation 4.4. For both
the cases, the results from stochastic WFEM wherein both the input random field and
response are discretized using BSWI scaling functions are compared with those obtained
from SFEM wherein both random field and response are discretized using Lagrange shape
functions. The mean value of Young’s modulus is taken as µE = 1× 105MPa for both the
distributions, with Length(L) = 100mm and area = 1mm2. The entire domain of the bar
is modelled using one BSWI C0 type element.

Initially, a convergence study is done to determine the order and resolution of scaling
functions used for displacement approximation. Figure 4.1 and 4.2 shows the displacement
and stress obtained from deterministic WFEM analysis for different order and resolution.
It is observed that converged results in displacement and axial stress can be obtained
when linear order m = 2 and quadratic order m = 3 BSWI wavelet scaling functions
with resolution j = 3 are used. Hence, for further analysis the displacement field is
approximated using the order m = {2, 3} and resolution j = 3 . The minimum resolution
needed to accurately capture the spatially varying Young’s modulus while approximating
with the wavelet based shape functions is established by examining the mean and standard
deviation of generated sample values along the bar from a MCS. From a convergence
study, based on the calculation of relative percentage variation in L2 norm of mean and
standard deviation values of Young’s modulus for various MCS sample size; it is noted that
a variation of less than 1% is obtained when the MCS sample size is 5000. Hence, a sample
size of 5000 is selected to be used during the process. Further, this study is extended to
Lagrange shape functions also to identify the number of nodes required for random field
discretization. The process is repeated for both Gaussian and non-Gaussian approximations
and is explained in the following discussions.
Case 1: Random field E(x) follows Gaussian distribution

The mean values and standard deviation of a Young’s modulus with a Gaussian
approximation as defined in Equation 4.1 is reproduced from the MCS samples when
random field α is modelled using Equation 4.7. The same has been calculated when α is
modelled with the help of linear and quadratic Lagrange shape functions too. Variation
of mean values and standard deviation of Young’s modulus at x = 100mm for the
discretization of the random field using different number of random variables is shown

70



Figure 4.1: Variation of axial displacement (δ) along the length of the rod obtained from a
deterministic study while linear and quadratic BSWI scaling functions are used to model

displacement

Figure 4.2: Variation of axial stress (σxx) along the length of the rod obtained from a
deterministic study while linear and quadratic BSWI scaling functions are used to model

displacement

in Figure 4.3 and 4.4 respectively. It can be observed that a resolution of j = 1 with linear
and quadratic scaling functions resulting in 3 and 4 nodes respectively captures the mean
and standard deviation values of Young’s modulus accurately. Further, in the case of FEM
based shape function, 2 linear elements and 2 quadratic elements resulting in 3 and 5 nodes
respectively is sufficient to capture the first moment statistics of the field accurately.
Using MCS, the values of the first row of covariance matrix are found out for various
correlation length parameters using linear and quadratic WFEM and FEM based shape
functions and compared with the exact values as shown in Figure 4.5. A CV of 10% is
considered for the study. A resolution of j = 1 is used for the discretization of a random
field using WFEM. It can be observed that the covariance matrix values calculated using
WFEM and FEM are in good agreement with the exact values for all the correlation length
parameters. This also proves that the shape function methods can accurately reproduce the
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Figure 4.3: Variation of mean values of Young’s modulus at x = 100mm with number of
nodes (random variables) while linear and quadratic BSWI scaling functions and FEM

based shape functions are used to model Gaussian field

Figure 4.4: Variation of standard deviation values of Young’s modulus at x = 100mm
with number of nodes (random variables) while linear and quadratic BSWI scaling

functions and FEM based shape functions are used to model Gaussian field

second order statistics of a random field regardless of the correlation length parameter.
Based on the above studies, for further analysis to solve the stochastic boundary value

problem as described in Case 1, the displacement field and random field are approximated
by BSWI scaling function having resolution j = 3 and j = 1 respectively. In the same
way, for discretization of displacement field and random field using FEM, 8 and 2 linear
elements respectively and 5 and 2 quadratic elements respectively are used. The mean
values of displacement field at x = 100mm obtained by using the first order perturbation
(FOP) approximation as in Equation 4.34 and second order perturbation approximation
(SOP) as given in Equation 4.35 respectively are shown in Figure 4.6 and 4.7. The values
are compared with the same obtained from MCS. The values are calculated and plotted
for different values of CV, obtained by varying the standard deviation of Young’s modulus
E(x). The correlation length parameter considered during the process is equal to 50. It
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Figure 4.5: Comparison of values of first row of covariance matrix obtained using linear
and quadratic BSWI WFEM and FEM based shape functions for Gaussian field, with

exact values for various correlation length parameters

can be observed that when linear shape functions are used, at a CV of 20%, FOP results
underestimate the mean values of displacement when compared with SOP and MCS results
by around 11%. When quadratic shape functions are used, the deviation between FOP and
the rest increases to 15% at a CV of 20%. Further, it can be seen from Figure 4.8 and
4.9 that at a CV of 20%, the standard deviation of displacements obtained from FOP and
SOP deviates by around 6% in comparison with the MCS results. Hence, this observation
reiterates the assumption that the perturbation approach used in Equation 4.34 and Equation
4.35 is suitable for small variances of E(x) for which CV is kept under 20%.

For a CV of 10%, Figure 4.10 and 4.11 shows variation of the mean values calculated at
x = 100mm for different correlation length parameters by employing linear and quadratic
shape functions for both response and random field modelling. It is observed from
Figure 4.10 and 4.11 that regardless of correlation length parameters, the mean values
of displacement evaluated using FOP and SOP accord well with the MCS values for
both WFEM and FEM using linear or quadratic shape functions. Figure 4.12 and 4.13
shows the variation of the standard deviation of displacement evaluated using linear and
quadratic shape functions against correlation length parameter. When the correlation length
parameter is decreased to a small value of 0.1, it is observed that the deviation between the
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Figure 4.6: Mean value of displacement at x = 100mm on the bar for different values of
CV by varying standard deviation of E(x) with Gaussian random field approximation,

obtained by using linear BSWI WFEM and FEM based shape functions for both response
and random field modelling

results obtained from WFEM and FEM is less than 1% when linear shape functions are
used for modelling. However, the deviation between WFEM and FEM values increase
to 3% when quadratic shape functions are used in the analysis. It is also observed that
when the correlation length parameter is increased to 100, the deviation between the results
obtained from the perturbation method and MCS (for both WFEM and FEM) increases to
1% - 2%.

The dependency of size of the stochastic mesh on correlation length parameter for FEM
shape functions is well documented in the literature [9, 95, 208, 209]. In the present study,
the deviation that is observed while using SFEM, though it is small can be attributed to
improper mapping between response mesh and random field mesh due to non-selection of
appropriate mesh size for the given correlation length parameters. This reinstates the fact
that using FEM shape functions will put a limitation on the selection of the random field
mesh size. On the contrary, no such limitation exists when BSWI scaling functions are used
and a coarse random field discretization can also be used to accurately capture the results
irrespective of the correlation length parameter.

Besides the evaluation of mean and standard deviation of displacement as discussed so
far, the normalized computational time required for implementing the perturbation method
(FOP and SOP combined) and MCS using WFEM and FEM based shape functions is also
calculated and shown in Table 4.1. The configuration of CPU (Central Processing Unit) is
kept the same throughout the computational process. While evaluating the computational
time, the correlation length parameter is kept equal to 50 and CV of 10% is assumed. The
sample size used for MCS is equal to 5000.

It can be observed from Table 4.1 that perturbation approach requires less
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Figure 4.7: Mean value of displacement at x = 100mm on the bar for different values of
CV by varying standard deviation of E(x) with Gaussian random field approximation,
obtained by using quadratic BSWI WFEM and FEM based shape functions for both

response and random field modelling

Figure 4.8: Standard deviation of displacement at x = 100mm on the bar for different
values of CV by varying standard deviation of E(x) with Gaussian random field

approximation, obtained by using linear BSWI WFEM and FEM based shape functions
for both response and random field modelling

Figure 4.9: Standard deviation of displacement at x = 100mm on the bar for different
values of CV by varying standard deviation of E(x) with Gaussian random field
approximation, obtained by using quadratic BSWI WFEM and FEM based shape

functions for both response and random field modelling
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Figure 4.10: Mean value of displacement at x = 100mm on the bar for varying
correlation length parameter of E(x) with Gaussian random field approximation, obtained

by using linear BSWI WFEM and FEM based shape functions for both response and
random field modelling

Figure 4.11: Mean value of displacement at x = 100mm on the bar for varying
correlation length parameter of E(x) with Gaussian random field approximation, obtained
by using quadratic BSWI WFEM and FEM based shape functions for both response and

random field modelling

Figure 4.12: Standard deviation of displacement at x = 100mm on the bar for varying
correlation length parameter of E(x) with Gaussian random field approximation, obtained

by using linear BSWI WFEM and FEM based shape functions for both response and
random field modelling
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Figure 4.13: Standard deviation of displacement at x = 100mm on the bar for varying
correlation length parameter of E(x) with Gaussian random field approximation, obtained
by using quadratic BSWI WFEM and FEM based shape functions for both response and

random field modelling

Table 4.1: Normalized computational times for perturbation method and MCS using
linear and quadratic WFEM and FEM shape functions, for Gaussian distribution of E(x)

Order of shape functions WFEM FEM
Perturbation MCS Perturbation MCS

Linear 4.57 53.65 1 51.46
Quadratic 11.47 129.77 2.46 75.58

computational effort when compared with MCS (5000 samples). It is also noted
that FEM based perturbation approach takes less time when compared with WFEM. The
higher computational times needed by WFEM could be attributed to the fact that the
scaling functions of WFEM are formed using B-splines, which are piecewise polynomials
and its explicit expression are obtained at Gauss points during the evaluation of system of
equations. As a result, when the number of Gauss points increases, the number of function
calls for obtaining the explicit expression of B-splines and thereby evaluating the scaling
functions also increases. This increases the computational overhead resulting in a higher
computational time. On the contrary, FEM shape functions are not piecewise polynomials
due to which, this issue is not encountered. The issue of higher computational overhead
as encountered in the case of WFEM can be possibly addressed and the computational
times can be further reduced by way of better programming practices and optimized
implementation of algorithms.

Case 2: Random field E(x) follows lognormal distribution
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Here, the modulus of elasticity is modelled as a homogeneous random field with a
lognormal distribution as given in Equation 4.4. A similar procedure analogous to the
one discussed in the context of a Gaussian distribution is followed and convergence is
established for the discretization of random field. A MCS sample size of 5000 is selected.
A resolution of j = 1 using linear and quadratic wavelet scaling functions resulting in 3
and 4 nodes respectively and with FEM shape functions 2 linear elements and 2 quadratic
elements resulting in 3 and 5 nodes respectively lead to converged solutions. Hence, these
parameters are used in further calculations. The mean values of displacement field obtained
using FOP, SOP and MCS is shown in Figure 4.14 and 4.15. The values are calculated at
x = 100mm, for different values of CV obtained by varying the standard deviation of
Young’s modulus E(x). It can be observed from Figure 4.14 and 4.15 that at a CV of
20%, the mean values of displacement field using FOP deviate away from SOP and MCS
values by more than 4.5%. Moreover, there is a difference of 13%-15% between the MCS
values and the SOP values for CV beyond 20% when WFEM (linear and quadratic shape
functions) and FEM (linear shape functions) are used. Hence, the perturbation approach
that is used here is suitable for CV of less than 20%. The standard deviation of displacement
field obtained for different values of CV is shown in Figure 4.16 and 4.17. It can be
observed that at a CV of 20%, SOP values deviate away from MCS values by 2.5% -
3.5%. When the CV is increased beyond 20%, the deviation also increases to 7.5% - 9%.

Figure 4.14: Mean value of displacement at x = 100mm on the bar for different values of
CV by varying standard deviation of E(x) with lognormal random field approximation,

obtained by using linear BSWI WFEM and FEM based shape functions for both response
and random field modelling

The mean values of displacement field calculated for varying correlation length
parameter is shown in Figure 4.18 and 4.19. It can be seen that the values obtained from
SOP deviate away from MCS values by at the most 1.5% - 2% for different correlation
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Figure 4.15: Mean value of displacement at x = 100mm on the bar for different values of
CV by varying standard deviation of E(x) with lognormal random field approximation,

obtained by using quadratic BSWI WFEM and FEM based shape functions for both
response and random field modelling

Figure 4.16: Standard deviation of displacement at x = 100mm on the bar for different
values of CV by varying standard deviation of E(x) with lognormal random field

approximation, obtained by using linear BSWI WFEM and FEM based shape functions
for both response and random field modelling

Figure 4.17: Standard deviation of displacement at x = 100mm on the bar for different
values of CV by varying standard deviation of E(x) with lognormal random field
approximation, obtained by using quadratic BSWI WFEM and FEM based shape

functions for both response and random field modelling
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length parameters. The variation of standard deviation of displacement against correlation
length parameters for linear and quadratic shape functions is shown in Figure 4.20 and
4.21. When linear shape functions are used for modelling the random field, the values
obtained from WFEM and FEM concur well with each other. In the case of quadratic
shape functions, it can be observed that there is a deviation of 2% - 3% between WFEM
and FEM values at small correlation length parameters.

Figure 4.18: Mean value of displacement at x = 100mm on the bar for varying
correlation length parameter of E(x) with lognormal random field approximation,

obtained by using linear BSWI WFEM and FEM based shape functions for both response
and random field modelling

Analogous to Gaussian distribution, the normalized computational time required for
implementing the perturbation method and MCS based on WFEM and FEM shape
functions is also calculated for lognormal distribution and given in Table 4.2. The
parameters such as correlation length parameter, CV of E(x) and MCS sample size are
all kept the same as, in the case of Gaussian distribution. From Table 4.2 it can be
noted that MCS (5000 samples) takes more computational effort when compared to a
perturbation approach. The perturbation method based on FEM shape functions has the
least computational time when compared with other methods, which could be attributed to
the reasons already discussed in the case of Gaussian distribution.

In conclusion, perturbation approach using wavelet scaling functions is found to be
accurate for both Gaussian and non-Gaussian fields, when compared with MCS and FEM
based evaluations. The computational times obtained from WFEM based perturbation
approach are on a higher side in comparison with FEM. However, it is important to note
that if randomness associated with geometric parameters are involved, re-meshing and
convergence studies needs to be done; in which case WFEM due to its inherent properties
like MRA could become more attractive with respect to computational time too. Further,
the effect of small correlation length on convergence associated with FEM discretization
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Figure 4.19: Mean value of displacement at x = 100mm on the bar for varying
correlation length parameter of E(x) with lognormal random field approximation,

obtained by using quadratic BSWI WFEM and FEM based shape functions for both
response and random field modelling

Figure 4.20: Standard deviation of displacement at x = 100mm on the bar for varying
correlation length parameter of E(x) with lognormal random field approximation,

obtained by using linear BSWI WFEM and FEM based shape functions for both response
and random field modelling

Figure 4.21: Standard deviation of displacement at x = 100mm on the bar for varying
correlation length parameter of E(x) with lognormal random field approximation,

obtained by using quadratic BSWI WFEM and FEM based shape functions for both
response and random field modelling
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Table 4.2: Normalized computational times for perturbation method and MCS using
linear and quadratic WFEM and FEM shape functions, for lognormal distribution of E(x)

Order of shape functions WFEM FEM
Perturbation MCS Perturbation MCS

Linear 4.87 51.76 1 44.19
Quadratic 10.32 115.51 2.08 62.52

also needs to be accounted for in the overall computational time. Thus, it is clear from
this example that BSWI WFEM results are comparable in different aspects to FEM, for
both Gaussian and non-Gaussian input fields. Hence, for further numerical examples only
Gaussian input field and WFEM is used.

4.3.1.2 Two-dimensional plane stress problem

In this example, a plane stress problem under uni-axial loading is studied to understand
the efficiency of the proposed method in problems having large stress gradients. Due to
symmetry, only a quarter portion of the plate is considered for analysis. Roller supports
are employed at the left edge and bottom edge as shown in Figure 4.22. The modulus
of elasticity is modelled as a homogeneous Gaussian random field as given by Equation
4.1. The mean value of Young’s modulus is taken as µE = 2 × 105MPa , with ν = 0.3,
L = 5mm, b = 6mm and F = 1000N/mm2. The analytical solution obtained from
deterministic analysis is given in Sadd [198]. The entire domain is modelled using one
2D BSWI C0 type element. In this problem, the displacement and random field are
approximated using linear and quadratic shape functions and the results are studied for
each case separately. For the current study to approximate the displacement field, scaling
functions with m = 2 and m = 3 with a resolution j = 3 is considered. Further, random
field is approximated with scaling function of same order that is used for displacement
approximation but having a coarse resolution of j = 1 to reduce the computational
effort. For illustration, the nodal distribution used for displacement and random field
approximation using linear wavelet scaling functions is shown in Figure 4.23a and 4.23b
respectively.

The mean and standard deviation values of displacement in y direction (µv and σv),
along the path A to B (x = 2.5mm, y = [0 : 6]mm) as seen in Figure 4.22, is calculated
using FOP, SOP and MCS for both linear and quadratic WFEM scaling functions. During
this analysis, the spatially varying Young’s modulus E(x) is considered having a variance
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Figure 4.22: Uni-axial loading of a plate under plane stress

(a) Displacement field under m = 2, j = 3 (b) Random field under m = 2, j = 1

Figure 4.23: Nodal distribution used for displacement and random field approximation
when the domain is discretized using single 2D BSWI C0 type element constructed using

linear WFEM scaling functions

of magnitude 2 × 108 which leads to a CV of 7.07%. The correlation length parameters
c1, c2, in x and y directions are considered equal to 2.5 and 3 respectively. Table 4.3
shows the mean and standard deviation values of displacement obtained when linear scaling
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Figure 4.24: Mean value of displacement in y direction at position C, for different values
of CV by varying standard deviation of E(x), obtained using linear and quadratic BSWI

WFEM based scaling functions

functions and quadratic scaling functions are employed. It can be observed from Table 4.3
that the mean and standard deviation values obtained using FOP and SOP concur well with
the MCS values for linear as well as quadratic shape functions.

Table 4.3: Mean and standard deviation values of displacement in y direction (µv and σv)
along path A to B obtained by using linear and quadratic WFEM scaling functions

Linear/Quadratic Distance (mm) µv σv
FOP SOP MCS FOP SOP MCS

m = 2

0 0 0 0 0 0 0
1.5 0.00750 0.00751 0.00752 0.000365 0.000365 0.000365
3.0 0.01500 0.01503 0.01503 0.000682 0.000683 0.000690
4.5 0.02250 0.02255 0.02254 0.001000 0.001002 0.001010
6.0 0.03000 0.03008 0.03006 0.001286 0.001289 0.001310

m = 3

0 0 0 0 0 0 0
1.33 0.00665 0.00671 0.00672 0.00060 0.00061 0.00062
2.00 0.00992 0.00999 0.01000 0.00072 0.00072 0.00073
3.33 0.01668 0.01675 0.01675 0.00088 0.00088 0.00089
4.66 0.02335 0.02343 0.02343 0.00106 0.00106 0.00106
6.00 0.03000 0.03016 0.03015 0.00153 0.00154 0.00149

The variation of mean values of displacement in y direction at position C(x = 5mm,
y = 6mm) for different CV is shown in Figure 4.24. It can be observed that mean values
obtained from perturbation approach are in good agreement with MCS values, for the range
of CV considered. The variation of the standard deviation values of displacement in y
direction at position C are shown in Figure 4.25. The difference in the standard deviation
of perturbation results from MCS is within 5% as observed for different values of CV. Thus,
it can be concluded that the mean values can be accurately captured using the WFEM based
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Figure 4.25: Standard deviation of displacement in y direction at position C, for different
values of CV by varying standard deviation of E(x), obtained using linear and quadratic

BSWI WFEM based scaling functions

perturbation approach for a 2D plane stress problem. It is also observed that when the CV
is increased beyond 12%, the standard deviation values obtained from WFEM deviate by
not more than 5% in comparison with MCS values. In conclusion, perturbation results
obtained from WFEM concur well with the results of MCS for a 2D plane stress problem
with only a small margin of variation at higher CV values.

4.3.1.3 Plate with a hole under uni-axial far field tension

In this example, a plate with a hole under uni-axial far field tensile loading is studied. Due
to symmetry, a quarter portion of the plate with dimensions, (L = 5mm, b = 6mm) , and
radius of the hole, a = 0.1mm having symmetry boundary conditions at the left edge and
bottom edge as shown in Figure 3.24 is considered for analysis. The modulus of elasticity
is modelled as a homogeneous Gaussian random field. The mean value of Young’s modulus
is taken as µE = 2×105MPa, Poisson’s ratio is considered to be deterministic with a value,
ν = 0.3 and a far-field stress of F = 1000N/mm2 is applied. The 2D irregular domain
of this problem is modelled using two 2D BSWI C0 type elements as it is the minimum
number of quadrilateral elements needed to discretize the geometry. The analytical solution
of the deterministic analysis is given in Sadd [198]. The results of convergence study using
a deterministic approach showing the stress concentration factor along y = 0 for various
order and resolutions of wavelet scaling functions are shown in the previous chapter 3 and
it is observed that m = 3, j = 3 leads to a converged solution. Hence, in the current
stochastic approach, the displacement field is approximated using m = 3, j = 3; but
random field is approximated using a coarser discretization of m = 2, j = 1 for both the
elements to reduce the computational effort. For illustration, the nodal distribution used for
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(a) Displacement field under m = 3, j = 3 (b) Random field under m = 2, j = 1

Figure 4.26: Nodal distribution used for displacement and random field approximation
when the domain is discretized using two 2D BSWI C0 type elements

displacement and random field approximation is shown in Figure 4.26a and Figure 4.26b
respectively.

A variance of magnitude 2× 108 which leads to a CV of 7.07% is considered. Further,
in the present study the correlation length parameters c1, c2, in x and y directions are
considered equal to 2.5 and 3 respectively. The mean and standard deviation values of
displacement in x direction, µu and σu respectively, along y = 0 are plotted in Figure
4.27 and 4.28. It can be seen that the values obtained from perturbation approach are in
good agreement with MCS values. Further, for different values of CV (5% to 14.14%),
mean and standard deviation of displacement are calculated at various positions A and B
on the problem domain. Table 4.4 shows the perturbation and MCS results of the mean
and standard deviation of displacement at position A (x = 0.1mm, y = 0mm). It can
be observed that the perturbation and MCS results match well even for the highest CV
considered in the study. The difference between perturbation and MCS is observed to be
less than 2%. A similar observation can be made for the mean and standard deviation of
displacement at position B (x = 0mm, y = 0.1mm) which is also tabulated in Table 4.4.

In conclusion, it can be observed that accurate results are obtained when BSWI scaling
functions at lower order and resolution, resulting in less number of random variables, are
used for modelling the random field. Hence, with the proposed stochastic WFEM for C0

type problems, a good accuracy can be achieved. The accuracy of the proposed stochastic
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Figure 4.27: Mean (µ) of displacement in x direction, along path A to D

Figure 4.28: Standard deviation (σ) of displacement in x direction, along path A to D

Table 4.4: Mean and standard deviation values of displacement in x direction (µu and σu)
at position A and in y direction (µv and σv) at position B, for different values of CV

obtained by varying the standard deviation of E(x)

Position CV% µu σu
FOP SOP MCS FOP SOP MCS

A

5.00 -3.822×10−4 -3.822×10−4 -3.822×10−4 6.93×10−6 6.94×10−6 6.94×10−6

7.07 -3.822×10−4 -3.822×10−4 -3.821×10−4 9.81×10−6 9.83×10−6 9.83×10−6

10.00 -3.822×10−4 -3.821×10−4 -3.820×10−4 1.38×10−5 1.39×10−5 1.40×10−5

14.14 -3.822×10−4 -3.821×10−4 -3.818×10−4 1.96×10−5 1.97×10−5 2.01×10−5

µv σv

B

5.00 1.195×10−3 1.195×10−3 1.195×10−3 1.12×10−5 1.12×10−5 1.12×10−5

7.07 1.195×10−3 1.196×10−3 1.196×10−3 1.58×10−5 1.58×10−5 1.58×10−5

10.00 1.195×10−3 1.196×10−3 1.197×10−3 2.24×10−5 2.25×10−5 2.26×10−5

14.14 1.195×10−3 1.198×10−3 1.199×10−3 3.17×10−5 3.19×10−5 3.26×10−5
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WFEM is also demonstrated for the numerical examples based on C1 type problems
(beams), which is shown next.

4.3.2 Numerical examples for beams based on Euler-Bernoulli and
Timoshenko beam theories

4.3.2.1 Cantilever beam based on Euler-Bernoulli beam theory

In this example, a cantilever beam as shown in Figure 3.17 is considered for analysis.
The modulus of elasticity is modelled as a homogeneous random field with a Gaussian
distribution, as given by Equation 4.1. The results from stochastic WFEM wherein both
the input random field and response are discretized using BSWI scaling functions are
compared with those obtained from SFEM wherein both random field and response are
discretized using Lagrange shape functions. The mean value of Young’s modulus is taken
as µE = 2× 105MPa with L = 100mm, b = 1mm, h = 1mm and q(x) = 0.01N/mm. The
entire domain of the beam is modelled using one BSWI C1 continuity element. The order
and resolution of BSWI scaling functions that are selected to be used for the deflection
approximation are obtained via a convergence study as shown in Figure 3.23 in chapter 3.
Figure 3.23 shows the relative variation in deflection norm obtained from deterministic
WFEM analysis using different order (quadratic and cubic) and resolution for various
boundary conditions. It is observed that form = 4 (cubic order) with j = 3 (resolution), the
relative variation is less than 0.1%. Hence, the deflection field is approximated using cubic
BSWI WFEM scaling functions with m = 4, j = 3 and the random field is discretized
using linear or quadratic scaling functions with resolution j = 1. For analysis using SFEM,
8 beam elements based on Hermite cubic interpolation are used for discretization of the
deflection field and 2 linear and quadratic elements based on Lagrange shape functions are
used for the discretization of the random field.

The mean values of deflection field at x = 100mm obtained by using the perturbation
approach is shown in Figure 4.29 and Figure 4.30. These values are compared with the
values obtained from MCS and the results are plotted for different values of CV, obtained by
varying the standard deviation of Young’s modulus E(x). The correlation length parameter
considered is 50. It can be observed from that in the case of both WFEM and FEM when
linear and quadratic shape functions are used to model the random field respectively, at a
CV of 10% and beyond, FOP results underestimate the mean values of deflection when
compared with SOP and MCS results. The standard deviation values of deflection field
obtained by using the perturbation approach are shown in Figure 4.31 and Figure 4.32. It
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can be seen in Figure 4.31 and Figure 4.32 that for a CV of less than 20%, the standard
deviation values of deflection obtained from FOP and SOP deviate by 10% at the most in
comparison with the MCS results. However, at a CV of 25%, the deflections are observed
to deviate by around 25% and 32% when the random field is modelled using linear and
quadratic shape functions respectively.

Figure 4.29: Variation of mean value of deflection at x = 100mm for the EBT based
cantilever beam against CV, when linear BSWI WFEM and FEM based shape functions

are used for random field modelling

Figure 4.30: Variation of mean value of deflection at x = 100mm for the EBT based
cantilever beam against CV, when quadratic BSWI WFEM and FEM based shape

functions are used for random field modelling

Figure 4.33 and Figure 4.34 shows the variation of mean values of deflection calculated
at x = 100mm for different correlation length parameters by using linear and quadratic
shape functions for random field modelling respectively. A CV of 5% is considered during
the process. It can be observed from Figure 4.33 and Figure 4.34 that the mean values
of deflection evaluated using FOP and SOP concur well with the MCS values in the case
of both WFEM and FEM using linear or quadratic shape functions for different values
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Figure 4.31: Variation of standard deviation of deflection at x = 100mm for the EBT
based cantilever beam against CV, when linear BSWI WFEM and FEM based shape

functions are used for random field modelling

Figure 4.32: Variation of standard deviation of deflection at x = 100mm for the EBT
based cantilever beam against CV, when quadratic BSWI WFEM and FEM based shape

functions are used for random field modelling

of correlation length parameters. The variation of standard deviation values of deflection
against correlation length parameter in which the random field is modelled using linear
or quadratic shape functions are shown in Figure 4.35 and Figure 4.36 respectively. It
can be observed from Figure 4.35 that the deviation between FOP and SOP values from
MCS is less than 5% for different correlation length parameters when the random field
is discretized using linear shape functions. When the standard deviation of deflection
is evaluated by utilizing quadratic shape functions for random field discretization, it is
observed from Figure 4.36 that the FOP and SOP values obtained by using FEM Lagrange
shape functions underestimate the standard deviation of deflection by around 10% in
comparison with WFEM for a correlation length parameter less than 10. However, when
the correlation length parameter is greater than 10, the standard deviation values obtained
with FEM Lagrange shape functions deviate away from its own MCS values by around
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5%-10%. Further, it can be observed from both Figure 4.35 and Figure 4.36 that the
standard deviation values obtained from perturbation approach using BSWI WFEM shape
functions closely match with its own MCS results.

Figure 4.33: Variation of mean value of deflection at x = 100mm for the EBT based
cantilever beam against correlation length parameter, when linear BSWI WFEM and FEM

based shape functions are used for random field modelling

Figure 4.34: Variation of mean value of deflection at x = 100mm for the EBT based
cantilever beam against correlation length parameter, when quadratic BSWI WFEM and

FEM based shape functions are used for random field modelling
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Figure 4.35: Variation of standard deviation of deflection at x = 100mm for the EBT
based cantilever beam against correlation length parameter, when linear BSWI WFEM

and FEM based shape functions are used for random field modelling

Figure 4.36: Variation of standard deviation of deflection at x = 100mm for the EBT
based cantilever beam against correlation length parameter, when quadratic BSWI WFEM

and FEM based shape functions are used for random field modelling

4.3.2.2 Simply supported beam based on Euler-Bernoulli beam theory

In this example, a simply supported beam as shown in Figure 3.18 is considered for
analysis. The material and geometric properties along with discretization that were
considered in the case of a cantilever beam are used in the current study as well. The mean
values of deflection field at x = 50mm obtained by using the perturbation approach is
shown in Figure 4.37 and Figure 4.38. The values obtained from the perturbation approach
are compared with the MCS values and the results are plotted for different values of CV,
obtained by varying the standard deviation of Young’s modulus E(x). The correlation
length parameter considered during the process is 50. It can be observed from Figure
4.37 and Figure 4.38 that analogous to the case of a cantilever beam, when linear and
quadratic shape functions are used to model the random field respectively, at a CV of 10%
and beyond, FOP results obtained from WFEM and FEM underestimate the mean values
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of deflection when compared with SOP and MCS results. The standard deviation values
of deflection field obtained by using the perturbation approach are shown in Figure 4.39
and Figure 4.40. It can be noted that the deviation between the standard deviation values
obtained from perturbation approach and MCS is around 12% at a CV of 20% and it is
increased to 30% when the CV is increased to 25%.

Figure 4.37: Variation of mean value of deflection at x = 50mm for the EBT based
simply supported beam against CV, when linear BSWI WFEM and FEM based shape

functions are used for random field modelling

Figure 4.38: Variation of mean value of deflection at x = 50mm for the EBT based
simply supported beam against CV, when quadratic BSWI WFEM and FEM based shape

functions are used for random field modelling

The variation of mean values of deflection calculated at x = 50mm for different
correlation length parameters at a CV of 5% while linear and quadratic shape functions
are used for random field modelling is shown in Figure 4.41 and Figure 4.42 respectively.
It can be observed from Figure 4.41 and Figure 4.42 that the mean values of deflection
evaluated using FOP and SOP concur well with the MCS values using linear or quadratic
shape functions for different values of correlation length parameters. On the same lines, the
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Figure 4.39: Variation of standard deviation of deflection at x = 50mm for the EBT based
simply supported beam against CV, when linear BSWI WFEM and FEM based shape

functions are used for random field modelling

Figure 4.40: Variation of standard deviation of deflection at x = 50mm for the EBT based
simply supported beam against CV, when quadratic BSWI WFEM and FEM based shape

functions are used for random field modelling

variation of standard deviation values of deflection against correlation length parameter in
which the random field is discretized using linear and quadratic shape functions are shown
in Figure 4.43 and Figure 4.44 respectively. It can be observed from Figure 4.43 that
the values obtained from perturbation approach are in good agreement with the values of
MCS for different correlation length parameters when the random field is discretized using
linear shape functions. Even when the correlation length parameter is small, the deviation is
observed to be less than 5%. However, when quadratic shape functions are used for random
field discretization, it is observed from Figure 4.44 that for correlation length parameter
less than 10, the FOP and SOP values obtained by using FEM Lagrange shape functions
underestimate the standard deviation values of deflection by around 15% in comparison
with WFEM. Also it is found that, for correlation length parameter greater than 10, the
standard deviation values obtained with the help of FEM Lagrange shape functions shows
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a 5% deviation from its own MCS values, while FEM MCS results are approaching the
values obtained from WFEM. It is also observed that unlike FEM, the standard deviation
values obtained from perturbation approach using BSWI WFEM shape functions remain in
good agreement with its own MCS results for different correlation length parameters

Figure 4.41: Variation of mean value of deflection at x = 50mm for the EBT based
simply supported beam against correlation length parameter, when linear BSWI WFEM

and FEM based shape functions are used for random field modelling

Figure 4.42: Variation of mean value of deflection at x = 50mm for the EBT based
simply supported beam against correlation length parameter, when quadratic BSWI

WFEM and FEM based shape functions are used for random field modelling

The results obtained from the current study (for both cantilever and simply supported
boundary conditions) in which the effects of variation of correlation length parameter is
studied, show a significant deviation between the values of standard deviation obtained
from SFEM and WFEM at smaller correlation length parameters. The deviation could be
because of the improper mapping between FEM response mesh and random field mesh due
to non-selection of appropriate mesh size for the given correlation length parameter. It is
based on the fact, which is well documented in the literature [9, 95, 208, 209] that the size
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Figure 4.43: Variation of standard deviation of deflection at x = 50mm for the EBT based
simply supported beam against correlation length parameter, when linear BSWI WFEM

and FEM based shape functions are used for random field modelling

Figure 4.44: Variation of standard deviation of deflection at x = 50mm for the EBT based
simply supported beam against correlation length parameter, when quadratic BSWI

WFEM and FEM based shape functions are used for random field modelling

of the SFEM mesh should be selected in accordance with the correlation length parameter
being used. Thus, it limits the selection of the random field mesh size in the case of FEM.
On the contrary, no such limitations are observed when BSWI scaling functions are used
and a coarse random field discretization accurately captures the results irrespective of the
correlation length parameter.

4.3.2.3 Cantilever beam based on Timoshenko beam theory

In this example, the cantilever beam as shown in Figure 3.17 is considered for analysis
wherein the formulation is based on TBT. The depth of the beam is considered as
h = 15mm, shear correction coefficient Ks = 5/6, Poisson’s ratio ν = 0.3, load
q(x) = 10N/mm and rest of the material and geometric properties are kept the same
as that considered in the case of EBT based cantilever beam. The domain is modelled
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using one BSWI WFEM element with C0 continuity. The deflection field is approximated
using quadratic scaling functions with m = 3 and resolution j = 3 and for random field
discretization both linear and quadratic scaling functions with resolution j = 1 are used.
A SFEM analysis of the beam is also carried out to conduct a comparative study. For
FEM, 5 quadratic elements based on Lagrange shape functions are used for modelling the
deflection field and 2 linear or quadratic elements based on Lagrange shape functions are
used for the discretization of the random field.

The mean values of deflection field when linear and quadratic shape functions are used
to model the random field at x = 100mm are shown in Figure 4.45 and Figure 4.46
respectively. The mean values obtained by using the perturbation approach are compared
with the MCS values and the results are plotted for different values of CV, obtained by
varying the standard deviation of Young’s modulus E(x). The correlation length parameter
considered during the process is equal to 50. It can be observed from Figure 4.45 and Figure
4.46 that for a CV of more than 14%, FOP under-predicts the mean values in comparison
with SOP and MCS. The corresponding standard deviation of deflection is shown in Figure
4.47 and Figure 4.48. It can be observed from Figure 4.47 and Figure 4.48 that at a CV of
20%, the deviation between the values obtained from perturbation approach and MCS is
around 11% regardless of tools (FEM or WFEM) used. When the CV is increased to 25%,
the deviation also increases to 18%.

The variation of mean values of deflection calculated at a CV of 5% for different
correlation length parameters while linear and quadratic shape functions is used for random
field modelling are shown in Figure 4.49 and Figure 4.50 respectively. It can be observed
that the mean values of deflection evaluated using the perturbation approach, concur well
with the MCS values for different correlation length parameters regardless of the tools
used. Figure 4.51 and Figure 4.52 shows the variation of standard deviation of deflection
at x = 100mm against correlation length parameter, for random field discretization using
linear and quadratic shape functions respectively. When the random field is discretized
using linear shape functions, it can be seen in Figure 4.51 that the standard deviation values
obtained from both FEM and WFEM using perturbation and MCS approaches remain in
good agreement with each other. However, for random field discretization done using
quadratic shape functions as shown in Figure 4.52, a deviation of less than 5% is observed
between FEM and WFEM for correlation length parameter less than 10. The deviation
between the values obtained from FEM and WFEM at certain correlation length parameters
can be attributed to the reasons already discussed in the context of EBT based beams.
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Figure 4.45: Variation of mean value of deflection at x = 100mm for the TBT based
cantilever beam against CV, when linear BSWI WFEM and FEM based shape functions

are used for random field modelling

Figure 4.46: Variation of mean value of deflection at x = 100mm for the TBT based
cantilever beam against CV, when quadratic BSWI WFEM and FEM based shape

functions are used for random field modelling

Figure 4.47: Variation of standard deviation value of deflection at x = 100mm for the
TBT based cantilever beam against CV, when linear BSWI WFEM and FEM based shape

functions are used for random field modelling
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Figure 4.48: Variation of standard deviation value of deflection at x = 100mm for the
TBT based cantilever beam against CV, when quadratic BSWI WFEM and FEM based

shape functions are used for random field modelling

Figure 4.49: Variation of mean value of deflection at x = 100mm for the TBT based
cantilever beam against correlation length parameter, when linear BSWI WFEM and FEM

based shape functions are used for random field modelling

Figure 4.50: Variation of mean value of deflection at x = 100mm for the TBT based
cantilever beam against correlation length parameter, when quadratic BSWI WFEM and

FEM based shape functions are used for random field modelling
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Figure 4.51: Variation of standard deviation value of deflection at x = 100mm for the
TBT based cantilever beam against correlation length parameter, when linear BSWI

WFEM and FEM based shape functions are used for random field modelling

Figure 4.52: Variation of standard deviation value of deflection at x = 100mm for the
TBT based cantilever beam against correlation length parameter, when quadratic BSWI

WFEM and FEM based shape functions are used for random field modelling

4.3.2.4 Simply supported beam based on Timoshenko beam theory

In this example, a simply supported beam as shown in Figure 3.18 is considered for
analysis. The material, geometric properties and discretization that were considered in
the case of a TBT based cantilever beam are used in the current study as well. The mean
and standard deviation values of deflection field at x = 50mm are shown in Figure 4.53
-Figure 4.56 in which the perturbation values are compared with the values obtained from
MCS and the results are plotted for different values of CV. It can be observed from Figure
4.53 and Figure 4.54 that mean values are under-predicted by FOP in comparison with SOP
and MCS results by around 5% at a CV of 20%. For values of CV higher than 20%, the
deviation between FOP values and the rest also increases, similar to the observation that
has been noted so far from previous examples. The values of standard deviation as seen
in Figure 4.55 and Figure 4.56 show that for CV values less than 15% both perturbation
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Figure 4.53: Variation of mean value of deflection at x = 50mm for the TBT based
simply supported beam against CV, when linear BSWI WFEM and FEM based shape

functions are used for random field modelling

and MCS values match well, however for CV of 20% and more, the deviation observed
in the value of standard deviation obtained from the perturbation approach and MCS is
between 18% - 28%. This reiterates the assumption that perturbation approach is suitable
for analysis with small variances only.

Figure 4.57 and Figure 4.58 shows the variation of mean values of deflection calculated
at x = 50mm and at a CV of 5% for different correlation length parameters by using
linear and quadratic shape functions for random field modelling respectively. It can be
observed that perturbation values remain in good agreement with the MCS results for
different correlation length parameters. Similarly, the variation of standard deviation of
deflection against correlation length parameters for random field modelling using linear
and quadratic shape functions is shown in Figure 4.59 and Figure 4.60 respectively. It can
be observed from Figure 4.59 that when the random field is discretized using linear shape
functions, the values obtained from perturbation approach are in good agreement with the
values of MCS for different correlation length parameters. However, when quadratic shape
functions are used for random field discretization, it can be observed from Figure 4.60 that
for correlation length parameter less than 50, the perturbation and MCS values obtained by
using FEM Lagrange shape functions deviate away from the values obtained with WFEM.
A maximum deviation of 12% is observed when the correlation length parameter is less
than 1.

In addition to evaluating the values of mean and standard deviation of deflection for
various boundary conditions, the normalized computational time required for implementing
the perturbation method (FOP and SOP combined) and MCS using BSWI WFEM and FEM
is also calculated for beams and shown in Tables 4.5-4.8. The configuration of CPU is
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Figure 4.54: Variation of mean value of deflection at x = 50mm for the TBT based
simply supported beam against CV, when quadratic BSWI WFEM and FEM based shape

functions are used for random field modelling

Figure 4.55: Variation of standard deviation value of deflection at x = 50mm for the TBT
based simply supported beam against CV, when linear BSWI WFEM and FEM based

shape functions are used for random field modelling

Figure 4.56: Variation of standard deviation value of deflection at x = 50mm for the TBT
based simply supported beam against CV, when quadratic BSWI WFEM and FEM based

shape functions are used for random field modelling
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Figure 4.57: Variation of mean value of deflection at x = 50mm for the TBT based
simply supported beam against correlation length parameter, when linear BSWI WFEM

and FEM based shape functions are used for random field modelling

Figure 4.58: Variation of mean value of deflection at x = 50mm for the TBT based
simply supported beam against correlation length parameter, when quadratic BSWI

WFEM and FEM based shape functions are used for random field modelling

Figure 4.59: Variation of standard deviation value of deflection at x = 50mm for the TBT
based simply supported beam against correlation length parameter, when linear BSWI

WFEM and FEM based shape functions are used for random field modelling
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Figure 4.60: Variation of standard deviation value of deflection at x = 50mm for the TBT
based simply supported beam against correlation length parameter, when quadratic BSWI

WFEM and FEM based shape functions are used for random field modelling

kept the same throughout the computational process. While evaluating the computational
time, the correlation length parameter is kept equal to 50 and CV of 5% is assumed. The
sample size used for MCS is equal to 5000. It can be observed from Table 4.5 and Table
4.6 that for beams based on EBT formulation, the perturbation approach (FOP and SOP
combined) takes less computational time when compared with MCS in the case of both
WFEM and FEM. However, it is also noted that FEM based perturbation approach takes
less time when compared with WFEM. The higher computational times needed by WFEM
could be attributed to the reasons already discussed in the context of stochastic 1D bar
element. However, for the benefit of the reader it is once again emphasized here.

The underlying cardinal B-splines which form the scaling functions of WFEM are
piecewise polynomials and its explicit expression are obtained at Gauss points during the
evaluation of system of equations. Hence, as the number of Gauss points increases, the
number of function calls for obtaining the explicit expression of cardinal B-splines and
thereby evaluating the scaling functions also increases. This increases the computational
overhead resulting in a higher computational time. On the contrary, FEM shape functions
are not piecewise polynomials due to which, this issue is not encountered. By way of better
programming practices and optimized implementation of algorithms, the issue of higher
computational overhead as encountered in the case of WFEM can be possibly addressed
and the computational times can be further reduced. It is also noted from Tables 4.5-4.6
that MCS times obtained from FEM are higher when compared with WFEM because the
total DOF used by EBT based BSWI WFEM element is less when compared with the total
DOF used by multiple FEM elements. The normalized computational times based on TBT
formulation are given in Tables 4.7-4.8. For the perturbation case, a similar conclusion
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Table 4.5: Normalized computational times of WFEM based perturbation method (for
both FOP and SOP) and MCS using linear and quadratic shape functions for random field

modelling for EBT based cantilever beam

Cantilever (EBT) Perturbation MCS
mr = 2 mr = 3 mr = 2 mr = 3

WFEM 5.47 6.92 27.56 30.63
FEM 1 1.92 44.53 52.44

Table 4.6: Normalized computational times of WFEM based perturbation method (for
both FOP and SOP) and MCS using linear and quadratic shape functions for random field

modelling for EBT based simply supported beam

Simply supported (EBT) Perturbation MCS
mr = 2 mr = 3 mr = 2 mr = 3

WFEM 5.07 5.95 26.79 30.86
FEM 1 1.96 43.93 50.24

can be drawn that is observed in the case of EBT based formulation. The DOF in the case
of WFEM and FEM are same for the TBT based formulation, and hence the difference
between their MCS computational times is reduced. Nonetheless, the more computational
time taken by WFEM can be attributed to the reasons discussed earlier. However, it is
important to note that if randomness associated with geometric parameters are involved,
re-meshing and convergence studies needs to be done; in which case WFEM due to its
inherent properties like MRA could become more attractive with respect to computational
time too. Further, the effect of small correlation length on convergence associated with
FEM discretization also needs to be accounted for in the overall computational time.

The numerical examples on beams considered so far show that the random field with a

Table 4.7: Normalized computational times of WFEM based perturbation method (for
both FOP and SOP) and MCS using linear and quadratic shape functions for random field

modelling for TBT based cantilever beam

Cantilever (TBT) Perturbation MCS
mr = 2 mr = 3 mr = 2 mr = 3

WFEM 6.74 7.80 50.25 54.68
FEM 1 1.98 44.01 51.27
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Table 4.8: Normalized computational times of WFEM based perturbation method (for
both FOP and SOP) and MCS using linear and quadratic shape functions for random field

modelling for TBT based simply supported beam

Simply supported (TBT) Perturbation MCS
mr = 2 mr = 3 mr = 2 mr = 3

WFEM 5.45 6.81 44.89 48.49
FEM 1 1.73 36.63 44.20

Gaussian distribution can be accurately modelled using BSWI WFEM scaling functions. To
demonstrate that the proposed method is effective for non-Gaussian distributions as well, a
random field with a lognormal distribution is considered in the next numerical example.

4.3.2.5 Modelling of random field with a non-Gaussian distribution

In this example, a cantilever beam as shown in Figure 3.17 is considered for analysis
wherein, the modulus of elasticity is modelled as a homogeneous random field with a
lognormal distribution, as given by Equation 4.4. Exponential auto-covariance function
is considered during the study. The formulations based on both EBT and TBT are
used in the analysis. The dimensions and loading for the cantilever beam are kept the
same as considered in the previous examples. The displacement field is modelled using
m = 4, j = 3 for the EBT based formulation and m = 3, j = 3 for the TBT based
formulation. The random field is modelled using m = 3, j = 1 in both the cases and
correlation length parameter used is equal to 50. Tables 4.9 and 4.10 show the variation of
mean and standard deviation values against CV for the EBT based formulation and Tables
4.11 and 4.12 show the variation of mean and standard deviation values against CV for the
TBT based formulation.

It can be observed from Table 4.9 for EBT based formulation that at a CV of 20%
the deviation in mean values between SOP and MCS is around 2% using both WFEM
and FEM. However, the variation for standard deviation, as observed from Table 4.10 is
around 4% using WFEM and 7.45% using FEM. For TBT based formulations, Table 4.11
shows that the variation in mean values is around 1.8-2% at 20% CV. In the case of standard
deviation values, the variation as observed from Table 4.12 is around 4-5% for both WFEM
and FEM. Further, it is observed from all the Tables 4.9 - 4.12 that the variation in mean
and standard deviation values reduces to around 1% when the CV value is less than 15%.
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Table 4.9: Variation of mean value of deflection at x = 100mm for the EBT based
cantilever beam against CV, when quadratic BSWI WFEM and FEM based shape

functions are used for modelling lognormal random field

CV% WFEM FEM
FOP SOP MCS FOP SOP MCS

5.00 7.500 7.508 7.518 7.500 7.508 7.519
10.00 7.500 7.534 7.562 7.500 7.533 7.573
14.14 7.500 7.567 7.638 7.500 7.566 7.644
20.00 7.500 7.629 7.800 7.500 7.627 7.773
25.00 7.500 7.693 7.937 7.500 7.690 7.924

Table 4.10: Variation of standard deviation value of deflection at x = 100mm for the EBT
based cantilever beam against CV, when quadratic BSWI WFEM and FEM based shape

functions are used for modelling lognormal random field

CV% WFEM FEM
FOP SOP MCS FOP SOP MCS

5.00 0.329 0.329 0.325 0.316 0.316 0.321
10.00 0.655 0.656 0.659 0.629 0.631 0.656
14.14 0.920 0.923 0.940 0.884 0.887 0.929
20.00 1.282 1.292 1.351 1.232 1.241 1.341
25.00 1.577 1.594 1.756 1.515 1.531 1.701

Table 4.11: Variation of mean value of deflection at x = 100mm for the TBT based
cantilever beam against CV, when quadratic BSWI WFEM and FEM based shape

functions are used for modelling lognormal random field

CV% WFEM FEM
FOP SOP MCS FOP SOP MCS

5.00 2.274 2.277 2.279 2.274 2.276 2.279
10.00 2.274 2.284 2.294 2.274 2.284 2.296
14.14 2.274 2.294 2.314 2.274 2.294 2.318
20.00 2.274 2.313 2.368 2.274 2.313 2.357
25.00 2.274 2.333 2.402 2.274 2.332 2.401
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Table 4.12: Variation of standard deviation value of deflection at x = 100mm for the TBT
based cantilever beam against CV, when quadratic BSWI WFEM and FEM based shape

functions are used for modelling lognormal random field

CV% WFEM FEM
FOP SOP MCS FOP SOP MCS

5.00 0.099 0.099 0.098 0.099 0.099 0.097
10.00 0.198 0.198 0.199 0.197 0.197 0.198
14.14 0.278 0.279 0.284 0.276 0.277 0.281
20.00 0.387 0.390 0.407 0.385 0.388 0.406
25.00 0.476 0.482 0.531 0.474 0.479 0.515

4.3.3 Numerical examples for stochastic buckling of columns

Two numerical examples are solved with the proposed stochastic BSWI WFEM
formulation for elastic buckling of columns. As numerical examples, columns with
pinned-pinned (p-p) and fixed-pinned (f-p) boundary conditions under axial compressive
loading as shown in Figure 4.61 are considered. Column of length L = 100mm,
cross-sectional dimensions b = 1mm and h = 1mm is considered for the study. Young’s
modulus is taken as a homogeneous lognormal random field with a mean µEl

= 2 ×
105MPa. The response statistics for buckling loads and mode shapes are calculated via
perturbation approach and the results are compared with the statistics obtained from MCS.
In order to fix the number of random variables which is to be used in the modelling of
Young’s modulus as defined by Equation 4.4, the random field is discretized using different
number of random variables and the variation of mean values and standard deviation of
Young’s modulus is evaluated using MCS on the same lines as shown in Figures 4.3 and
4.4 respectively. A resolution of j = 2 with linear scaling functions resulting in 5 nodes
captures the mean and standard deviation values of Young’s modulus accurately and is
therefore considered for the analysis. From a convergence study, based on the calculation
of relative percentage error in L2 norm of mean and standard deviation values of Young’s
modulus for various MCS sample size; it is noted that an error of less than 1% is obtained
when the MCS sample size is 5000. Hence, for the current study MCS sample size of
5000 is considered. The entire domain of the column is modelled using one BSWI C1

type continuity element. The deflection field is approximated using cubic (m = 4) BSWI
scaling functions with a resolution of (j = 4) and the random field is approximated with
linear (m = 2) BSWI scaling functions with a coarse resolution of (j = 2).

The mean values of the buckling loads (first, second and third) for a p-p and f-p column
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obtained by using the perturbation approach are shown in Figure 4.62. These values are
compared with the values obtained from MCS and the results are plotted for different values
of CV, obtained by varying the standard deviation of Young’s modulus. The correlation
length parameter considered is 50. It can be observed from Figure 4.62 that for a p-p
column, at a CV of 20% the results obtained from perturbation approach are in good
agreement with MCS for all the buckling loads. However, at a CV of 25%, a deviation
of 3% is observed between the perturbation and MCS results in the case of third buckling
load. However, for an f-p column, at a CV of 25% there is a deviation of around 5%
between the results obtained from perturbation approach and MCS for the third buckling
load. The variation of standard deviation values of buckling loads against CV are shown in
Figure 4.63. It can be observed that for both p-p and f-p columns, even at a CV of 25%, the
values obtained from perturbation approach concur well with the MCS values for all the
buckling loads. The variation of mean and standard deviation values of buckling loads for
a p-p column and f-p column, obtained by using the perturbation approach against varying
correlation length parameter is shown in Figure 4.64 and Figure 4.65 respectively. A value
of 5% is considered for CV during the process. Figure 4.64 and Figure 4.65 shows that even
at a small correlation length parameter the values obtained from WFEM based perturbation
approach remain in good agreement with the MCS values for both the cases. This shows
that a coarse discretization of random field using BSWI WFEM is able to accurately
capture the results even at extreme correlation length parameters unlike SFEM, wherein the
dependency of correlation length parameter on random field mesh would require a higher
number of random variables to be used for accurate results.

Besides the buckling loads, the first three mode shapes are also plotted for the p-p
column and f-p column as shown in Figure 4.66 and Figure 4.67 respectively. It can be seen
that WFEM based perturbation approach accurately captures the first three mode shapes
when compared with MCS results. Furthermore, the first three mode shapes reinstates
the accuracy of the WFEM based perturbation approach. In addition to evaluating the
mean and standard deviation values of the buckling loads, the normalized computational
times required by the perturbation approach (FOP and SOP combined) and MCS (5000
simulations) is also calculated. It is noted that in the case of a p-p column, the execution
time of MCS is 39.63 times more in comparison with WFEM based perturbation approach.
Similarly, for a f-p column, the execution time of MCS is 38.28 times more than the
perturbation method. Hence, the proposed BSWI WFEM based perturbation approach
is not only accurate but also computationally more efficient in comparison with the MCS
based approach.
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Based on the analysis from the preceding 1D and 2D examples in the current chapter,
conclusions are drawn and discussed in the following section.

(a) Pinned-Pinned (b) Pinned-Fixed

Figure 4.61: Columns with various boundary conditions under axial compressive loading
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(a) First buckling load

(b) Second buckling load

(c) Third buckling load

Figure 4.62: Variation of mean values of buckling loads for columns with different
boundary conditions against CV
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(a) First buckling load

(b) Second buckling load

(c) Third buckling load

Figure 4.63: Variation of standard deviation values of buckling loads for columns with
different boundary conditions against CV
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(a) First buckling load

(b) Second buckling load

(c) Third buckling load

Figure 4.64: Variation of mean values of buckling loads for columns with different
boundary conditions against correlation length parameter
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(a) First buckling load

(b) Second buckling load

(c) Third buckling load

Figure 4.65: Variation of standard deviation values of buckling loads for columns with
different boundary conditions against correlation length parameter
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(a) First mode shape

(b) Second mode shape

(c) Third mode shape

Figure 4.66: Mode shapes for a pinned-pinned column
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(a) First mode shape

(b) Second mode shape

(c) Third mode shape

Figure 4.67: Mode shapes for a fixed-pinned column
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4.4 Conclusion

In the current chapter, the formulation of stochastic BSWI WFEM for 1D and 2D problems
in elasto-statics is proposed in which the spatial variation of modulus of elasticity is
modelled as a homogeneous random field. The present work suggests using BSWI scaling
functions to discretize random field. Two scale relation and MRA properties of BSWI
wavelets help the physical problem to be discretized using less number of elements; say 1
or 2, as witnessed in the numerical examples and thus can reduce the computational cost
required for mesh assembly when compared to FEM.

The response statistics of mean and standard deviation are calculated using the
perturbation approach. Numerical examples based on 1D bar, 2D plane stress problems,
beams based on EBT and TBT and stochastic buckling of columns are solved. The
results obtained from WFEM based perturbation approach are compared with the results
of MCS. Further, in order to validate the proposed methodology perturbation and MCS
results based on FEM Lagrange shape functions for 1D problem (bar and beams) are also
obtained and a comparative study between the results of WFEM and FEM is done. A
single BSWI WFEM element with coarse nodal distribution for random field modelling,
perform well by accurately capturing the standard deviations even at extremely small
or large correlation length parameters as observed in 1D problem. On the other hand,
FEM demands an appropriate response and random field mesh size in accordance with
the correlation length of the input field, which otherwise would result in an erroneous
result. Normalized computational times are also shown for 1D problems, from which it
can be concluded that FEM based perturbation times are less in comparison with WFEM.
However, it is to be noted that those computational times are estimated without accounting
for the time associated with re-meshing and convergence studies. The 2D plane stress
problems demonstrate that high accuracy can be maintained even when the random field
is modelled with wavelet scaling functions of lower order and lower resolution, thereby
reducing the computational effort needed.

It can be concluded from the results of 1D and 2D numerical examples for problems in
elasto-statics that the proposed BSWI WFEM based perturbation approach (both FOP and
SOP) accurately captures the response statistics of the displacement field for CV values of
up to 15-20% . For problems in beams, accurate results are obtained when the values of
CV is less than or equal to 15% and in the case of stochastic buckling of columns, WFEM
based perturbation approach can be used to accurately capture the response statistics of the
buckling load for values of CV up to 25%. In the next chapter, deterministic and stochastic
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BSWI WFEM formulation for beam analysis incorporating von Kármán nonlinear strains
is shown and discussed in detail.
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Chapter 5

BSWI WFEM formulation for beams
incorporating von Kármán nonlinear
strains

Generally, thin metallic beams and plates can undergo large deflection in transverse
directions with small strains (without generating plastic strains and hence linear constitutive
relations) and moderate rotations. However, this can introduce nonlinearity into the set
of equations due to the presence of in-plane forces which are related to the rotations.
The von Kármán nonlinear strains based WFEM formulation introduced in this chapter
is applicable for such class of beam problems undergoing large transverse deflection
with small strains, resulting in stretching of the neutral axis leading to nonlinear strain
displacement behaviour [210, 211]. Thus, the strain displacement relation is modified to
incorporate nonlinear coupling terms (ignoring large strain terms) that account for axial
displacement even when there are no applied axial forces. Further, it is found that the
construction of beam elements incorporating von Kármán nonlinear strains with BSWI
WFEM does not exist in the literature.

Hence, the current chapter proposes the deterministic and stochastic formulation of
beam elements using BSWI based WFEM by incorporating von Kármán nonlinear strains.
Formulation is used for both EBT and TBT. The background cell based Gauss quadrature is
used for numerical integration. For the deterministic case, numerical examples are solved
for transverse deflections and stresses in axial direction and are compared with the existing
converged results from FEM. The issues of membrane and shear locking for the proposed
elements are examined and solution techniques are also suggested to overcome the issues.
Following the deterministic formulation, a stochastic BSWI WFEM formulation is shown
for beams incorporating von Kármán nonlinear strains wherein, the spatial variation of

119



modulus of elasticity is modelled as a homogeneous random field. A set of three nonlinear
of equations are derived based on perturbation approach for evaluating derivatives of field
variable with respect to random variables. Numerical examples based on the stochastic
formulation are analyzed for response statistics, on similar lines as discussed in the previous
chapter 4.

5.1 Deterministic BSWI WFEM formulation for beams
incorporating von Kármán nonlinear strains

The proposed wavelet finite element formulation by incorporating von Kármán strains for
both Euler-Bernoulli BSWI beam element and Timoshenko BSWI beam element are given
in this section.

5.1.1 Euler-Bernoulli beam element with von Kármán nonlinear
strains

In the present formulation, the deformation of a continuous body is analytically described
using the Total Lagrangian (TL) approach, in which the motion of the body is referred to
an undeformed reference configuration and the variation of field variable over the body is
described in relation to the material co-ordinates. The general measure of deformation
is described in terms of Green-Lagrange strain tensor EIJ , which gives the nonlinear
strain-displacement relation as,

EIJ =
1

2

(
∂uI
∂XJ

+
∂uJ
∂XI

)
+

1

2

(
∂uK
∂XI

∂uK
∂XJ

)
(5.1)

However, for beams with moderately large rotations and small strains, the displacement
field considered is as follows [210],

u = u0(x)− zdw0

dx

v = 0

w = w0(x)

 (5.2)

where, (u, v, w) are total displacements along the co-ordinate directions (x, y, z), u0 and
w0 denote the axial and transverse displacements. Hence, von Kármán strains for beams
which omits large strain but includes moderately large rotations and small strains can be
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written as,

EXX =

(
du0

dX
+

1

2

(
dw0

dX

)2
)
− z

(
d2w0

dX2

)
(5.3)

Since, the geometry of the deformed configuration is unknown; the equilibrium equations
are also expressed in terms of known reference configuration. The second Piola-Kirchhoff
stress tensor SIJ , which gives the transformed current force per unit undeformed area,
is used in the TL formulation for geometrically nonlinear analysis. Additionally, the
incremental stress-strain constitutive relationship for nonlinear analysis of solid continua
in TL formulation is given as,

SIJ = CIJKLEKL (5.4)

where, CIJKL is the material elasticity tensor. The stress and strain measures that have
been discussed for the TL formulation are substituted in the weak form obtained from the
principal of virtual work, for the development of BSWI WFEM. The analytical form for
the principle of virtual work for Ωi is given as,

δW i = δ(W i
I −W i

E) = 0 (5.5)

where, δW i
I is the virtual strain energy stored in the sub-domain due to Cauchy stresses σij

in moving through the virtual strains δεij , and δW i
E is the work done in moving through

their respective virtual displacements by the externally applied loads. It is assumed that
the strains are small and hence no distinction is made between σij and SIJ . Since, the
virtual quantities in Equation 5.5 are considered as the variations of real quantities, it can
be re-written in the domain of an Euler-Bernoulli BSWI beam element by substituting von
Kármán nonlinear strains and second Piola-Kirchhoff stress tensor into the virtual work
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equation and expressing it in terms of displacement as,

δ
(
W i
I −W i

E

)
= 0

δ

(∫
V i

1

2
SXXEXXdV −

∫ xb

xa

qw0dx−
∫ xb

xa

fu0dx−
nd∑
i=1

Qi∆i

)
= 0

δ

∫
V i

1

2
E

{
du0

dX
+

1

2

(
dw0

dX

)2

− z
(
d2w0

dX2

)}2

dV −
∫ xb

xa

qw0dx−

∫ xb

xa

fu0dx−
ne∑
i=1

Qi∆i

)
= 0



(5.6)

Here, q(x) is the distributed transverse load per unit length, f(x) is the distributed axial
load per unit length, Qi are the generalized nodal forces, ne is the total number of nodes in
the element and ∆i are the generalized nodal displacements.

In the present formulation, the incorporation of von Kármán strain leads to membrane
strain terms and that necessitates the modelling/incorporation of axial DOF along with
transverse and rotational DOF. This is done by superimposing an existing beam element
and a bar (axial) element. Hence, the beam element based on von Kármán strains and
BSWI WFEM is constructed by superposition of axial rod BSWI element with m = 2

and Euler-Bernoulli BSWI beam element with m = 4, following the method proposed for
plane bar elements by Xiang et al. [111]. The preceding orders for bar and beam elements
are ergo selected, to maintain equal number of nodes in both the bar and beam elements
and facilitate superposition. The plane beam element is shown in Figure 5.1, in which each
end node is having 3 DOF ui, wi, θi (i = 1, ..., 2j + 1) and each inner node is having 2 DOF
ui, wi (i = 2, ..., 2j).

Figure 5.1: Distribution of nodes and DOF in a plane beam element for j = 3
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The unknown axial displacement field function of a rod element in the element solving
domain ξ is approximated in terms of linear wavelet scaling functions in the same way
as given in Equation 3.5 and the unknown transverse displacement field function of
Euler-Bernoulli beam element is approximated in terms of cubic wavelet scaling functions
as given in Equation 3.11. The C0 and C1 type transformation matrices are obtained in the
same way as given in Equations 3.6,3.7 and 3.12,3.13 respectively. The approximations of
axial and transverse displacement fields are substituted into the virtual work equations of
Equations 5.6. Then using the principle of minimum potential energy and mapping it onto
the standard element solving domain, the algebraic form of it can be written as,

∫ 1

0

{
A1

1

lex

d(ϕ1T
e
1 )

dξ

(
1

lex

d(ϕ1T
e
1u

e)

dξ
+

1

2

1

l2ex

(
d(ϕ2T

e
2w

e)

dξ

)2
)
−

A2
1

lex

d(ϕ1T
e
1 )

dξ

(
1

l2ex

d2(ϕ2T
e
2w

e)

dξ2

)}
lexdξ−

lex

∫ 1

0

f (ξ)
(
ϕ1T

e
1

)
dξ −

ne∑
i=1

Qa
i

(
ϕ1T

e
1

)
(ξi) = 0


(5.7)
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l4ex

d2(ϕ2T
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2we)

dξ2

d(ϕ2T
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2we)
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d(ϕ2T
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lexdξ−

lex

∫ 1
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q (ξ)
(
ϕ2T

e
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dξ −
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Qt
i

(
ϕ2T

e
2
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(ξi)−Qr

1δθ(0)−Qr
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(5.8)

Here, ϕ1,T
e
1 with subscript 1 are associated with u0(ξ) and ϕ2,T

e
2 with subscript 2 are

associated with w0(ξ). Also, ne is the total number of nodes per BSWI WFEM based
Euler-Bernoulli beam element and Qa

i , Q
t
i, (Q

r
1and Qr

2) are the generalized nodal forces
associated with axial, transverse and rotational DOF respectively. A1 =

∫
Ae E

edA is the
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extensional stiffness of the beam element, A2 =
∫
Ae E

ezdA is the extensional-bending
stiffness of the beam element and A3 =

∫
Ae E

ez2dA is the bending stiffness of the beam
element. For isotropic materials, A2 = 0 when x axis coincides with geometric centroidal
axis. Upon simplification, the algebraic form of system of nonlinear equations for BSWI
WFEM based Euler-Bernoulli beam element which takes care of the von Kármán strains is
obtained in the element solving domain ξ ∈ [0, 1] as,

Ke(Ue)Ue = F e (5.9)

where,

Ke(Ue) =

[
Ke

1K
e
2

Ke
3K

e
4

]

Ue =

{
ue

we

}
,F e =

{
Fa

e

Fb
e

}


(5.10)

such that,

Ke
1 =

∫ 1

0
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lex

(
T e1
)T (dϕ1
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)T (
dϕ1

dξ

)(
T e1
)
dξ
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2 =

1

2

∫ 1

0
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l2ex
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dϕ2

dξ

)(
T e2
)
we
}(
T e1
)T (dϕ1
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dϕ2
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T e2
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dξ

Ke
3 = 2
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2

)T
Ke
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0

1

l3ex
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1
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)(
T e2
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we
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dϕ2

dξ

)(
T e2
)
we
}T

{(
T e2
)T (dϕ2

dξ

)T (
dϕ2

dξ

)(
T e2
)}

+

A3

{(
T e2
)T (d2ϕ2

dξ2

)T (
d2ϕ2

dξ2

)(
T e2
)}}
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(5.11)

and

F ea =

∫ 1

0

lexf
(
T e1
)T

(ϕ1)T dξ +
ne∑
i=1

Qa
i

F eb =

∫ 1

0

lexq
(
T e2
)T

(ϕ2)T dξ +
ne∑
i=1

Qt
i +Qr

1 +Qr
2

 (5.12)
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After assembling the element equations to a global form as given in 5.13.

K(U)U = F (5.13)

Here, Equation 5.13 is nonlinear in nature as the stiffness matrix is a function of
displacement DOF. The essential boundary conditions can be implemented by setting the
corresponding DOF to the respective value, without any additional boundary treatment as
BSWI is used. The formulation for the BSWI WFEM based Timoshenko beam element
with von Kármán nonlinear strains is presented in the next subsection.

5.1.2 Timoshenko beam element with von Kármán nonlinear strains

The displacement field for TBT beams with large deflections, moderate rotations and small
strains is considered is as follows [210],

u = u0(x) + zθx(x)

v = 0

w = w0(x)

 (5.14)

where, (u, v, w) are total displacements along the co-ordinate directions (x, y, z), u0 and w0

denote the axial and transverse displacements on the mid-plane of undeformed beam and
θx(x) is the rotation about y axis of a transverse straight line. The von Kármán strains are
given as,

EXX =

(
du0

dX
+

1

2

(
dw0

dX

)2
)

+ z

(
dθx
dX

)
γXZ = θx +

(
dw0

dX

)
 (5.15)

Analogous to Euler-Bernoulli beam element, von Kármán nonlinear strains and second
Piola-Kirchhoff stress tensor are substituted into the virtual work equation and expressed
in terms of displacement as,

δ
(
W i
I −W i

E

)
= 0

δ

(∫
V i

1

2
SXXEXXdV +

∫
V i

1

2
SXZγXZdV−∫ xb

xa

qw0dx−
∫ xb

xa

fu0dx−
nd∑
i=1

Qi∆i

)
= 0


(5.16)
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δ

∫
V i
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2
E
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du0

dX
+

1

2
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dw0

dX

)2

+ z

(
dθx
dX

)}2

dV+

∫
V i

1

2
G

{
dw0

dX
+ θx

}2

dV −
∫ xb

xa

qw0dx−∫ xb

xa

fu0dx−
nd∑
i=1

Qi∆i

)
= 0


(5.17)

The unknown axial, transverse and rotational displacement field functions are
approximated using either linear or quadratic BSWI scaling functions analogous to the
Equations given in 3.5 and 3.17. During this approximation C0 continuity is maintained
and the element solving domain ξ is divided into n = 2j +m− 1 nodes. The TBT element
incorporating von Kármán nonlinear strains is shown in Figure 5.2, in which each node is
having 3 DOF ui, wi, θi (i = 1, ..., 2j +m− 1).

Figure 5.2: Distribution of nodes and DOF in a TBT beam element with von Kármán
nonlinear strains for m = 2, j = 3

TheC0 type transformation matrix is obtained in the same way as given in Equations 3.6,3.7
and 3.18,3.19. The approximations of u0, w0 and θx(x) are substituted into the virtual
work equations of Equations 5.16 and 5.17. Then using the principle of minimum potential
energy and mapping it onto the standard element solving domain, the algebraic form of it
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can be written as,

∫ 1
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(5.18)
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(5.19)
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(5.20)

Here, A4 = Ks

∫
Ae GdA is the shear stiffness, nf is the total number of nodes per BSWI

WFEM based Timoshenko beam element and Ks is the shear correction coefficient. Rest
of the variables that are discussed in the context of Euler-Bernoulli beam element are
applicable for Timoshenko beam element as well. Upon simplification, the algebraic
system of nonlinear equations in element solving domain ξ ∈ [0, 1] of BSWI WFEM
Timoshenko beam element can be derived as,

Ke(Ue)Ue = F e (5.21)
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where,
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(5.22)

such that,
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(5.24)

128



Ke
8 =

(
Ke

6

)T
Ke

9 =

∫ 1

0

A3

lex

{
(T e)T

(
dϕ

dξ

)T (
dϕ

dξ

)
(T e)

}
+

lexA4

{
(T e)T (ϕ)T (ϕ) (T e)

}
dξ

F ea =

∫ 1

0

lexf (T e)T (ϕ)T dξ +

nf∑
i=1

Qa
i (ϕT e (ξi))

F eb =

∫ 1

0

lexq (T e)T (ϕ)T dξ +

nf∑
i=1

Qt
i (ϕT e (ξi))

F ec =

nf∑
i=1

Qr
i (ϕT e (ξi))



(5.25)

The essential boundary conditions can be applied as in FEM after assembling the element
equations to obtain a global form on the same lines as given in 5.13, if more than one
element is used for modelling. The solution procedure that is used for solving the nonlinear
matrix equations given in Equation 5.13 is discussed in the coming subsection.

5.1.3 Solution procedure for nonlinear equations

The matrix equations in Equation 5.13 are nonlinear in nature. Therefore, Newton-Raphson
method is used for the solution process. The residual (Rs) is calculated from the nonlinear
matrix equation as,

Rs ≡K(U)q−1U q − F (5.26)

where, K(U) is the global stiffness matrix, U is the displacement column vector and F
is the force column vector; q ∈ [1, ...total iterations(Nn)]. The residual vector is expanded
using Taylor series about the known solution at (q − 1)st iteration as,

Rs(U) = Rs(U
q−1) +

(
∂Rs

∂U

)q−1

δU + ... (5.27)

Omitting the higher order terms, Equation 5.27 becomes,

T s(U
q−1)δU = −Rs(U

q−1) (5.28)
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where,

T s(U
q−1) =

(
∂Rs

∂U

)q−1

(5.29)

is the tangent stiffness matrix. Thus, solution at the qth iteration is calculated as,

U q = U q−1 + δU (5.30)

The coefficients for the tangent stiffness matrix at the element level are derived explicitly
from Equation 5.29. The tangent stiffness matrix for Euler-Bernoulli BSWI WFEM beam
element is,
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(5.32)

Here, Ke
1 , Ke

2 , Ke
3 and Ke

4 are the coefficients of the stiffness matrix obtained from
Equation 5.10. The tangent stiffness matrix for Timoshenko BSWI WFEM beam element
can be calculated from,

T es =


T es1T

e
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e
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e
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 (5.33)
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(5.34)

Here, Ke
1 , Ke

2 , Ke
3 , Ke

4 , Ke
5 , Ke

6 , Ke
7 , Ke

8 and Ke
9 are the coefficients of the stiffness

matrix obtained from Equation 5.22.
When large load increments are used, convergence can be an issue due to the nonlinear

nature of the matrix equations. Hence, the load is applied in small increments δF i such
that,

F =
N∑
i=1

δF i (5.35)

where, N is the total number of load increments.
In the next section, stochastic BSWI WFEM formulations for beams incorporating von

Kármán nonlinear strains are shown wherein, Young’s modulus is considered as a spatially
varying homogeneous random field.

5.2 Stochastic BSWI WFEM formulation for beams
incorporating von Kármán nonlinear strains

The proposed stochastic BSWI wavelet finite element formulation by incorporating von
Kármán strains for both Euler-Bernoulli BSWI beam element and Timoshenko BSWI beam
element are given in this section.
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5.2.1 Stochastic BSWI WFEM formulation for EBT beams
incorporating von Kármán nonlinear strains

In the formulation of stochastic BSWI WFEM beam element incorporating von Kármán
nonlinear strains, E(x) is modelled as homogeneous random field. When the formulation
is based on EBT, u0(ξ) and α(ξ) are expressed in terms of C0 type element transformation
matrix and w0(ξ) is expressed in terms of C1 type element transformation matrix. On
similar lines, as the approximation of deflection field in chapter 3 and 4, the unknown
random field can be approximated in the element solving domain in terms of BSWI wavelet
scaling functions and expressed in terms of elemental transformation matrix. The element
stiffness coefficients and hence the element deflections will become functions of random
variables αR and Equation 5.9 which is based on EBT formulation can be written as,

Ke(Ue(αeR), αeR)Ue(αeR) = F e (5.36)

It has been shown in the numerical examples of bar and beam in chapter 4
that BSWI WFEM results are comparable in different aspects to FEM, for both
Gaussian and non-Gaussian input fields. Hence, in the current study of beams
with geometric nonlinearity, only Gaussian input field is considered. When E(x) is
modelled as homogeneous Gaussian field as given in Equation 4.1, the components of
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Ke(Ue(αeR), αeR) can be written as,
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(5.37)

The element stochastic stiffness matrices as given in Equations 5.36 for all the sub-domains
can be assembled to form the algebraic set of respective global stochastic equilibrium
equations as,

K(U(αR), αR)U(αR) = F (5.38)
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5.2.2 Stochastic BSWI WFEM formulation for TBT beams
incorporating von Kármán nonlinear strains

When the formulation is based on TBT, u0(ξ), w0(ξ), θx(ξ) and α(ξ) are all expressed in
terms of C0 type element transformation matrix. When E(x) is modelled as homogeneous
Gaussian field as given in Equation 4.1, Equation 5.21 can be written as,

Ke
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e
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t (αeR) = F et (5.39)
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(5.42)

The element stiffness matrices as given in Equations 5.39 can be assembled for all the
sub-domains to obtain global stiffness matrix on the same lines as given in Equation 5.38.

5.2.3 Proposed perturbation approximation for stochastic
formulation with geometric nonlinearity

The global stiffness matrix K used in the perturbation method 4.2 as discussed in chapter
4 is a function of random variables {αi}Ni=1, where N is number of random variables.
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However, with incorporation of von Kármán nonlinear strains, the global stiffness matrix
K(U(αi), αi) becomes a function of both displacement DOFU(αi) and random variables
αi. Therefore, the partial derivatives ofK with respect to α (dropping the subscript i from
αi) can be written as,
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(5.43)
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(5.44)

where, K(U(α), α) = K ◦ K̂(α) with K̂(α) = (U(α), α). Here, α̂, Û lie in the domain
ofK(U(α), α) and α lies in the domain of K̂(α).

Equation 5.43 and 5.44 can be substituted into the Taylor series expansion of Equation
5.38 and upon further substitution into equilibrium equations, terms with the same order
are equated and the following equations are obtained,

K0U0 = F0 (5.45)
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 (5.47)

where, K0, U0 and F0 are evaluated at K(0), U(0) and F (0) respectively; and (.)Ii =
∂(.)
∂αi

∣∣∣
Λ=0

and (.)IIij = ∂2(.)
∂αi∂αj

∣∣∣
Λ=0

as given in section 4.2. It is to be noted here that Equation
5.45, 5.46 and 5.47 are nonlinear in nature and for the present work, Newton-Raphson
method is proposed for solving these equations to obtain U0, U I

i and U II
ij .

Once the derivatives are found, by applying expectation and variance operators on
truncated Taylor series expansion of response functions, the first order or second order
approximations of statistical moments of these quantities can be found as in Equation 4.34
and 4.35. Based on the preceding deterministic and stochastic BSWI WFEM formulations
for beams incorporating von Kármán nonlinear strains; in the next section, a few numerical
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examples are solved.

5.3 Numerical examples

5.3.1 Based on deterministic BSWI WFEM formulation for beams
incorporating von Kármán nonlinear strains

A beam under different boundary conditions is considered to demonstrate the performance
of BSWI WFEM beam elements based on von Kármán strains. The main numerical
issue that a von Kármán beam element may produce is membrane locking when axial
deformations are unconstrained (roller supports). Hence, a beam with a uniformly
distributed non-follower load under different boundary conditions (having roller, pinned
and clamped support at both ends) is considered. Moreover, shear locking issues can be
expected when Timoshenko BSWI WFEM beam elements are used for thin beams. Hence a
study has been performed on thin beams with pinned ends and fixed ends, where membrane
locking does not exist whereas shear locking exists.

Three separate cases, each consisting of a beam with different boundary conditions
viz., both ends roller, both ends pinned and both ends clamped as shown in Figure 5.3 are
solved using EBT and TBT to show the performance of BSWI WFEM beam elements
based on von Kármán strains. The material of the beam is considered to be isotropic
with Young’s modulus E = 2 × 105MPa. For all the examples beam is taken to have
a span of L = 100mm. For the beam with both ends roller support, it is considered to
be carrying a uniformly distributed load of q = 0.1N/mm over the entire span, and for
the rest of the boundary conditions a uniformly distributed load of q = 10N/mm over
the entire span is considered during the analysis. The boundary conditions for various
cases are as follows: a) Beam with roller ends, w0 = 0 at x = 0 and x = L, b) Beam
with pinned ends, u0 = w0 = 0 at x = 0 and x = L, c) Beam with clamped ends:
u0 = w0 = dw0

dx
= 0 at x = 0 and x = L. For all the cases, due to symmetry, only one-half

domain with span L/2 = 50mm is considered for analysis by applying boundary condition
u0 = dw0

dx
= 0 at x = L/2. Only one BSWI WFEM element is used for modelling the

domain in all the cases and thus the storage of element connectivity data and cumbersome
element assembly procedure can be eliminated. The variation of deflections obtained using
BSWI WFEM Euler-Bernoulli beam elements are compared with those available in the
FEM examples solved by Reddy [210] for all boundary conditions. Numerical examples
solved by Reddy [210] uses cubic Hermite interpolation functions and linear Lagrange
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interpolation functions to model transverse deflection and axial displacement field variables
for beams based on EBT. Whereas, for beams based on TBT, linear or quadratic Lagrange
interpolation functions are used to model the axial, transverse and rotational field variables
independently.

Additionally, for pinned-pinned boundary conditions, analytical solutions using
approximate methods based on Galerkin approaches are found in Sathyamoorthy [211]
and Nishawala [212]. Hence a comparison with the same is done for TBT beam elements
for this particular boundary condition. Roller boundary condition, does not constrain the
axial displacements and the relationship becomes linear and hence the results for this
case can be compared with linear analytical solution. For BSWI WFEM Timoshenko
beam element, commercial FEM package ABAQUS is used for the comparison study. In
addition, the variation of stresses in axial direction from BSWI WFEM beam elements
are compared with the stresses in axial direction obtained using commercial FEM package
ABAQUS. Beams based on EBT is modelled using ABAQUS with a 2 node cubic beam
element B23 and beams based on TBT is modelled using 2 node linear B21 and 3 node
quadratic B22 elements. All of three elements B21, B22 and B23 have 3 DOF at each
node (u0, w0,

dw0

dx
). While modelling geometric nonlinearity with large displacements

in ABAQUS, the NLGEOM is selected along with full Newton scheme for solving the
nonlinear system of equations [213].

(a) With roller ends (b) With pinned ends

(c) With clamped ends

Figure 5.3: A beam under uniformly distributed load q(x)
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5.3.1.1 Beam with roller ends

In this example, a beam having rollers at both ends as shown in Figure 5.3a is considered
for analysis using EBT and TBT. For the analysis based on EBT, a combination of linear
(order m = 2) and cubic (order m = 4) scaling functions are used in the approximation
of axial displacement u0 and bending deflection w0 respectively. However, the roller beam
has no axial strain, since it slides on rollers under transverse deflection and hence,

E0
XX =

du0

dX
+

1

2

(
dw0

dX

)2

= 0 (5.48)

Moreover, the aforementioned combination of scaling functions when used for
approximating u0 and w0 do not satisfy Equation 5.48 and results in a phenomena known
as membrane locking. Generally in FEM, a reduced one-point integration scheme is
suggested for the evaluation of nonlinear stiffness matrix coefficients to overcome the issue
of membrane locking. In the current study which uses WFEM, both one-point integration
and two-point integration schemes as discussed in chapter 3 are used to examine the
presence of membrane locking. Variation of deflection at x = L/2 with load for different
resolutions j = {1, 2, 3} is shown in Figure 5.4. The deflection calculated using one-point
and two-point integration schemes are compared with the analytical solution, which is
linear in the present case due to the absence of axial strains, and FEM results using reduced
integration scheme (one-point integration). It is observed that the deflections obtained from
BSWI WFEM for all values of j are in good agreement with the analytical solution and
FEM results when one-point integration is used. However, two-point integration leads to
a lower deflection even for higher resolutions, proving the presence of membrane locking
and hence the study recommends lower integration for nonlinear terms in stiffness matrix
to get rid of the membrane locking.

A beam with same boundary conditions and span, but having different cross-section
area 1× 15mm2 to treat it as a deep beam is considered for analysis based on TBT. For the
analysis of the beam based on TBT, the domain is modelled using one BSWI element with
C0 continuity. The current numerical example is modelled using TBT based beam element,
where the unknown field variables u0, w0, θx are equally interpolated with either linear
scaling functions or by quadratic scaling functions. The membrane locking phenomena,
which is discussed in the context of Euler-Bernoulli beam element is applicable for a beam
element based on TBT as well. Hence, proper numerical integration scheme for all the
nonlinear terms of the stiffness matrix, which can prevent the effects of membrane locking,
needs to be examined for TBT beam elements too. Variation of deflections at x = L/2,
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obtained using linear and quadratic scaling functions with resolutions j = {1, 2, 3} is
plotted using BSWI WFEM and compared with linear analytical deflection (incorporating
transverse shear effects for thick beams) as given by Wang et al. [214] and results obtained
from FEM using ABAQUS with linear and quadratic shape functions as shown in Figure
5.5 and 5.6 respectively. It is observed from Figure 5.5 that at lower resolution for both
one-point and two-point integration, linear scaling functions produce less accurate results.
However, the results converge as the resolution is increased. On the other hand, quadratic
scaling functions produce converged results (for both one-point and two-point integration)
even at lower resolutions as observed in Figure 5.6.

Figure 5.4: Variation of deflection at x = L/2 with load for the EBT beam with roller
ends having b, h = 1mm, when BSWI WFEM and FEM elements are used for modelling

Figure 5.5: Variation of deflection at x = L/2 with load for the TBT beam with roller
ends having b, h = (1, 15)mm, when linear BSWI WFEM and FEM elements are used for

modelling

Besides deflection, the variation of stresses in axial direction along y = −h/2 was also
studied using BSWI WFEM beam elements based on EBT and TBT for m = 2, j = 3.
Variation of σxx at y = −h/2 obtained using BSWI WFEM and FEM elements, based
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Figure 5.6: Variation of deflection at x = L/2 with load for the TBT beam with roller
ends having b, h = (1, 15)mm, when quadratic BSWI WFEM and FEM elements are used

for modelling

on EBT for b, h = 1mm is plotted in Figure 5.7. It is noticed from Figure 5.7 that for
b, h = 1mm stresses produced by BSWI WFEM concur well with the results obtained from
FEM. The values of b, h are then varied and normalized σxx values are plotted to investigate
the variation between BSWI and FEM results at different b, h values at y = −h/2 in
Figure 5.8. It is observed that for all b, h values both WFEM and FEM results are in good
agreement. Variation of σxx along y = −h/2 based on TBT which takes transverse shear
effects into account for thick beams with b, h = (1, 15)mm is shown in Figure 5.9, wherein
m = 2, j = 3 is used for WFEM and linear shape functions for FEM analysis. It is observed
that results of both BSWI WFEM and FEM are in good agreement with each other.

Figure 5.7: Variation of σxx (N/mm2) at y = −h/2 along the span of EBT beam with
roller ends for b, h = 1mm, when BSWI WFEM and FEM elements are used for

modelling
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Figure 5.8: Variation of σxxbh at y = −h/2 along the span of EBT beam with roller ends
for various b, h values, when BSWI WFEM and FEM elements are used for modelling

Figure 5.9: Variation of σxx (N/mm2) at y = −h/2 along the span of TBT beam with
roller ends for b, h = (1, 15)mm, when linear BSWI WFEM and FEM elements are used

for modelling

5.3.1.2 Beam with pinned ends

In this example, a beam having pinned support at both ends as shown in Figure 5.3b is
considered for analysis using EBT and TBT. The linear (order m = 2) and cubic (order
m = 4) scaling functions which are used in the approximation of axial displacement u0 and
bending deflection w0 need not satisfy axial strain of Equation 5.48 for pinned boundary
conditions, thereby eliminating the chances of membrane locking. Hence for this numerical
example where EBT is used, only two-point integration scheme is employed to evaluate
the stiffness coefficients. The variation of deflection at x = L/2, with load, obtained
using BSWI WFEM for different resolutions j = {1, 2, 3} are compared with the results
obtained from Sathyamoorthy [211] and FEM as shown in Figure 5.10. A good compliance
is observed between the results of BSWI WFEM, Sathyamoorthy [211] and FEM.

For a thick beam based on TBT 1 × 15mm2 the variation of deflections at x = L/2,
obtained using BSWI WFEM is compared with deflection obtained using FEM for linear
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and quadratic scaling functions with resolutions j = {1, 2, 3} in Figure 5.11 and Figure
5.12, respectively. When two-point integration is used for TBT, the deflections obtained
from WFEM using linear scaling functions are underestimated when compared with
converged FEM results at lower resolutions. However, this issue is resolved when either
one-point or two-point integration scheme at a higher resolution is used. Also, it can be
observed that at a higher order (for both one-point and two-point integration), there is a
good agreement between BSWI WFEM and FEM results even when lower resolutions are
used. Additionally, σxx plot along y = −h/2 based on EBT b, h = 1mm is shown in Figure
5.13 and that for based on TBT b, h = (1, 15)mm is shown in Figure 5.14. For evaluation
of these results one-point integration scheme is used. In all the cases, it is observed that
results from BSWI WFEM concur well with the results obtained from FEM.

Figure 5.10: Variation of deflection at x = L/2 with load for the EBT beam with pinned
ends having b, h = 1mm, when BSWI WFEM and FEM elements are used for modelling

Figure 5.11: Variation of deflection at x = L/2 with load for the TBT beam with pinned
ends having b, h = (1, 15)mm, when linear BSWI WFEM and FEM elements are used for

modelling
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Figure 5.12: Variation of deflection at x = L/2 with load for the TBT beam with pinned
ends having b, h = (1, 15)mm, when quadratic BSWI WFEM and FEM elements are used

for modelling

Figure 5.13: Variation of σxx (N/mm2) at y = −h/2 along the span of EBT beam with
pinned ends for b, h = 1mm, when BSWI WFEM and FEM elements are used for

modelling

Figure 5.14: Variation of σxx (N/mm2) at y = −h/2 along the span of TBT beam with
pinned ends for b, h = (1, 15)mm, when linear BSWI WFEM and FEM elements are used

for modelling
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5.3.1.3 Beam with clamped ends

In this example, a beam having clamped support at both ends as shown in Figure 5.3c
is considered for analysis based on EBT b, h = 1mm and TBT b, h = (1, 15)mm. The
issue of membrane locking does not exist for EBT based beam element in this example
for the reasons already discussed in the earlier cases. Hence, the deflections are calculated
using EBT based BSWI FEM beam elements by employing two-point integration scheme
to evaluate the stiffness coefficients and is plotted in Figure 5.15. It can be observed that the
results obtained from WFEM converge to those obtained from FEM when the resolution
is increased. The variation of deflections for TBT based beam element for thick beam is
shown in Figure 5.16 and 5.17 for linear and quadratic scaling functions respectively. It
is observed that results obtained from BSWI WFEM based on TBT converge with that of
corresponding FEM results with one-point integration as the resolution is increased. When
two-point integration is used for beams based on TBT, either a quadratic order scaling
function (with all the resolutions) or a linear order scaling function with a higher resolution
is needed, to obtain accurate results. Analogous to previous cases, the variation of σxx
based on EBT for b, h = 1mm along y = −h/2 is plotted as shown in Figure 5.18 which
shows a good agreement between WFEM and FEM results. The variation of σxx based
on TBT is shown in Figure 5.19 for b, h = (1, 15)mm which confirms the effectiveness of
WFEM in capturing the converged results.

Figure 5.15: Variation of deflection at x = L/2 with load for the EBT beam with clamped
ends having b, h = 1mm, when BSWI WFEM and FEM elements are used for modelling
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Figure 5.16: Variation of deflection at x = L/2 with load for the TBT beam with clamped
ends having b, h = (1, 15)mm, when linear BSWI WFEM and FEM elements are used for

modelling

Figure 5.17: Variation of deflection at x = L/2 with load for the TBT beam with clamped
ends having b, h = (1, 15)mm, when quadratic BSWI WFEM and FEM elements are used

for modelling

Figure 5.18: Variation of σxx (N/mm2) at y = −h/2 along the span of EBT beam with
clamped ends for b, h = 1mm, when BSWI WFEM and FEM elements are used for

modelling
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Figure 5.19: Variation of σxx (N/mm2) at y = −h/2 along the span of TBT beam with
clamped ends for b, h = (1, 15)mm, when linear BSWI WFEM and FEM elements are

used for modelling

5.3.1.4 Discussion on effects of numerical locking

When the issue of membrane locking do not exist, a two-point Gauss quadrature scheme is
used in between each of the internal nodes of BSWI EBT beam element for the evaluation
of linear and nonlinear terms of the stiffness matrix. However, when a membrane locking
exists, a one-point integration scheme is suggested to evaluate all the nonlinear terms of
the stiffness matrix. On the other hand, a thick beam modelled by TBT under predicts
the deflection for the linear order of scaling functions, when two-point integration scheme
is used. It is to be noted that a single WFEM BSWI element consists of more than one
background integration cell depending on the resolution of the displacement approximation
and hence, more integration points. This will lead to over rigid stiffness coefficients for
TBT element due to the presence of nonlinear terms including additional shear terms, when
compared to EBT element and that can be the reason for under predicting the deflection.
Moreover, there can be shear locking as in FEM when TBT based WFEM beam elements
are used for thin beams. In general, the reduced integration (i.e. here the one-point
integration) should give a better result. To examine the same, a beam within the thin beam
limit b, h = 1mm is modelled using TBT beam element and solved. Beam with roller ends
is not considered for the study to keep away the effects of membrane locking.

In the one-point integration scheme used here, shear stiffness coefficients are integrated
such that the cell between each of the internal nodes of the BSWI element consists of
one Gauss point. Deflections at x = L/2 of the beam b, h = 1mm in cases (both ends
pinned, both ends clamped) are solved using WFEM TBT beam elements with linear and
quadratic scaling functions using both one-point and two-point Gauss quadrature scheme
and are shown in Figures 5.20,5.21,5.22,5.23. For comparison, results obtained using FEM
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is also shown. It can be clearly observed that when linear elements are used for modelling,
two-point integration of shear terms lead to a large variation in deflection as compared to
the converged FEM results. However, one-point integration produces matching results with
that of FEM. When quadratic elements are used for modelling, the results obtained from
both one-point and two-point integration remain in good agreement with converged FEM
results. Thus, it can be observed that for BSWI TBT element one-point integration of shear
terms is necessary for linear elements and this can get rid of any kind of locking issue.

Figure 5.20: Variation of deflection at x = L/2 with load for the TBT beam with pinned
ends having b, h = 1mm, when linear BSWI WFEM and FEM elements are used for

modelling

Figure 5.21: Variation of deflection at x = L/2 with load for the TBT beam with pinned
ends having b, h = 1mm, when quadratic BSWI WFEM and FEM elements are used for

modelling
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Figure 5.22: Variation of deflection at x = L/2 with load for the TBT beam with clamped
ends having b, h = 1mm, when linear BSWI WFEM and FEM elements are used for

modelling

Figure 5.23: Variation of deflection at x = L/2 with load for the TBT beam with clamped
ends having b, h = 1mm, when quadratic BSWI WFEM and FEM elements are used for

modelling

Following the analysis of numerical examples based on deterministic BSWI WFEM
formulation for beams with geometric nonlinearity; in the next subsection numerical
examples based on stochastic BSWI WFEM formulation for beams with geometric
nonlinearity is discussed.

5.3.2 Based on stochastic BSWI WFEM formulation for beams
incorporating von Kármán nonlinear strains

The numerical examples that were discussed in the previous subsection 5.3.1 (both ends
roller, both ends pinned, both ends clamped) are considered for analysis in the stochastic
framework as well. The modulus of elasticity is modelled as a homogeneous random field
with a Gaussian distribution, as given by Equation 4.1. The results from stochastic WFEM
wherein both the input random field and response are discretized using BSWI scaling
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functions are compared with those obtained from stochastic FEM wherein both random
field and response are discretized using Lagrange shape functions. The response statistics
are calculated via perturbation method and the results are compared with the statistics
obtained from MCS (for both WFEM and FEM). The mean value of Young’s modulus
is taken as µE = 2× 105MPa and rest of the material and geometric properties are kept the
same that were considered in the deterministic case. For the formulation based on EBT, the
axial and transverse deflection fields are approximated usingm = 2 andm = 4 respectively
for the reasons already discussed in the deterministic case. For the formulation based on
TBT, m = 3 is used for the approximation of the deflection field. A converged resolution
of j = 3 is used for both the cases. The difference in the results when the random field is
discretized using linear or quadratic scaling functions, as shown in chapter 4 is observed to
be small. Hence, in the current study only linear scaling functions m = 2 are used for the
discretization of random fields with a lower resolution j = 1.

The mean and standard deviation values of transverse deflection field for the beam
based on EBT with both ends pinned, at x = 50mm obtained by using the perturbation
approach are shown in Figure 5.24 and Figure 5.25 respectively. The perturbation values
are compared with the values obtained from MCS and the results are plotted for different
values of CV, obtained by varying the standard deviation of Young’s modulus E(x). The
correlation length parameter considered is 25. It can be observed from Figure 5.24 that the
variation observed in mean values between perturbation and MCS results is less than 1% for
all the CV values. However, the variation in standard deviation values increases to 5-7%
at 20% CV as seen in Figure 5.25. The mean and standard deviation values calculated
for the beam based on TBT with both ends pinned, at x = 50mm obtained for different
CV values are shown in Figure 5.26 and Figure 5.27 respectively. It can be observed that
mean values obtained from perturbation approach and MCS remain in good agreement for
different values of CV. The standard deviation of response obtained from FOP and SOP
matches well with the MCS values till a CV of 15% and a variation of 9-10% is observed
when CV of input field is increased to 20%.

The variation of mean and standard deviation values for the EBT and TBT based beams
with pinned ends against correlation length parameter at a CV of 10% are shown in Figure
5.28-5.31. It can be observed that even at extreme correlation length parameters, the results
obtained from perturbation approach and MCS concur well for both WFEM and FEM.
Further, the variation of mean and standard deviation values for beams based on EBT and
TBT with clamped and roller ends boundary conditions, evaluated at a CV of 10% and
a correlation length parameter of 25 are shown in Table 5.1,5.2,5.3,5.4. The results show
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Figure 5.24: Variation of mean value of deflection at x = 50mm for the EBT beam with
pinned ends having b, h = 1mm against CV

Figure 5.25: Variation of standard deviation of deflection at x = 50mm for the EBT beam
with pinned ends having b, h = 1mm against CV

Figure 5.26: Variation of mean value of deflection at x = 50mm for the TBT beam with
pinned ends having b, h = (1, 15)mm against CV

that perturbation approach (SOP) based on WFEM performs accurately in comparison with
MCS.

Analogous to the case of 1D problems in chapter 4, the normalized computational time
required for implementing the perturbation method and MCS (5000 samples) based on
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Figure 5.27: Variation of standard deviation of deflection at x = 50mm for the TBT beam
with pinned ends having b, h = (1, 15)mm against CV

WFEM and FEM shape functions is also calculated for the current study and shown in
Table 5.5 and 5.6 for beams based on EBT and TBT respectively. A CV of 10% and a
correlation length parameter of 25 is considered for the study. Similar to the observations
made in chapter 4, FEM based perturbation method takes the least amount of computational
time when compared with other methods due to the reasons that have been discussed in
chapter 4. Further, the results reiterate that perturbation approach is computationally more
efficient in comparison with MCS.

Figure 5.28: Variation of mean value of deflection at x = 50mm for the EBT beam with
pinned ends having b, h = 1mm against correlation length parameter
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Figure 5.29: Variation of standard deviation of deflection at x = 50mm for the EBT beam
with pinned ends having b, h = 1mm against correlation length parameter

Figure 5.30: Variation of mean value of deflection at x = 50mm for the TBT beam with
pinned ends having b, h = (1, 15)mm against correlation length parameter

Figure 5.31: Variation of standard deviation of deflection at x = 50mm for the TBT beam
with pinned ends having b, h = (1, 15)mm against correlation length parameter

153



Table 5.1: Mean values of deflection at x = 50mm for the EBT beam under different
boundary conditions

Boundary conditions WFEM FEM
FOP SOP MCS FOP SOP MCS

clamped-clamped 5.889 5.900 5.894 5.902 5.914 5.910
roller-roller 7.788 7.849 7.834 7.812 7.874 7.860

Table 5.2: Mean values of deflection at x = 50mm for the TBT beam under different
boundary conditions

Boundary conditions WFEM FEM
FOP SOP MCS FOP SOP MCS

clamped-clamped 0.0593 0.0597 0.0596 0.0593 0.0597 0.0595
roller-roller 0.00244 0.00246 0.00245 0.00244 0.00246 0.00245

Table 5.3: Standard deviation of deflection at x = 50mm for the EBT beam under
different boundary conditions

Boundary conditions WFEM FEM
FOP SOP MCS FOP SOP MCS

clamped-clamped 0.151 0.152 0.152 0.149 0.150 0.150
roller-roller 0.627 0.631 0.643 0.636 0.640 0.652

Table 5.4: Standard deviation of deflection at x = 50mm for the TBT beam under
different boundary conditions

Boundary conditions WFEM FEM
FOP SOP MCS FOP SOP MCS

clamped-clamped 0.00434 0.00437 0.00445 0.00434 0.00436 0.00444
roller-roller 0.000194 0.000196 0.000199 0.000194 0.000195 0.000198

Table 5.5: Normalized computational times for perturbation method and MCS for EBT
based beam with clamped-clamped boundary conditions

Boundary conditions WFEM FEM
Perturbation MCS Perturbation MCS

clamped-clamped 1.94 450.433 1 558.00

154



Table 5.6: Normalized computational times for perturbation method and MCS for TBT
based beam with clamped-clamped boundary conditions

Boundary conditions WFEM FEM
Perturbation MCS Perturbation MCS

clamped-clamped 2.8055 561.706 1 683.416

5.4 Conclusion

The current chapter presents the formulation of deterministic and stochastic BSWI WFEM
based beam elements by incorporating von Kármán nonlinear strains. Formulation is
proposed for both EBT and TBT. The elements are constructed by incorporating axial DOF
to take care of the membrane strains over the bending DOF. The nonlinear system of matrix
equations is solved by Newton-Raphson method. Though only one element is necessary
to capture accurate results, the total number of Gauss points depends on the resolution and
quadrature rule employed.

For the deterministic case, numerical examples with different boundary conditions
are studied for maximum transverse deflection and stress in axial direction using BSWI
WFEM. The results obtained are compared with the existing converged FEM results.
The proposed method produces matching results with that of FEM. Only one element is
sufficient to model the problem domain in BSWI WFEM. For all the numerical examples
convergence is achieved by increasing the resolution of the wavelet scaling function
without altering the number of elements. This alleviates storage requirement of a large
element connectivity data and element assembly procedure when compared to FEM. As a
result, BSWI WFEM saves memory and reduces the burden in programming. Moreover,
the deterministic study addresses the issues of membrane and shear locking in beam
analysis. It is observed that for beams based on EBT where membrane locking exists,
a one-point integration of nonlinear terms can produce accurate results rather than a
two-point integration which is used otherwise. However, for TBT based beam analysis,
regardless of order of scaling functions a one-point integration of nonlinear terms produces
accurate results. This also takes care of shear locking, when TBT based BSWI WFEM
beam element is used for modelling thin beams.

For the stochastic case, the spatial variation of modulus of elasticity is modelled as a
homogeneous random field and the response statistics of mean and standard deviation are
calculated using the perturbation approach and compared with MCS (for both WFEM and
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FEM). Results indicate that with the proposed BSWI WFEM based perturbation approach
(both FOP and SOP), accurate results are obtained for CV values of up to 15%. Further,
normalized computational times are also shown for the beam with clamped-clamped
boundary conditions and, since the current study does not account for re-meshing/mesh
sensitive problems, FEM based perturbation times are found to be less in comparison with
WFEM.

Based on the proposed formulations, numerical analysis and conclusions that have been
drawn so far, a summary to the current thesis is presented in the next chapter.
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Chapter 6

Conclusion

6.1 Conclusion

Due to the growing complexity in system design, development of accurate and efficient
stochastic based numerical methods has become quintessential. Based on the motivation
and an extensive literature review presented in chapters 1 and 2 respectively, the primary
objective of this study is identified as to develop a stochastic wavelet finite element method
using BSWI for the analysis of problems in elasto-statics, wherein the material properties
are modelled as random fields.

In the process of developing a stochastic based BSWI WFEM, it is observed that
the existing literature does not discuss about the salient aspects of numerical integrations
involved and hence in chapter 3, a background cell-based Gauss point integration approach
for BSWI WFEM is proposed in which, background cells are placed over the BSWI WFEM
element solving domain and Gauss points are positioned inside each background cell. The
study suggests having sufficient number of Gauss points in the support domain of scaling
functions for constructing a well-conditioned stiffness matrix and shows that the accuracy
of the solution for the given order and resolution of BSWI scaling function is improved
when the size of the background cells is decreased and more number of Gauss points,
as encountered in two-point integration approach are used. Further, only one element is
sufficient to model the problem domain in BSWI WFEM. Convergence can be achieved
by increasing the resolution of the wavelet scaling function without altering the number
of elements. This alleviates storage requirement of a large element connectivity data and
element assembly procedure when compared to FEM. As a result, BSWI WFEM saves
memory and reduces the burden in programming.

Chapter 4 proposes the formulation of stochastic BSWI WFEM for 1D and 2D
problems in elasto-statics and beams (EBT and TBT). Here, the spatial variation of modulus
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of elasticity is modelled as a homogeneous random field. BSWI scaling functions are used
for the discretization of both displacement and random fields. The response statistics of
mean and standard deviation are calculated using the perturbation approach and the results
are compared with MCS. The methodology is further validated via a comparative study
between the results of WFEM and FEM for 1D problem. It can be concluded from the
results of 1D and 2D numerical examples for problems in elasto-statics that the proposed
BSWI WFEM based perturbation approach (both FOP and SOP) accurately captures the
response statistics of the displacement field for CV values of up to 15-20% . For problems
in beams, accurate results are obtained when the values of CV is less than or equal to 15%.
Additionally, for stochastic buckling of columns, WFEM based perturbation approach can
be used to accurately capture the response statistics of the buckling load for values of CV
up to 25%.

The proposed formulation of deterministic and stochastic BSWI WFEM based beam
elements (EBT and TBT) by incorporating von Kármán strains is presented in chapter 5.
The elements are constructed by incorporating axial DOF to take care of the membrane
strains over the bending DOF. The nonlinear system of matrix equations is solved by
Newton-Raphson method. For the deterministic case, it is observed that for beams based
on EBT where membrane locking exists, a one-point integration of nonlinear terms can
produce accurate results rather than a two-point integration which is used otherwise.
However, for TBT based beam analysis, it is observed that results obtained from BSWI
WFEM converge with that of corresponding FEM results with one-point integration as the
resolution is increased. When two-point integration is used for beams based on TBT, either
a quadratic order scaling function (with all the resolutions) or a linear order scaling function
with a higher resolution is needed, to obtain accurate results. This also takes care of shear
locking, when TBT based BSWI WFEM beam element is used for modelling thin beams.
A perturbation approach for the analysis of beams incorporating von Kármán strains is
also proposed in chapter 5. A set of three nonlinear equations are derived with the help of
Taylor series expansion to find the partial derivatives of response quantities. It is observed
that accurate results from WFEM based perturbation approach are obtained for CV values
of up to 15%.

Besides varying the standard deviation, a parametric study by varying correlation length
parameters is also done for all the 1D problems. Results show that a single BSWI WFEM
element with a coarse nodal distribution for random field modelling, perform well by
accurately capturing the standard deviations even at extremely small or large correlation
length parameters as observed in 1D problem. On the other hand, FEM requires an
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appropriate response and random field mesh size in accordance with the correlation length
of the input field, which otherwise would result in an erroneous result. Two scale relation
and MRA properties of BSWI wavelets help the physical problem to be discretized using
less number of elements and thus can reduce the computational cost required for mesh
assembly when compared to FEM.

However, normalized computational times, calculated for 1D problems show that FEM
based perturbation approach takes less time in comparison with BSWI WFEM. In this
context, it is to be noted that those computational times are estimated without accounting
for the time associated with re-meshing and convergence studies. The 2D plane stress
problems demonstrate that high accuracy can be maintained even when the random field
is modelled with wavelet scaling functions of lower order and lower resolution, thereby
reducing the computational effort needed.

Hence, based on the results that are presented in the current thesis, it can be concluded
that BSWI WFEM is an accurate and efficient numerical tool which can be used for the
estimation of response statistics of problems in structural mechanics, wherein material
properties are considered as random fields.

6.2 Major contribution

• Guidelines for numerical integration using Gauss quadrature for BSWI WFEM is
proposed via a background cell approach

• Formulations of stochastic BSWI WFEM for 1D and 2D problems in elasto-statics
and beams (EBT and TBT) is shown. The study also recommends the use of wavelet
shape functions for random field modelling.

• Deterministic BSWI WFEM formulation for analysis of beams (EBT and TBT)
incorporating von Kármán nonlinear strains is shown

• Finally this research puts forward a stochastic BSWI WFEM formulation based
on perturbation approach for beams incorporating von Kármán nonlinear strains.
An algorithm for evaluating the derivatives of response quantities from nonlinear
equilibrium equations is derived.
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6.3 Future work

Based on the vast potential that is offered by wavelets and BSWI WFEM in particular, the
following recommendations for future work are made to further exploit its capabilities,

• In the current thesis, response statistics are calculated using the conventional
perturbation approach which is based on Taylor series expansion. However, as seen
from the results, to capture accurate results this approach puts a limit on the CV to be
used. Hence, algorithms can be developed using BSWI WFEM to calculate response
statistics for large CV.

• A background cell based numerical integration scheme is proposed in the current
thesis. However, for 2D problems with increase in number of background cells,
the number of Gauss points used for integration also increase and this escalates the
computational effort. Hence, to make BSWI WFEM algorithms even more efficient,
new techniques/integration schemes can be suggested for evaluating the integrals and
algorithms can be implemented in an optimized manner.

• The current thesis does not discuss about the hourglass effects ( which arise due to
reduced integration in FEM ) in the context of BSWI WFEM. Hence, a detailed study
on it can be carried out.

• A stochastic BSWI WFEM formulation for problems in elasto-statics, beams and
beams with geometric nonlinearity is shown. The proposed approach can be extended
to problems with material and contact nonlinearity, plate bending and composites
modelling as well.

• The current thesis uses BSWI scaling functions for different formulations. In future,
the application of BSWI wavelet functions can be explored for problems where
adaptive analysis is necessary.

• In the current thesis a uni-variate modelling approach is considered wherein,
the spatial variation of modulus of elasticity is modelled as a homogeneous
random field using the proposed stochastic BSWI WFEM. However, the uni-variate
modelling approach restricts the design of a stochastic system. Therefore, a
multivariate modelling approach incorporating randomness in other geometric
quantities (cross-section area, thickness, etc.) as well could be considered which
could lead to a more comprehensive design of the stochastic part.
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• The proposed BSWI WFEM algorithm cannot be immediately used in its present
form for commercial applications. However, with further additions to its element
library, parallel implementation of its loops to make it work faster (to reduce
computational times further), implementation of wavelet functions (for adaptive
analysis) and development of a GUI would be beneficial to seeing BSWI WFEM
used as a full-fledged in-house algorithm for various design applications.

• The current thesis demonstrates the capability of the proposed BSWI WFEM
algorithm for various class of problems by considering several benchmark problems
and validating the results wherever possible. However, a realistic example of an
engineering structure could be modelled in the future.
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