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Abstract

The totally asymmetric simple exclusion process (TASEP) is a paradigmatic model
of nonequilibrium statistical mechanics. It describes a system of particles interacting with
each other via hard-core repulsions, undergoing driven diffusive dynamics. The one dimen-
sional version of the model is simple to define and has been used to model various phenom-
ena like mRNA translation, molecular motors and traffic flow. With periodic boundaries,
it has been shown that the steady state has a solution with all microstates being equally
probable. When the boundaries are open, the model shows interesting behaviour with the
existence of three different phases determined by the input and output rates of the particles.
Due to its simplicity of definition and non-trivial but well understood phase behaviour, the
TASEP has been adapted to model various physical phenomena by varying the particle and
boundary dynamics. In this thesis, our motivation is to study the effect of two different
kinds of dynamics on driven diffusive systems and we have chosen TASEP as the basic
system to study these effects.

In the first part of the thesis, we will describe our results on the effect of nonlocal hop-
ping dynamics on the phase behaviour of driven diffusive systems. Here we considered a
model where in addition to the normal TASEP dynamics of moving to the nearest neigh-
bour site, the particle is also allowed to make a long hop all the way to the next unoccupied
site before an occupied site. The non-local hopping dynamics is characterized by a param-
eter p with p = 0 corresponding to the usual TASEP. The introduction of finite p in a model
with open boundaries leads to the possibility of a new phase called empty road (ER) phase,
where the particles clear out of the lattice soon after entry, leading to a zero bulk density.
We have studied the full phase diagram in the three dimensional phase space of entry rate
α, exit rate β and the nonlocal hopping parameter p. Using numerical simulations and
mean field arguments, we studied the transitions between four possible phases; the three
usual TASEP phases: low density (LD), high density (HD) and maximal current (MC), as
well as the new ER phase. We mapped out the full phase diagram and showed that the
ER and HD phases come to dominate the phase space at large values of p. In addition to
the open boundary system, we also studied the effect of nonlocal hopping in a system with
periodic boundaries and defects. When the defect is static, we see that the long hop dy-
namics introduces a phase transition into the system between two different kinds of shock
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phases, which we have named LD-HD and ER-HD. While the defect always produces a
shock between a high and a low density region, the long hop dynamics opens up the possi-
bility of the density becoming zero on the low density side. When the impurity considered
is dynamic (one slow particle), we see a transition between a homogeneous density phase
and a shock phase. Increasing the value of p increases the tendency of shock formation
and we have mapped out the complete phase diagram of the system in the µ − p space,
where the parameter µ is the hopping probability of the slower particle. The mean field
approximation works well qualitatively and correctly identifies the possible phases, while
the quantitative agreement with numerics varies depending on parameter values.

In the second part of the thesis, we have studied the effect of stochastic resetting to
the initial empty state on a TASEP with open boundaries. The problem of resetting in
dynamical systems has invited much recent attention. Resetting involves a sudden large
change in the state of the system, in addition to the usual continuous dynamics. TASEP
being a paradigmatic model is an obvious choice for the study of such dynamical effects
on nonequilibrium driven diffusive systems. In addition to this, we are also motivated
by mRNA translation where the resetting dynamics models the observed stochastic decay
of mRNA-ribosome machinery. Using numerics and approximate expressions of the time
evolution of density in TASEP, we studied the effect of stochastic resetting to an initial,
empty lattice state on all the phases of the system. We considered two possibilities for
the distribution of the time intervals (τ ) between successive resets - a power law τ−(1+γ)

where γ > 0, and an exponential distribution λe−λτ . We find that the system achieves a
steady-state in the large time limit for γ > 1 while for γ < 1 we see a time dependant
scaling function. The large time behaviour of density function shows a power-law decay at
the boundaries in all the phases except at the HD phase, where it shows a non-monotonic
behaviour. For the exponential resetting case, the monotonic behaviour persists and the
system always attains a steady state in the long time limit. The results from numerics show
good agreement with the theory.
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Chapter 1

Introduction

The aim of statistical mechanics is to develop a framework to study systems with a large
number of degrees of freedom. Instead of calculating the evolution of every degree of free-
dom, one uses a probabilistic framework to evaluate the average of macroscopic quantities
of interest. For systems in thermal equilibrium, where the properties are time-independent
and there is no net probability current between any two microstates, there is a well es-
tablished framework for calculating various thermodynamic quantities of interest. Even
though the predictions from equilibrium statistical mechanics provide an excellent approx-
imation for a large class of real systems, the equilibrium state is an idealization, that works
well only under certain conditions. Many phenomena in nature such as chemical reac-
tions, turbulence, etc. carry currents of matter and energy, so they are fundamentally out
of equilibrium. Out of equilibrium behaviour is seen in diverse physical systems ranging
from nano-scale phenomena [1, 2], quantum optics (laser and maser) [3, 4], high energy
physics [3,5], radioactive decay [6], soft materials e.g. sedimentation of colloids [7,8], liq-
uid crystals [9, 10], chemical reactions [11] to astrophysics and cosmology [12]. Everyday
life phenomena, such as transport processes in biological systems [13, 14], out of equilib-
rium pattern formation [15], weather forecast [16], turbulence [17, 18], the behaviour of a
group of insects [13, 19], birth and death processes [20], the evolution of the stock mar-
ket [21], and less frequent phenomena e.g. earthquakes [22,23], are all of a nonequilibrium
nature.

Despite the importance of nonequilibrium systems, the theoretical foundation is still
not as developed as for equilibrium. A generalized framework [24] for nonequilibrium
statistical mechanics has not been formulated, and because of the wide range and enor-
mous complexity of systems, neither has a generalized classification scheme yet been
found. An interesting class of systems is those where the system settles at large times
into nonequilibrium steady states such that the macroscopic physical properties become
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time-independent [25]. Different dynamical equations are used to deal with the great va-
riety of nonequilibrium phenomena ranging from radiation transport in stars to metabolic
transport in living cell membranes [26]. Typically, one works with a Markov assumption of
no memory and writes a master equation connecting the various microstates of the system.
This equation can also be connected to a more coarse grained description of the system
using a Fokker-Planck equation for a density like variable or a Langevin equation, which
describes the motion of a single particle with the effects of its environment modelled by
averaging over the microscopic scales [27, 28].

A nonequilibrium steady state though somewhat similar to a stationary state in equi-
librium systems has very important differences. They both exhibit time-independence of
physical quantities since the probability of finding a system in a particular microstate is a
constant in time. On the other hand, the nonequilibrium steady state allows for a net prob-
ability current between two connected microstates, while the equilibrium state satisfies
the more stringent condition of detailed balance [29] where there is no probability cur-
rent between any pair of microstates. The probability current is sometimes manifested as a
measurable flow in some physical quantities, for example, a conducting rod connecting two
heat reservoirs at different temperatures will achieve a nonequilibrium steady state while
allowing for continuous heat flow between the reservoirs while it will be in equilibrium if
the temperature of the reservoirs is the same, and there won’t be a heat flow. The proba-
bility current in nonequilibrium systems is a manifestation of the breaking of time-reversal
symmetry, while equilibrium systems retain the symmetry.

Contrary to equilibrium systems where the Hamiltonian is used to calculate quantities
of interest using the Gibbs-Boltzmann measure, the behaviour in nonequilibrium systems is
usually described by specifying the dynamical rule by which the system evolves from one
configuration to another. While one can write a master equation for the evolution of the
probability of the microstates, it is usually very difficult to solve. One way to approach the
problem is to study simple models that are approximations of the real physical situation.
An analytic understanding of such models helps us to understand the key features of more
complex systems. Another motivation of studying such models is simply to explore the
possibilities for the types of phases in nonequilibrium systems and the transitions between
them. One such well established model is the TASEP which belongs to the general class of
driven diffusive systems (DDS).

As the name indicates, DDS is a class of systems where the constituents undergo a dif-
fusive motion in addition to a directed motion, leading to an effective current flow through
the system. In open systems, this current may carry information from boundaries to the
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bulk and thus allow the boundary conditions to control the bulk dynamics [30]. The inter-
play between boundary conditions and bulk transport leads to interesting properties such
as first and second order phase transitions even in one dimensional systems [31]. DDS
has become an active area of research due to its wide applications such as ribosome mo-
tion along RNA [32, 33], motor movement along molecular tracks [34], cars moving on
highways [35, 36] and the stochastic motion of molecular motors through cytoskeletal fila-
ments [37].

One of the first models of driven diffusive systems was introduced by Katz, Lebovitz
and Spohn [38] to model the dynamics in fast ionic conductors [39]. The model known as
the KLS model after its inventors, is a modified version of the well known Ising model. The
equilibrium detailed balance of the usual Ising model is broken by dynamics that mimic the
effect of an external field. The up spins are mapped to ions and down spins are the vacant
sites. An up spin exchanges with a down spin preferentially in the direction of the external
field. Unlike the equilibrium case, the spatio-temporal correlations here show a power law
behaviour at and above the critical temperature. Another simple model for driven diffusive
systems, known as the TASEP, was introduced originally in 1968 to model the kinetics
of biopolymerization [40] and henceforth introduced into the mathematical literature by
Spitzer [41]. Now it has become an essential part of the study of a wide class of interacting
particle systems [42]. Apart from Physics, it is widely used in modelling phenomena across
disciplines and length scales - from cell biology [13], insect behaviour, especially ants
[43, 44], to traffic on highways [45]. It is one among the few exactly solvable models
in DDS. The simplicity of the model allows for the application of rigorous mathematical
methods and to arrive at a number of exact results. This, in turn, sheds light into the
intricacies of non-equilibrium statistical mechanics. When applied to real physical systems,
suitable variation are applied to the dynamics and these variations lead to interesting new
possibilities. This model is the basis of our study in this thesis. In section 1.1 below, we
provide a detailed description of TASEP in one dimension.

1.1 Totally asymmetric simple exclusion process (TASEP)

TASEP is a simple model of systems with interacting particles belonging to the class of
driven diffusive system. It has been shown that the model settles into a nonequilibrium
steady state in the limit of large times [46, 47, 48, 49, 50, 51]. In recent years TASEP and
its various modifications have been applied to model diverse physical phenomenon such as
transport of micro molecules through thin vessels [52], reptation of polymer in a gel [53],
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(a) (b)

α β

Figure 1.1: (a) The standard TASEP with periodic boundary conditions. The particle num-
ber N is conserved. (b) The schematic diagram for TASEP with open boundary conditions.
Where α is the injection rate, β is the ejection rate.

hopping conductivity in solid electrolytes [54], surface growth [55] and network analysis
[56]. From a theoretical point of view this model provides a platform to study systems out
of equilibrium since it is easy to define and to approach analytically, but at the same time
has a nontrivial phase structure when the boundaries are open. It has therefore attained a
status similar to that of the Ising model in equilibrium statistical mechanics and is seen as
a paradigmatic model. In subsections 1.1.1, 1.1.2 and 1.1.3 below, we will first present
the basic introduction to TASEP and then the solution for different boundary conditions
including the detailed analysis of phase transitions.

1.1.1 Model

We begin with a definition of TASEP on a one dimensional discrete lattice with periodic
boundary condition. Sites of the lattice are labelled from 1 to L with site L + 1 identified
as site 1, thus forming a ring. Consider N particles that can move on this lattice. These
particles can only move unidirectionally from left to right i.e. site i to site i + 1. They
also have a hardcore exclusion interaction with each other, i.e., if a particle is present on a
lattice site, another one cannot move there. The figure 1.1 (a) shows the schematic diagram
of TASEP with periodic boundary conditions. At any given time, particles try to move
to the nearest neighbour site on their right and the move is successful if the neighbouring
site is empty. In this thesis, we will be dealing with stochastic dynamics and therefore the
particle moves are random. The model attains a steady state whose properties have been
studied using exact analytic methods [57, 58, 59]. We will briefly review the results from
these studies in sections 1.1.2 and 1.1.3.
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One can similarly define the open boundary version of the TASEP (figure 1.1 (b)). In-
stead of a ring geometry, we consider the sites 1 and L to be open where particles can enter
or exit. We consider site 1 to be the entry site. This is the left-most site and particles attempt
to enter this site with a rate of α, the move being successful if site 1 is unoccupied. After
entering the lattice, the particles move to the right according to the dynamics described in
the previous paragraph. Once a particle reaches the right-most site L, it exits the lattice
with a rate of β. The number of particles is not conserved and one can think of the site 1

being connected to an entry reservoir and the site L being connected to an exit reservoir.
The system is shown to have different kinds of steady states depending on the entry and
exit rates [46, 48].

The configuration or microstate of the system at a given time can be defined in two
ways. One can look at the occupation of site i via the variable τi ; τi = 0 if the site is vacant
and τi = 1 if it is occupied by a particle. The configuration can then be denoted as the set
containing occupancies of all the lattice sites, τ = τ1, τ2, ..., τL. Another way to specify the
configuration of the system is by keeping track of the positions of all the particles. If N
is the total number of particles on the lattice (N is fixed in the periodic case but variable
in the open boundary case), the state can be defined by the set x = x1, x2, ..., xN , where
x1, x2, ..., xN are the labels of sites occupied by the particle 1, 2, ..., N respectively.

The empty sites in a TASEP are sometimes referred to as holes. The movement of a
particle to an empty site can be seen as the exchange of a hole and a particle. An interesting
fact regarding holes is that the time evolution of TASEP is symmetric under the particle-
hole exchange. Indeed a particle hopping from left to right is equivalent to a hole hopping
from right to left. There are various possible updating schemes for the time evolution of a
TASEP, such as continuous time, parallel and random sequential [60]. All our work in this
thesis has been done using the random sequential updating scheme. In this scheme, one of
the L sites is chosen randomly and if a particle is present at the site, it is moved according
to the dynamics described above. In case of open boundaries, we consider the system to be
having an additional site to the left of site 1, representing the particle reservoir. This site
is always taken to be occupied and particles attempt to move out of it and into site 1 with
a rate of α. Each such update can be thought of as a micro step and we take one unit of
time to consist of L (or L + 1 for open systems) such micro steps. A brief description of
the analytic solution for TASEP, its phase diagram and the other properties of the system
in steady state is given in the subsection 1.1.3.
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1.1.2 TASEP with periodic boundary conditions

Figure 1.1(a) shows the schematic diagram of TASEP with periodic boundary conditions.
As described above, periodic boundary implies a ring geometry where the sites L and 1

are connected. The total number of particles and therefore the average density is fixed.
Using exact analytic calculations, one can show that the TASEP with periodic boundary
conditions attains a steady state and its properties can be analytically calculated [57,58,59].
We briefly discuss these results below.

Let p(i, t) be the probability that the system is in a state i at time t. The system makes
stochastic transitions between these microstates according to the rules of TASEP dynamics,
which are Markovian in nature. The master equation can be written as

∂p(i, t)

∂t
=
∑
j

ωij p(j, t)−
∑
j

ωji p(i, t) (1.1)

where ωji is the probability that a particle move will lead to the system going to a state j at
time t, from the state i at the previous time. Only the nearest neighbour moves are allowed,
thus ωij 6= 0 condition is true only for states which are connected to each other via a single
particle move by one site.

Steady state implies ∂p(i, t)/∂t = 0. Consider a cluster of particles, i.e. a string of
successive sites, all of which are occupied. If there are u such clusters in a configuration,
then there are exactly u configurations to which the system can go during the next move,
which involves the motion of a single particle from the right end of one of the clusters.
Similarly, there are exactly u configurations from which the system can reach the given
one via a single particle move. Note that the probabilities ωxy of each of these single
particle moves are the same. When we substitute this into the master equation above, and
demand a time independent steady state solution, we simply get p(j) = p(i) for all j, i
as the solution. Thus all the configurations are equally probable in the steady state. The
steady state current can now be calculated and turns out to be the same as the mean field
expression: j = ρ(1 − ρ) where ρ is the density at the lattice site at steady state [59]. The
mean field argument neglects fluctuations, considering an average occupancy for a site. An
expression for current can then be constructed by noting that a particle will cross a link
between two sites only if the site on the left of a link is occupied and the site on the right
is unoccupied. The expression for the current j reflects the fact that when particle densities
are low, the increase in density by addition of extra particles will increase the current; on
the other hand at high densities, the speed of particles gets impeded by the addition of extra
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Figure 1.2: Variation of current as a function of density for TASEP.

particles and the current goes down when particle density is increased. This change occurs
continuously as a function of the density and there is no phase transition in the system.
Figure 1.2 shows the relationship between current and average particle density of particles.
It is called the fundamental diagram.

1.1.3 TASEP with open boundaries

Figure 1.1(b) is the schematic diagram for TASEP with open boundary conditions. We
consider a one dimensional lattice having L sites. Each site i is either occupied by a particle
(τi = 1) or is empty (τi = 0). The system evolves as follows: at each time step one chooses
a site by drawing a random integer from the set [0, 1, .., L] with probability 1/(L+ 1). If
the integer i is between 1 and L− 1, and if τi = 1, (i,e, we have chosen an occupied site),
we move the particle at site i to site i + 1 provided site i + 1 is empty. There is no move
otherwise:

τi(t+ 1) = τi(t)τi+1(t),

τi+1(t+ 1) = τi+1(t) + [1− τi+1(t)] τi(t). (1.2)
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If i = 0, we have chosen the input reservoir. In this case we move a particle to site 1 with
probability α if it is empty. There is no move otherwise:

τ1(t+ 1) = 1 with probability τ1(t) + α[1− τ1(t)],
τ1(t+ 1) = 0 with probability (1− α)[1− τ1(t)]. (1.3)

If i = L, we have chosen the exit site. If this site is occupied, we remove the particle with
probability β:

τL(t+ 1) = 1 with probability (1− β)τL(t),

τL(t+ 1) = 0 with probability 1− (1− β)τL(t). (1.4)

We begin a discussion of the mean field theory approach originally followed in Ref.
[46]. While this model has been solved exactly, it is instructive to look at the mean field
solution since it will help to understand our approach to other connected models studied in
this thesis. The system is expected to achieve a steady state in the limit of large time. In
steady state, the average occupation 〈τi(t)〉 does not change as a function of time. If the
occupation at site i (2 ≤ i ≤ L− 2) at time t is τi(t), the occupation at time t+ 1 is given
by

τi(t+ 1) =


τi(t) + [1− τi(t)]τi−1(t) with probability 1

L+1
,

τi(t)τi+1(t) with probability 1
L+1

,

τi(t) with probability L−1
L+1

.

Averaging the above equation, one will obtain

〈τi(t+ 1)〉 = 〈τi(t)〉+
1

L+ 1
[〈τi(t)τi+1(t)〉 − 〈τi(t)τi−1(t)〉+ 〈τi−1(t)〉 − 〈τi(t)〉], (1.5)

in the steady state average density is time independent and thus

〈τi〉 − 〈τi+1τi〉 = 〈τi−1〉 − 〈τiτi−1〉. (1.6)

The above equation indicates the conservation of particle current across the lattice in the
steady state. Similarly for i = 1 and i = L

〈τ1〉 − 〈τ1τ2〉 = α(1− τ1),
β〈τL〉 = 〈τL−1〉 − 〈τLτL−1〉. (1.7)

8



These are exact steady state equations.

We now use the mean field approximation where correlations are neglected, i.e., 〈τiτi+1〉
is replaced by 〈τi〉〈τi+1〉. We denote 〈τi〉 by ρi. Hence, using the mean field theory, the
above equations can be rewritten as:

ρi − ρiρi+1 = ρi−1 − ρi−1ρi, (1.8)

ρ1 − ρ1ρ2 = α(1− ρ1), (1.9)

βρL = ρL−1 − ρL−1ρL. (1.10)

The solutions of these L equations with L unknowns determines the average occupation ρi
for any finite L. We can rewrite equation (1.8) as simple recursion relation:

ρi+1 = 1− c

ρi
, (1.11)

where c is a constant denoting the current of particle through the lattice. For c < 1/4, there
are two fixed points for the recursion relation:

ρ± =
1

2

[
1±
√

1− 4c
]
, (1.12)

where ρ+ is stable and ρ− is unstable. When c = 1/4, there is only one fixed point. When
c > 1/4, there are no real valued fixed points. We have that ρi+1 is a homographic function
of ρi

ρi+1 =
−ρ+ρ−(ρi+ − ρi−) + (ρi+1

+ − ρi+1
− )ρ1

−ρ+ρ−(ρi−1+ − ρi−1− ) + (ρi+ − ρi−)ρ1
. (1.13)

Clearly ρi depends on c and on ρ1: for i = L this relation can be written as

ρL = f(c, ρ1). (1.14)

Equation (1.14) and the boundary conditions determines the values of ρ1, ρL and c. From
this analysis, we obtain different phases of the given model according to different boundary
conditions. Figure 1.3 gives the phase diagram for TASEP.

Phasediagram: 1. Low density phase: (Shown in region I of figure 1.3). In this
phase, density at site one is set infinitesimally close to the fixed point ρ1 = ρ− + 0±. One
sees that the density stays at this value throughout the bulk of the lattice and varies only
close to the exit boundary. Using the recursion relation, one can then show that in the
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Figure 1.3: Phase diagram of TASEP with open boundaries in the α− β plane. Region (I)
is the low density (LD) phase, where α < 1/2 and α < β. Region (II) is the high density
(HD) phase, where β < 1/2 and β < α. Region (III) is the maximal current (MC) phase,
where α > 1/2 and β > 1/2.
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Figure 1.4: Density profile in the various phases. (a) Low density phase, (b) High density
phase, (c) Maximal current phase, (d) Co-existence line.
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steady state: ρ1 = α [figure 1.4(a)] and the current in the system is c = α(1 − α). The
conservation of current implies ρL = α(1− α)/β. One can use equations (1.8), (1.9) and
(1.10) to show that this solution exists only if α ≤ 1/2 and α < β.

2.High density phase: (Shown in region II of figure 1.3). In this phase the density at
the exit site is set to the domain of attraction of the stable fixed point ρL = ρ+ + 0±. One
can then show that ρL = 1− β. The current then is c = β(1− β). While the bulk density
is 1 − β [figure 1.4(b)], there is a variation in density near the entry boundary where the
density is determined by the constant current condition ρ1 = 1− β(1−β)

α
. The condition for

this phase to occur are β < 1/2 and β < α.

3.Maximal current phase: (Shown in region III of figure 1.3). Here one considers
ρ1 ≥ 1/2, ρL ≤ 1/2. In this phase the system attains the maximal current possible, c = 1/4.
The density in bulk is half and it changes as we approach the boundaries near i = 1 and
i = N . This solution exists when α ≥ 1/2 and β ≥ 1/2. The densities at the ends are:
ρ1 = 1 − 1

4α
and ρL = 1

4β
. As shown in fig. 1.4(c), the bulk density attains the value 1/2,

while the deviations at the boundary follow a power law with exponent one.

4. Coexistence line: The line dividing the high and low density phases, α = β < 1/2.
Here ρ1 = ρ− + 0+, ρL = ρ+ + 0−. The high and low density phases coexist in this region
where the recursion starts infinitesimally near to ρ− and iterates to the stable fixed point
ρ+. One sees a domain wall formation between regions of different density [figure 1.4(d)].

Thus, we obtain three phases depending on the boundary conditions determined by the
parameters α and β. The low density and high density phases are separated by a first order
phase transition line while there is a continuous phase transition from low density/high
density phase to the maximal current phase. We show the phase diagram obtained by the
mean-field approximation in figure 1.3. The phase diagram is the same as obtained by exact
calculations using the matrix method [49].

The exact solution by matrix method can be used to calculate various quantities includ-
ing the steady state density distribution as well as two point density-density correlation
function [48]. The approach here is to write down the steady state probability of finding
the system in a particular state PL(τ1, τ2, ..., τL) as

PL(τ1, τ2, ..., τL) =
fL(τ1, τ2, ..., τL)∑

τ1=0,1 · · ·
∑

τL=0,1 fL(τ1, τ2, ..., τL)
, (1.15)
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where the unnormalized weights can be expressed using matrices:

fL(τ1, ..., τL) = 〈W |
L∏
i=1

(τiD + (1− τi)E)|V 〉. (1.16)

Here D and E are square matrices and |V 〉 and 〈W | are vectors that satisfy the following
relations

DE = D + E, (1.17)

D|V 〉 =
1

β
|V 〉, (1.18)

〈W |E =
1

α
〈W |. (1.19)

Using these assumptions, one can calculate quantities of interest. From equations 1.18
to 1.19, it is possible to derive the expression for density profile, current as well as the
other higher correlation functions without having any particular form of matrices. The
calculation of any quantity of interest requires the expression for 〈W |CL|V 〉 (where C =

D+E) for arbitrary L and any α and β. Using commutation rules as defined the equations
1.18 and 1.19 one can obtain an expression for L ≥ 1

〈W |CL|V 〉 =
L∑
p=1

p(2L− 1− p)!
L!(L− p)!

(1/β)p+1 − (1/α)p+1

(1/β)− (1/α)
. (1.20)

Equations 1.18 and 1.19 can also be used to derive the following equation

DCL =
n−1∑
p=0

2p!

p!(p+ 1)!
Cn−p +

n+1∑
p=2

(p− 1)(2n− p)!
n!(n+ 1− p)! D

p, (1.21)

One then obtains for i ≤ L− 1, the density profile to be

〈τi〉L =
n−1∑
p=0

2p!

p!(p+ 1)!

〈W |CL−1−p|V 〉
〈W |CL|V 〉 +

〈W |Ci−1|V 〉
〈W |CL|V 〉

n+1∑
p=2

(p− 1)(2n− p)!
n!(n+ 1− p)! β

−p, (1.22)

and for i = L we have

〈τi〉L =
1

β

〈W |CL−1|V 〉
〈W |CL|V 〉 . (1.23)
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The current is given by the expression

j =
〈W |Ci−1DECL−i−1|V 〉

〈W |CL|V 〉 =
〈W |CL−1|V 〉
〈W |CL|V 〉 . (1.24)

In the L → ∞ limit from the equation 1.24, we obtain the expression for steady state
current for various boundary conditions. When the system is in the LD phase the current is
j = α(1 − α), it is controlled by the entry rate. In the HD phase, the steady state current
is controlled by exit rate and is given by j = β(1 − β) and in the MC phase (α > 1/2

andβ > 1/2) it is independent of boundaries and attains a constant value 1/4.

Using the asymptotic expression (1.23), we can also obtain expressions for density
away from the boundaries for various phases. For LD phase 〈ρL〉L ' α. For HD phase
〈ρL〉L ' 1 − β and in the MC phase, 〈ρL〉L ' 1/2. For the coexistence line, 〈ρL〉L '
α + x(1− 2α). So the density is constant everywhere except at the coexistence line.

The phase diagram of the system, as well as the expression of current through the
system, turns out to be the same as that from the mean-field approximation. One of the main
predictions different from mean field is the exponent of the power law decay of density in
the MC phase, which is found to be 1/2 in the thermodynamic limit.

Study of TASEP and its variants is an active area of research. We have already seen
that TASEP is sensitive to boundary conditions. While in case of open boundaries there
are three distinct phases, the system has a unique steady state with a homogeneous den-
sity when the boundary condition is periodic. Introduction of disorder in the form of a
slow particle or a slow bond in a TASEP with periodic boundaries leads [61, 62, 63] to a
significant change in the phase diagram, as we shall discuss later. The inclusion of Lang-
muir(evaporation/deposition) dynamics, inspired by biological processes [64], changes the
phase structure and leads to a rich phase behaviour. Other variations include TASEP with
finite resources and blockage at the middle site to mimic transport process with limited
resources and a speed bump [65], and TASEP with accelerated and decelerated motion to
more effectively capture the behaviour of vehicular transport [66]. TASEP with extended
particles was studied as a more realistic model of protein synthesis in biological systems
and this system shows a nonlinear relationship between particle current (J) and input rate
(α) [67]. The study of the effect of quenched disorder [68] where the rate of movement
is random and site dependent reveals the possibility of three distinct regimes depending
on disorder parameters. The introduction of a blockage in a system with open boundaries
produces a queuing transition [69]. These and many other variations of TASEP have been
studied not only to model real systems but also to study the possibilities of steady states

13



with different kinds of dynamics.

In this thesis, we discuss the effect on TASEP of two different dynamical features -
nonlocal hopping and resetting. These features lead to distinct changes in the phase dia-
gram. Nonlocal hopping imitates features of vehicular traffic while the study of TASEP
with resetting is inspired by the degradation of mRNA and its subsequent replacement by a
new one in the process of protein translation [70]. Further variations within these two dy-
namics, like the introduction of disorder in a system with nonlocal hopping and the effect
of different kinds of resetting time distributions have also been studied. The section 1.2
and1.3 provide a broad overview of the previous work done related to these problems and
a brief description of our contributions.

1.2 Nonlocal hopping

One part of our work involves the study of TASEP with the additional feature of nonlocal
hopping. The modified dynamics, originally introduced in [71], involves particle motion
beyond the usual nearest neighbour sites. Specifically, the dynamics under consideration
allows for the particle to jump to the site right before the next occupied site, i.e. cover
any gap of empty sites in front of it in one move. These dynamics are in addition to the
usual nearest neighbour move and one can stochastically choose either of them by fixing
the probabilities of each. There have been previous studies exploring the possibility of
particles making long moves, both with the dynamics mentioned above, as well as with
other possible moves. Some of these are motivated by real world phenomenon such as
traffic on freeways without any speed limit or vehicles moving on wet or icy rods [72, 73],
granular flow [74], exploring the role of gravity in static or dynamic sedimentation [75,76],
motion of molecular motors driven by ATP [77] and phase separation in sedimentation of
colloids [78].

In a recent study, long range moves were introduced by allowing the particle to jump
any distance l with probability pl ∼ l−σ−1, with jumping over other particles in between
being allowed. In this case, the boundary conditions as well as the exponent σ control the
phase behaviour of the system. It was found that when σ ≤ 1 there is no phase transition,
while for 1 < σ < 2 one sees the usual TASEP phases but with additional features in
the density profile [79, 80]. A possible application for this model lies in the transport
of DNA regulatory proteins, which attach only to specific sites on the DNA molecule,
activating or inhibiting the transcription of genes [81]. A study of the same long range
model modified by introducing a defect site or impurity shows a phase transition from a
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region of separation to a homogeneous phase [82]. Another modification involves multiple
defect sites distributed along the lattice [83] and it is shown here that the phase co-existence
does exist in the thermodynamic limit in this system. Another way of introducing long
hops are by adding links between non-nearest neighbour sites on a one dimensional lattice.
Studies involving such linking in a hierarchical fashion show a simplified phase diagram
with the disappearance of the maximal current phase [84].

The effect of nonlocal moves has also been studied on other important models related
to TASEP. Symmetric exclusion process (SEP) is a model similar to TASEP with the dif-
ference that the particle moves are symmetric and there is no favoured direction. The
introduction in SEP of non-local hopping dynamics similar to the one described in the first
paragraph of this section leads to a first order phase transition between a fixed density phase
and a phase with an empty bulk [85]. Zero range process (ZRP) [86] is a model allowing
for the presence of more than one particles at a site. In a ZRP with attractive particles that
can also make non-local hops, it was shown that there is a phase transition between a con-
densate and a homogeneous phase [87]. The parking garage model [88] is a modification of
TASEP inspired by queuing phenomena. Here, one considers TASEP with periodic bound-
ary conditions, with the addition of a special reservoir site which acts as a "garage". The
dynamics is controlled by two parameters: the total car density and the probability with
which a car escapes from the garage. The phase diagram shows two condensate phases
where the garage becomes macroscopically occupied. The introduction of nonlocal hops
to this model shows a new phase where the bulk of the lattice becomes empty [89].

The model we study is closely related to previous work [71, 89] mentioned above. The
system under study consists of particles which can make a long-range jump directly to an
empty site right behind the next occupied site, apart from the usual TASEP dynamics in-
volving nearest neighbour motion. The long hops are governed by a parameter p, which is
the probability for long hops and the p = 0 limit is the usual TASEP. We begin with the
study of the combined effect of open boundaries and long hops on the steady state of an
open system. Apart from the usual low density (LD), high density (HD) and maximum cur-
rent (MC) phases, the introduction of a finite p leads to a new possibility - an empty road
(ER) phase with particles clearing out faster than they enter. The variation in the phase
diagram with p is interesting, with the LD and MC phases vanishing at large values of p
while the ER and HD phases divide the parameter space in half. We then look at the com-
bined effect of long hops and static/dynamic impurities. In this study, the boundaries are
taken to be periodic for simplicity. We show that the system with a static impurity and with
0 < p < 1 shows a phase transition from a shock phase characterized by finite densities
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on either side of the shock (HD-LD phase) to a phase where the density on one side of the
shock is zero (HD-ER phase). We also study the effect of a dynamic impurity, introduced
via a slow particle. Here, the system undergoes a phase transition from a homogeneous
phase to a shock phase depending on the density, the speed of the slow particle, as well
as the probability p. The shock phase dominates the phase diagram at large values of p.
All our studies involve numerical simulations which are supported by mean field theory
arguments. The mean field approximation works well qualitatively and correctly identifies
the possible phases, while the quantitative agreement with numerics varies, depending on
parameter values. A detailed description of this work will be provided in the following
chapter.

1.3 Resetting

The effect of resetting on dynamical systems is a topic of current interest with many recent
studies (see [90] for a recent review). The word resetting in this context means sudden,
large dynamical moves in addition to the usual continuum dynamics of the system. One of
the favoured examples used to invoke such sudden dynamics is the search problem involv-
ing a lost pet. Such a search will involve a slow random scan of a given area followed by
quick checks to see if the pet has returned home by its own. There are many real life situ-
ations where such dynamics capture the system behaviour. It finds applications in diverse
fields like computer networks (to find an element in a sorted and pivoted array) [91], ecol-
ogy [92], microbiology [93] and biochemistry [94]. One of the very first studies of such
a process involved its application to stochastic multiplicative processes where the system
develops a stationary power law distribution of the relevant variable [95] when resetting
dynamics are introduced. In the context of search problems, resetting models a quick re-
turn to the original state which may optimize the time of the search for lost pets or the
searching of food by foraging animals [96]. Resetting dynamics also finds application in
several microbiological processes such as cleavage during recovery from backtrack during
RNA polymerization [97], destruction of mRNA during the process of translation [70, 98]
and sudden decrease in microbe population during a catastrophe [99]. It has been used
to model the motion of E. Coli bacteria which alternate between ballistic moves (runs)
with random changes of direction (tumbles) in order to reach regions with a high concen-
tration of a chemo-attractant (chemotactic search) [100]. The resetting in a birth-death
process [90] may model a return to an initial small population after reaching an absorbing
state, or random catastrophes that suddenly decrease the population, and in either case,
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there are interesting stationary state properties. Such dynamics have also been studied in
the context of stochastic thermodynamics and in systems where quantum effects become
important [101].

Single particle diffusion is one of the simplest and most interesting models where the
effect of resetting can be studied and analysed. Consider a diffusing particle in one di-
mension which starts at a given point. The probability distribution for this particle will be
an ever expanding Gaussian in the absence of resetting. If this particle is stochastically
reset with a constant rate r to its original position, one sees a non equilibrium stationary
state with non Gaussian fluctuations [102]. It was also shown that the mean time to find a
stationary target by a diffusive searcher is finite and has a minimum value at an optimal re-
setting rate. These results were extended to arbitrary spatial dimension [103]. The optimal
resetting induced by resetting was explored with several generalisations including resetting
to a random position, and with a space dependent reset rate [104]. Another study involved
diffusion with resetting to a position from the past, chosen according to a memory ker-
nel [105]. Varying the memory kernel leads to different possible behaviours ranging from
the standard diffusive to anomalous ultra slow growth. Introducing a partially absorbing
target along with the resetting dynamics leads to the survival probability of the searcher
decreasing exponentially with time, and the mean time to absorption increasing by an addi-
tive term [106]. The possibility of a one dimensional random walker reset to the maximum
of already visited positions shows a ballistic behaviour for the average position [107]. One
way of generalising the resetting rate is to make it time dependent which was again ex-
plored from the point of view of an optimal search strategy [108]. Other studies involving
diffusion and resetting include the effect of reflecting boundary conditions [109] as well as
resetting with finite return speed [110].

Besides single particle diffusion, the effect of resetting in other dynamics has also been
studied. Optimal parameters for a search process undergo a first order phase transition as
a function of initial position when the underlying dynamics involves choosing jump sizes
from a heavy-tailed Levy stable jump distribution, as well as resetting with a constant
rate [111]. Application of resetting in the continuous time random walk with drift leads
to a power law tail for the density [112]. Other examples include, e.g. the connection
between home range search and resetting [113], the interplay between population dynamics
and resetting [114], branching processes and resetting [115] and resetting of the scaled
Brownian motion with a time-dependent diffusion coefficient [116].

The dynamical feature of resetting has also been studied in quantum systems. One
such work involves the study of the effect of a reset that projects the system to its initial
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state [101]. The effect of reset on quantum and classical Markovian dynamics shows an
acceleration in relaxation to a steady state [117]. The effect of repeated measurements
on quantum random walks has been explored in [118, 119]. The resetting process has also
been studied from a stochastic thermodynamics point of view and entropy production [120]
as well as work fluctuations have been calculated and deviations from Jarzynski’s equality
have been demonstrated [121].

Most of the studies mentioned above involve systems with non-interacting particles.
Interparticle interactions can be very important in many real systems and in this thesis, we
study an example of such a system. A well known example of an interacting particle system
is the Ising model, and a recent study involving stochastic resetting in Ising model reveals
that it drives the system into non-equilibrium steady state through the rapid quenching of
temperature and magnetic field and a rich phase diagram is obtained when temperature and
resetting rate are varied [122]. Our work model is related to previous studies on the effect
of resetting on fluctuating interfaces [123]. Here, it has been shown that interfaces gov-
erned by the Kardar-Parisi-Zhang (KPZ) and the Edwards-Wilkinson (EW) equation show
a nonequilibrium steady state with non-Gaussian fluctuations under the effect of resetting
to the initial flat state at a constant rate. While a constant rate implies an exponential dis-
tribution of the inter-reset times, it is worth exploring other possibilities for the inter-reset
time, like the power law distribution, which indicates long term memory effects [124].
Indeed the power law distribution leads to a change in behaviour of the system as a func-
tion of the power law exponent, as can be seen from a study of the effect of resetting on
diffusion [125], as well as on fluctuating interfaces [126].

In this thesis, we have studied the effect of resetting on a system undergoing the TASEP
in one dimension with open boundaries. The system undergoes stochastic resetting to the
initial, empty state at time intervals that are drawn from a given probability distribution.
We consider two possibilities for this distribution, a power law with the exponent γ, and
an exponential distribution corresponding to a constant rate of resetting λ. It should be re-
membered that the microscopic models corresponding to the KPZ equation for an evolving
interface can be mapped exactly to a TASEP, with density variables in the exclusion model
corresponding to the slope in the interface evolution language. The crucial difference in
the current study and the previous ones involving EW and KPZ systems is the presence
of open boundaries in our case. As seen before, open boundaries lead to a very different
phase structure from the periodic boundary case and there are three possible phases of the
system. We study the effect of resetting on all three phases.

We will describe our work in more details in the following chapters. The rest of the
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thesis is arranged as follows:
Chapter 2 In this chapter, we describe our work on a model of particles with hard-core

interactions which are allowed to make long-hops. We consider the open boundary version
of the problem, where the non-local hops lead to a change in the phase diagram. We also
consider the periodic boundary case, where the presence of dynamic/static impurities leads
to interesting behaviour, including phase transitions.

Chapter 3 In this chapter, we describe our work on the effect of resetting on a TASEP
with open boundaries. We explore this effect on all three phases of the TASEP and also
explore two different possibilities for the distribution of times between successive resets.

Chapter 4 We concludes the thesis with this chapter with a summary and brief remarks
on our work as well as a list of open problems for further research.
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Chapter 2

Effects of boundaries and impurities on a
one dimensional driven diffusive system

In this chapter we discuss the effect of nonlocal hops on the steady state properties of a one
dimensional system, where particles interact with each other via a hard-core repulsion. In
the recent past, many studies have focused on dynamics that allow for nonlocal motion via
large jumps. A previous study [79] involves particles that can hop to an arbitrary distance
l, with the probability of hopping decaying as a power law, pl ∼ 1/lσ+1. It was shown that
the phase diagram resembles that of a TASEP for σ > 1 but for σ < 1 there is no phase
transition. One way of generating long hops is by introducing links between distant sites.
These links may be hierarchical [84] or random [127] and lead to significant changes in
the steady state properties of the system. Another work studies the phase transition caused
by the competing tendencies of declustering via nonlocal hops and clustering promoted by
inter-particle attraction [87].

The model we study is closely related to previous work [71, 89] where the system un-
der study consists of particles that can make a long-range jump directly to an empty site
right behind the next occupied site, apart from the usual TASEP dynamics involving near-
est neighbour motion. The nonlocal hop mimics the sudden acceleration by a car when
there is a large gap available on the road in front. A similar model but with symmetric
dynamics [85] of the particles was later studied and both studies saw the emergence of a
new phase - the empty road (ER) phase with zero bulk density which was explained us-
ing a cluster analysis. With periodic boundary conditions and conserved particle numbers,
the dynamics of these models can be mapped exactly to the chipping-diffusion-aggregation
models (henceforth CDA models) [128, 129, 130, 131, 132]. The CDA models consider a
lattice that allows occupancy of multiple particles at the same site. The dynamics allow for
particle motion via the movement of a whole mass cluster to the next site (corresponding to

20



nonlocal hops in our model) or by the "chipping" of one particle from a given cluster (maps
to nearest neighbour motion in our model). In these models, the empty road phase shows
up as an aggregate phase with the empty lattice stretch translating to an infinite aggregate.

Our study considers the asymmetric version of the nonlocal hop models mentioned in
the previous paragraph and explores the effect of two dynamical features on the steady state
properties of this system: open boundaries (entry as well as exit), and impurities - static
and dynamic. Below, we provide a brief description of the content and organisation of our
work.

In section 2.1 of this chapter, we study a one-dimensional system with open boundaries
such that particles enter at one end and leave at the other. The particles move unidirection-
ally on the lattice and interact via hard-core repulsion, like in TASEP. The particles can
either attempt a move to the nearest neighbour with probability 1− p or make a long-range
hop to the empty site before the next occupied site with a probability p. We thus have three
parameters - particle entry rate α, exit rate β and the hop rate p governing the dynamics.
The interplay of entry-exit rates as well as the competition between the local and nonlo-
cal hops leads to interesting behaviour and we construct a complete steady state picture of
this system via the phase diagram. Our numerical study, supported by a mean field theory,
shows that the system has four possible phases at low values of p: three phases similar to
the TASEP and an additional phase where the particle density vanishes in the bulk. As p
is increased, and long-range hops dominate the dynamics, the number of possible states
decreases to two such that the system is either controlled by the long-range hops, or by the
exit boundary. The novelty of our work lies in the complete characterisation of an open
system with long-range hops and in showing that the output boundary exerts a significant
influence on determining the steady state of the system.

In section 2.2, we consider a system with the same dynamics as above, but with periodic
boundary conditions and a fixed number of particles. We study the effect of a dynamic
impurity on this system by introducing a slow-moving particle that makes only local hops
with a rate µ. The parameters here are p, µ and the particle density ρ. We map out the phase
diagram of the system and see that it exists in either of the two phases: a homogeneous
density phase where the effect of the slow particle is localised, and a shock phase where
the system separates into two regions of different density across the slow particle. The
p→ 0 limit of our model has been studied before [51,62] and the results show a separation
of the parameter space into two halves divided by the line µ = 1 − ρ, thus indicating
that there is a phase transition for every finite density. The introduction of nonlocal hops
via p enhances the shock formation tendency and we find that for low values of density,
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Figure 2.1: (a) Schematic diagram for the dynamics of our model with open boundaries.
Particles enter the left boundary with rate α and exit from the right boundary with rate β.
The rate for nonlocal hopping is p and local hopping is 1− p. (b) If all sites to the right of
the chosen particle are unoccupied, it hops to the last site L.

the system always exists in a shock phase without undergoing a phase transition. Our
model with a slow particle can be exactly mapped to the CDA model with a slow site. We
translate our condition for the phase transition to a shock phase into the condition for a
phase transition to an infinite aggregate phase in the CDA model.

In section 2.3, we consider the model with periodic boundary conditions as described
above, but the impurity in the system is of a static nature. A special slow site is introduced
in the system such that a particle at this site can only move out via a local hop with a rate r.
In the regular TASEP (p→ 0 limit), the problem of a static impurity has been studied with
much interest since initial studies threw up conflicting results on the presence of a phase
transition as a function of the parameter r [61, 69, 133, 134]. More recent results suggest
that there is no phase transition and the system always exists in a shock phase [135, 136].
The introduction of nonlocal hops via the parameter p leads to interesting results and we
see a phase transition in our system - albeit to a different kind of state. As expected, we see
that increasing the value of p enhances the tendency of shock formation and therefore the
system always shows two different regions : the region behind the slow site having a high
density and the region in front having a low density. As we increase the value of p, we see
that the density in front of the slow particle decreases continuously to zero and remains at
zero for all higher values of p. The zero density portion is much like the empty road phase
of our study with open boundaries, with a similar mechanism flushing out particles quicker
than they arrive.

The consideration of open boundaries, as well as static and dynamic impurities, helps
us in constructing a broad view of the effect of nonlocal hops in one dimensional driven
systems and throws up some interesting results.
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2.1 Open boundaries

2.1.1 Model

We consider particles moving on a one-dimensional lattice of size L as shown in figure 2.1.
The particles interact via hard-core repulsion, implying that a particle cannot move to a
site that is already occupied and therefore a given site cannot accommodate more than one
particle. The particles always move unidirectionally (left to right in figure 2.1) with the
following rules: (i) particles attempt to enter the leftmost site with a rate α, the attempt
is successful if the leftmost site is empty, (ii) particles leave out of the rightmost site with
a rate β and (iii) a randomly chosen particle on the lattice attempts to hop to its nearest
neighbour site with a rate 1 − p or make a long hop to the next unoccupied site preceding
an occupied one with a rate p. Either of these attempts is successful only if there is at least
one unoccupied site to the right of the chosen particle. If all sites to the right of a particle
are unoccupied, it jumps to the rightmost site L. We thus have three parameters: α, β and
p governing the particle dynamics, each of which can take any value in the interval [0, 1].

2.1.2 Numerical results and phase diagram

We performed Monte Carlo simulation of the model described above using random sequen-
tial updating. One move corresponds to selecting a particle on the lattice or a particle in the
reservoir at the entry end and then trying to move it using the dynamics defined above. We
define one time step to be L + 1 such random updates such that in a unit time, particles at
all sites, including the reservoir, will have attempted a move once. We performed long time
averages of the quantities of interest after ensuring that the system is in a time-independent
steady state. We covered all possible regions of the α− β − p parameter space. The phase
diagram has been presented as a projection on the α− β plane for various values of p. Our
numerical approach was to scan the α − β plane at a gap of 0.05 for α and β, for a given
p. The p values were themselves varied by 0.1 from 0 to 1. Further, after the identification
of the gap containing a phase boundary, more detailed data was taken in that particular
parameter range, an example of which can be seen in figure 2.4.

For p = 0, our model reduces to TASEP which can be seen in figure 2.2(a) where the
system has three possible phases. When the entry rate of the particle is lower than the exit
rate (α < β and α < 0.5), the system is in an entry boundary controlled phase with a bulk
density of α. This is the low density (LD) phase. When the exit rate is smaller than the
entry rate (β < α and β < 0.5), the flow is controlled by the exit boundary and one enters
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Figure 2.2: (a)-(c) Phase diagram projected in the α-β plane for different values of the
nonlocal hopping rate p. Here LD, HD, MC and ER correspond to the low density phase,
high density phase, maximal current phase and empty road phase respectively. The solid
lines are from the mean field analysis while the dashed lines indicate boundaries determined
through simulations. (d) The variation in α∗ with p. α∗ is the value of α at which the LD
to ER phase transition occurs. The dashed line shows the Monte Carlo simulation results
while the solid line indicates the output from mean field. (e) The dependence of αc and
βc on p. The transition from LD to MC and HD to MC occurs at αc and βc respectively.
Dotted and dashed lines indicate the results from MC simulation for αc and βc respectively.
The solid line indicates the mean field result.

the high density (HD) phase with a bulk density of 1 − β. When both the exit and entry
rates are high (α, β > 0.5) the system enters into a phase where the density at the center
is no longer governed by the boundaries and is fixed at 1/2 irrespective of α and β. This
phase is called the maximal current phase since the current in this phase is 1/4, which is
the maximum possible current.

As the probability for long-range hops p is increased, we see a marked change in the
phase behaviour. For non-zero values of p, we find that the system can have four different
kinds of phases in steady state. We have shown various slices of the three-dimensional
phase diagram, figure 2.2, in the α − β plane, each for a constant p. The four phases are
named as the low density (LD) phase, high density (HD) phase, maximal current (MC)
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phase and the empty road (ER) phase. In the LD phase, the bulk density of the particles is
controlled by the injection rate α and in the HD phase, it is controlled by the ejection rate β
similar to the TASEP at p = 0. In the MC phase, the particle density is independent of α and
β but the current, unlike TASEP, can be more than 1/4. The ER phase, where the particle
density approaches zero, is a unique phase generated solely by the nonlocal hopping effect.
In the following, we describe the variation in the phase diagram as projected on the α − β
plane as we vary p.
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Figure 2.3: Density profile as a function of the distance along the lattice. (a) α = 0.3,
β = 0.1, p = 0.2. The system is in the HD phase. (b) α = 0.7, β = 0.8, and p = 0.2 (MC
phase). The profile is obtained numerically using Monte Carlo simulation. (c) α = 0.3,
β = 0.8 and p = 0.2 (LD phase). (d) α = 0.2, β = 0.8 and p = 0.2. The system is in ER
phase. Monte Carlo simulation data is shown in green and mean field theory result in red
solid line and system size L = 2048.

(i) For 0 < p < pc: The system shows the four phases: LD, HD, MC and ER as
mentioned previously. Figure 2.2(b) shows a representative phase diagram of the system
for this range of p values. The value of pc as determined in our simulations is pc ≈ 0.3. A
discussion of the various possible phases of the system is given below.

(a) α > β and β < βc (HD phase): In this case, the input rate is higher than the exit rate
which creates a jam at the exit leading to high density in the bulk. The density in the bulk
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and the current in this HD phase are thus controlled by the exit rate β and is independent of
α. It is found that the density ρb in the bulk is equal to the density ρL at the right boundary
site i = L, i.e. ρb = ρL as seen in figure 2.3(a).
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Figure 2.4: (a) Current as a function of α for β = 0.8 and p = 0.2. The initial increase
corresponds to the ER/LD phase and the constant portion at higher α shows a transition to
the MC phase. The Monte Carlo simulation data shown in the green dashed line shows
a transition at αc ≈ 0.56 while the mean field result in red line shows a transition at
αc = 0.83. The inset shows an enlarged portion of the Monte Carlo data with the green
dots indicating the data. The horizontal red line shows the constant value of current in the
MC phase while the vertical red line shows the transition point at which this constant value
is achieved. (b) Current as a function of β for α = 0.8 and p = 0.2. The initial increase
corresponds to the HD phase and the constant portion at higher β shows a transition to the
MC phase. The Monte Carlo simulation data in green dashed line shows a transition at
βc ≈ 0.56 while the mean field result in red line shows a transition at βc = 0.833.

(b) α > αc, β > βc (MC phase): Consider the p = 0 case where we have the regular
TASEP dynamics. Here we know that αc, βc = 0.5, such that for α, β > 0.5, we have a
maximal current (MC) phase where the current for all values of α and β has the maximum
possible value of 1/4. As p is increased, we see a phase with similar characteristics as
the MC phase of TASEP - the value of the current is the maximum possible and remains
a constant throughout the phase. Figure 2.4 show the variation in current with α and β.
We can see from the figures that as the system enters the MC phase, the current reaches
its maximum value and becomes independent of α and β. The point at which the current
becomes constant is taken as the crossover value from LD/HD to MC phase. This is a
continuous transition and the boundaries between the phases are defined by the lines α = αc

and β = βc in the phase diagram [figure 2.2(b)]. Numerically, we see that αc = βc = 0.5

for p = 0, as expected. As p is increased, we observe that αc ≈ βc and their values increase
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as a function of p. Figure 2.3(b) shows the average particle density on the lattice in the MC
phase obtained numerically.

(c) For β > α and α∗ < α < αc (LD phase): In the regime α < β and α < αc,
one expects, similar to TASEP, the emergence of a phase with a low density since the bulk
behaviour is governed by the lower input rate of particles. As p is increased, we indeed
see such a phase, but only in the range αc > α > α∗. In this region of phase space, we
see a phase with a finite but low density, similar to TASEP. We note that bulk density here
is lower than α and the bulk is separated from the input boundary by a boundary layer.
This is in contrast to the TASEP, where the bulk density is equal to the input rate α and the
bulk extends right up to the input boundary. We can see the density profile in this phase in
figure 2.3(c) where the density in the bulk can be seen to be lower than α which is the value
at p = 0. As expected for an input boundary controlled phase, for a given p, this density
is a function only of the input rate α and not of β. The low density leads to an increase in
the range of the long hops thus facilitating a further decrease in the density. There is then
a competition between the input rate and the long-range hops in this range of parameters
which leads to a different phase for small values of α.

(d) For β > α and α < α∗ (ER phase): The density in the bulk is a decreasing function
of α in the LD phase and goes to zero at α = α∗. The system has a bulk density of
zero for all α < α∗, see figure 2.3(d). This implies a transition to a new kind of phase
having an empty bulk - the empty road (ER) phase. The continuous transition between the
LD and ER phase can be seen in figure 2.5 where the probability P (N) of finding a total
number of particles N is plotted. We can see that P (N) develops a distinct cusp with a
finite value at N = 0 for α < α∗. As expected, the value of α∗ increases with an increase
in p [figure 2.2(d)], since it is the nonlocal hops that are helping to clear out the particles
quickly, leading to an empty bulk. The line α = β (α < αc, β < βc) separates the HD
phase from the LD and ER phases. The LD to HD and ER to HD transitions are first order
and the sudden change in the probability density distribution P (N) of the total number of
particles can be seen in figure 2.6.

(ii) For p > pc: As mentioned above, the values of αc and βc increase as p is increased,
indicating that the MC phase shrinks as the probability of nonlocal hops is increased. We
observe that as p crosses the value 0.3, both αc and βc take the value 1 and there is a sharp
transition with the MC phase vanishing. We also see that for the LD phase, the value of α∗

increases with p and again the LD phase vanishes at the same value of p ≈ 0.3. We thus
have only two phases for all p > 0.3. The nonlocal hops therefore completely dominate the
dynamics in the α < β region and this whole region now becomes an ER phase with zero
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Figure 2.5: Probability distribution, P (N), of the total number of particles on the latticeN
for β = 0.8, p = 0.2 and α varying from 0.24 to 0.32. We can see that the phase transition
from ER phase to LD phase happens at α ≈ 0.27. The data was obtained numerically using
Monte Carlo simulation. System size L = 2048.

bulk density. The rest of the phase space comprises the HD phase. Figure 2.2(c) shows the
line separating these phases.

In our numerical work above, we see that the LD and MC phases vanish simultaneously
at p ≈ 0.3. As we shall see below, our mean field analysis shows all the phases discussed
above, but predicts that ER and MC phases vanish at different values of p, which is in
contradiction to the result above. Our results however are in good agreement with previous
numerical work [71] which essentially studies the β = 1 limit of our model. We ascribe
the difference in theory and numerics to the long hop dynamics, which ensure that the
occupancy of a site is correlated to that of another site far away.

2.1.3 Mean Field approach

We have tried a mean field approach, neglecting correlations. The dynamics of long-range
hops is expected to introduce correlations, nonetheless, our theory explains reasonably well
the various phases and their characteristics as seen in the numerics. We define the average
density at a lattice site i to be ρi. Consider the current passing through the link joining the
sites i− 1 and i:

ji = (1− p)ρi−1(1− ρi) + p

[
1−

i−1∏
k=1

(1− ρk)
]

(1− ρi). (2.1)
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Figure 2.6: (a) P (N) versus N when the system moves from the ER to HD phase. The
parameters are α = 0.2, p = 0.2 and β varying from 0.17 to 0.24. The value of β at which
the phase transition occurs is βc ≈ 0.2. (b) The variation in the probability distribution
P (N) of the total number of particles N on the lattice when the system moves from LD
to HD phase. The parameters are α = 0.4, p = 0.2 and β varying from 0.37 to 0.44. The
value of β at which the phase transition occurs is βc ≈ 0.4. The system size in both figures
is L = 2048.

The first term comes from the local motion of particles into site i due to hopping from
the nearest neighbour site i − 1. The second term stands for nonlocal hopping events
where particles may hop into the site i or surpass it. For such a nonlocal hop to happen,
there should be at least one particle in the lattice on one of the sites preceding site i. The
probability that there is at least one such particle is accounted for by the 1−∏i−1

k=1(1− ρk)
part of the second term. When the system achieves a steady state, the current through all
links will be equal. We also note that in the steady state, if the system has a finite density in
the bulk, we have

∏i−1
k=1(1− ρk) = 0 since the probability of having all empty sites before

a given site in the bulk will approach zero in the thermodynamic limit. We then have, far
from the input boundary:

ji = (1− p)ρi−1(1− ρi) + p(1− ρi). (2.2)

We expect that the effect of the boundary has decayed deep in the bulk of the system and
therefore the bulk has a constant density ρb which will be the fixed point of the above
equation. We can see that j = 1/[4(1 − p)] is the maximum possible value of the current
by using the condition dj

dρb
= 0 with j = (1− p)ρb(1− ρb) + p(1− ρb). When current is at

this maximum value, there is only one fixed point for the system given by

ρb =
1− 2p

2(1− p) . (2.3)
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We see that, for j < 1/[4(1− p)], there may be two possible fixed points:

ρb± =
(1− 2p)±

√
(1− 2p)2 − 4(1− p)(j − p)

2(1− p) , (2.4)

and for j > 1/[4(1 − p)], there are no fixed points. This analysis can be seen graphically
in figure 2.7.

We now try to analyse the phases and the transitions between them caused by the effect
of boundary conditions. Consider figures 2.7(a) and 2.7(b) where a fixed point can be seen
at high densities. This corresponds to the HD phase where the output boundary controls
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Figure 2.7: Fixed point analysis for various values of j. For j < 1/4(1− p) there are two
possibilities: (a) shows two possible fixed points corresponding to ER phase (zero density)
and HD phase while (b) shows two fixed points corresponding to the LD and HD phases.
Figure (c) is for j = 1/[4(1−p)] and there is only one fixed point corresponding to the MC
phase. (d) shows that for j > 1/4(1− p) there are no fixed points.

the flow of the particles. The current out of the exit site i = L is given by jL = ρLβ while
the current into this site is given by the expression jL−1 = (1−p)ρL−1(1−ρL) +p(1−ρL)

where ρL is the density at the exit site and ρL−1 is the density at the site preceding it.
In the steady state, we have jL = jL−1 = jb where jb is the current in the bulk: jb =

(1−p)ρb(1−ρb)+p(1−ρb). This equality of current permits the solution ρL−1 = ρL = ρb
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where ρb satisfies

ρbβ = (1− p)ρb(1− ρb) + p(1− ρb), (2.5)

which gives us

ρb =
1− 2p− β +

√
(1− 2p− β)2 + 4p(1− p)
2(1− p) . (2.6)

Using the above equation and equation (2.1), we evaluate the density on the lattice, which
matches well with our Monte Carlo data as can be seen in figure 2.3(a).

Consider now the ER and LD phases where the density of the particles is low and
the input boundary is in control. Figure 2.7(b) shows a fixed point at a lower density
corresponding to the LD phase while figure 2.7(a) indicates that the bulk density going to
zero may be a solution. Again, to evaluate the current and bulk density in these phases, we
need to evaluate the density at the input boundary which controls this phase. In steady state,
the current into the first site is j1 = α (1− ρ1) while the current out of it is ρ1 (1− ρ2),
thus α (1− ρ1) = ρ1 (1− ρ2). Now consider the lattice site 2. Equating current into and
out of this site gives (1 − p)ρ1(1 − ρ2) = ρ2(1 − ρ3). The density at the second site ρ2
can then be approximated as ρ2 = (1 − p)ρ1 by assuming a low density and ignoring the
quadratic terms. Using this approximation, we can write for ρ1, the equation

(1− p)ρ21 − ρ1(1 + α) + α = 0, (2.7)

the solution of this equation is

ρ1 =
(1 + α)−

√
(1 + α)2 − 4α(1− p)
2(1− p) . (2.8)

Again, one can calculate the density distribution on the lattice using equation (2.1). The
match with numerics, as seen in figure 2.3(c), in this case, is not as good as in the HD case.

Let us now try to look at the various phase transitions. The current in the bulk is given
by equation (2.5) while the density is given by equation (2.6). These equations admit the
solution ρ = 0 when j = p, thus giving us an ER phase. This can be seen visually in
figure 2.8 where a zero bulk density is seen at a finite value of j. At lower values of j, you
can only have a high density solution or a negative density solution, which is unphysical
and simply implies that the system cannot support a non-zero, positive density. Contrast
this to the usual TASEP where the density is zero only when the current is nil. The reason
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we can have a finite current while having a zero density is that the current consists solely
of long-range jumps in which the particle hops across the site without contributing to the
density at the site in the bulk. These long-range hops are taking the particle from the
input end directly to the output boundary. The value of nonlocal hopping α∗ at which the
transition from LD to ER phase occurs can be inferred from the condition j = p:

α∗(1− ρ1) = p. (2.9)

Substituting the value of ρ1 from equation (2.8), we get√
(1 + α∗)2 − 4α∗(1− p) = (1 + α∗)− 2(1− p

α∗
)(1− p). (2.10)

Squaring on both sides and then multiplying by (α∗)2 gives us a linear equation in α since
the quadratic terms cancel out, and we finally get

α∗ =
p(1− p)
1− 2p

. (2.11)

The variation of α∗ with p is plotted in figure 2.2(d) and shows a good match with the
numerics. This mean field value overestimates α∗ at higher values of p and does not capture
the sudden transition to the ER phase at p = 0.3.
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Figure 2.8: Variation in current j with bulk density ρ for p = 0.2. MC simulations are
shown in green with a dashed line while MF calculations are shown by a red solid line.

32



Consider now the transition between the entry controlled LD/ER phases, to the exit
controlled HD phase. Equating the current on two sides jLD = jHD gives

α(1− ρ1) = ρbβ. (2.12)

Substituting the expressions of ρ1 and ρb from equations (2.8) and (2.6) in equation (2.12)
above, we see that the line α = β separates these phases, in excellent agreement with the
numerics. We have seen that at high values of the input and output rates the system goes
to a state in which the current stays at its maximum value, irrespective of the change in α
or β. This phase is the MC phase corresponding to the single fixed point in figure 2.7(c).
We again equate the currents in the different phases to get the condition for transition to the
MC phase. The transition from LD to MC phase would happen when we increase the input
rate beyond a critical value αc which can be obtained from the condition jLD = jMC. We
then have

αc(1− ρ1) =
1

4(1− p) . (2.13)

Substituting the expression for ρ1 from equation (2.8), we obtain

αc =
1

2(1− 2p)
. (2.14)

Similarly, to evaluate the condition for the HD-MC phase transition, we use jHD = jMC to
obtain the expression for βc

ρbβc =
1

4(1− p) . (2.15)

Substituting for ρb from equation (2.6) gives us

√
(1− 2p− βc)2 + 4p(1− p) =

1

2βc
− (1− 2p− βc),

which, after taking squares on both sides gives us the quadratic equation

(2p− 1)2β2
c + (2p− 1)βc +

1

4
= 0. (2.16)

The root of this equation is degenerate, and we get

βc =
1

2(1− 2p)
. (2.17)

We thus see that αc = βc and we have an MC phase in the regime α, β > αc. The
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value of αc at p = 0 is 0.5. The variation in αc and βc as a function of p is plotted in
figure 2.2(e). The matching with numerics here is not satisfactory, with the mean field
underestimating the extent of the MC phase. The mean field predicts a vanishing of the
MC phase at p = 0.25 whereas we see from numerics that it persists for even higher values
of p and shows a sudden transition to the ER phase for p ≈ 0.3, similar to the LD to ER
transition.

We now have a complete description of the effect of open boundaries on the phase
behaviour of our system. In the next sections, we are going to study another important
dynamical feature that leads to new kinds of behaviour in steady states - the presence of
impurities in the system. Even a single impurity or defect can have a significant macro-
scopic effect, leading to new phases in driven diffusive systems. These defects could be
of a static (particle-type) or dynamic (site-type) nature. We study the effects of a dynamic
defect in section 2.2 below, followed by a study of the static defect in section 2.3.

2.2 Dynamic defect: Slow particle

Let us consider the case of particle-type defect where apart from the regular particles that
move according to the dynamics defined in section 2.1, we also have a slower particle. To
focus only on the effect of the defect, we use periodic boundary conditions here. The defect
particle resembles a slowly moving car in traffic. We expect that under certain conditions,
this slower particle may cause a separation of densities with a higher density region behind
it and a lower density region in front, similar to a traffic jam. We define below, the model
in detail and then our results from numerical simulations and mean field analysis.

2.2.1 Model

Consider a periodic lattice with L sites, having N number of particles following the long
hop dynamics, in addition to a slowly moving particle. So the density of the normal par-
ticles is ρ = N

L
. The boundaries are periodic and no new particle can enter or leave. The

dynamics of our model, as shown in figure 2.9, are: (i) as before, a normal particle attempts
to move to its nearest neighbour site on the right with rate (1− p) or to the site just preced-
ing the next occupied site to the right with a rate p, (ii) the slow particle attempts to move
to the nearest neighbour site to the right with a rate µ. The system behaviour is controlled
by two parameters µ and p. The effect of a slower particle on the TASEP has been studied
in earlier work [51,63]. The model there is more general, allowing for an overtaking of the
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Figure 2.9: Schematic diagram of dynamics on a periodic lattice with a slow particle.
The circles indicate normal particles, which undergo local hopping with a rate 1 − p and
nonlocal hopping with a rate p. The hexagon indicates the slow particle which can make a
local hop with a rate µ.

slower particle by normal particles with a rate β, which our study discounts (β = 0). Note
that in the case of TASEP, the parameter governing the slow particle is named α instead
of µ used by us. We have changed the nomenclature to avoid confusion with the entry
parameter α in the previous section. The introduction of nonlocal hopping via parameter p
in our case leads to interesting results since it increases the tendency of clustering caused
by the slower particle.

2.2.2 Numerical results

We performed Monte Carlo simulations spanning the entire range for the parameters µ and
p, and for various lattice sizes and densities. As before, we calculated the quantities of
interest after the system has reached steady state. To measure the clustering caused by
the slower particle, we evaluate the average density as seen from a frame moving with the
slower particle. As we change µ for a given value of ρ and p, we see a change in phase.
At high values of µ, we have a phase in which the effect of the impurity is local: the
density along the lattice is a constant, apart from a kink around the defect (see figures 2.10
(a)(II) and 2.10(b)(II). As we slow down the defect particle by decreasing µ, we see that a
macroscopic shock is formed in the system. A region of density higher than the average is
formed behind the defect particle, while a region of zero density forms just ahead of it (see
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figure 2.10(a)(I) and 2.10(b)(I).

The transition between a homogeneous phase and a shock phase as described above can
also be seen as a function of the average density ρ of the system while p and µ are held
constant. A decrease in the density allows the normal particles to move faster and create
a jam behind the slow particle, at the same time opening up a region of lower density in
front of it. At higher densities, we have the homogeneous phase with a kink in density
near the slower particle. As we decrease the density beyond a certain value, the system
goes into the shock phase with a high density region behind the slow particle and a zero
density region in front of it. As we decrease the average density further, the value of density
in the "jam" behind the particle remains the same. The decrease in average density leads
to the decrease in the length of the high density region behind the slow particle with a
corresponding increase in the length of the zero density region in front (see figure 2.11).

We are working with periodic boundary conditions and therefore the low and high den-
sity regions on either side of the slow particle will meet each other at an interface where
a shock between these regions is formed. It interests us to characterise the fluctuations of
this shock interface. To do this, we make use of a second-class particle [50] which has
dynamics such that it acts as a normal particle with respect to empty spaces but acts as an
empty space as far as other particles are concerned. Thus, when a second-class particle is
introduced in a TASEP, it is designed to move forward by one step if the site in front is
empty but exchanges place with a normal particle and move back by one step if a normal
particle attempts to move to its position. These dynamics ensure that such a second-class
particle always likes to sit at the interface of a high density and a low density region. Its
location, therefore, can be taken as the location of the shock front. Our system has an
additional long-hop dynamics for the particles. The only addition to the dynamical rules
then is that if a normal particle attempts to move to the position of a second-class particle,
whether by local or nonlocal hops, the move occurs with the second-class particle moving
one step backwards while the normal particle moves to the position vacated by it. This rule
again ensures that a second-class particle sits at the interface with normal particles always
in front of it and empty sites behind it.

The width of the shock front is calculated using the deviation of the position of the
second-class particle (rs) from its mean: σ =

√
〈r2s〉 − 〈rs〉2. We start with a random

initial state and after reaching the steady state, we numerically evaluate this quantity for
various system sizes, L, keeping the density constant. We see that the width of the shock
front scales with system size L as L1/2 irrespective of the value of density and α (see
figure 2.12). This is the same behaviour as seen in the normal TASEP without long-range
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hops [63]. In our model, no particles surpass the slow one and therefore the second class
particle is essentially following the fluctuations of the last particle in the shock front.
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Figure 2.10: The density profile as seen in the frame of the slow particle, i represents
the distance as measured in front of the slow particle. We show this profile in the shock
phase and homogeneous phase for two different values of average density ρ. Figure (a)
: ρ = 0.8, p = 0.8, L = 1000, with (a)(I) µ = 0.1, and (a)(II) µ = 0.2. Figure (b) :
ρ = 0.5, p = 0.2, L = 1000 with (b)(I) µ = 0.4 and (b)(II) µ = 0.6. The data from Monte
Carlo simulation is shown in green and the red lines are from mean field analysis.

2.2.3 Mean field analysis

It is expected that the slow particle may cause a jam behind it and this jam moves with
the same speed as that of the slow particle. We may thus expect that the mean density
at a site will vary periodically in time instead of being constant. Whether or not such
a shock form depends on the speed of the slow particle and therefore, to understand the
transition between a homogeneous and a shock phase, we look at a mean field description
of the velocity of the particles on the lattice. Increasing the density restricts the speed while
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Figure 2.11: The density profile as seen in the frame of the slow particle, i represents the
distance as measured in front of the slow particle. Here, we show the change in the density
profile on the lattice as a function of average density, keeping other parameters the same.
Here µ = 0.4, p = 0.2, L = 1000. Average density: (a) ρ = 0.5 and (b) ρ = 0.25. The
Monte Carlo simulation data is shown in green while the mean field result is shown in red.

an increase in p increases the average speed of a normal particle. The speed of the slow
particle is controlled by µ. The transition between a homogeneous phase and a shock phase
happens when the slower particle is not able to match the speed of the normal particles
either because density is low or µ is low or the value of p is high. Since the system is in
a steady state, the velocity of particles in the bulk, behind the slow particle, is the same as
the velocity of the slow particle,

µ(1− ρ1) = (1− p)(1− ρ) +
p(1− ρ)

ρ
. (2.18)

The right side of this equation gives the velocity vb in the bulk using the expression vb = j/ρ

where j is the current as given in equation (2.2), density ρ being a constant in the bulk.
Here ρ1 is the density just in front of the slow particle. We consider the criterion for shock
formation as ρ1 = 0, i.e. a region of zero density just opens up in front of the slow particle.
We thus get the condition:

µ =
(1− p)ρ(1− ρ) + p(1− ρ)

ρ
, (2.19)

which describes a two dimensional surface in the three dimensional parameter space of µ,
p and ρ. This surface separates a shock phase from a homogeneous phase. Figure 2.14
shows the phase transition on the µ− ρ plane for different values of p, which shows a good
agreement with the data. The density behind the slow particle at the phase transition can
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Figure 2.12: Interface fluctuations for µ = 0.1 and p = 0.2 as a function of the system size
L. The green stars are numerical data obtained for ρ = 0.5, whereas the green dots are the
data points for ρ = 0.4. The solid lines (red, blue) are fits to L1/2.

be calculated by solving equation (2.19):

ρs =
(1− 2p− µ) +

√
(2p+ µ− 1)2 + 4p(1− p)
2(1− p) . (2.20)

In the shock phase, the density behind the slow particle is essentially controlled by the
speed of the particle which is µ, since it is not restricted by the presence of other particles
on the neighbouring site. We then expect that in the shock phase, the value of density in
the region behind the slower particle is independent of the average density and will always
have the value ρs. This prediction is in agreement with the numerics (see figure 2.11).

As mentioned before, the periodic boundary version of our nonlocal hop dynamics
can be mapped exactly to the chipping-diffusion-aggregation (CDA) models studied ear-
lier [128, 130]. Figure 2.13 shows a schematic diagram of this mapping for our slow parti-
cle dynamics. The movement of the whole mass present at one site to the nearest neighbour
site corresponds to the long-range hop in our case while the chipping of one particle corre-
sponds to the local move. It can easily be seen that the slow particle in our case is translated
to a slow site in the CDA model. The particles on the slow site of the equivalent CDA model
can only move out of it via chipping with rate µ. The shock formation in our model thus
corresponds to the formation of an infinite aggregate, i.e. an aggregate whose size is pro-
portional to the total number of particles. Our result above thus also gives the condition
for the phase transition to the aggregate phase in the CDA model with totally asymmetric
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Figure 2.13: The mapping of a particular configuration of our model with a slow particle to
the corresponding configuration in the CDA model. Our slow particle translates to a slow
site while our non-local hop translates to the movement of the whole cluster in the CDA
model. The slow site is shown in red colour.

dynamics and a slow site:

µ =
ρc(w + ρc + 1)

(w + 1)(ρc + 1)
. (2.21)

Here w is the ratio of the probability of chipping (equivalent to local hops in our model)
and the probability of the movement of the whole mass (nonlocal hops in our model),
w = (1 − p)/p and ρc is the average density in the CDA model, which is connected to
density in our case as: ρ = 1/(1 + ρc). Note that the open boundary versions of our model
and the CDA model do not have a proper mapping to each other since fluctuating particle
number in one case would imply a fluctuating lattice size in the other.
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Figure 2.14: The phase transition from shock phase (region I) to homogenous phase (re-
gion II) drawn in the ρ−µ plane for (a) p = 0.2 and for (b) p = 0.8. The green dashed line
shows results from numerical simulations while the red line is obtained using mean field
analysis.
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2.3 Static defect: Slow bond

Another problem of interest in nonequilibrium systems is the effect of a lattice defect or
static impurity on the system. A system that has been well studied in this regard is the
TASEP with a single impurity or blockage [61, 69, 134, 135, 136]. Here one considers
a TASEP on a periodic lattice where one of the sites is slower than the rest. A particle
attempts to move out with a rate one at all other sites except the slow site, which it leaves at
a rate r (< 1). The initial work using mean-field [61] was in contradiction with numerical
simulations [69]. While the mean field argument predicted that any value of r < 1 is
sufficient to produce a macroscopic shock or a ‘traffic jam’ state, the numerical simulations
suggested that there is a finite value of r (≈ 0.8) below which one sees a shock phase while
for r > rc there is no real separation of the system into two densities, rather a power law,
long-range decay of density towards the average behind the slow site. More recent studies
using rigorous arguments [135] as well as more precise numerical work [136] indicate that
rc = 1 is the transition point.

2.3.1 Model

To study the effect of such a slow site in our model with long hops, we again consider a
periodic one-dimensional lattice of size L with a slow site located at the site numbered L.
Any particle present at the slow site can only move to the nearest neighbour (site numbered
one) with a rate r. The dynamics on the rest of the lattice are the same as before, except
for the long-range hops over the slow site, which are not allowed. A long-range hop by the
last particle before site L does not cross site L but terminates at it. A schematic diagram
of these dynamics can be seen in figure 2.15 Unlike the previous sections , we begin with
reporting results from the mean field analysis instead of the numerical work. The reason
for this change is that the mean field results are needed to be used as a guide for choosing
density values, as shall become clear later.

2.3.2 Mean field results

The steady state density at all sites except site 1 and site L can be described by equation
(2.1) and in the bulk one expects the equation (2.2) to hold. To solve the system, we make
a simplifying assumption, similar to [133]. We assume that there are two different density
values across the slow site, which extend to the bulk. At the slow site and its left, we expect
a higher density, ρh, due to the traffic jam while the density on its right is lower, represented
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Figure 2.15: Dynamics in our model with periodic boundary and one slow site. (a) Normal
dynamics at all other sites: local hops with rate 1− p and nonlocal hops with rate p. At the
slow site, we can only have local hops with rate r. (b) Nonlocal hops cannot cross the site
L, they terminate at L.

by ρl. We again use the fact that in the steady state, the current across any link between
two sites is the same across the lattice. Thus the current inside the bulk of the high density
region is the same as the current in the low density region.

Equating the current across the link between the site L (slow site) and the next site (site
1) and the current across any link deep inside the low density region, we have

rρh(1− ρl) = (1− p)ρl(1− ρl) + p(1− ρl), (2.22)

which gives us
ρl =

rρh − p
1− p . (2.23)

Similarly as above, we can equate the current in the high density region to get:

rρh(1− ρl) = (1− p)ρh(1− ρh) + p(1− ρh). (2.24)

Combining the two, we will get the value of ρh by solving a quadratic equation as:

ρh =
(1− 2p)(1− p)− r +

√
[(1− 2p)(1− p)− r)2 + 4((1− p)2 − r2] p(1− p)

2 [(1− p)2 − r2] .

(2.25)

42



Looking at these expressions, we see that as p increases for a given value of r, the value of
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Figure 2.16: The continuous transition from LD-HD (I) phase to ER-HD (II) phase in the
r − p plane. The green, dashed line shows data obtained from numerical simulation. The
red line is obtained from the mean field analysis.

ρL decreases till it touches zero and remains there for all larger values of p. Thus, similar
to the TASEP with open boundaries, we have a situation where the input from the slow
site cannot catch up with the removal of particles via long hops and part of the system
goes into an empty road state. The condition for transition to this HD-ER state can be
obtained by substituting ρL = 0 in equation (2.23) and then using the expression for ρh
from equation (2.25). This leads us to:

r =
p(1− p)
1− 2p

, (2.26)

which is the expression for the phase boundary between the HD-ER and HD-LD phases. It
should be noted that while the value of average density on the lattice plays no role in the
analysis above, we should choose this value carefully such that the number of particles on
the lattice is not more than a number that can accommodate the two phases properly. In
other words, we should ensure that the product of the average density with the system size
should not be greater than the product of the predicted density on high density side with
the system size.

2.3.3 Numerical results

Before simulating, we have to fix the value of the average density ρA on the lattice. ρA
has to be chosen such that it is smaller than the predicted value of the density on the high
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density side of the shock, ρh. Thus, we first calculate the density ρh for a given value of r
and p using equation (2.25) and then choose ρA to be any value smaller than ρh. We look at
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Figure 2.17: Density profile obtained in the two phases as we vary r when p = 0.2, ρA =
0.5. (a) The system is in an ER-HD phase when r = 0.1, and (b) in LD-HD phase when
r = 0.5. The Monte Carlo simulation results are shown in green while red line shows
results from mean field analysis.

the density distribution on the lattice as a function of position in the steady state. As seen in
the regular TASEP, we see the formation of regions of low density (ρl) and high density (ρh)
across the slow site. We also see, as established for the regular TASEP, that a shock region
is present for all values of r < 1. The parameter p increases the speed of the particles thus
causing them to cluster more easily. Due to this reason, our analysis did not suffer from the
subtle problems in numerical work which make the determination of a shock phase more
difficult in the case of regular TASEP. However, the variation of parameters p or r that
govern the dynamics in our case, shows us an interesting phase transition, as predicted by
the mean field theory above. As we increase p for a given value of r, the density ρl on the
low density side decreases and becomes zero beyond a particular value of p. Equivalently,
we can see the same transition by keeping p as constant and varying r (see figure 2.17).
We thus have a phase transition from a phase with finite densities in both regions (HD-LD
phase) to a phase where the density is always zero on the low density side (HD-ER phase).
The variation of densities as we change p can be seen in figure 2.18. These results show
a good agreement with mean field prediction in the section above, which can be seen in
figure 2.16.

Another quantity of interest is the fluctuations of the shock front between the low den-
sity and high density side. We again use a second class particle, as described in the slow
particle problem, to track the fluctuations. In the regular TASEP, it has been shown [133]
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Figure 2.18: (a) Density versus r for the case p=0.2. The density ρl vanishes for low values
of r signaling a transition from the LD-HD phase at high values of r to ER-HD phase at
low values of r. r ≈ 0.2 is the point of phase transition here. The average density ρA
is taken as 0.5 for data corresponding to r = 0.6 and smaller. For r = 0.7, 0.8, 0.9, 1.0,
ρA is 0.4. (b) At higher values of p (p = 0.8 in this case), the LD-HD phase completely
vanishes and only the ER-HD phase exists. The average densities are taken as follows:
[r = 0.1, ρA = 0.5], [r = 0.2, ρA = 0.4], [r = 0.3, 0.4, ρA = 0.3], [r = 0.5, ρA = 0.25],
[r = 0.6, 0.7, ρA = 0.2], [r = 0.8, 0.9, ρA = 0.15], [r = 1.0, ρA = 0.1]. The mean field
values are obtained from equation 2.24. In both figures, green and red with dashed lines
show results from Monte Carlo simulations while blue and violet solid lines show results
from mean field calculations.

that the variation of fluctuations with system size depends on the average density on the
lattice; the fluctuations scale as L1/3 for density 1/2 and L1/2 for all other densities. The
different behaviour at density 1/2 is ascribed to particle-hole symmetry in this case leading
to the density fluctuations only having dynamical randomness as their origin. Our dynam-
ics do not have the particle-hole symmetry. We thus expect that our system will show the
same behaviour at all parameter values. This is indeed the case, and we find that the fluc-
tuations behave as L1/2 similar to the normal TASEP with a slow site and with a density
different from 1/2 (see figure 2.19). The nature of fluctuations does not change across the
phase transition and we see the same behaviour of fluctuations in both the phases. In these
simulations, r and p are chosen such that the value of density in the high density part is
higher than the average density, for reasons explained before.

We have also tried a slightly different version of dynamics to see how robust our results
are. In this version, the dynamics out of the slow site are different from the model above
while the rest of the dynamics remain the same. We consider that a particle moving out of
a slow site can make local as well as nonlocal hops, both with a rate scaled by the same
factor r: local hops with rate r(1− p) and nonlocal hops with rate rp where 0 ≤ r ≤ 1. As
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Figure 2.19: Interface fluctuations as a function of system size L. p = 0.2 for both figures.
Figure (a): r = 0.1, system is in the ER-HD phase. Figure (b): r = 0.5, system is in
LD-HD phase. In both the figures, green stars are numerical data obtained for ρA = 0.5
and the green dots are the data points for ρA = 0.4. The solid lines (red, blue) show fits to
L1/2.

before, all long hops of the particle just before the slow site, terminate at it. One can easily
see that the mean field description of this model is the same as the one we described above.
Numerically, we again see a phase separation across the slow site. We also see a transition
to a phase with zero density on the low density site (HD-LD to HD-ER transition) as seen
above. So qualitatively, the results from these models are very similar.

To summarise, we have studied the effects of long range hops on the TASEP with
open as well as periodic boundaries. The long hops lead to a significant change in the
phase behaviour of the TASEP for the open boundary system, with the ER and HD phases
dominating the phase diagram at higher values of p, the parameter governing long hops.
We also studied the effect of a combination of long range hops and disorder (static and
dynamic) in a TASEP with periodic boundaries and our study again shows that changing
p changes the steady state behaviour and also leads to the formation of a new phase in the
case of a static defect.
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Chapter 3

Totally Asymmetric exclusion process with
resetting

In this chapter, we describe our work on the one-dimensional TASEP with open boundaries
having the additional dynamical feature of stochastic resetting to the initial, empty state.
The system evolves according to the TASEP dynamics with particles entering the input
side with rate α and leaving the other side with rate β. The system has the additional
dynamical feature of resetting wherein it is brought back to its initial state of empty lattice
at random intervals τ . These intervals are drawn from probability distributions, for which
we consider two possibilities - a power law ∼ τ−(1+γ) with γ > 0 and an exponential
distribution λe−λτ . We use approximate expressions for the time evolution of density on
the lattice for a normal TASEP to calculate the reset-averaged density as a function of
time. We also perform numerical simulations results which show good agreement with our
analytic expressions.

A related problem was addressed previously in the context of protein production during
the mRNA translation process [70,98]. While TASEP is a simple model for mRNA transla-
tion, the resetting dynamics was introduced to model the degradation of the mRNA and its
subsequent replacement by a new one. Here, a constant rate of degradation was assumed -
implying an exponential distribution of inter-reset times. The quantity of interest here was
the average of particle density over resetting distribution in the limit t→∞, which can be
interpreted as the ensemble average of density of ribosomes loaded over the mRNA. This
average can be measured experimentally. The model provided an explanation for the decay
of the average ribosome density along the length of the mRNA as seen in the experiments.

In this work, we calculate the full time dependent distribution of the particle density
in a TASEP with open boundaries, such that the system is reset stochastically to its initial,
empty state with inter-reset times drawn from either exponential or power law distributions.
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Our motivation for studying these models are more general than the particular example of
protein production by the mRNA-ribosome complex, where only the t → ∞ limit of the
exponential reset distribution was considered. As we have mentioned in the introduction
chapter, TASEP is a paradigm in nonequilibrium statistical mechanics due to its simple
dynamics that nonetheless lead to a nontrivial phase structure in the case of open bound-
aries [137]. It is one of the few models where steady state properties can be calculated
analytically exactly. Apart from the considerable interest from a purely theoretical point
of view, the model and its many variations have found applications in diverse problems
like mRNA-translation [138, 139, 140] movement of motor proteins inside cells [67, 141],
vehicular traffic [66] and motion of ants [43, 44].

In our model, the TASEP is reset at intervals drawn from exponential and power law
distributions. Both these distributions are again ubiquitous in many natural and man made
phenomenon. While power law gaps between event times show up in many places where
the activity is known to happen in bursts, e.g. earthquakes [142, 143], coronal mass ejec-
tions from sun [144], neuron firings [145], successive crashes in stock exchange [146],
fluorescence decay in nanocrystals and biomolecules [147, 148]; the exponential gap be-
tween successive events is seen in many systems where the underlying rate of the event is
constant and the process is memoryless - e.g. radioactive decay [149], job service times in
queuing theory [150] the time between two communications by the same person [151,152].
The broad range of scales and settings in the above examples show that the problem under
study is of general interest and may in the future reflect upon interesting phenomena. The
steady state of the TASEP, as well as the approach to it as a function of time, are gov-
erned by the input and output rates α and β respectively. The particle density on the lattice
evolves in a different fashion for each of the three possible phases and we explore the effect
of resetting for each of them. The different inter-reset distributions themselves also lead to
very different behaviours. The system always settles to a steady state for the exponential
distribution but for the power law distribution, the appearance of a steady state distribution
depends on the exponent γ. The average time between resets is infinite when γ < 1 and
this leads to the system not achieving a steady state, while for γ > 1, the system achieves
a time-independent state at large times.

The chapter is arranged as follows. We begin with a description of our model and pro-
vide an idea of the calculations in Section (3.1). Before studying the effect of resetting on
the system, we need to know how the density evolves in time, starting with an empty lattice,
in the usual TASEP with open boundaries. An approximate analytical description of this
time evolution is provided in section (3.2), along with the numerical results from Monte-
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Carlo simulations. In section (3.3), we calculate the time-dependent density distribution
taking into account resetting events that happen according to a power law distribution. We
compare this to the results from our Monte-Carlo simulations. In section (3.4), we carry
out the same exercise, taking the resetting distribution to be an exponential one.

3.1 Model and theory

We consider a TASEP in one dimension with a lattice of length L where particles can
enter the lattice at the left boundary at a rate α and exit at the right boundary with a rate
β. The particles interact via hard-core repulsion, i.e. a particle cannot move to a site
which is already occupied by another one. At any moment in time, a given particle on the
lattice site i attempts to move to site i + 1 with a rate one. The sites on the lattice are
labelled by numbers 1 to L from left to right. We consider the lattice to be initially empty.
The density of particles on the lattice, ρ, evolves as the particles start entering the lattice
from the left boundary and move towards the right. In addition to these regular TASEP
dynamics, we have the resetting dynamics as follows. The system is reset stochastically to
its initial, empty state after having evolved for a time τ . We consider two possibilities for
the time intervals between the resets: they could be drawn from a power law distribution, or
assuming a constant rate of resets in which case the distribution is exponential. The quantity
we are interested in exploring is the density of particles on the lattice as a function of time
and position, averaged over the resetting distribution. We denote this density by ρr(x, t),
while ρ(x, t) will stand for the density on the lattice as in a regular TASEP, without the
resetting dynamics.

Let us first consider the case of power law distribution where the time between two
resets is chosen from the distribution:

φ(τ) =
γ

τ0(τ/τ0)1+γ
; τ ∈ [τ0,∞), γ > 0, (3.1)

where τ0 is a cut-off that enables normalization of the distribution and can be interpreted as
the smallest time scale of the underlying system causing the resetting. For the power law
distribution in equation (3.1) above, we can calculate the reset-averaged density as

ρr(x, t) =

∫ t

0

ρ(x, τ) fγ(t, t− τ)dτ. (3.2)

Here ρ(x, t) is the distribution of density along the lattice at time t, beginning with an
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empty lattice at time t = 0, as would happen in a regular TASEP. The above equation then
describes a system which has been evolving for a time τ since the previous reset and the
integration considers all possible values of τ . The probability that this reset happened at
time t − τ , with the inter-reset time governed by equation (3.1), is given by fγ(t, t − τ).
This probability density fγ(t, t − τ) can be seen as a product of the probability of two
events - having a reset at a time t− τ , and having no reset after that for a time τ [125]. The
expression can be calculated in the large time limit (t >> τ0) and comes out to be different
for the cases γ > 1 and γ < 1. For γ < 1, we get

fγ<1 (t, t− τ) =
sin (πγ)

π
τ−γ (t− τ)γ−1 , (3.3)

while for γ > 1, we have

fγ>1,τ≥τ0(t, t− τ) =
1

τ0

(
γ − 1

γ

)(
τ

τ0

)−γ
, (3.4)

which comes with the normalization condition:∫ τ0

0

dτfγ>1,τ<τ0(t, t− τ) = 1−
∫ t

τ0

dτfγ>1,τ≥τ0(t, t− τ). (3.5)

The details for the derivation of equations (3.3) and (3.4) have been provided in the ap-
pendix A.

If the resets take place with a constant rate λ, the expression is simpler than the above
power law case and ρr(x, t) can be calculated as [123]

ρr(x, t) =

∫ t

0

ρ(x, τ)λe−λτdτ + e−λtρ(x, t). (3.6)

The resetting here can be seen as the renewal process and the distribution of the time of the
previous reset is the age process. The second term on the RHS comes from the possibility
that no resets happen in time t. The limit t → ∞ of the above expression for resetting-
averaged density is used to model the processes of translation of mRNA during protein
production [98], where one interprets this expression as an average over a large ensemble
of mRNA (lattices), each of which is undergoing the translation process (TASEP) with ribo-
somes (particles with hard-core interactions) entering on one side and exiting on the other.
The process of resetting models the random degeneration of an mRNA and its subsequent
replacement by a fresh, unloaded one. Such random degradation is known to happen in real
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systems [70,153]. The reset averaged density ρr(x, t) is calculated from above expressions
can be used to calculate other quantities of interest. In the context of protein production, a
relevant and experimentally measurable quantity is the average number of ribosomes sitting
on mRNA. The effect of reset on this quantity can easily be calculated by integrating the
ρr(x, t) over the lattice, as can be seen in previous work [70,98]. One can also calculate the
total current flowing through a TASEP, which can be quantified by the number of particles
entering the system [137]. Within our approximation for the time evolution of density, we
can calculate this quantity by accounting for the increase in density as well as the particles
leaving at the other end per unit time.

3.2 Evolution of density in a TASEP

Before calculating the density ρr(x, t) averaged over resetting events, as in equations (3.2)
and (3.6), we need to know ρ(x, t), which is the time dependent density with regular TASEP
dynamics, beginning with an empty lattice. In this section we describe the evolution of this
density for various parameter ranges of the input/output parameters.

It is well known that in the long time limit, the TASEP settles into one of three possible
steady states depending on the values of α and β [46, 48, 50]. When α < β and α < 0.5,
the system is in a low density (LD) phase, where the bulk density is governed by the input
boundary and takes a value of α. On the other hand, when β < α (β < 0.5), the system
is in a high density (HD) phase, where the restricting action of output boundary controls
the phase and the density in the bulk has the value 1− β. When both α and β have values
higher than 0.5, the system goes into the maximal current (MC) phase, where the bulk
density is half, irrespective of parameter values and the density shows a long range decay
from the boundaries towards the bulk. The value of current in this phase is 1/4, which is the
maximum possible value for the system. While the above paragraph describes the steady
state behaviour of the system, the time dependence of the density is also dependent on the
entry and exit rates and therefore shows different behaviours for each of the three phases.
Indeed, within the HD phase, there are two different possibilities for the development of
the density distribution ρ(x, t) on the lattice, as we will see. We will describe below the
approximate expressions for ρ(x, t) that we have used for further calculations. We will
compare our approximation with numerical data, which we have obtained using Monte-
Carlo simulations, the method for which we will describe at the end of the section.

Many steady state properties of TASEP can be studied analytically exactly using the
matrix method [49] apart from the mean field approach. The time evolution of the TASEP
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Figure 3.1: Time dependent density profile of TASEP in the various parameter regimes.
Here dotted lines stand for analytical results and solid lines stand for numerical results.
Green solid line and the magenta dotted line stand for t=500, the red solid line and the blue
dotted line stand for t=2000. The parameter values are as follows: (a) α = 0.3, β = 0.9
[analytic result from equation (3.8)], (b) α = 0.8, β = 0.9 [analytic result from equation
(3.10)], (c) α = 0.2, β = 0.1 [analytic result from equation (3.11)] and (d) α = 0.7, β = 0.1
[analytic result from equation (3.13)]. L = 1000 for all figures.

density profile within the mean field can be captured by the hydrodynamic equation [154]

∂ρ(x, t)

∂t
= −(1− 2ρ)

∂ρ

∂x
+

1

2

∂2ρ

∂x2
, (3.7)

which is the Burgers equation for a fluid. While this equation can be formally solved for
eigenvalues, capturing the time dependence of density, getting a closed-form expression
that can be used for our purposes is only possible in the limit of large times [57]. Another
way of understanding the dynamics in TASEP is provided by the domain wall theory [154,
155,156,157], which describes the density change in terms of the evolution of a shock front
between two density domains imposed by the input and output boundaries. Our calculations
require the system behaviour at all times, beginning with an empty lattice, where the density
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front starts evolving from the input end towards the output end. The output boundary comes
into play only once the particles start reaching it. For our purposes, we make a simple
approximation for the time dependence of the density evolution, as done previously [98].
In the calculations below, we consider a coarse grained description of the system where the
space co-ordinate x varies continuously with 0 ≤ x ≤ L.

We begin with the LD phase, where α < β and α < 0.5. We know that the density
equilibrates with the input reservoir at the value α and the current is α(1−α) in the steady
state. The density evolution here can be taken to be a front or a shock wave of density α
that moves with a velocity of 1 − α. One can neglect the small, exponential change in the
density at the exit boundary and thus write the density in this phase as

ρ(x, t) =

0 if 0 < t ≤ x
v
,

α if x
v
< t,

(3.8)

where the speed v is 1−α and the maximum value of x is the lattice size L. The expression
above can also be written as ρ(x, t) = αH(t− x

v
), where H(y) is Heaviside step function

H(y) =

0 y < 0,

1 y ≥ 0.
(3.9)

A comparison of the approximation in the above equation (3.8) with numerical data from
Monte-Carlo simulations is shown in figure 3.1(a). We notice that unlike our sharp front,
the actual density gradually declines from α to zero.

We discuss the MC case next, where α, β > 0.5. The kinematic wave associated with
the movement of a patch of density α does not propagate into the system when α > 0.5 [57].
Instead, we observe from our simulations that the density quickly decays towards the value
half, after which it evolves like a rarefaction wave type solution which fits well to the
following form:

ρ(x, t) =

0 if 0 < t < x,

1
2

(
1− x

t

)
if t ≥ x.

(3.10)

Note that the above solution is consistent with the maximal current value of 1/4 and sat-
isfies equation (3.7) with a boundary fixed at density half. We can also express the above
expression in the form ρ(x, t) = 1

2

(
1− x

t

)
H(t − x). We know that the steady state solu-

tion in the MC case is a power law decay towards the density half, from both ends of the
lattice. We therefore expect our approximation to get progressively worse as time grows
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larger. Figure 3.1(b) shows a comparison of this approximation with numerical results at
smaller times, where it appears to agree well with the numerics.

We finally consider the HD case, where β < α, β < 0.5 and the exit boundary controls
the steady state behaviour of the system by blocking the outflow. To describe the time-
dependent behaviour of the density, we will consider the two distinct possibilities, α < 0.5

and α > 0.5, while β < α. As the system evolves towards the steady state, the density
starts evolving from the input boundary end and the output boundary does not come into
the picture till particles start reaching it. In the initial phase, where none of the particles
has reached the exit boundary, the system density evolves only based on the input rate α
and thus shows the LD phase like behaviour for α < 0.5 and a behaviour same as the MC
phase for α > 0.5.

Once the incoming particles arrive at the exit boundary, the slow rate of exit leads to
an accumulation of particles. This clustering leads to a reverse front of density 1 − β that
travels from the exit end towards the entry end. The density on the lattice is then divided
into two portions with the input side still being governed by the entry front and the other
side by the exit end. Eventually, the reverse front reaches the entry end and we get a steady
state situation with no more change in the average density of the particles on the lattice.
Thus, when α < 0.5, we have

ρ(x, t) =


0 if 0 < t ≤ x

v
,

α if x
v
< t < L

v
+ L−x

vr
,

1− β if t > L
v

+ L−x
vr
,

(3.11)

where v = 1 − α is the speed of the incoming front of density α. The speed of the
backward front of density 1− β is given by vr = α(1−α)−β(1−β)

1−α−β . This can be inferred from
the change in the total number of particles on the lattice per unit time, which is given by
α(1−α)−β(1−β) and the fact that the reverse density wave is moving across a previously
imposed density of α from the input end [see figure 3.1(c)]. This is again, the same velocity
as predicted by the domain wall picture [154]. The above equation can also be written in
terms of the Heaviside function as

ρ(x, t) = α

[
H
(
t− x

v

)
−H

(
t−
{
L

v
+
L− x
vr

})]
+(1− β)H

(
t−
{
L

v
+
L− x
vr

})
.

(3.12)

In the case of α > 0.5, the input boundary dynamics is similar to the MC case and we
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have for the density:

ρ(x, t) =


0 if 0 < t ≤ x,

1
2
(1− x

t
) if x < t ≤ T,

1− β if t > T,

(3.13)

where T is the time at which the reverse moving front of density 1−β reaches the position
x on the lattice. In terms of a Heaviside function, we can write the above expression as
ρ(x, t) = 1

2
(1 − x

t
)(H(t − x) − H(t − T )) + (1 − β)H(t − T ). We can calculate T as

follows. Consider the change in number of particles per unit time, after the reverse front
has started

1

4
− β (1− β) = vR(t)

[
(1− β)− 1

2

(
1− X(t)

t

)]
+
X(t)2

4t2
, (3.14)

where X(t) is the position of the front edge of the density wavefront travelling backward
and vR(t) is the velocity of the wavefront. The LHS gives the change in the number of
particles on the lattice by accounting for the entry and exit of particles from the respective
boundaries. The first two terms on the RHS account for the increase in the density due
to the backwards moving front, which has a density of (1 − β) and is moving across the
already present density 1

2
(1− x

t
).

The third term accounts for the increase in the number of particles on the left side of
the density front. Unlike the previous case of α < 1/2, here the density on the left of X(t)

is itself evolving. The change in density ρ(x, t) at a point x to the left of X(t) is given by:

∂

∂t
ρ(x, t) =

∂

∂t

[
1

2

(
1− x

t

)]
=

x

2t2
, (3.15)

therefore, the change in total numberNp in the whole region preceding the returning density
front is given by integrating the above expression:

dNp

dt
=

∫ X

0

x

2t2
dx =

X2

4t2
, (3.16)

which is the third term on the right hand side of equation (3.14). The position of the front
and the velocity of the front are connected as:

X = L−
∫ t

L

vRdt
′. (3.17)
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It can be recast into the expression dX
dt

= −vR which, along with the equation (3.14), give
us

dX

dt
=

1
4
− β(1− β)− X2

4t2

β − 1
2
− X

2t

, (3.18)

which can be solved to give

X(t) = t(2β − 1) + c
√
t. (3.19)

Substituting the boundary condition X = L when t = L, we get c = 2(1−β)
√
L, and thus

X(t) = t(2β − 1) + 2(1− β)
√
tL, (3.20)

using this equation, we express the time T at which the front X(t) reaches a position x as

T 2(2β − 1)2 − T
[
2x (2β − 1) + 4L (1− β)2

]
+ x2 = 0, (3.21)

which has the solution

T =
2x(2β − 1) + 4L(1− β)2 +

√
[−2x(2β − 1)− 4L(1− β)2]2 − 4x2(2β − 1)2

2(2β − 1)2
.

(3.22)
See figure 3.1(d) for the approximate density profile derived above.

We now have the expressions for the evolution of density in a TASEP in all the param-
eter ranges. In figures 3.1(a)-(d), our approximate expressions above have been compared
with numerical data. We obtained this data using Monte-Carlo simulations, where the
TASEP dynamics are simulated as follows. At a given time, a site is chosen with equal
probability from amongst the L lattice sites and a reservoir site. If the chosen site is the
reservoir site, an attempt is made to add a particle to site number one, with probability α.
The move is successful if there is no particle already sitting on site one. If the chosen site
is the rightmost site (L) and a particle is present at that site, then it is removed from the
lattice with a probability β. If any other site i apart from these two is chosen and if it is oc-
cupied with a particle, that particle attempts to move towards the site on its right (i+1) with
a probability one. The move is successful if the site on the right is empty. L+ 1 such steps
constitute a single unit of time. The resetting dynamics, which is discussed in sections 3.3
and 3.4, is simulated in the following manner. At the beginning of the dynamics, when all
lattice sites are unoccupied, we draw a number from the concerned distribution (power law
distribution in equation (3.1) or the exponential distribution λe−λt) which corresponds to
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the time at which the dynamics will be reset. After running the TASEP dynamics for this
amount of time, we reset the configuration to an empty state. The simulation is run until
the total time reaches the desired number t. The density on the lattice at this moment in
time is recorded. We then perform an average of this density over multiple realizations.

3.3 Effect of power law resetting

As mentioned before, we want to calculate the density distribution ρr(x, t) on the lattice
at a given time, averaged over all the possibilities of resetting, beginning with an empty
lattice at time t = 0. This can be done using equation (3.2), with the input for density
without resetting, ρ(x, t), coming from the results in section 3.2. The probability that the
gap between given time t and the previous reset is τ is given by the equations (3.3) and
(3.4), for times t >> τ0. This distribution has a different behaviour depending on whether
the exponent γ is greater than or smaller than one. We will describe below the results for all
the three phases of LD, HD and MC, taking into account both the cases γ > 1 and γ < 1.

3.3.1 LD phase

Using equations (3.2), (3.8) and (3.4), we have for γ > 1

ρr(x, t) =

∫ t

0

ρ(x, τ)fγ>1(t, t− τ)dτ

=

∫ τ0

0

ρ(x, τ)fγ>1,τ≤τ0(t, t− τ)dτ +

∫ t

τ0

ρ(x, τ)fγ>1,τ≥τ0(t, t− τ)dτ

=
ατ γ−10 (γ − 1)H

(
t− x

v

)
γ

∫ t

x
v

(
τ

τ0

)−γ
dτ + ρ(x, τ0)

[
1−

∫ t

τ0

fγ>1,τ≥τ0(t, t− τ)dτ

]
.

The above integral can be simplified as

ρr(x, t) =
ατ γ−10

γ

[(x
v

)1−γ
− t1−γ

]
H
(
t− x

v

)
+
α

γ

[
γ − 1 +

(
t

τ0

)1−γ
]
H
(
τ0 −

x

v

)
.(3.23)

The Heaviside function in the first expression on the RHS indicates that at any given time
t, the front cannot reach a distance beyond the point vt in space, while the H(τ0 − x

v
) in

the second expression on RHS merely expresses the contribution due to resetting at the
cut-off time (τ0 = 1). Figure 3.2(a) shows the comparison of numerical data obtained from
Monte-Carlo simulations to our analytic expression above. The fit is good in the bulk of
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Figure 3.2: Density profile when the time interval between resettings is drawn from the
power law distribution. Here the dotted lines stand for analytical results and the solid lines
stand for numerical results. The parameters are as follows: γ = 1.5 and lattice sizeL = 500
for all figures. (a) α = 0.3, β = 0.9, t = 250 [analytic result from equation (3.23)], in (b)
α = 0.8, β = 0.9, t = 250 [analytic result from equation (3.25)], in (c) α = 0.2, β = 0.1,
t = 1000 [analytic result from equation (3.27)] and in (d) α = 0.7, β = 0.1, t = 1000
[analytic result from equation (3.29)]. The inset in each figure contains the density profile
for t = 10000, with the rest of the parameter values same as the corresponding main figure.

the graph. Our approximation assumes that the density front is always sharp with a value α
but we see that the real front decays gradually towards zero density as seen in figure 3.1(a),
and the sharpness of the front changes with time. This effect leads to the deviation in the
initial and end portions of the graph. As time t → ∞, the system reaches a steady state
since the average time gap between two resets is finite and this dictates a time independent
average behaviour. We indeed see that in this limit, in the bulk of the lattice, far from

the boundaries, we have ρrss(x) = α
γ

(
x
vτ0

)1−γ
, where the subscript "ss" stands for steady

state. The inset in figure 3.2(a) shows the comparison with this limiting expression with
the simulations at large times and the agreement is good.
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Figure 3.3: Density profile when the time interval between resettings is drawn from the
power law distribution. Here the dotted lines stand for analytical results and the solid lines
stand for numerical results. The parameter values are as follows: γ = 0.75 and lattice
size L = 1000 for all figures. In (a) α = 0.3, β = 0.9, t = 500 [analytic result from
equation (3.24)], in (b) α = 0.8, β = 0.9, t = 500 [analytic result from equation (3.26)],
in (c) α = 0.2, β = 0.1, t = 2000 [analytic result from equation (3.28)] and in (d)
α = 0.7, β = 0.1, t = 2000 [analytic result from equation (3.30)]. The inset in each figure
contains the density profile for t = 10000, with the rest of the parameter values same as the
corresponding main figure.

We similarly calculate for the case γ < 1 using equations (3.2), (3.8) and (3.3)

ρr(x, t) = α

[
1− sin(γπ)

π
B
( x
vt

; 1− γ, γ
)]

H(vt− x), (3.24)

where B(y; a, b) is the incomplete Beta function defined by

B(y; a, b) =

∫ y

0

xa−1(1− x)b−1dx.

For γ < 1, the first moment of the distribution of inter-reset times diverges. This implies
that on an average, there is an infinite time between two resets - this is reflected in the
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expression of density (3.24) above where we can see that x scales as t and we do not have
a time-independent steady state. Nonetheless, we can make an approximation, of finite
system size L and t >> L such that for any point x in the bulk of the system, we have
x
t
<< 1. In this limit, using the expansion of incomplete Beta function at small argument,

we have
ρr(x, t) ≈ α

[
1− sin(γπ)

π(1− γ)

( x
vt

)1−γ]
.

Figure 3.3(a) shows a comparison of the analytic results from equation (3.24) and numer-
ical simulation of the model. The agreement is good except at the right front for reasons
explained before. The inset in this figure shows a comparison of the numerical data with
the expression in the x

t
<< 1 limit above, which again agrees well.

3.3.2 MC phase

We use equations (3.2), (3.10) and (3.4) to get for γ > 1

ρr(x, t) =
(γ − 1)τ γ−10

2γ

[
1

(1− γ)

(
t−γ+1 − x−γ+1

)
+
x

γ

(
t−γ − x−γ

)]
H(t− x)

+
1

2

(
1− x

τ0

)[
γ − 1

γ
+

1

γ

(
t

τ0

)1−γ
]
H(τ0 − x), (3.25)

where again the first Heaviside function on RHS indicates that the edge of the density front
can not move beyond the point x = t while the second one comes from the contribution of
resets at the smallest time. In the limit of t → ∞, we get the following expression away
from the boundaries

ρrss(x) =
1

2γ2

[
x

τ0

]1−γ
.

Figure 3.2(b) shows the density profile obtained using numerical simulation compared
to equation (3.25), while the inset shows the corresponding comparison between numerical
data at large times and the steady state expression above. Except at the edges, the fitting to
the approximate expression is good.

For γ < 1, we use equations (3.2), (3.10) and (3.3) to get

ρr(x, t) =
1

2

[
1− sin(γπ)

π

{
B
(x
t

; 1− γ, γ
)

+
x

γt

(
t

x
− 1

)γ}]
H(t− x), (3.26)
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where we have used the result∫
y−m−1(1− y)m−1dy = −(1− y)my−m

m
+ c,

with m > 0 and 0 < y < 1. In our case, y ≡ x
t

and m ≡ γ. Again, as the LD case above,
we do not have a time-independent steady state density but can make an approximation for
a given small x at large times:

ρr(x, t) ≈ 1

2

[
1− sin γπ

π(1− γ)

(x
t

)1−γ]
.

Figure 3.3(b) shows the density profile obtained using numerical simulation and using
equation (3.26) while the inset shows the same comparison at larger times. We see that
our approximation for density as taken in equation (3.10) works well at smaller times but
does not fare very well at large times. The power law decay of density towards the value
1/2, which is a distinguishing character of the density in the MC phase is not captured in
our analytic expression and hence at large times it does not work well in the case of γ < 1,
where the average time between resets is unbounded and hence the large time behaviour of
power law decay dominates.

3.3.3 HD phase

As described in section (3.2), when the system is in the HD phase with β < α and β < 0.5,
we have two possibilities for the dynamics of the TASEP density evolution depending on
whether α < 0.5 or α > 0.5. The front from the input boundary side evolves similar to the
LD case when α < 0.5 and it is similar to the MC case when α > 0.5. After this incoming
front hits the exit boundary, another front of density 1− β starts off in the reverse direction
towards the input end. The system, therefore, gets divided into two zones, the zone on the
left or input end where the reverse front has not reached, and the zone on the right where
the front has reached. When this front reaches all the way to the input boundary, the TASEP
achieves a steady state. Therefore, When we calculate the effect of resetting in this phase,
we have to distinguish the two possibilities of α < 0.5 and α > 0.5.

We begin with the case α < 0.5. We know that initially a front of density α moves
from the input end towards the exit boundary. When t < L

v
where (v = 1 − α), the front

has not reached the exit end and therefore there is nothing to distinguish this system from
the LD behaviour. We then get exactly the same result as in equation (3.23) for γ > 1 and
equation (3.24) for γ < 1. After the forward wave has reached the exit end at time L

v
, a

61



reverse wavefront of density 1− β starts to move towards the entry boundary. We can then
use equations (3.2), (3.11) and equation (3.4) for γ > 1 to obtain the expression for t > L

v
.

ρr(x, t) =
τ γ−10

γ
(1− β − α)

[(
L

v
+
L− x
vr

)1−γ

− t1−γ
]
H

(
t− L

v
− L− x

vr

)

+
τ γ−10

γ
α

[(x
v

)1−γ
− t1−γ

]
+
α

γ

[
γ − 1 +

(
t

τ0

)1−γ
]
H
(
τ0 −

x

v

)
. (3.27)

In the steady state, we have the expression

ρrss(x) =
α

γ

(
x

vτ0

)1−γ

+
(1− β − α)

γ

(
L

vτ0
+
L− x
vrτ0

)1−γ

.

We see that decay on both sides of the lattice is governed by the exponent 1 − γ. Figure
3.2(c) shows the density profile obtained using numerical simulations compared to the ex-
pression in equation (3.27). The matching is very good, except for a small region at the
input boundary. Similarly, the matching is good in the inset of this figure which shows a
comparison of numerics at large times with the expression for ρrss(x) above.

We now consider the case of α < 0.5 and γ < 1 and use equations (3.2), (3.11) and
(3.3) for the calculation. As already mentioned, equation (3.24) gives us the behaviour for
times smaller than L/v. For t > L/v, we get the expression

ρr(x, t) = (1− β − α)

[
1− sin πγ

π
B

(
L

vt
+
L− x
vrt

; 1− γ, γ
)]

H

(
t− L

v
− L− x

vr

)
+α

[
1− sin πγ

π
B
( x
vt

; 1− γ, γ
)]

, (3.28)

where v = 1 − α, vr = α(1−α)−β(1−β)
1−α−β . As in the various cases above, there is no steady

state, since γ < 1, but we can see that for a point x at a finite distance from the input end,
at t >> x, the averaged density is given by

ρr(x, t) ≈ α

[
1− sin πγ

π(1− γ)

( x
vt

)1−γ]
+(1−β−α)

[
1− sin πγ

π(1− γ)

(
L

vt
+
L− x
vrt

)1−γ
]
.

Figure 3.3(c) shows the density profile obtained using numerical simulation compared to
the expression in equation (3.28), which captures well the initial decrease and then the sub-
sequent increase in the density due to the returning wavefront. The approximate expression
in the t >> x limit is plotted in the inset along with the numerical data and again shows a
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good match.

We now consider the case of input rate α being greater than half. As we saw in section
3.2, the density evolution from the input end can be approximated by the function 1

2
(1− x

t
).

The exit boundary is not reached before the time t = L and therefore for times t < L, the
expressions will be exactly the same as the MC case and we will get the same expression
as in equation (3.25) for γ > 1 and equation (3.26) for γ < 1. Once the particles start
reaching the boundary at t = L, a reverse front of density 1−β starts in the direction of the
input boundary. For γ > 1, α > 0.5, equations (3.2), (3.4) and (3.13) give us the following
result for t > L

ρr(x, t) =
τ γ−10 γ − 1

γ

[
1− β − 1

2

γ − 1

(
T 1−γ − t1−γ

)
− x

2γ

(
t−γ − T−γ

)]
H(t− T )

+
τ γ−10 γ − 1

2γ

[
1

γ − 1

(
x1−γ − t1−γ

)
+
x

γ

(
t−γ − x−γ

)]
+

1

2γ

(
1− x

τ0

)[
γ − 1 +

(
t

τ0

)−γ+1
]
H(τ0 − x), (3.29)

where T , given by equation (3.22), is the time at which the returning front of density 1− β
reaches the space point x. In the long time, steady state limit, we have the expression

ρrss(x) =
1

2γ2

(
x

τ0

)1−γ

+
γ − 1

2γ2

(
x

τ0

)(
T

τ0

)−γ
+

1− β − 1
2

γ

(
T

τ0

)1−γ

.

Figure 3.2(d) shows the comparison of numerics to the expression in equation (3.29) where
the matching is good except for at the entry boundary. Same is the case at large times
[inset of figure 3.2(d)] where the numerics match well with the expression for ρrss above.
Comparing the various cases for γ > 1 [figures 3.2(a)-(d)], we see that the mismatch
between numerics and analytical expression at the entry end is higher for α > 0.5 [figures
3.2(b) and 3.2(d)] than for α < 0.5 [figures 3.2(a) and 3.2(b)]. This is because our linear
approximation for α > 0.5, where the density actually decays as a power law towards the
value half does not work as well as the approximation of a constant density wave front for
α < 0.5, where the actual decay is exponentially fast.

When the power law exponent γ < 1 and α > 0.5, we use equations(3.2), (3.13) and
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(3.3) to derive the expression for the averaged density for t > L. We obtain

ρr(x, t) =
1

2

[
1− sin πγ

π
B
(x
t

; 1− γ, γ
)
− sin πγ

πγ

x

t

(
t

x
− 1

)γ]
+

[(
1− β − 1

2

)(
1− sin πγ

π
B

(
T

t
; 1− γ, γ

))
+

1

2

sin πγ

πγ

T

t

(
t

T
− 1

)γ]
H(t− T ). (3.30)

Again, while we do not have a steady state here, we can expand the Beta function in the
x
t
<< 1 limit to see the leading behaviour:

ρr(x, t) ≈ 1

2

[
1− sin πγ

πγ(1− γ)

(x
t

)1−γ]
+ (1− β − 1

2
)

[
1− (1− 3γ) sinπγ

2γ(1− γ)π

(
T

t

)1−γ
]
.

Figure 3.3(d) shows the comparison between the analytic expression (3.30) at small and
large (inset) times. In this case the matching is not satisfactory, again because the approxi-
mate expression (3.13) does not work well at large times. At larger times, the system settles
into a state with a density decaying towards the value half as a power law, unlike our linear
approximation.

3.4 Effect of resetting with a constant rate λ

We now consider the case where the time between two resets is given by the exponential
distribution λe−λt where λ represents the constant rate of resetting. We are interested in the
density averaged over the resetting distribution ρr(x, t) which, as mentioned in section 3.1,
is given by equation (3.6). As for the power law case above, we begin our discussion with
the LD phase, then the MC phase and finally we look at the HD phase, where a returning
density front from the exit boundary determines the density on the lattice.

3.4.1 LD phase

In the LD case, where α < 0.5 and α < β, we use equations (3.6) and (3.8) to obtain

ρr(x, t) =

∫ t

0

αH
(
τ − x

v

)
λe−λτdτ + e−λtαH

(
t− x

v

)
(3.31)

= αe−λ
x
vH
(
t− x

v

)
. (3.32)
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Figure 3.4: Density profile when the time interval between resettings is drawn from an
exponential distribution. Here the dotted lines stand for analytical results and the solid
lines stand for numerical results. The parameter values are as follows: λ = 0.005 and
Lattice size L = 1000 for all figures. (a) α = 0.3, β = 0.9, t = 500 [analytic result from
equation (3.32)], in figure (b) α = 0.8, β = 0.9, t = 500 [analytic result from equation
(3.34)], in (c) α = 0.2, β = 0.1, t = 2000 [analytic result from equation (3.36)] and in (d)
α = 0.7, β = 0.1, t = 2000 [analytic result from equation (3.38)]. The inset in each figure
contains the density profile for t = 10000, with the rest of the parameter values same as the
corresponding main figure.

In the limit t → ∞, we have the steady state result ρrst(x) = αe−λ
x
v . Figure 3.4(a) shows

the numerical simulation result and the analytical expression from equation (3.32). The
analytical and numerical results show excellent matching till t = x

v
, where our approxima-

tion has a sharp boundary for the density front, unlike the gradual decay seen in numerics.
Density decays exponentially till this point. The same mismatch shows up at large x in the
inset of figure 3.4(a), which shows the comparison at large times, between the numerics
and the steady state expression above.
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3.4.2 MC phase

For the MC case, where α, β > 0.5, we use equations (3.6) and (3.10) to get

ρr(x, t) =

∫ t

0

(
1− x

τ

) λe−λτ
2

H(τ − x)dτ +
e−λt

2

(
1− x

t

)
H(t− x), (3.33)

which gives us

ρr(x, t) =

[
1

2

(
e−λx − x

t
e−λt

)
− xλ

2
{Γ(0, λx)− Γ(0, λt)}

]
H(t− x), (3.34)

where
Γ(s, x) =

∫ ∞
x

ts−1e−tdt,

is the incomplete gamma function. In the steady state limit t→∞, we get

ρrst(x) =
1

2

[
e−λx − xλΓ(0, λx)

]
.

Figure 3.4(b) shows the numerical simulation result and the analytical expression from
equation (3.34). While the effect of our approximation shows up at large x, the matching
with the analytic expression is good in the bulk of the graph. The matching is good also at
large times with the steady state expression, as can be seen in the inset of the figure.

3.4.3 HD phase

As before, in the HD case we have two possibilities - α < 0.5 or α > 0.5. For α < 0.5, the
system behaves similar to the LD case for times t < L

v
and the behaviour will be governed

by equation (3.32). For t > L
v

, we get from equations (3.6) and (3.11):

ρr(x, t) = α

∫ t

0

λe−λτH
(
τ − x

v

)
dτ + (1− β − α)

∫ t

0

λe−λτH

(
τ − L

v
− L− x

vr

)
dτ

+e−λt
[
αH

(
t− x

v

)
+ (1− β − α)H

(
τ − L

v
− L− x

vr

)]
, (3.35)

which gives us

ρr(x, t) = αe−λ
x
v + (1− β − α)e−λ(

L
v
+L−x

vr
)H

(
t− L

v
− L− x

vr

)
. (3.36)
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In the steady state limit t→∞, we get the expression

ρrst(x) = αe−
λx
v + (1− β − α)e−λ(

L
v
+L−x

vr
).

This expression matches well with the numerical data for large times as seen in the inset
of figure 3.4(c). The main figure 3.4(c) compares the expression in equation (3.36) above
with the density profile obtained using numerical simulation and captures both the initial
decay and the final rise in the density well. The mismatch at large values of x points to the
limitation of our approximation, as before.

When α > 0.5, for times t < L we see the same behaviour as MC phase, equation
(3.34). For t > L, from equations (3.6) and (3.13) we have

ρr(x, t) =
1

2

∫ t

0

(
1− x

τ

)
H(τ − x)λe−λτdτ +

(
1− β − 1

2

)∫ t

0

H(τ − T )λe−λτdτ

+
x

2

∫ t

0

λ

τ
H(τ − T )e−λτdτ, (3.37)

which gives us

ρr(x, t) =

[(
1− β − 1

2

)
e−λT +

x

2t
e−λt +

λx

2
(Γ(0, λT )− Γ (0, λt)

]
H(t− T )

+
1

2

[
e−λx − e−λtx

t
− λxΓ(0, λx)− Γ(0, λt)

]
, (3.38)

and in the steady state, we have

ρrst(x) ≈ 1

2

[
e−λx − λx (Γ(0, λx)− Γ (0, λT )

]
+

(
1− β − 1

2

)
e−λT .

Figure 3.4(d) shows the density profile obtained using numerical simulation, as well as from
the expression in equation (3.38) above. The inset shows data at large times compared to
ρrss above and we see a very good agreement.

To summarise, in this chapter we have studied the effect of sudden, random resets to
the empty lattice state on the TASEP with open boundaries. We have considered two pos-
sibilities for the probability distribution of the inter-reset time: power law and exponential.
We derive expressions for the time evolution of particle density, averaged over resetting,
for all three phases of the TASEP. We compare these analytic calculations with results
from numerical simulations. The system is seen to always achieve a steady state for the
exponential distribution of inter-resets times, while in the power law case, the exponent γ
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determines whether or not the system achieves a steady state at large times. The behaviour
in the HD phase is found to be interesting for both distributions, with the reset-averaged
density showing peaks at both the entry and the exit ends.
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Chapter 4

Conclusion

In this thesis, we have described our work on the effects of two different kinds of dynamical
features - non-local hopping and resetting - on steady states in nonequilibrium systems.
The underlying model which we have used to understand these effects is the well known
TASEP. The effect of nonlocal hops was studied in the presence of open boundaries and in
a system with periodic boundaries and defects. The effect of resetting to the initial, empty
state was studied on the TASEP with open boundaries for all the three possible phases. The
summary of these studies is given below.

4.1 Effect of nonlocal hopping

We have studied the various possibilities arising in a system where particles are allowed to
make long hops in addition to local dynamics of the usual TASEP. The long or non-local
hops allow the particle to move all the way to the next unoccupied site before an occupied
site. The basic version of this model was studied earlier [71] and the appearance of a new
possible phase - the ER phase was reported.

4.1.1 Effects of boundaries

We have done a complete analysis of this model in the presence of open boundaries and
identified the phases numerically as well as through approximate mean field theory. The
three parameters governing the system behaviour are the input rate α, exit rate β and the
rate of nonlocal hopping p. We determine the full phase diagram numerically as well as
using mean field theory and see four phases, the usual LD, HD and MC phases, as well as
a phase where the bulk is empty - the ER phase.

We see an interesting variation in the phase diagram as p is changed. We find that the
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two dominant phases of the system are the HD phase, where the congestion at the output
boundary controls the density in the bulk, and the ER phase, where the large jumps clear the
lattice quickly, leading to zero bulk density. As the rate p of nonlocal hopping is increased,
the volume of the phase space occupied by these phases grows at the cost of the other two
- the LD and the MC phases. Interestingly, numerics show that both these phases suddenly
disappear at the value p ≈ 0.3. Thus for p > 0.3, the system has only two possible steady
states; it is either empty in the bulk (ER phase) due to the particles leaving the lattice via
long hops soon after entry, or the exit boundary jams the system leading to a high density
(HD phase).

Our mean field analysis though good at predicting the results qualitatively and at some
places quantitatively, does not work very well at determining the bulk density accurately
in the LD and MC phases, as also the boundaries between these two phases. Mean field
arguments predict that the LD and MC phases disappear at different values of p but numer-
ics suggest that they move out simultaneously. It may be noted that the input boundary is
extremely important in this region of the phase diagram and the long-range hops lead to a
quick decay of density as we move away from the input. The correlations brought in by
these long hops are then important and neglecting them, as a mean field approach does,
lead to inaccuracies.

4.1.2 Effects of impurity

In the next part of this work, we explored the effect of static and dynamic impurity on our
system. Here we work with periodic boundary conditions so that the only effects observed
are due to a combination of the long hops and the impurity dynamics.

We began with studying the effect of a single slow particle which can only perform local
hops to the nearest site at a rate µ. In the usual TASEP dynamics without the long hops,
it is seen that depending on the average density and µ, the system can exist in two phases:
a homogeneous density phase - where the effect of the slow particle is local, and a shock
phase - in which a macroscopic region of low density forms in front of the slow particle.
The transition between the two phases across the line µ = 1−ρ can be understood in terms
of the speed of the particles. At high densities, it is the density that controls the average
speed of the particles while at lower densities, the speed pf the slower particle restricts the
motion and causes the formation of a shock front.

The long hop dynamics introduced via the parameter p is expected to enhance the clus-
tering tendency since the particles just in front of the slow particle, can move away more
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quickly. This is indeed seen in our simulations and we show that unlike for the regular
TASEP, where both the shock phase and the homogeneous phase exist for every given den-
sity, the introduction of long hops leads to the clustered phase being the only possible phase
at low densities for any finite value of p. We map out the phase diagram for the system as
a function of µ, p and density. Our mean field approach, based on the velocity argument
outlined above gives a good match to the numerical predictions.

Our model with a slow particle maps exactly to the CDA model [128] with a slow site.
Our calculation for the transition to a shock phase directly translates to the criterion for the
formation of an infinite mass aggregate in the CDA model. Our study thus sheds light on
the effect of static impurity in such diffusion-aggregation systems - a problem that has not
been studied previously.

The final part of the work focuses on the effect of a static impurity. We consider a slow
site in a periodic lattice whose effect is to reduce the departure rate by a factor r < 1.
The problem of such a slow site on a lattice with the usual TASEP dynamics has generated
much interest due to the conflicting claims on the existence of a phase transition between a
homogeneous phase and a shock phase. It has now been established that the system exists
only in a shock phase for all values of r < 1.

Our study shows that the introduction of a nonlocal hop leads to a more interesting
phase structure than the usual TASEP. As expected, we find that the density profile shows
a shock structure with a low density in front of the slow site and a high density behind
it. Interestingly, as we increase p for a given r (or decrease r for a given p), the density
in front of the slow site decreases until it becomes zero and then continues to be zero for
all higher values of p. The low density side of the shock structure thus characterises a
continuous phase transition from an HD-LD phase to an HD-ER phase. Our simple mean
field argument captures this transition. We see that the mean field prediction for the phase
diagram agrees with our numerics.

To summarise, we have studied various aspects of a one-dimensional lattice model of
particles that interact via hard-core interactions and that can make long-range hops in addi-
tion to the usual local, widely studied, nearest neighbour moves. We mapped the complete
phase diagram of this system for open boundary conditions. We also studied the effect of
static and dynamic impurity on this system and saw that nonlocal hopping leads to inter-
esting new features. The periodic boundary versions of this model can be mapped to a
CDA model with asymmetric dynamics and our study with a slow particle therefore also
describes a phase transition in the CDA model. Apart from numerical work, we set up
simple mean field arguments which correctly capture the phase structure of the systems
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under study qualitatively, but not always quantitatively. We ascribe this mismatch to the
correlations induced in the system because of long-range hopping dynamics. We would
like to study the nature of correlations further in future work. Another problem that can
be explored is the effect of non-local hops in a symmetric exclusion process with open
boundaries and asymmetric boundary conditions.

4.2 Stochastic resetting in TASEP

We have explored the effects of stochastic resetting to an initial, empty state on the TASEP
which is a model of much theoretical interest as well as applicability in varied systems. A
previous study modelled the effect of degradation of mRNA on protein production using the
exponential distribution of inter-reset times in the time-independent steady state limit [98].
In this study, we have considered two possible distributions of times between successive
resets - power law with exponent γ and exponential distribution governed by the parameter
λ and we report the full time-dependent distribution of reset-averaged density. Given the
importance of TASEP as a paradigm in non-equilibrium systems, our work here may prove
to be of wider interest.

Using approximate expressions for the evolution of density on a TASEP with open
boundaries, we have been able to calculate the reset-averaged density distributions in the
three possible phases of the original system. We compare these analytic results with our
numerical results from Monte Carlo simulations on the lattice model and see that the two
match well.

In the case of resetting with a power law distribution, one sees a sudden change in
behaviour when γ crosses one. When γ is less than one, we see that the expression for
density depends on the ratio x/t and therefore does not have a steady state limit. This can be
explained from the fact that for γ < 1, the inter-reset distribution will have a diverging value
of the mean while for γ > 1, the same distribution has a finite mean. Thus for γ > 1, we
see a time-independent distribution as t→∞. The TASEP with open boundaries has three
possible steady states, depending on the boundary conditions. In the presence of resetting,
the three phases show distinct behaviour, as expected, but the resetting distribution also
imposes some common features on the average density. We see that for γ > 1, the leading
behaviour of density at large times, for both the LD and MC phases is a power law decay
with the exponent 1− γ.

The behaviour becomes more interesting in the HD case. While there is nothing to
differentiate the system from an LD or MC phase before particles start experiencing the
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output boundary, once the particles experience the jamming effect due to low output rates,
we see that a reverse front of higher density starts from the exit side towards the entry end.
The interplay of the incoming and backward moving fronts with the resetting dynamics
leads to the density showing two maxima, on either end of the lattice. The decay on both
the sides is again a power law with γ − 1 being the exponent. When γ < 1, we see that the
density is a function of x/t and there is no long time steady state behaviour. The leading
behaviour at small x/t is of the form a − b(x

t
)1−γ in the LD and MC phases, while it is

more complex in the HD case - with two maxima again at the input and output ends.
The results for the exponential distribution of inter-reset times are simpler and the sys-

tem always has a well defined steady state limit. In the steady state, one sees an exponential
decay of the reset-averaged density along the length of the lattice in the LD phase. The ex-
ponential decay, albeit with a different length scale is again the behaviour at large distances
for the MC phase. In the HD phase, similar to the behaviour for the power law resetting
described above, one sees two maxima at the input and exit boundaries with a minimum in
between. The change in density along either boundary is exponential again.

While we have summarised the broad features of density as seen in TASEP with open
boundaries in the presence of resets, it is the detailed expressions that may be of interest
when applied to a particular system of interest. Our study is the first one involving the effect
of resets on a system undergoing boundary driven phase transitions. We see that while there
is some similarity in the behaviour of density across phases due to the resetting dynamics,
the phase boundaries are still critical and can lead to surprising steady state features like
two density maxima at either end of the lattice in the HD phase.

We expect that problems related to the effect of sudden, large changes in the dynam-
ics of nonequilibrium systems with coupled degrees of freedom will be explored further
as their applicability to more real life systems emerge. Our study on TASEP - which is a
cornerstone of the nonequilibrium model systems - is an important initial step in this di-
rection. A particular system where we would like to look at the effects of resetting is the
study of particles driven by KPZ and EW surfaces [158, 159], where the usual steady state
shows a strong clustering of the particles as they settle closer to the "valleys" of the surface.
A sudden return to a homogeneous initial condition may lead to the formation of multiple
smaller clusters that break and re-form repeatedly.
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Appendix A

Derivation of probability density

The probability density fγ(t, t− τ) can be expressed as the product of the probabilities of
two events:

fγ(t, t− τ) = φ0(τ)G(t− τ) (A.1)

whereG(t−τ) is the probability density for a reset at time t−τ and φ0(τ) is the probability
that there is no reset in the time interval [t− τ, t]. The latter can be calculated as φ0(τ) =∫∞
τ
dτ ′φ(τ ′) = (τ/τ0)

−α.

Let us define gn(t);n ≥ 0 to be the probability for the nth reset to take place at time t.
The normalization condition implies that

∫∞
0
dt gn(t) = 1. Here g0(t) = δ(t) accounts for

the initial condition of the empty lattice, starting with a reset. We also have

gn(t) =

∫ t

0

dτφ(t− τ)gn−1(τ);n ≥ 1. (A.2)

Since the probability for the nth reset at time t is given by the probability for the (n− 1)th

reset at an earlier time τ and the probability that the next reset happens after an interval
t− τ . By definition, we have

G(t) = δ(t) +
∞∑
n=1

gn(t). (A.3)

We can use Laplace transform to compute gn(t) in the limit of large t and thus calculate
G(t). One can show that at large times for 0 < γ < 1, G(t) ∼ tγ−1. Plugging this into
equation (A.1) and normalizing, we get

fγ<1(t, t− τ) =
sin(πγ)

π
τ−γ(t− τ)γ−1. (A.4)
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When γ > 1, one can show that for large times (t� τ0), G(t) = 1
〈τ〉 , which when plugged

into equation (A.1), gives us

fγ>1,τ≥τ0(t, t− τ) =
γ − 1

γτ0
(τ/τ0)

−γ. (A.5)
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