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Abstract

Multiple Kernel Learning (MKL) algorithms deal with learning the optimal kernel from
training data along with learning the function that generates the data. Generally in MKL,
the optimal kernel is defined as a combination of kernels under consideration (which are
usually termed as base kernels). There are different approaches to learning the optimal
combination of kernels. The main objective of the thesis is to develop models for finding
the optimal combination of kernels suitable for different types of problems.

This thesis describes the formulation of optimal kernel using four different approaches.
The first approach is based on the selection of kernel suitable for the features (attributes)
of the data. The features having similar characteristics are clustered together and a suitable
kernel is found for each cluster. The optimal kernel is defined as a linear combination of
the kernels defined over the cluster subspaces. We formulated a methodology for clustering
the features and applying a separate kernel over each cluster.

The second approach is based on Kumar et. al. (2012) [1] in which the problem of
learning the kernel for a binary classification is designed as another binary classification
problem and hence the data modeling problem involves the computation of two decision
boundaries of which one is related with that of MKL and the other with that of input data.
They used two different cost functions for finding the optimal function related with ker-
nel learning and the classification task. We modified this work in such a way that in our
approach, the optimal functions are found with the aid of a single cost function by con-
structing a global reproducing kernel Hilbert space (RKHS). This global RKHS is defined
as the direct sum of the RKHSs corresponding to the decision boundaries of MKL and
that of input data. Hence the optimal function can be represented as the direct sum of the
decision boundaries under consideration.

Kumar et. al. (2012) framework has been extended to regression problems also. We
also developed a nonlinear formulation, in which the optimal kernel is represented as a
nonlinear combination of kernels. Such a combination of kernels results in an indefinite
symmetric matrix and hence makes use of the concepts of Krein Space for finding the
optimal functions.

Finally, we formulated the MKL using composite kernel functions (MKLCKF). In this
MKLCKF the optimal kernel is represented as a linear combination of composite kernel
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functions. Corresponding to each data point a composite kernel function is designed whose
domain is constructed as the direct product of the range space of base kernels. In this way,
the composite kernels make use of the information of all the base kernels for finding their
image. Thus MKLCKF has three layers in which the first layer consists of base kernels,
the second layer consists of composite kernels and the third layer is the optimal kernel
which is a linear combination of the composite kernels. For making the algorithm more
computationally effective, we formulated one more variation of the algorithm in which the
coefficients of the linear combination are replaced with a similarity function that captures
the local properties of the input data. With the aid of data compression techniques, the mod-
els have been applied on large data. In the case of large scale classification and regression,
dictionary learning and pre-clustering approaches have been used respectively.

The efficiency of all the developed approaches was verified by applying them on real
world problems and the results were found to be promising. The comparative study of all
the models we developed had also been conducted.
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Chapter 1

Introduction

The kernel algorithms are the class of algorithms that make use of the concept of reproduc-
ing kernel Hilbert space (RKHS) in data modeling [2, 3, 4]. The concept of reproducing
kernel and RKHS [5] became popular in machine learning after the development of support
vector machine (SVM) [6]. Later the kernel theory concepts were adopted in various areas
of machine learning such as dimensionality reduction[7], regression[8], clustering [9], one
class classification [10] etc. The performance of a kernel algorithm depends on the repro-
ducing kernel used. Hence the development of efficient methods for finding the optimal
kernel is very much essential for kernel methods .

The current available tools for kernel selection include techniques like cross validation
and multiple kernel learning (MKL). The advantage of MKL is that it automatically finds
the best combination of kernels from a pool of available kernels (base kernels).

The kernel methods represent the solution f of a learning problem in the form

f(x) =
N�

i=1

αik̂(x, xi) (1.1)

where xi, i = 1, 2, . . . N are the given inputs, k̂ the reproducing kernel corresponding to
the RKHS in which f lies and αi, i = 1, 2, . . . N are the set of parameters to be determined
from the given data. Generally, in MKL algorithms, the reproducing kernel is defined as a
linear combination of a set of kernels. Using this concept, (1.1) can be written as

f(x) =
N�

i=1

αi

P�

l=1

dlkl(xi, x), dl ≥ 0 (1.2)

where kl belongs to the set of base kernels under consideration.

1



1.1 Multiple Kernel Learning Approaches

Various methodologies are adopted for learning the kernel from the data in MKL algo-
rithms. The main approaches in MKL are fixed rule, heuristic, optimization, Bayesian and
boosting approaches [11]. The fixed precomputed values are used as kernel weights in the
fixed rule approach [12]. The heuristic approach is also widely used in approximating the
kernel weights. In that methodology, the kernel weights are calculated based on heuristic
approach. For example in the work [13], the conditional class probabilities of data labels
are used for fixing the kernel values while that of the work [14] uses predictive performance
of each kernel for approximating the kernel weights.

In optimization of parameters for the MKL algorithms, there are two ways of optimiz-
ing the kernel parameters. They are one-step method [15, 16, 17, 18], where both kernel
parameters(dl) and function parameters(αi) are updated simultaneously till convergence
and two-step method [19, 20, 21], where in the first step, one set of parameters are updated
until convergence while the other is kept constant and in the second step, the updated values
are used to find the optimum values of the set of parameters that are kept constant in the
first step.

The MKL techniques belonging to optimization approach can be classified as similar-
ity and structural based risk methods. The similarity based algorithms use the concept of
kernel alignment [22], which deals with the measurement of correlation or similarity be-
tween two kernels. The work of [16] is an extension of target alignment work, in which
the alignment between ideal kernel and combination of kernels is maximized by solving
a quadratic optimization problem. The work of [17, 18] also belongs to this category and
the problem is solved using the techniques like semi-definite programming and advanced
gradient based methods .

The structural risk-based MKL algorithm uses the concerned learning algorithm’s cost
function for the risk minimization. The work of [15] is based on this approach, in which
the optimal kernel is represented as a linear combination of kernels such that both the
kernel parameters and function parameters are updated simultaneously till convergence
on the basis of global structural risk minimization problem. In Bayesian approach, the
kernel parameters are modeled with priors. These prior distributions are then solved using
approaches such as multinomial probit [23]. In the boosting approach to MKL [24], a new
kernel is added to the set of base kernels until a stopping criterion is reached.

The MKL techniques have been formulated using semi-supervised [25] and unsuper-
vised approaches also [26]. The Absent MKL is another MKL variant which deals with
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absent features(channel) [27]. The works of [1] describes a MKL model, in which the
problem of finding the optimum kernel is modeled as a classification problem by using two
separate cost functions with one for finding the parameters of the function that corresponds
to the optimum kernel and the one that has to be learned from the data. The faster opti-
mization of kernel parameters for adapting to large scale data set is detailed in [28, 29].
The nonlinear combination of kernels is discussed in the works of [30, 20, 31].

In the works of [32, 33], the MKL is formulated using feature-wise kernel selection,
that is, a kernel is selected for each feature and the reproducing kernel is formulated as a
linear combination of such kernels. Such a MKL formulation also helps to incorporate the
feature selection in the learning problem, as the prominent features can be selected on the
basis of the weights associated with them. The MKL framework has been explored in the
feature fusion domain also [32].

1.2 Organization of Thesis

The thesis is organized to have the following chapters in addition to the chapters that de-
scribe the introductory concepts and conclusion. The gist of each of those chapters is given
below.

1.2.1 Theoretical Foundations

The theoretical concepts used for formulating the methods we propose in this thesis are
given in this chapter.

1.2.2 Localization of Multiple Kernel Learning using Feature Cluster-
ing

A recent approach to MKL is associating each feature with a kernel. The main drawback of
this approach is the computational cost associated with the selection of kernel in the case of
high dimensional data. In this chapter, we propose clustering of features in MKL to over-
come the computational burden in feature wise localization of kernels. The features are first
clustered in this technique and then an appropriate kernel is assigned to each cluster. Hence
each of the base kernels is defined on the subspace generated by the features belonging to
the cluster to which it is assigned. The optimal reproducing kernel is then represented as a
linear combination of such kernels. This method helps to impose dimensionality reduction

3



of the data in an implicit manner, which in turn increases the performance of the kernel
learning algorithm.

1.2.3 Classification Approach for Multiple Kernel Learning

In this chapter, the MKL is formulated as a supervised classification problem. We dealt
with binary classification data and hence the data modeling problem involves the compu-
tation of two decision boundaries of which one related with that of kernel learning and the
other with that of input data. The authors of [1] used two separate cost functions for finding
the parameters corresponding to those two decision boundaries. In the approach we devel-
oped they are found with the aid of a single cost function and for that we formulated the
problem of finding the unknown parameters as a single classification task. This is achieved
by representing the problem of finding the optimum kernel as a supervised classification
model, such that the the corresponding decision boundary is assumed to lie in a RKHS F∗

and the decision boundary that separates the data into two classes lies in a RKHS F . A
global RKHS, F † = F ⊕ F∗ is constructed for searching the unknown functions with the
aid of a single cost function.

We incorporated the proposed techniques in SVM equipped with sequential minimal
optimization (SMO) and used two step optimization method for finding the unknown pa-
rameters. Since functional representation of MKL results in an exponential increase in the
training points associated with model development, the empirical kernel mean maps of two
classes under study is used for effective data compression.

We developed batch as well as online versions of the proposed framework. The ef-
ficiency of the models were being verified by comparing their performance with that of
existing techniques using simulated and real world data sets. On the basis of performance
measures like accuracy and F measure, our models performance were found to be better
than other existing algorithms.

1.2.4 Regression Approach for Multiple Kernel Learning

In this chapter, the work of [1] is extended to regression problems. The formulation of
MKL as a regression problem requires the generation of outputs by ideal kernel. We proved
that the ideal kernel function for regression is same as that of classification. As MKL
formulation demands more space requirements, supervised pre-clustering technique have
been used for selecting the vital data points. The linear as well as non linear combination
of base kernels are considered for developing the model. The function represented using
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non linear combination of base kernels may not be positive semi definite and hence Krein
space concepts are used for formulation. The procedure for finding the parameters of the
models using rigde regression is also discussed. For that we derived the indefinite kernel
ridge regression in Krein space. The efficiency of the proposed models were verified using
real world data sets and the results were found to be promising.

1.2.5 Learning Kernel using Composite Kernel Functions

This chapter discusses the formulation of MKL using composite kernel functions for find-
ing the best combination of kernels from a given P base kernels for machine learning
problems such as classification and regression. With reference to each data point a com-
posite kernel function is constructed such that it makes use of the information of all the
given P base kernels for finding the image at each of the points in its domain. The two
variants of this formulation have been derived. In the first variant, the optimal kernel is
represented as a linear combination of newly designed kernels. As each composite kernel
function is built upon a data point, we introduced a second variant in which the coefficients
of the linear combination are replaced with a neighborhood function of the reference data
point. This representation makes the algorithm more computationally efficient. We verified
the efficiency of the proposed models using real world data sets and compared their per-
formance with existing techniques. The proposed methods showed excellent performance.
Of the two variants of the approach, the performance of the second variant was found to be
better.

As the data increases, the number of training points as well as the number of terms in
the proposed kernel increases. Thus the overall complexity of the problem is increased.
In order to tackle this problem, subset selection approach [34] is followed for regression
and dictionary learning approach ([35]) for classification. We did experimental analysis by
incorporating these two in the proposed methods and the results were found to be better
than the other existing techniques we used for comparison.

1.2.6 Real World Applications

The MKL models proposed in this thesis as well as the state-of-the- art MKl models were
applied on two real world applications and made a comparative study of their performance,
whose description is given in this chapter.
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1.3 Major Contributions of the Thesis

The important contributions of the thesis are listed below:

1. The MKL problem is formulated by representing the optimal kernel as a linear com-
bination of kernels that are defined over the clusters of features. For that a feature
clustering algorithm has been formulated. Also for making the algorithm more com-
putationally effective, different techniques have been applied to reduce the length of
feature vector.

2. For analysing the binary classification data, we formulated the problem of finding the
unknown parameters of the optimum kernel and the function that has to be learned
from the data (binary classifier) as a classification task. A single cost function is used
to find the parameters associated with optimum kernel as well as the binary classifier.

3. We designed MKL as a regression problem for analyzing the regression data. For that
it is proved that the ideal kernel for this formulation is same that of MKL’s classifica-
tion model. The model is developed using linear as well as nonlinear combination of
kernels. The reproducing kernel Krein space concepts are used for formulating the
non linear version. The indefinite kernel ridge regression is derived in Krein space
and it is used for finding the parameters of non linear model.

4. The optimal kernel is represented as the linear combination of composite kernel func-
tions. For that, corresponding to each data point a composite kernel function is de-
signed whose domain is constructed as the direct product of the range space of base
kernels, so that the composite kernels make use of the information of all the base
kernels for finding their image. Thus this model has three layers in which the first
layer consists of base kernels, the second layer consists of composite kernels and
third layer is the optimal kernel which is a linear combination of the composite ker-
nels. For making the algorithm more computationally effective, one more variation
of the algorithm is formulated in which the coefficients of the linear combination are
replaced with a similarity function that captures the local properties of the input data.
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Chapter 2

Theoretical Foundations

The basic methods we used for building the work described in this thesis are given in
this chapter. A brief description of kernel theory and algorithms is given. A couple of
relevant MKL algorithms which are necessary for the main work in this thesis are also
given. The feature clustering algorithms and big data approaches in the multiple kernel
learning paradigm are also discussed.

2.1 Kernel Methods

Let {(x1, y1), (x2, y2) . . . (xN , yN)} be the given data, where xi ∈ X ⊆ Rn and yi ∈ R, i =
1, 2, . . . N .

The kernel methods make use of the concepts of Reproducible Kernel Hilbert Space
(RKHS)[2, 36, 4] for data modeling. Let f be the function that generates the data and let it
belong to RKHS F . Therefore by kernel theory, f(x) can be written as

f(x) =
�

i

αik(xi, x) (2.1)

where k : X × X �→ R is the reproducing kernel of F and αi ∈ R. As kernel methods use
Tikhonov regularization concepts, using the Representer theorem [37], (2.1) becomes

f(x) =
N�

i=1

αik(xi, x) (2.2)
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2.1.1 Support Vector Machine (SVM)

The solution of the data modeling problem in SVM can be represented as

f �(x) = f(x) + b

where f(x) is as given in (2.2) and b ∈ R is the bias. The cost function of SVM
classification can be written as

min
f∈F ,b∈R

1

2
�f�2 + C

�

i

ξi

subj. to

yi(f
�(xi)− 1 + ξi) ≥ 0, i = 1, 2 . . . N

where ξi = max(0, 1− yif
�(xi)) and C > 0 is the regularization parameter.

The dual function of SVM with the reproducing kernel k and dual parameter αi can be
written as

max
α

N�

i=1

αi−
1

2

N�

i=1

N�

j=1

αiαjyiyjk(xi, xj)

subj. to.

N�

i=1

αiyi = 0

0 ≤ αi ≤ C, i = 1, 2 . . . N

(2.3)

The selection of kernel plays an important role in the performance of the algorithm.
The MKL techniques help in selecting the optimal reproducing kernel for a given data.

2.1.2 Support Vector Regression (SVR)

For regression problems, it searches for the optimal hyperplane that passes through the data
points in RKHS with a marginal tolerance of error. The cost function of SVM regression
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can be written as

min
f∈F ,b∈R

1

2
�f�2 + C

�

i

(ξi + ξ∗i )

subj. to

yi − f(xi)− b ≤ �+ ξi, i = 1, 2 . . . N

f(xi) + b− yi ≤ �+ ξ∗i , i = 1, 2 . . . N

ξi, ξ
∗
i ≥ 0, i = 1, 2 . . . N

where and C > 0 is the regularization parameter.

The dual function of SVR with the reproducing kernel k and dual parameter αi&α∗
i can

be written as

max
α,α∗

N�

i=1

yi(αi − α∗
i )− �

N�

i=1

(αi + α∗
i )−

1

2

N�

i=1

N�

j=1

(αi − α∗
i )(αj − α∗

j )k(xi, xj)

subj. to.

N�

i=1

(αi − α∗
i ) = 0

0 ≤ αi,α
∗
i ≤ C, i = 1, 2 . . . N

(2.4)

2.2 Kernel Ridge Regression

The risk minimization problem for the kernel ridge regression can be written as below.

min
f∈F

1

2

N�

i=1

(f(xi)− yi)
2 +

λ

2
�f�2

where yi is the output label and λ > 0 is the regularization parameter. By substituting
f(x) =

�N
i=1 αik(xi, x) , the above cost function becomes

min
α∈RN

1

2
�Kα− y�2 + λ

2
αTKα

where K is the kernel matrix and y is the output vector. The optimal value of α is given
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by

α = (K + λI)−1y (2.5)

2.3 Multiple Kernel Learning Algorithms

In multiple kernel learning algorithms, there are many ways of learning the kernel k. One
of the techniques is to represent it as a linear combination of base kernels under considera-
tion.That is

k(x, z) =

p�

l=1

dlkl(x, z) (2.6)

where kernel weights dl ≥ 0, l = 1, 2 . . . p, p is the number of base kernels and x, z ∈ X .
By substituting the above in SVM classification dual function,

J =
�

i

αi−
1

2

�

i,j

αiαjyiyj

p�

l=1

dlkl(xi, xj)

subj. to
�

i

αiyi = 0

0 ≤ αi ≤ C

dl ≥ 0

(2.7)

SimpleMKL [19] is one of the prominent works in multiple kernel learning algorithms.
In SimpleMKL, the optimization of α and dl are carried out alternatively as two steps so
that in first step the α�s are updated using conventional algorithms such as SVM-SMO [38]
and in second step the d�ls are updated using gradient descent algorithm. These two steps
of optimization are iterated till convergence. In order to make the kernel weights sparse,
additional constraints have also been incorporated. Therefore in this case the dual function
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is

J(α) =
�

i

αi−
1

2

�

i,j

αiαjyiyj

p�

l=1

dlkl(xi, xj)

subj. to
�

i

αiyi = 0

0 <= αi <= C
�

l

dl = 1

dl >= 0

(2.8)

The regularization concepts are incorporated in the above formulation in Generalized
MKL(GMKL) [21] and hence in that case the problem formulation becomes

min
f∈F ,b,d∈R

1

2
�f�2 +

�

i

l(yi, f(xi)) + r(d)

subject to d ≥ 0

where r is the regularizer and l is the loss function.

2.4 Large Data Approaches in Kernel Methods

The main disadvantage of kernel methods is their computational complexity which scales
as O(N3) where N is the number of training points. Various approaches like boosting
([39]), decomposition techniques such as SVMTorch ([40]), sequential minimization op-
timization ([38]) have been developed for scaling the kernel algorithms to large data sets.
The work of [41] improves computational performance of kernel machines by using a fixed
Gaussian kernel whereas in [29], the authors used used semi infinite linear programming
based optimization algorithm for decreasing the computation complexity.

The data compression is an efficient tool for dealing with large scale data. The work
described in the papers[42, 43, 44] use minimum enclosing ball concepts to select repre-
sentative points. The drawback of this approach is described in [45]. The work [46] used
squashing for selecting a working set for training. The authors of the work [34] developed
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a supervised preclustering approach for scaling kernel based regression by making use of
the concepts of uniform continuity and compactness. In our work, we use this compression
technique for large scale regression problems and dictionary based learning for classifica-
tion. The description of these compression techniques is given below.

2.4.1 Supervised Preclustering

In the pre-clustering approach developed by [34], the function f to be learned is uniformly
continuous, by assuming that it lies in a continuous RKHS F , having the domain of its
members a compact set X . The idea of uniform continuity is used to define a similarity
measure on the function to be estimated, As the function, f , is uniformly continuous, cor-
responding to similarity measure � > 0, there exists a radius, δ, independent of x ∈ X ,
such that

d̂(f(x), f(x�)) < � ∀ x� ∈ B(x, δ) (2.9)

where B(x, δ), is an open ball of radius δ in input space and d̂ is a suitable metric on R
. An open ball B(x, δ) in the input space is called a cluster if all points associated with it
satisfies (2.9). The basic idea of pre-clustering is that any data points which satisfy (2.9) can
be considered to be “similar” and therefore form pre-clusters. The centers of the clusters
are then used as a sparse data set for the function estimation. The output information has
also been used to form clusters and hence it is a supervised clustering.

The working procedure of the algorithm is as follows. Corresponding to the given
similarity measure �, the algorithm finds the radius δ in an iterative manner. In an iteration,
an open ball B(x, δ) is formed in a greedy manner and all those non-center points that
satisfy (2.9) get eliminated. Thus in each iteration, the set of training points consists of
the centers of the open balls and those points that do not satisfy (2.9). The algorithm gets
terminated if all the training points under consideration satisfy (2.9). Otherwise δ gets
updated using the formula δ := δ−h, where h > 0 is the step length and moves to the next
iteration.

2.4.2 Data Compression using Dictionary Learning

In dictionary learning, the dictionary consists of subset of data points such that all the input
data can be represented as a linear combination of them. Let X be the input data and D be
the dictionary atoms and W be the sparse weights. Then the problem of dictionary learning
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can be formulated as
min
D,W

�X −DW�2 + λ�W�0 (2.10)

where λ > 0 is the regularization parameter. SVDD [47] is one of the state-of-the-art
dictionary learning algorithms which produces sparse representation of input data. It is an
iterative method that updates sparse weights and dictionary atoms in a simultaneous man-
ner. [48] uses least square formulation with recursive approach in solving the dictionary
learning problem. [35] discusses a label consistent dictionary learning algorithm, where
it uses label information in the cost function for learning the dictionary. We use the same
algorithm in our model for applying over large data in the case of classification.
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Chapter 3

Localization of Multiple Kernel Learning
using Feature Clustering

The multiple kernel learning generally formulates the optimal kernel as a combination of
kernels, in which all of them are defined on the same input space. In order to understand
the relevance of each feature, there have been studies in which a separate kernel is assigned
for each of them. In [32], MKL is formulated using feature-wise kernel selection, that is,
a kernel is selected for each feature and the reproducing kernel is formulated as the linear
combination of such kernels. Such a MKL formulation also helps to incorporate the feature
selection in the learning problem, as the prominent features can be selected on the basis of
the weights associated with them. The main drawback of this method is the computational
cost associated with it in the case of high dimensional data.

This chapter describes the MKL frame work we propose using feature-wise kernel se-
lection, which is named as feature wise multiple kernel learning (FMKL). A clustering
phase is introduced in the FMKL model for overcoming the computational burden asso-
ciated with the feature wise kernel selection. That is, the features are first clustered and
then a suitable kernel is selected for each cluster. We also propose a feature clustering
algorithm which is named as Overlapping Clustering(OC) algorithm, whose description is
given in this chapter. We incorporate the developed MKL model with SVM classification
for experimental analysis.

The next section describes the feature clustering approach for MKL while the section
3.2 describes the proposed model. The experimental setup and results of empirical study
conducted on various datasets are described in section 3.3. The concluding remarks are
given in section 3.4.
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3.1 Feature Clustering Approach for MKL

The selection of kernels on the basis of the characteristics of features is an important ap-
proach in MKL. A new reproducing kernel can be defined as a linear combination of ker-
nels where each kernel corresponds to a feature whose consistency is proved in [49]. The
concept of feature wise kernel combination for heterogeneous features has been applied in
areas like object recognition. One such work is [32] in which a separate kernel is selected
for every feature and linear combination of those kernels is used as the reproducing kernel.
This procedure is formulated as Group Lasso MKL [50] for finding the kernel weights. In
feature wise combination of kernels, for some features the weight may be close to zero and
hence feature selection is implicitly performed in this method.

The procedure of finding the kernel for each feature is computationally expensive. More
than one feature may perform well with same kernel. Hence introducing a clustering phase
for grouping the similar features in such MKL models makes them more computationally
effective.

3.1.1 Feature Grouping Algorithms

The feature clustering or feature grouping is usually applied for very large dimensional
dataset for reducing the dimension and thereby improving the computation time. [51] is a
popular feature clustering algorithm in the domain of text classification and it uses infor-
mation theory, which is an effective tool for natural language processing. [52, 53] depicts
feature clustering algorithms for text categorization in which first one uses distributional
clustering for finding similar words and the latter uses information theory for clustering the
features. The works of [54] and [55] are co-relation based methods whereas the work in the
paper [56] is an overlapping clustering algorithm. In FMKL model, we introduce feature
clustering for finding the similar features, which helps to associate a kernel to each cluster.

3.2 Feature wise Localized Multiple Kernel Learning

The development of model constitutes three modules as shown in Fig. 3.1.

1. Feature Vector Construction - A vector corresponding to each feature termed as
Feature Vector is created and clusters are formed using them. Four types of feature
vectors are used in this approach.
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Figure 3.1: Feature wise Localized MKL

2. Feature Cluster Formation - A clustering algorithm is applied on the feature vectors
in this stage.

3. MKL - After forming the clusters, each cluster is assigned with a suitable kernel,
which can be found by techniques like cross validation. Such kernels are then lin-
early combined to form the reproducing kernel and it is then plugged into the kernel
algorithm under consideration. We chose the SVM algorithm in the experiments we
did.

Given below is a description of these three modules.

3.2.1 Feature Vector Construction

Consider the input data matrix

M =




x1,1 x1,2 . . . x1,n

x2,1 x2,2 . . . x2,n

...
...

...
...

...
...

xN,1 xN,2 . . . xN,n




where xi = (xi,1, xi,2, . . . , xi,n)
T . The feature vector corresponding to each feature will be

the input for clustering which can be represented as follows:

F =




fT
1

fT
2
...
fT
n




(3.1)

where fi corresponds to feature vector for the feature i. The feature vector is constructed
in four different ways, whose explanation is given below.
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3.2.1.1 Actual Values

In this case, all the feature values are taken into consideration, that is, the feature vector for
kth feature is

fk = [x1,k, x2,k, . . . xN,k]
T (3.2)

This approach is not suitable for high dimensional data, since the computational complexity
increases with the increase in dimension.

3.2.1.2 Mean

The clustering data for this approach is the mean of the values of features, belonging to
different classes under consideration. The feature vector for the kth feature in this case is

fk = [µ+
k , µ

−
k ]

T (3.3)

where µ+
k is the mean of kth feature of positive class and µ−

k is the mean of kth feature of
negative class. The mean can be calculated as:

µ+
k =

�N
i=1 xik{yi = +}�N
i=1 1{yi = +}

µ−
k =

�N
i=1 xik{yi = −}�N
i=1 1{yi = −}

(3.4)

3.2.1.3 Conditional Expectation

If we know the individual distributions of the features, the concept of conditional expecta-
tion can be applied for finding the feature vector. Using maximum likelihood techniques
we can find the parameters of the distribution. Hence in this case the feature vector for the
kth feature consists of the conditional expectation of corresponding classes, that is,

fk = [E+
k , E

−
k ] (3.5)

where E+
k and E−

k are the conditional expectation of the positive and negative class respec-
tively. For example, if a feature follows normal distribution, the conditional distribution is
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determined as follows:

E(xk/yi = +) =
N�

i=1

xk
iP (xk

i /yi = +)

E(xk/yi = −) =
N�

i=1

xk
iP (xk

i /yi = −)

(3.6)

where

P (xk
i /yi = +) =

1√
2πσ+

k

exp

�
−�xk

i − µ+
k �2

2σ+
k
2

�

P (xk
i /yi = −) =

1√
2πσ−

k

exp

�
−�xk

i − µ−
k �2

2σ−
k
2

� (3.7)

Here µ+
k and µ−

k can be calculated using (3.4) and

σ+
k =

�N
i=1(x

k
i − µ+

k )
2{yi = +}��N

i=1 1
�
− 1{yi = +}

σ−
k =

�N
i=1(x

k
i − µ−

k )
2{yi = +}��N

i=1 1
�
− 1{yi = +}

(3.8)

3.2.2 Clustering Techniques

For clustering the features we use three different clustering techniques, namely, k-means,
spectral and the proposed clustering algorithm OC. In k-means as well as spectral clus-
tering, the number of clusters has to be mentioned where as in OC, it uses a similarity
threshold which determines the number of clusters. The OC uses fuzzy measures of simi-
larity and hence a data point can be a member of more than one cluster. It also makes use
of hierarchical clustering concepts.

3.2.2.1 Overlapping Clustering (OC)

The clustering of similar features is studied for various aspects in machine learning. The
paper [57] describes a feature clustering algorithm based on a similarity measure. In that
work the features are words in text processing and clustering algorithm is used for the
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purpose of dimensionality reduction. In that algorithm, all the features are sequentially
taken and added to a cluster if the similarity measure is greater than a threshold. When
the similarity is less than the threshold, a new cluster is formed. The feature selection is
greedy in manner and hence the cluster formation depends on the order of the features.
The overlapping clustering algorithm (OC) is an extended version of this algorithm. In this
method, cluster formation is independent of the order of features. The description of OC is
given below.

The OC can be considered as a two stage algorithm in which the centroids are calculated
in the first stage and data points are added to clusters in the second stage. This algorithm
uses the measure of similarity between a data point and a centroid in the scale range from
0 to 1. We used Gaussian metric to calculate the similarity measure in which the similarity
between a cluster centroid c and data point x can be defined as

∂c(x) = exp(−�x− c�2
β

) (3.9)

where β > 0.

The algorithm is shown in 1 where OC is main method which calls both phases of the
algorithm in sequential order. The first phase of the algorithm selects the centroid for each
cluster. It uses Gaussian similarity metric defined in (3.9) for calculating the similarity
between a feature and a centroid.

The algorithm is similar to hierarchical clustering where each data point (feature vector)
is being initially considered as a cluster centroid as shown in Fig. 3.2. Then a level for
threshold t is set for merging as in hierarchical clustering. It is initialized with a high value
(line 7) and will be decremented in each iteration for hierarchically combining the cluster
centroids (line 11). In each iteration, the pairs of centroids whose similarities is greater
than t are identified (line 9). The resulting pairs are then sorted in descending order on the
basis of similarity so that the most similar features is grouped together. From this sorted
list, each pair is added to another list for merging if both centroids of that pair have not
been selected earlier for merging. Even if one or two pairs got missed out for merging in
an iteration, it is selected for merging in the next iteration. Then the clusters associated
with these identified pairs are merged and the new cluster centroid is calculated (line 10).
Suppose ci is the centroid of cluster i having m elements and cj is the centroid of cluster j
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Algorithm 1 Centroid Calculation Algorithm
1: procedure OC(datapoints)
2: Calculate centroids using CentroidCalculation
3: return Do clustering using doCluster
4: end procedure
5: procedure CENTROIDCALCULATION(datapoints) � The first phase of Overlapped

Hierarchical Clustering Algorithm
6: Initialize the threshold t with a high value;
7: Initialize centroids of each cluster as the feature point itself.;
8: while t >= T do
9: calculate pairs � Find all the pairs of cluster centroids with similarity between

is greater than t
10: mergepairs � Merge the clusters corresponding to each pairs
11: Decrement the t for next step
12: end while
13: end procedure
14:
15: procedure DOCLUSTER(centroids) � Clustering of data points based on centroids
16: for i = 1 → n do
17: for j = 1 → p do
18: d ← ∂cj(fi) � Distance between jth cluster centroid and ith point using

(3.9)
19: if d > T then
20: Add point i to the cluster j
21: end if
22: end for
23: end for
24: end procedure
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having n elements. If these two clusters are merged, the centroid of the resulting cluster is

new_centroid =
(m ∗ ci) + (n ∗ cj)

(m+ n)
(3.10)

Figure 3.2: OC Algorithm Phase 1

This process continues until the step threshold t < T , for some threshold T , which
determines the number of clusters. T can be determined using cross validation techniques.

In phase two of OC, the membership of each data point with a cluster is determined.
A data point is associated with a cluster if its similarity metric is greater than the threshold
T (Fig. 3.3). Hence a data point might be associated with more than one cluster. After the
formation of clusters, each cluster is assigned with a suitable kernel using cross validation
methods.

Figure 3.3: OC Algorithm Phase 2

The OC algorithm differs from the state-of-the-art techniques in overlapping cluster-
ing such as Model-based Overlapping Clustering (MOC)[56] and Overlapping Corelation
Clustering (OCC)[55]. In [56] the clustering algorithm is formulated as a linear equation
where the linear operator is a membership matrix which maps the data to an arbitrary space.
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In [55] the cost function is defined based on co-relation between the data points. The OC
is formulated using the principles of hierarchical clustering.

3.2.2.2 Time Complexity Analysis

The average height of the tree formed as part of centroid calculation algorithm is log n,
where n is the number of features. The maximum number of iterations required for finding
similarity between all the pairs from a set of n features is n2 and therefore time complexity
is Θ(n2). The merging of centroid uses (3.10) for calculating a new centroid. The com-
plexity for merging is Θ(1) since no loops are involved. The overall time complexity of
first procedure can be approximated as Θ(log n) ∗ {Θ(n2) + Θ(1)} which is Θ(n2 log n).
The complexity of the second procedure is Θ(pn) where n is the number of features and p

is the number of centroids calculated by phase 1 procedure.

The total time complexity of OC algorithm is Θ(n2 log n) + Θ(pn) which can be ap-
proximated as Θ(n2 log n), since p < n.

3.2.3 Multiple Kernel Learning using Clusters of Features

The validity of feature cluster wise combination of kernels can be proved by using the
kernel construction theory from [3, 4], whose description is given below. Consider a scalar
α ≥ 0 ∈ R. Then

k�(x, z) = αk(x, z)

k��(x, z) = k1(xa, za) + k2(xb, zb)
(3.11)

where, x = xa ∪xb ∈ X and z = za ∪ zb ∈ X are also valid kernels defined on X ×X .
Here k1 and k2 are kernels on their respective spaces.

For a given data set, let p clusters be formed. Let xCl consists of features of x, that falls
in the lth cluster such that x =

�p
l=1 x

Cl .

Let kl, l = 1, 2, . . . p be the kernels defined on the subspace generated by the features
in lth cluster, Cl, l = 1, 2, . . . p. Then from (3.11),

kcl = dlkl(x
Cl , zCl), dl ≥ 0, l = 1, 2, . . . p (3.12)

and

k(x, z) =

p�

l=1

kcl (3.13)
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are well-defined kernels.

Hence,

f(x) =
N�

i=1

αik(xi, x)

=
N�

i=1

αi

p�

l=1

dlkl(x
Cl
i , xCl)

(3.14)

On the basis of the above theory, the dual function of the SVM can be written as

J =
�

i

αi−
1

2

�

i,j

αiαjyiyj

p�

l=1

dlkl(x
Cl
i , xCl)

subj. to
�

i

αiyi = 0

0 ≤ αi ≤ C
�

l

dl = 1

dl ≥ 0

(3.15)

The constraint dl ≥ 0 keeps the new reproducing kernel to be a positive semi-definite
one. The constraint

�
l dl = 1 makes the solution of kernel weights more sparse since this

is an l1-norm constraint[19].

Two variations of the above equations are analyzed. In one formulation, constraint�
l |dl| = 1 is removed and in second dl is fixed as 1

p
, p ∈ �−{0} for all the clusters. The

model did not perform well in these two cases.

The optimization of the α and dl is implemented in the same way as SimpleMKL[19]
by Rakotomamonjy et. al. As explained earlier, the selection of optimum kernel kl for each
feature cluster can be done using cross validation techniques.

3.3 Experiments

The proposed method was implemented in Java over the JKernelMachine framework [58,
59] and tested in a machine of intel i5 with 6 GB RAM. The setup, experiment methodology
and results are explained below.
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3.3.1 Experimental Setup

A layer of code is implemented over the jKernelMachine framework with proper abstrac-
tion. The datasets used are detailed in Table 3.1 which are binary class classification prob-
lems taken from UCI repository [60] and IDA benchmark repository [61]. The heart disease
dataset is actually 5 class classification dataset, which is converted to a binary classification
where the classes are mapped to two classes, namely, with heart disease or no heart disease.

Table 3.1: Datasets used for FMKL experiments

Dataset Repository Dimension Data Points
Heart UCI 13 303
Ionosphere UCI 33 351
Sonar UCI 60 208
Parkinsons UCI 22 195
Pima UCI 8 768
Musk 2 UCI 166 476
Arrythmia UCI 276 452
WDBC UCI 30 569
Twonorm IDA 20 7400
Ringnorm IDA 20 7400

The six different variations of proposed model are listed in Table 3.2.

Table 3.2: Proposed FMKL Models

Model Name Feature Vector Clustering
FMKL Normal Normal Overlapping
FMKL Spectral µ Spectral
FMKL KMeans µ K-Means
FMKL P_KMeans Conditional Exp K-Means
FMKL OVLP µ Overlapping
FMKL P_OVLP Conditional Exp Overlapping
FMKL D_OVLP Dictionary Learning Overlapping

The base kernels were generated from four reproducing kernel functions which are
Laplacian kernel, Gaussian kernel, polynomial kernel and sigmoidal kernel. The param-
eters of Laplacian and Gaussian kernel were chosen from the set ( 1

2−10 ,
1

2−9 , ...,
1
210

). The
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degree of the polynomial in polynomial kernel was chosen from 1 to 4 for generating the
base kernels.

The models used for comparison with FMKL models were SimpleMKL[19] (SVM-
SMO + MKL), GL-MKL [32] and SVM-SMO[38] for which the hyperparameters were
optimized using 5-fold cross validation. In FMKL models, suitable kernel for each cluster
was determined using 5 fold cross validation techniques.

The number of kernels in the proposed models is equal to number of clusters formed
as part of the clustering algorithm. In SimpleMKL, 10 best performing kernels were used,
which were selected by using 5-fold cross validation technique.

The parameter C of SVM and the threshold T of OC algorithm and the β of (3.9) were
estimated using 5-fold cross validation method. The β was 0.3 for all the experiments with
mean and conditional expectation as feature vectors and 0.09 for normal feature vector.
This difference is mainly due to the dimension of feature point for clustering. The normal
feature vector has dimension equal to number for training points (N) where other models
have dimension as 2.

The performance measures used were accuracy, Fmeasure and time of execution. The
accuracy and F-measure are given by

Accuracy =

�
no of correct predictions

Nt

�
∗ 100

Fmeasure = 2 ∗ precision ∗ recall
precision+ recall

where Nt is the number of testing points.

3.3.2 Results and Discussions

The result of the experiment is shown in the Table 3.3. The table consists of the results of
each of the ten models with all the eight datasets.
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Table 3.3: FMKL Experiment Results

Models Heart Ionosphere Wdbc Sonar Parkinsons Pima Musk (V2) Arrhythmia
SMO SVM Accuracy 83.07 ± 3.30 93.36 ± 2.83 96.53 ± 1.65 84.24 ± 4.76 87.14 ± 4.70 76.73 ± 2.56 91.19 ± 2.21 78.48 ± 4.40

F-Measure 80.89 ± 4.08 94.91 ± 2.26 96.87 ± 1.87 82.28 ± 5.68 91.12 ± 2.96 60.36 ± 4.38 90.13 ± 2.73 80.18 ± 6.55
Time 64.59 106.19 57.71 27.94 24.79 27.05 230.98 36.82

No. of Kernels 1 1 1 1 1 1 1 1
Simple MKL Accuracy 82.78 ± 2.87 93.87 ± 2.20 97.06 ± .83 85.69 ± 4.47 87.39 ± 4.01 75.76 ± 2.86 90.51 ± 2.68 77.53 ± 3.71

F-Measure 81.13 ± 3.45 95.26 ± 1.75 97.17 ± .64 83.77 ± 5.36 91.98 ± 2.65 61.61 ± 4.09 88.66 ± 3.10 79.96 ± 3.77
Time 125.70 150.56 172.31 85.54 85.43 102.34 1380.65 132.28

No. of Kernels 10 10 10 10 10 10 10 10
GL MKL Accuracy 83.03 ± 3.60 92.60 ± 2.44 97.36 ± .83 84.08 ± 5.32 85.80 ± 3.76 76.40 ± 2.14 91.53 ± 2.39 75.77 ± 2.94

F-Measure 81.56 ± 4.17 94.33 ± 1.98 97.76 ± 0.66 83.67 ± 5.10 90.84 ± 2.66 61.54 ± 3.72 90.46 ± 2.42 78.30 ± 2.56
Time 75.62 105.72 117.35 83.79 56.19 102.37 280.38 103.46

No. of Kernels 10 10 10 10 10 10 10 10
FMKL Spectral Accuracy 83.74 ± 3.47 93.86 ± 1.99 97.62 ± 1.07 82.47 ± 4.30 87.12 ± 5.12 75.69 ± 2.03 90.42 ± 2.46 78.88 ± 2.76

F-Measure 81.54 ± 4.14 95.22 ± 1.64 98.08 ± 0.90 79.78 ± 5.33 91.11 ± 3.39 61.38 ± 3.78 88.67 ± 2.81 81.09 ± 2.59
Time 80.45 124.97 154.21 91.67 134.27 108.78 1886.91 966.57

No. of Kernels 2 2 2 2 2 2 2 3
FMKL K Means Accuracy 84.07 ± 3.41 94.18 ± 2.06 97.96 ± .90 85.53 ± 4.51 88.17 ± 3.89 75.86 ± 3.41 91.21 ± 2.57 78.53 ± 3.53

F-Measure 81.56 ± 4.06 95.52 ± 1.65 98.37 ± .71 83.70 ± 5.14 92.04 ± 2.75 57.49 ± 2.01 90.03 ± 2.97 81.08 ± 2.37
Time 82.34 148.26 162.30 77.02 65.34 94.04 1675.25 109.48

No. of Kernels 4 3 2 2 3 2 3 3
FMKL P_Kmeans Accuracy 83.25 ± 3.72 93.42 ± 2.40 97.25 ± 1.01 84.73 ± 5.82 87.70 ± 10.07 75.67 ± 3.57 92.69 ± 1.86 78.22 ± 2.97

F-Measure 81.28 ± 4.27 95.04 ± 1.82 97.84 ± .77 82.20 ± 7.01 91.24 ± 10.26 59.54 ± 1.98 91.36 ± 2.04 80.93 ± 2.38
Time 88.51 259.20 153.06 54.03 127.86 98.34 1656.75 1567.57

No. of Kernels 4 2 3 2 3 2 2 2
FMKL Normal Accuracy 83.25 ± 3.62 93.46 ± 2.06 96.56 ± 1.58 85.00 ± 4.35 87.21 ± 8.04 76.45 ± 1.38 91.47 ± 2.45 75.11 ± 2.32

F-Measure 80.73 ± 4.86 94.95 ± 1.57 97.24 ± 1.30 82.97 ± 4.64 90.98 ± 9/86 62.39 ± 2.88 90.34 ± 3.06 78.37 ± 2.29
Time 65.16 132.45 133.40 56.00 134.56 123.89 1871.65 134.66

No. of Kernels 2 2 2 2 3 2 4 4
FMKL P_OVLP Accuracy 84.00 ± 2.90 93.95 ± 2.02 98.37 ± 0.95 87.36 ± 3.70 90.39 ± 3.24 76.55 ± 1.61 92.79 ± 2.47 79.58 ± 2.79

F-Measure 82.35 ± 3.22 95.22 ± 1.62 98.72 ± 0.73 85.84 ± 3.97 93.62 ± 2.25 62.78 ± 2.44 91.74 ± 2.80 82.34 ± 2.68
Time 84.65 140.56 65.52 37.33 78.47 90.07 1204.24 105.57

No. of Kernels 3 3 2 2 3 2 3 2
FMKL OVLP Accuracy 84.69 ± 2.99 94.28 ± 2.33 97.57 ± 0.98 85.98 ± 4.42 89.41 ± 4.29 76.95 ± 2.23 93.06 ± 2.02 79.56 ± 2.85

F-Measure 82.05 ± 3.68 95.56 ± 1.82 97.99 ± 0.79 84.15 ± 5.11 92.20 ± 2.70 62.27 ± 3.39 92.13 ± 2.34 82.23 ± 2.88
Time 73.87 73.58 74.69 123.22 57.34 78.49 1314.24 92.93

No. of Kernels 2 2 2 2 2 2 2 3
FMKL D_OVLP Accuracy 85.14 ± 2.61 94.83 ± 2.57 97.92 ± 0.9 88.26 ± 3.58 90.73 ± 3.72 77.02 ± 2.87 93.62 ± 2.29 79.31 ± 2.46

F-Measure 82.97 ± 3.82 96.28 ± 1.91 98.12 ± 0.88 86.26 ± 4.75 93.84 ± 2.59 63.17 ± 3.65 92.68 ± 2.60 82.82 ± 2.91
Time 62.32 57.52 48.03 105.62 45.65 61.58 362.31 82.11

No. of Kernels 2 3 3 4 2 2 3 4
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3.3.2.1 Performance Analysis

From the results in Table 3.3 we can see that FMKL D_OVLP model which used the pro-
posed clustering algorithm performed better in comparison with other models which used
spectral, k-means and normal MKL formulation. The performance of FMKL models were
as good as existing models with datasets such as ionosphere, pima while the results was
promising with datasets such as sonar, parkinsons etc. If different features choose differ-
ent kernels, then the FMKL models give improved results. But if all the features perform
almost similar with same kernel, then performance of FMKL and other MKL formulations
are the same.

The Table 3.4 shows the comparative study of performance of the overlapping cluster-
ing algorithms, MOC, Fuzzy K-Means [62] and OCC with that of OVLP. All the clustering
algorithms used conditional expectation as features with same set of kernels and same MKL
formulation. The performance of OVLP was found to be better.

Table 3.4: F-Measure comparison: Overlapping Clustering Algorithms

Dataset/Clustering MOC OCC OVLP Fuzzy K-Means

Heart 81.48 ± 4.72 81.56 ± 4.47 82.35 ± 3.22 83.46 ± 3.49

Ionosphere 94.94 ± 1.78 95.01 ± 1.71 95.22 ± 1.62 94.91 ± 2.19

Wdbc 97.74 ± 0.97 97.89 ± 0.91 98.54 ± 0.79 97.38 ± 0.95

Sonar 83.38 ± 6.31 83.07 ± 6.57 85.84 ± 3.97 83.63 ± 5.29

Parkinsons 91.24 ± 3.62 90.94 ± 3.21 93.62 ± 2.25 92.08 ± 3.88

Pima 60.42 ± 2.83 59.96 ± 2.77 62.78 ± 2.44 59.79 ± 3.48

Musk 2 90.18 ± 3.54 90.59 ± 3.81 91.74 ± 2.80 90.42 ± 3.99

Arrhythmia 80.29 ± 2.94 81.15 ± 3.15 82.34 ± 2.68 80.92 ± 3.10

Using the Sonar data set ROC curve was plotted (Fig. 3.4). The ROC curves obtained
for SimpleMKL and SMO SVM were very much identical and hence SMO SVM is not
shown in Fig. 3.4. The area under the curve for MKL was 0.8645, FMKL P_OVLP was
0.8813 and FMKL OVLP was 0.8786.

3.3.2.2 Rank Analysis

In the classification experiments, based on the statistical significance measure the models
were ranked for their performance on each data. For example: let M1 and M2 be two
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Figure 3.4: ROC-Curve for Sonar Dataset in FMKL Experiments

models; let P1 and P2 be the values of a performance measure P for a given data set D.
Then we say that M1 is better than M2 on the basis of P on D if P1 > P2 and their
difference is statistically significant.

The different models were assigned with ranks based on Fmeasure (Table 3.5). On an-
alyzing the rank table which is based on the performance analysis with different datasets,
it can be concluded that the overall performance of the FMKL is better than other MKL
formulations.

Table 3.5: Average Rank comparison of FMKL Experiements

Models Average Rank (F_Measure)

FMKL D_OVLP 1.25

FMKL P_OVLP 2.13

FMKL OVLP 2.5

FMKL K Means 3.88

GL MKL 4.50

SimpleMKL 4.63

FMKL Spectral 4.63

FMKL P_Kmeans 4.63

FMKL Normal 4.88

SMO SVM 5.13
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Among all the models, the FMKL D_OVLP gave the best result as shown in Table 3.5.
The ranks of different models based on Accuracy are plotted in Fig. 3.5 from which we
can see that, FMKL D_OVLP and FMKL P_OVLP models are the top performers.
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Figure 3.5: Rank Analysis of FMKL Models Based on F-Measure

3.3.2.3 Performance Analysis

The Table 3.6 shows the time analysis of FMKL D_OVLP and SimpleMKL over large
datasets in which clustering time is also included for FMKL D_OVLP. The FMKL D_OVLP
gave promising results with three clusters, that is, three kernels for Twonorm and Ringnorm
data. On the other hand, for these two data sets, SimpleMKL optimization took more time
for optimization of parameters as it is associated with ten kernels. The results shows that
the FMKL model is trained in shorter time using fewer number of kernels without compro-
mising the accuracy.
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Table 3.6: FMKL Execution Time Analysis

Alg. FMKL D_OVLP SimpleMKL

Dataset Twonorm Ringnorm Twonorm Ringnorm

Accuracy 97.96 98.61 96.79 97.03

No: of clusters 3 3 10 10

Time (seconds) 463.19 442.53 968.32 794.32

3.3.2.4 Impact of kernels chosen by SVM in MKL

In order to understand the impact of the kernels chosen by each MKL model in determining
its performance, we analyzed the weights of each model’s kernels. In FMKL models, for
most of the datasets, the kernel with the highest weight and the kernel which was selected
by SVM through cross validation are the same. A few such results are shown in the Table
3.7 where we can see the kernel weights assigned to the SVM chosen kernel in SimpleMKL
and FMKL. For sonar dataset, inspite of not selecting the SVM chosen kernel for any of
the clusters, the FMKL models performed well.

Table 3.7: Impact of kernel chosen by SVM in MKL vs FMKL

Kernel Weights

Dataset SimpleMKL FMKL P_OVLP

Ionosphere 0.31 0.58

Sonar 0 Not Selected

Parkinsons 0 0.68

WDBC 0.13 1

3.3.2.5 Dimensionality reduction

The dimensionality reduction of the data was performed in FMKL models. This could
be illustrated by using the results of FMKL P_OVLP on WDBC data. Two clusters were
obtained by applying FMKL P_OVLP on WDBC features, of which, the first cluster con-
tained 27 features and second cluster contained 6 features. Among the 6 features of second
cluster, 3 were not present in the first cluster. The kernel weight associated with the first
cluster that used the same SVM selected kernel is 1 (Table 3.7), which implies that kernel

31



95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

100.5

0 x 9 1 x 7 4 x 9

A
cc

u
ra

cy

MNIST Digits Classes

GL-MKL

FMKL P_OVLP

FMKL D_OVLP

Figure 3.6: Analysis of accuracy between GL-MKL and FMKL P_OVLP over MNIST (0
vs 9) dataset, MNIST (1 vs 7) dataset and MNIST (4 vs 9) dataset

weight of other cluster is zero. The FMKL algorithm showed 98% for accuracy using the
features in a single cluster. The SVM gives 96% accuracy by using all the features for
WDBC dataset while it showed 98% accuracy by using features selected by FMKL cluster
1. This implies that in FMKL models, the features which are irrelevant in classification are
avoided by assigning weight to the kernel associated to those features as zero and hence
these models perform feature selection in an implicit manner.

3.3.2.6 Application on Image Dataset

In order to analyze the performance of the proposed model on image data, we chose the
problem of recognizing hand written digits of 0 vs 9, 1 vs 7 and 4 vs 9, using the data
chosen from MNIST dataset ([63]). The data consisted of 11872 training points and 1989

testing points for 0 vs 9, 13007 training points and 2163 testing points for 1 vs 7 and 11791

training points and 1991 testing points for 4 vs 9. The data features were extracted using
techniques such as SIFT[64] and HOG [65]. The data was analysed using GL-MKL[32]
and FMKL. The experimental set up for GL-MKL was as same as that of the work in
[32]. The results of the analysis are shown in Fig 3.6, which clearly proves the superior
performance of FMKL over GL-MKL.
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3.4 Conclusion

This chapter deals with the selection of kernels based on features of the data. A theoretical
framework for feature wise kernel selection has been developed. The performance of the
developed model had been assessed by applying it on real world data sets. A comparative
study was conducted to evaluate the performance of the proposed model with that of exist-
ing techniques. The results show that the SVM model performs better by applying MKL
theory using feature clustering techniques than associating all the features with the same
set of kernels. The clustering of features also helps to decrease the computational cost.

Like any other MKL formulations, the FMKL also formulates the kernel learning prob-
lem as part of a global classification problem. A separate formulation for the kernel learning
is another interesting approach for finding the optimal kernel which is described in the next
chapter.
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Chapter 4

Classification Approach for Multiple Ker-
nel Learning

The function approximation approach is an efficient method for multiple kernel learning.
For that classification as well as regression techniques can be used. A notable work in this
direction is that of the work of Kumar et al.[1], where the problem of finding the optimum
kernel is modeled as a classification problem, in which the authors used two separate cost
functions for finding the parameters of the function that corresponds to the optimum kernel
and to the one that has to be learned from the data.

This chapter describes the framework we designed for function approximation approach
for multiple kernel learning. In the case of binary classification problems, we formulated
the problem of finding the unknown parameters of the optimum kernel and the function
that has to be learned from the data (binary classifier) as a single classification task.

The rest of the chapter is organized is as follows: the next section describes the function
approximation frame work formulated by Kumar et. al. Such a formulation increases the
computational space requirements and hence we incorporate a data compression technique
in our formulation whose description is given in section 4.2. The section 4.3 gives the
design details of the framework we developed for function approximation in the case of
classification problems; details of experimental analysis can be seen in section 4.4 and
finally conclusion is given in section 4.5.

4.1 Function Approximation Approach for MKL

We have seen earlier that in the case of linear combination of kernels, the optimal kernel
k̂(., .) =

�P
l=1 dlkl(., .) where ∀ dl ≥ 0 and kl are the base kernels. Therefore, f(x) =�N

i=1 αi

�P
l=1 dlkl(xi, x).
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[1] formulated the problem of learning the parameters {dl}Pl=1 as a classification prob-
lem, whose description is given in this section.

Define a function f ∗ : X ∗ ⊂ �P → � such that

f ∗(z) = dT z (4.1)

where X ∗ = Range(k1(., .))×Range(k2(., .))×...×Range(kP (., .)) and d = {d1, d2, . . . dP}T ∈
RP is as given above. From (4.1) it is clear that f ∗ is a hyperplane defined on X ∗.

Therefore

f(x) =
N�

i=1

αif
∗(K̃(x, xi)) (4.2)

where K̃(x, xi) = [k1(x, xi) k2(x, xi) ... kp(x, xi)]
T . Thus the computation of f

involves the computation of yet another function f ∗.

The problem of finding f ∗ can be considered as a supervised classification problem,
by adopting the following strategy for generating the outputs of f∗. The ideal kernel for a
classification problem is k̂(xi, xj) = y(i) ∗ y(j) [22]. As the objective of MKL algorithms
is to find the best possible kernel, it could be assumed that

f ∗(K̃(xi, xj)) =
P�

l=1

dlkl(xi, xj) = yiyj, i, j ∈ {1, 2, . . . N}

.

Now f ∗ can be found using the N2 data points
��

K̃(xi, xj), yiyj

�
, i, j = 1, 2, . . . N

�
.

As O(N2) training points are required to learn f ∗, the algorithm complexity increases
with increase of data. Hence we resort to a data compression technique for reducing the
cardinality of the training set of f ∗.

4.2 Data Compression

In order to compress the data, we made use of the empirical mean map of each class in
RKHS space. The empirical mean map of positive class (f j

+) and that of negative class
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(f j
−) corresponding to the base kernel kj are defined as follows:

f j
+ =

1

N+

�

xi∈{xi,yi=+1}
kj
xi

f j
− =

1

N−

�

xi∈{xi,yi=−1}
kj
xi

(4.3)

where N+ is number of positive data points, N− is number of negative data points and
kj
xi
∈ F is the representer of evaluation at xi ∈ X for jth base kernel. This empirical mean

can be considered as a representative point of the respective class in corresponding RKHS.
So in order to reduce the cardinality of data set for f∗, we defined the new training data set
as follows

[z1, z2, . . . z2N ]
T =

�
K̃f+(x1), K̃f+(x2), . . . , K̃f+(xN), K̃f−(x1), . . . , K̃f−(xN)

�T
(4.4)

where K̃f+(x) =
�
< k1

x, f
1
+ >,< k2

x, f
2
+ >, . . . , < kP

x , f
P
+ >

�T and
K̃f−(x) =

�
< k1

x, f
1
− >,< k2

x, f
2
− >, . . . , < kP

x , f
P
− >

�T .

The label corresponding to the data points which are related with positive mean is:

f ∗(zj) =f ∗







< k1
xj
, 1
N+

�
xi∈{xi,yi=+1} k

1
xi
>

< k2
xj
, 1
N+

�
xi∈{xi,yi=+1} k

2
xi
>

.

.

.

< kP
xj
, 1
N+

�
xi∈{xi,yi=+1} k

P
xi
>







=
1

N+

�

xi∈{xi,yi=+1}
f ∗







< k1
xj
, k1

xi
>

< k2
xj
, k2

xi
>

.

.

.

< kP
xj
, kP

xi
>







This is possible, since f ∗ is linear.

By making use of the concepts of ideal kernel and the above formulation, the label of
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zj becomes

y∗j =
1

N+

�

xi∈{xi,yi=+1}
yj.yi

=
1

N+
yj.

�

xi∈{xi,yi=+1}
+1 =

yjN
+

N+
= yj

Similarly, the labels corresponding to negative mean map can be determined.

Thus the labels for the data set in (4.4) are

[y∗1, y
∗
2, . . . y

∗
2N ]

T = [y1, y2, . . . yN ,−y1, . . . ,−yN ] (4.5)

Thus we have 2N training points for learning f ∗.

4.3 Computation of f and f ∗ using Single Stage Frame
Work

The authors of [1] found f ∗ and f using separate cost functions by finding f ∗ in the first
stage and then substituting in (4.2) for finding f . We solved (4.2) by finding f and f∗ using
a single cost function, whose description is given below.We formulated the problem of
finding f ∗ as a classification task as given in the previous section. Let f∗ belongs to RKHS
F∗, whose reproducing kernel is k∗. For finding f and f ∗ using a single cost function, we
construct a RKHS space in which f and f ∗ are members, whose formulation is as given
below.

4.3.1 Construction of Global RKHS

Let X † = X × X ∗. Define k† : X † ×X † → �, as follows

k†(xi, xj)

=





k(φ(xi),φ(xj)) ; if φ∗(xi) = �0 & φ∗(xj) = �0

k∗(φ∗(xi),φ
∗(xj)) ; if φ(xi) = �0 & φ(xj) = �0

0 ; otherwise

(4.6)

where φ : X † → X and φ∗ : X † → X ∗ are projection operators.
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As k and k∗ are valid reproducing kernels, k† is a valid reproducing kernel. Let F † be
the RKHS corresponding to k†.

It is clear from (4.6) that F †/X ≡ F and F †/X ∗ ≡ F∗. Also, F and F∗ are orthogonal
subspaces of F † and complements to each other.

Hence
F † = F ⊕ F∗ (4.7)

So every f † ∈ F † can be represented as

f † = f + f ∗, f ∈ F , f ∗ ∈ F∗ (4.8)

Using (4.7) and (4.8)

||f †||2 = ||f ||2 + ||f ∗||2 (4.9)

Thus f and f ∗ can be found by finding f † ∈ F †.

f † is determined using the N +N2 points from X †, where N points are associated with
f and N2 with that of f ∗. That is, the data points for f † are {(x†

i , yi)}Ni=1 ∪ {(z†i , y∗i )}2Ni=1,
where x†

i = xi ×�0, xi ∈ X ,�0 ∈ X ∗ and z†i = �0× zi,�0 ∈ X , zi ∈ X ∗.

4.3.2 Formulation using SVM

By virtue of semi-parametric form of representer theorem [66], the decision boundary cor-
responding to data points

�
{(xi, yi)

3N
i=1} = {(x†

i , yi)}Ni=1, {(z†i , y∗i )}2Ni=1

�
can be represented

as

g†(x) = f †(x) + b =
3N�

i=1

αik
†(xi, x) + b,αi, b ∈ R, i = 1, 2, . . . 3N (4.10)

We used SVM, for finding f † and b. Hence the optimization problem corresponding to
(4.10) is

min
f†

1

2
�f †�2 + C

3N�

i=1

ξ†i

subj. to

y†i [�f †, k†
x†
i
�+ b]− 1 + ξ†i ≥ 0∀i = 1 . . . 3N

ξ†i ≥ 0∀i = 1 . . . 3N

(4.11)
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Since F and F∗ are orthogonal, (4.11) can be written as

min
f,f∗

1

2
�f�2 + C

N�

i=1

ξi +
1

2
�f ∗�2 + C

2N�

j=1

ξ∗j

subj. to

yi[�f, kxi
�+ b]− 1 + ξi ≥ 0, ∀i = 1 . . . N

y∗j [�f ∗, k∗
zj
�+ b]− 1 + ξ∗j ≥ 0, ∀j = 1 . . . 2N

ξi ≥ 0, ∀i = 1 . . . N

ξ∗j ≥ 0, ∀j = 1 . . . 2N

(4.12)

Corresponding Lagrangian objective function is as follows

L(f, f ∗, ξ, ξ∗) =
1

2
�f�2 + 1

2
�f ∗�2 + C

N�

i=1

ξi + C
2N�

j=1

ξ∗j

−
N�

i=1

αi[yi(�f, k̂xi
�+ b)− 1 + ξi]

−
2N�

j=1

βj[y
∗
j [�f ∗, k∗

zj
�+ b]− 1 + ξ∗j ]

−
N�

i=1

µiξi −
2N�

j=1

µ∗
jξ

∗
j

(4.13)

Taking partial derivative

∂L
∂f

=f −
N�

i=1

αiyik̂xi
= 0 (4.14)

Hence

f =
N�

i=1

αiyik̂xi
(4.15)

Now taking partial for f ∗ gives

∂L
∂f ∗ =f ∗ −

2N�

j=1

βjy
∗
jk

∗
zj
= 0 (4.16)
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Therefore from equation (4.16) we can write,

f ∗ =
2N�

j=1

βjy
∗
jk

∗
zj (4.17)

Other results are shown below:

∂L
∂ξi

= αi − µi = 0, i = 1, 2, . . . N

∂L
∂ξ∗j

⇒ C − βj − µ∗
j = 0, j = 1, 2, . . . 2N

∂L
∂b

⇒
N�

i=1

αiyi +
2N�

j=1

βjy
∗
j = 0

So the dual function can be written as

W (α, β) =
N�

i=1

αi−
1

2

N�

i=1

N�

j=1

αiαjyiyj

2N�

k=1

βky
∗
kk

∗(z∗k, K̃(xi, xj))

+
2N�

j=1

βj −
1

2

2N�

k=1

2N�

l=1

βkβly
∗
ky

∗
l k

∗(z∗k, z
∗
l )

sub. to

0 ≤ αi ≤ C

0 ≤ βj ≤ C

N�

i=1

αiyi +
2N�

j=1

βjy
∗
j = 0

(4.18)

4.3.2.1 SMO based optimization

The dual function defined in (4.18) can be optimized using two step optimization algorithm.
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4.3.2.1.1 Step 1 In step one α is optimized keeping β as a constant. The cost function
for first step is as follows (where all β terms are kept as constant)

Wβ(α) =
N�

i=1

αi−
1

2

N�

i=1

N�

j=1

αiαjyiyj

2N�

k=1

βky
∗
kk

∗(z∗k, K̃(xi, xj)) + γβ

sub. to

0 ≤ αi ≤ C

N�

i=1

αiyi = γ�
β

(4.19)

where γβ and γ�
β are constants. This is a usual SVM formulation which could be solved

using any of the SVM solver. Here we use SMO for solving the SVM.

4.3.2.1.2 Step 2 In second step of algorithm α is fixed as a constant and β is optimized.
Therefore the cost function can be written as follows

Wα(β) =
2N�

j=1

βj −
1

2

N�

i=1

N�

j=1

αiαjyiyj

2N�

k=1

βky
∗
kk

∗(z∗k, K̃(xi, xj))

− 1

2

2N�

k=1

2N�

l=1

βkβly
∗
ky

∗
l k

∗(z∗k, z
∗
l ) + γα

sub. to

0 ≤ βj ≤ C

2N�

j=1

βjyj = γ�
α

(4.20)

where γα and γ�
α are constants.

The procedure for solving Wα(β) using SMO is given below.
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Consider

1

2

N�

i=1

N�

j=1

αiαjyiyj

2N�

k=1

βky
∗
kk

∗(z∗k, K̃(xi, xj))

=
1

2

2N�

k=1

βky
∗
k

N�

i=1

N�

j=1

αiαjyiyjk
∗(z∗k, K̃(xi, xj))

=
1

2

2N�

k=1

βky
∗
kuk

(4.21)

where uk =
�N

i=1

�N
j=1 αiαjyiyjk

∗(z∗k, K̃(xi, xj)).

Substituting (4.21) into (4.20)

Wα(β) =
2N�

j=1

βj −
1

2

2N�

k=1

2N�

l=1

βkβly
∗
ky

∗
l k

∗(z∗k, z
∗
l )

− 1

2

2N�

k=1

βky
∗
kuk + γα

sub. to

0 ≤ βj ≤ C

2N�

j=1

βjyj = γ�
α

(4.22)

This equation is again a quadratic equation with box constraints. Let β1 and β2 be the
parameters that SMO is updating at each step. The upper bound and lower bound of the
parameters are same as that of in SMO derivation. However the expression to find β�s will
be different since additional terms are included in the cost function.

The βnew
1 and βnew

2 are obtained as follows.

βnew
2 =βold

2 +
y∗2(E∗

1 − E∗
2 +

1
2
(u1 − u2))

η

βnew
1 =βold

1 + y∗1y
∗
2(β

old
2 − βnew

2 )

(4.23)

where E∗
1 = (f ∗(z1) − y∗1) , E∗

2 = (f ∗(z2) − y∗2) and η = k∗(z1, z1) + k∗(z2, z2) −
2k∗(z2.z1).
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The update process is continued until convergence. Change in cost function during each
iteration is used for determining convergence in such a way that if the change is less than a
predefined � > 0 then the iteration stops. The algorithm is shown in Alg. 2

Algorithm 2 Function Approximation Algorithm
1: procedure FUNCTION-MKL(datapoints)
2: Calculate K̃ using mean maps
3: Learn initial f ∗ using SMO-SVM;
4: while until convergence do
5: Learn f using SMO-SVM
6: Update α
7: Learn f ∗ using Modified SMO-SVM
8: Update β
9: end while

10: end procedure

4.3.2.2 Time Complexity Analysis

The FTSMKL (Kumar et. al. 2012) is having two stages. The first stage formulates the ker-
nel target alignment as function approximation and it uses PEGASOS algorithm which has
a complexity of O(d/λ�), where d is the dimension of the data, λ > 0 is the regularization
parameter and � is the expected solution accuracy. The second stage comprises the SMO
SVM algorithm which is having the complexity of O(N2.2). Since the first stage depends
linearly on dimension d and SMO depends quadratically on the number of training points
N , the complexity of FTSMKL is O(N2.2).

In algorithm 2, the time complexity of mean map based kernel computation for 3N

data points is O(N3d). The steps 3, 5 and 7 use SMO-SVM, whose complexity is O(N2.2).
The number of iterations the algorithm takes for convergence is less than dimension d.
Therefore the overall time complexity of the algorithm is O(N3d) + O(N2.2d) � O(N3d).

The data compression method, which uses mean map, reduces the number of training
points for f ∗ from N2 to 2N . Therefore without data compression the overall complexity
for the kernel computation is O((N2)3d) � O(N6d). The data compression technique, in
effect, reduces the space complexity as well as the time complexity.

4.3.3 Online Learning MKL

The work is extended to online learning and for that the technique used in kernel online
learning algorithm developed by Kivinen et al [67] has been adopted.
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Let (xt+1, yt+1) be the data arrived at time (t + 1). On the arrival of a new data point
xt+1 at (t + 1)th iteration, a training point is created for updating f∗ as (zt+1, y

∗
t+1) where

zt+1 = K̃(xt, xt+1) and y∗t+1 = ytyt+1. Hence at time (t+1) the points under consideration
are

�
{(x†

t+1, yt+1)}{(z†t+1, y
∗
t+1)}

�
. The optimal function is found by minimizing

g(f, f ∗) = min
f†∈F†

λ

2
�f †�2 + l(.) (4.24)

where l(.) is the hinge loss function.

Since f † = f + f ∗ ,

g(f, f ∗) = min
f∈F ,f∗∈F∗

λ

2
�f�2 + λ

2
�f ∗�2 + l(.) (4.25)

By applying stochastic gradient,

f ∗ = f ∗ − η∗
∂g

∂f ∗ (4.26)

and
f = f − η

∂g

∂f
(4.27)

where η > 0 and η∗ > 0 are the learning rates.

Expanding (4.26), the coefficients of f ∗ at each step are updated as follows

βnew
i =





[l]βold
i (1− η∗λ) ; 1 ≤ i ≤ t

η∗y∗i ; if (y∗t+1f
†(zi) < 1) & i = t+ 1

0 ; if (y∗t+1f
†(zi) ≥ 1) & i = t+ 1

bnew =

�
[l]bold + η∗y∗i ; if (y∗t+1f

†(zt+1) < 1)

bold ; if (y∗t+1f
†(zt+1) ≥ 1)

(4.28)

On expanding (4.27), the coefficients of f at each step are updated as follows

αnew
i =





[l]αold
i (1− ηλ) ; 1 ≤ i ≤ t

ηyi ; if (yt+1f
†(xi) < 1) & i = t+ 1

0 ; if (yt+1f
†(xi) ≥ 1) & i = t+ 1

bnew =

�
[l]bold + ηyi ; if (yt+1f

†(xt+1) < 1)

bold ; if (yt+1f
†(xt+1) ≥ 1)

(4.29)
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The pseudo-code of the algorithm for the online function approximation multiple kernel
learning is given in Algorithm 3. It is a two step algorithm where when each data point
arrives, the first step updates for f ∗ and second step updates for f .

Algorithm 3 Function Approximation Algorithm - Online Algorithm
1: procedure ONLINE-FUNCTION-MKL(datapoints)
2: while new data point arrives do
3: Generate the new K̃ using the new data point
4: Update β using the equation (4.28)
5: Update α using the equation (4.29)
6: end while
7: end procedure

4.4 Experiments

Table 4.1: Classification Datasets for FSSMKL

Dataset Repository Dim. Data Points
Arrythmia UCI 276 452

Blood Transfusion UCI 4 748

Haberman UCI 3 306

Heart UCI 13 303

Ionosphere UCI 33 351

Liver UCI 6 345

Musk 2 UCI 166 476

Parkinsons UCI 22 195

Pima UCI 8 768

Sonar UCI 60 208

Vert. Column UCI 6 310

WDBC UCI 30 569

Whole. Cust. UCI 7 440

Twonorm IDA 20 7400

Ringnorm IDA 20 7400
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4.4.1 Experimental Setup

The performance of the algorithms was assessed experimentally. The MKL model used
in the analysis consisted of 42 kernels (19 Laplacian kernels, 19 Guassian kernels and 4
polynomial kernels) whose description is given below:

• Laplacian Kernel, k(x, z) = exp
�
−�x−z�

σ

�
, where σ ∈ {2−9, 2−8, ..., 29}.

• Gaussian Kernel, k(x, z) = exp
�
−�x−z�2

σ

�
, where σ ∈ {2−9, 2−8, ..., 29} .

• Polynomial Kernel, k(x, z) = (αxT z + c)d, where α = 1, c = 0 and d ∈ {1, 2, 3, 4}.

As f ∗ is a hyper plane, k∗ is chosen to be linear kernel.
The synthetic as well as real time data sets are used for experiments. The synthetic data

was generated using

f(x) =
100�

i=1

αi

10�

l=1

dlkl(xi, x) + ρ (4.30)

where xi ∈ [0, 1] × [0, 1], di ∈ [0, 1],αi ∈ [−10.0, 10.0], i = 1, 2 . . . 100, ρ ∼ N(0, 1) is
the noise and kl, l = 1, 2, . . . 10 are 10 randomly selected kernels. The analysis was done
using 200 randomly generated training points.

The real time datasets used are listed in Table 4.1, which were taken from UCI Repository[60]
and IDA benchmark repository [61].

The model developed that uses function approximation concepts and single stage learn-
ing is named as ’Function approximation using single stage MKL (FSSMKL)’. The perfor-
mance of FSSMKL is compared with the following models:

1 NonMKL [68] A Non Linear MKL proposed for Hyperspectral Classification which is
also adapted for binary classification.

2 SimpleMKL[19] : Linear Combination of kernel approach is used in this model.

3 FTSMKL[1] : The model uses function approximation concepts and two stage learning
for finding f and f ∗, which we named as ’Function approximation using two stage
MKL (FTSMKL)’

4 GMKL[21] : A regularized formulation of MKL termed as generalized multiple kernel
learning algorithm.

5 LpMKL [69] An Lp Norm regularized MKL Algorithm.
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6 DMKL [70] A Discriminative MKL proposed for Hyperspectral Classification which is
adapted to binary classification.

Online version of the proposed model is named as OFSSMKL. For comparative study
with OFSSMKL we used the following online models.

1 OKC [67] Online kernel based algorithm for classification developed by Kivinen et al,
that makes use of gradient descent optimization.

2 OMKC [71] Online kernel classification where kernel weights and function parameters
are updated only during miss classification iteration.

All the models used SVM as the classifier. Except GMKL, LpMKL, OKC and OMKC,
the codes of the other models used for comparison were available in jKernelMachine frame-
work [59]. For GMKL and OMKC, we used the matlab code available in authors urls [72]
and [73]. For LpMKL the code from LibMKL [74] library is used which is an exten-
sion over LibSVM. The online algorithm OKC is implemented over the jKernelMachine
library. OFSSMKL is also implemented over jKernelMachine in which maximum paral-
lel execution was provided for much faster updation of function in each iteration. The
partial sum technique of parallel algorithms was used for parallel implementation of the
online algorithm. We customized all the codes to use same kernels and same procedures in
approximating the hyperparameters for a fair comparison of performance.

30-time holdout technique is used for validating the models whose description is as fol-
lows. In each iteration, the given data was divided into two parts: training data & validation
data. The training data was normalized using max-min normalization and then normalized
the validation data using the maximum and minimum value calculated from the training
data. The normalized training data was used for building the respective model. The re-
sulting function was used for predicting the results of validation data. This process was
repeated for 30 times and the average F-measure & accuracy was calculated for assessing
the performance of the model.

The t-test was performed over the 30 times hold out results for verifying the statistical
significance of the results (significance level α = 0.1). Based on the statistical signifi-
cance measure, the models were ranked for their performance on each data as described in
Chapter 3.
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Accuracy FTSMKL (N2 Points) FTSMKL (2N Points) FTSMKL (N Points)

Arrhythmia 74.96 75.40 74.12
Blood Transfusion 76.13 76.43 76.57

Haberman 73.84 73.74 72.14
Heart 81.96 81.11 81.33

Ionosphere 94.44 94.63 93.53
Liver 73.04 73.22 72.03

Musk 2 92.44 91.82 91.60
Parkinsons 90.34 90.49 89.92

Pima 75.78 75.14 75.49
Sonar 88.06 88.55 87.15

Vertebal Column 82.65 82.32 82.58
Wdbc 97.03 97.06 95.88

Wholesale Customers 90.78 90.70 88.09
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Figure 4.1: Accuracy Graph: FTSMKL Models

4.4.2 Results and Discussions

For understanding the efficiency of data compression techniques used , the performance of
FTSMKL is analyzed (a) N2 (b) 2N points that resulted from using empirical means and
(c) 2N points by selecting a random representor of evaluation from each class in RKHS
instead of empirical means. The results of this analysis are given in Fig. 4.1. To check the
effectiveness of data compression in online setup we have devised three models. They are

Model 1 : When a new point comes, we construct K̃ using pairs of each existing training points
and the newly arrived point itself. These T points are used for updating the f∗

Model 2 : Actual OFSSMKL

Model 3 : When a new point comes, we construct K̃ using pair of mean maps and the newly
arrived point itself. The mean maps are constructed using only the arrived points.
These 2 points are used for updating the f ∗.

The performance comparison of these three models is given in the Fig. 4.2. From
results in both Fig. 4.1 and Fig. 4.2, it is clear that the data reduction using empirical
means does not deteriorate the performance of the model. Also, random evaluators instead
of empirical means give inconsistent results which shows the relevance of using empirical
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Figure 4.2: Data Reduction using Empirical Means: OFSSMKL Models

means. Hence we used empirical mean data compression for FTSMKL and FSSMKL for
all the analysis described below.

The synthetic data analysis results are shown in Fig. 4.3. Fig. 4.3(a) shows the 200

training points generated using equation (4.30) in which positive points are shown as red
cross and negative points are shown as blue circle. The true function from which the data
generated is shown in Fig. 4.3(b). The decision boundaries generated by SVM-SMO,
SimpleMKL, FTSMKL and the proposed model FSSMKL are shown respectively in Fig.
4.3(c), Fig. 4.3(d), Fig. 4.3(e) and Fig. 4.3(f). From the figures, it is clear that of all the
four models, the one that generated by FSSMKL closely resembles the true function.

The accuracies of the models on real world datasets are shown in Table 4.2. The rank
is displayed in open brackets in each cell of Table 4.2 and 4.3. Finally we computed the
average rank for all the models. The FSSMKL scored the highest rank in the case of
accuracy as well as F measure.
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Figure 4.3: Decision Boundary for the Synthetic Data
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Table 4.2: Accuracy: Classification based MKL models and other state-of -the art MKL models

Dataset/Models NonMKL Simple MKL FTSMKL GMKL LpMKL DMKL FSSMKL

Arrhythmia 76.92 ± 3.97 (2) 75.89 ± 3.19 (3) 75.40 ± 3.26 (3) 76.42 ± 3.17 (2) 76.81 ± 2.60 (2) 76.67 ± 3.81 (2) 77.87 ± 2.73 (1)

Blood Transfusion 77.16 ± 2.93 (1) 77.03 ± 2.82 (1) 76.43 ± 2.72 (2) 76.66 ± 2.86 (2) 76.67 ± 1.34 (2) 77.32 ± 2.87 (1) 77.83 ± 2.86 (1)

Haberman 73.19 ± 5.17 (2) 73.31 ± 5.23 (2) 73.74 ± 4.31 (1) 73.75 ± 5.36 (1) 73.21 ± 1.71 (2) 73.29 ± 5.97 (2) 74.13 ± 3.68 (1)

Heart 83.17 ± 3.64 (2) 82.78 ± 2.87 (3) 81.11 ± 5.00 (4) 83.21 ± 3.19 ()2 82.84 ± 3.37 (2) 83.43 ± 3.54 (2) 84.74 ± 3.36 (1)

Ionosphere 93.17 ± 2.09 (2) 93.87 ± 2.20 (1) 94.63 ± 2.24 (1) 93.93 ± 2.31 (1) 94.52 ± 1.69 (1) 93.67 ± 2.34 (1) 94.49 ± 1.95 (1)

Liver 72.02 ± 4.21 (2) 71.87 ± 3.97 (2) 73.22 ± 4.47 (1) 71.25 ± 3.24 (2) 70.66 ± 3.69 (3) 71.87 ± 4.28 (2) 73.17 ± 3.33 (1)

Musk 2 91.86 ± 2.67 (2) 92.51 ± 2.68 (1) 91.82 ± 2.46 (2) 92.34 ± 2.61 (1) 92.10 ± 2.66 (2) 91.79 ± 2.45 (2) 92.89 ± 2.09 (1)

Parkinsons 88.41 ± 4.91 (3) 88.39 ± 4.01 (3) 90.49 ± 5.13 (2) 89.32 ± 4.25 (3) 90.29 ± 2.66 (2) 88.12 ± 4.77 (3) 92.93 ± 3.32 (1)

Pima 76.26 ± 2.34 (1) 76.76 ± 2.86 (1) 75.14 ± 2.68 (2) 74.89 ± 3.63 (2) 76.28 ± 2.39 (1) 76.16 ± 2.70 (1) 76.21 ± 2.42 (1)

Sonar 87.58 ± 4.34 (3) 85.69 ± 4.47 (5) 88.55 ± 4.71 (2) 86.24 ± 4.92 (4) 84.63 ± 4.01 (6) 87.40 ± 4.82 (3) 89.46 ± 4.25 (1)

Vertebal Column 83.04 ± 3.47 (3) 84.13 ± 4.25 (1) 82.32 ± 2.01 (2) 83.06 ± 2.78 (3) 83.23 ± 2.85 (2) 83.16 ± 3.61 (2) 84.62 ± 3.15 (1)

Wdbc 97.14 ± 0.96 (2) 97.06 ± .83 (2) 97.06 ± 1.28 (2) 97.29 ± 1.13 (2) 97.32 ± 1.01 (2) 97.04 ± 0.96 (2) 97.83 ± 0.78 (1)

Wholesale Customers 90.21 ± 2.13 (2) 90.89 ± 2.52 (2) 90.78 ± 2.06 (2) 90.65 ± 2.82 (2) 90.58 ± 1.45 (2) 90.55 ± 1.76 (2) 92.06 ± 1.41 (1)

Avg. Rank 2.07 2.07 2 2.07 2.23 1.92 1
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Table 4.3: F-Measure: Classification based MKL models and other state-of -the art MKL models

Dataset/Models NonMKL Simple MKL FTSMKL GMKL LpMKL DMKL FSSMKL

Arrhythmia 79.24 ± 3.97 (2) 77.91 ± 3.24 (3) 78.27 ±3.26 (3) 77.23 ± 3.42 (3) 77.93 ± 1.89 (3) 79.39 ± 3.26 (2) 81.76 ± 2.38 (1)

Blood Transfusion 13.63 ± 16.28 (4) 21.23 ± 13.88 (3) 26.68 ± 19.03 (3) 15.39 ± 14.17 (4) 39.44 ± 4.06 (1) 24.88 ± 12.56 (3) 34.11 ± 7.65 (2)

Haberman 83.86 ± 4.67 (2) 83.11 ± 5.01 (2) 84.08 ± 2.87 (1) 83.54 ± 4.15 (2) 84.11 ± 1.26 (1) 83.12 ± 4.59 (2) 84.81 ± 2.56 (1)

Heart 81.37 ± 4.64 (2) 81.13 ± 3.45 (2) 80.68 ± 4.68 (2) 80.73 ± 3.57 (2) 80.87 ± 4.12 (2) 81.29 ± 4.70 (2) 82.51 ± 4.37 (1)

Ionosphere 94.73 ± 1.82 (1) 95.26 ± 1.75 (1) 95.72 ± 1.72 (1) 95.38 ± 1.53 (1) 95.04 ± 1.28 (1) 95.18 ± 1.85 (1) 95.08 ± 1.47 (1)

Liver 77.09 ± 4.66 (2) 77.13 ± 4.12 (2) 78.42 ± 3.63 (1) 77.21 ± 4.22 (2) 75.17 ± 3.39 (2) 76.97 ± 4.93 (2) 78.90 ± 3.15 (1)

Musk 2 90.26 ± 3.47 (2) 90.66 ± 3.10 (2) 91.57 ± 2.42 (1) 90.67 ± 3.06 (2) 90.89 ± 3.01 (2) 90.33 ± 3.53 (2) 91.91 ± 2.38 (1)

Parkinsons 92.38 ± 3.65 (2) 91.98 ± 2.65 (2) 92.54 ± 3.01 (2) 91.83 ± 2.58 (2) 91.91 ± 1.76 (2) 92.59 ± 3.54 (2) 95.27 ± 2.41 (1)

Pima 62.43 ± 3.31 (1) 62.61 ± 4.09 (1) 61.05 ± 4.80 (1) 62.29 ± 3.92 (1) 61.38 ± 4.22 (1) 62.37 ± 3.53 (1) 62.69 ± 3.58 (1)

Sonar 83.28 ± 5.72 (4) 83.77 ± 5.36 (4) 86.59 ± 4.67 (2) 85.36 ± 4.62 (3) 83.31 ± 4.31 (4) 83.45 ± 5.54 (4) 88.20 ± 4.75 (1)

Vertebal Column 87.67 ± 3.67 (1) 87.81 ± 3.98 (1) 86.95 ± 3.91 (2) 87.27 ± 2.83 (2) 87.63 ± 2.14 (1) 87.82 ± 3.50 (1) 88.42 ± 2.72 (1)

Wdbc 97.03 ± 0.80 (2) 97.17 ± 0.64 (2) 97.32 ± 1.04 (2) 97.23 ± 0.60 (2) 97.53 ± 0.79 (2) 97.27 ± 0.89 (2) 98.28 ± 0.62 (1)

Wholesale Customers 92.70 ± 1.83 (2) 93.24 ± 1.87 (1) 93.56 ± 2.37 (1) 90.92 ± 1.57 (3) 93.07 ± 1.07 (2) 92.84 ± 1.76 (2) 94.06 ± 1.16 (1)

Avg.Rank 2.07 2 1.69 2.23 1.92 2 1.07
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4.4.2.1 Comparison of FSSMKL with FTSMKL

Both FTSMKL and the proposed method FSSMKL use function approximation technique
for MKL learning. Such a formulation has to learn two functions from the data: f , the
classifier related with data and f ∗, the classifier related with MKL learning. The main
difference between FSSMKL and FTSMKL is that, FSSMKL uses a single cost function
for finding the classifiers associated with data and MKL learning while FTSMKL uses two
separate cost functions for finding these functions.

The experimental analysis ascertained the generalization capacity of the FSSMKL as
for all the data sets we used either it showed superior performance or comparable perfor-
mance with other state of art techniques. On the other hand the performance of FTSMKL
deteriorates in the case of some data sets. This is because in the two stage process of
FTSMKL the learning of kernel is performed separately from the learning of prediction
function and hence there is no transfer of knowledge between those two stages. This re-
sults in finding a reproducing kernel more close to ideal kernel which leads to overfitting.
This problem has been rectified in our model by formulating the entire problem as a sin-
gle function approximation problem, which inturn helps to use the prediction function f ’s
characteristics in finding the kernel function, f∗.

In experimental results, in the case of accuracy, FTSMKL scored rank 1 for all the
data sets while FTSMKL scored rank 1 for only 3 data points out of 13 (Table 4.2). For
Fmeasure FSSMKL scored rank 1 for all data sets except one, while FTSMKL scored rank
1 for only 6 data sets (Table 4.3).

The baseline method of FTSMKL uses PEGASOS [75] algorithm which solves primal
SVM for linear kernel. In this approach a modified SMO based algorithm is used which
is mostly batch processing and applies over dual problem. Therefore FSSMKL takes more
time to train than FTSMKL.

4.4.2.2 Analysis of online algorithms

Table 4.4 shows the accuracy and F-measure results of the online algorithms. The OF-
SSMKL showed a superior performance in this case.

4.5 Conclusion

The optimal kernel searching problem and decision function is formulated as a single func-
tion approximation problem. The solution of the approximation problem lies in a RKHS
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Table 4.4: Online learning Performance Results: Classification based MKL models and
other state-of -the art MKL models

Models Online Kernel OMKC OFSSMKL

Dataset/Parameters Accuracy F-Measure Accuracy F-Measure Accuracy F-Measure

Arrhythmia 62.91 ± 3.98 (1) 69.61 ± 3.96 (2) 63.42 ± 4.21 (1) 70.19 ± 3.87 (2) 63.73 ± 3.42 (1) 74.98 ± 3.04 (1)

Blood Transfusion 75.63 ± 2.59 (2) 15.91 ± 10.45 (1) 76.51 ± 1.29 (1) 13.53 ± 5.24 (2) 77.39 ± 2.41 (1) 17.67 ± 5.68 (1)

Haberman 72.78 ± 3.66 (2) 83.71 ± 2.68 (2) 69.34 ± 3.39 (3) 79.79 ± 2.45 (3) 74.67 ± 3.48 (1) 85.21 ± 2.29 (1)

Heart 80.51 ± 5.04 (2) 76.67 ± 5.37 (3) 79.33 ± 4.16 (2) 77.53 ± 4.45 (2) 83.02 ± 3.25 (1) 80.53 ± 3.98 (1)

Ionosphere 89.96 ± 2.97 (1) 92.61 ± 2.29 (1) 88.13 ± 2.69 (2) 91.40 ± 1.59 (2) 90.36 ± 2.58 (1) 93.19 ± 2.03 (1)

Liver 64.88 ± 3.67 (1) 71.52 ± 4.04 (2) 62.29 ± 3.61 (2) 72.14 ± 3.89 (2) 65.76 ± 3.59 (1) 73.67 ± 3.65 (1)

Musk 2 84.53 ± 3.47 (1) 83.49 ± 3.82 (1) 80.92 ± 4.16 (2) 82.44 ± 3.59 (2) 84.08 ± 3.03 (1) 83.51 ± 3.53 (1)

Parkinsons 86.55 ± 5.89 (2) 91.66 ± 3.62 (1) 85.82 ± 3.02 (2) 89.69 ± 2.70 (2) 87.47 ± 3.13 (1) 91.22 ± 2.05 (1)

Pima 74.47 ± 2.74 (1) 62.15 ± 4.48 (2) 74.62 ± 2.28 (1) 60.09 ± 4.52 (3) 75.38 ± 2.58 (1) 63.51 ± 4.28 (1)

Sonar 84.89 ± 4.11 (2) 82.55 ± 5.07 (2) 84.51 ± 4.23 (2) 82.81 ± 4.91 (2) 86.97 ± 3.67 (1) 86.15 ± 4.08 (1)

Vertebal Column 80.04 ± 3.57 (2) 84.91 ± 2.77 (2) 80.63 ± 3.57 (1) 83.52 ± 2.76 (2) 81.32 ± 2.82 (1) 86.70 ± 2.13 (1)

Wdbc 94.98 ± 1.34 (1) 96.09 ± 1.04 (1) 92.18 ± 2.92 (2) 94. 67 ± 1.31 (2) 95.25 ± 2.48 (1) 96.63 ± 1.73 (1)

Wholesale Customers 86.18 ± 2.64 (2) 89.67 ± 2.17 (2) 86.06 ± 2.55 (2) 88.09 ± 3.48 (3) 88.72 ± 3.10 (1) 91.88 ± 2.37 (1)

TWO Norm 93.54 ± 0.44 (2) 93.77 ± 0.44 (3) 93.06 ± 0.29 (2) 94.42 ± 0.37 (2) 94.24 ± 0.65 (1) 94.95 ± 0.59 (1)

Ring Norm 86.09 ± 1.20 (2) 84.15 ± 1.56 (2) 86.06 ± 0.75 (2) 84.67 ± 1.55 (1) 87.61 ± 0.92 (1) 85.34 ± 1.34 (1)

Ring Norm 1.6 1.8 1.8 2.13 1 1

space, which is obtained from the direct sum of RKHS related with that of function asso-
ciated with optimum kernel and prediction. Such a formulation increases the performance
of the model as evident from our experimental analysis. The superior performance of the
proposed models is due to the fact that in them, the tasks related with finding the functions
associated with optimum kernel and with that of decision boundary influences each other,
as they are the constituents of the solution of the approximation problem under considera-
tion.

This approach is suitable for binary classification problems only. We have formulated
function approximation approach for regression problems also, whose description is given
in the next chapter.
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Chapter 5

Regression Approach for Multiple Ker-
nel Learning

In the last chapter we have seen a classification approach for finding the optimal kernel.
We have formulated MKL as a regression problem for analyzing the regression data, whose
description is given in this chapter. For that the methodology used for classification based
MKL desribed in [1] is adopted. We have proved that the ideal kernel for this formulation
is same as that used in the work of [1].

Both linear as well as nonlinear formulations of regression approach for MKL have
been developed. The function resulting from nonlinear combination of base kernels may
not be positive semi definite and hence reproducing kernel Krein space (RKKS) concepts
are used for formulating the model. In our experimental analysis it has been found that the
time and space requirements for nonlinear combination is comparable with that of linear.

The regression framework and the proof for the ideal kernel for regression is given in the
next section. The section 5.3 gives the MKL regression formulation for nonlinear settings.
The details of experimental analysis can be seen in section 5.4 and finally conclusion is
given in section 5.5.

5.1 Regression Framework for MKL

As in the case of classification MKL model, the regression MKL model also consists of
finding f ∗ and f . For developing f ∗ using regression, input and output data are needed.
As the objective of MKL algorithms is to find the best possible kernel, it could be assumed
that the output of f ∗ is the same as the output of the best available kernel (ideal kernel).
The ideal kernel formulation for regression is given below.
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5.1.1 Ideal Kernel over Regression Data

The minimization problem corresponding to kernel ridge regression (KRR) is

min
α∈RN

1

2
�Kα− y�2 + λ

2
αTKα

where K is the kernel matrix, y is the training output vector and λ > 0 is the regular-
ization parameter. The optimal value of α is given by

α = (K + λI)−1y (5.1)

Let v be the actual output value for a data point x. Then its predicted output label vpred
can be written as

k̃T α = vpred (5.2)

where k̃ = [k(x1, x) k(x2, x) . . . k(xN , x)]
T .

If the ijth element of the kernel matrix is k(xi, xj) = yi ∗ yj then (5.1) can be written
as below

α = (yyT + λI)−1y (5.3)

where y = [y1, y2, . . . yN ]
T .

Now k̃ = yv and hence (5.2) becomes

vpred = vyT α

Using eqn. (5.3)

vpred = vyT (yyT + λI)−1y (5.4)

Using Sherman-Morrison Theorem, inverse associated with (5.4) can be found. If A is
an invertible square matrix and u, v are column vectors, then Sherman-Morrison formula
states that

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
(5.5)
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If we consider A = λI and u = v = y then

(λI + yyT )−1 =(λI)−1 − (λI)−1yyT (λI)−1

1 + yT (λI)−1y
=

I

λ
−

yyT

λ2

1 + yT y
λ

(5.6)

Now

yT (yyT + λI)−1y =yT

�
I

λ
−

yyT

λ2

1 + yT y
λ

�
y =

yTy

λ
−

yT yyT y
λ2

1 + yT y
λ

=
yT y
λ

1 + yT y
λ

(5.7)

Therefore

yT (yyT + λI)−1y → 1,when λ → 0 (5.8)

Subsituting eqn. (5.8) in eqn. (5.4) we get

vpred = vyT (yyT + λI)−1y ∼ v × 1 ∼ v (5.9)

This means that k(xi, xj) = yiyj is an ideal kernel for regression problems.

5.1.1.1 Data Compression

As discussed in previous chapter, the data points corresponding to f∗ scales as O(N2)

and hence the algorithm complexity increases with increase of data. The supervised pre-
clustering approach, whose decsription is given in section 2.4.1, is used for compressing
the data in an efficient manner.

If M < N are the data points after compression, then f∗ can be found using the M2 <

N2 data points
��

K̃(xi, xj), yiyj

�
, i, j = 1, 2, . . .M

�
.

Let the reproducing kernel corresponding to f ∗ be k∗. On the basis of M2 data points
obtained after data compression,

f ∗(K̃(xk, xl)) =
M2�

i=1

βik
∗(zi, K̃(xk, xl)), βi ∈ R (5.10)

where zi ∈ {K̃(xi, xj), i, j = 1, 2, . . .M}.
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5.2 Linear Combination of Kernels

As seen in the last chapter, for linear MKL, f∗ is a hyperplane and hence k∗ is a linear
kernel. Therefore (5.10) becomes

f ∗(K̃(xk, xl)) =
M2�

i=1

βiz
T
i K̃(xk, xl) = dT K̃(xk, xl)

where d =
�M2

i=1 βizi. Once the weight vector d is calculated, the negative values from
the weight vector are clipped to make sure that the overall linear combination of kernels is
positive semidefinite.

5.2.1 Two Stage Approach

We used two stage optimization for finding f and f ∗, that is f ∗ is first solved and then f is
found out using the new f ∗. Given below is the discussion of finding the parameters of the
model using kernel ridge regression.

As described earlier, M2 data points found out using pre-clustering approach are used
to train f ∗, whose corresponding outputs are generated using the ideal kernel, discussed in
section 5.1.1.

Let K̂ be the kernel matrix associated with f . Then its ijth element k̂ij = f ∗(K̃(xi, xj)).
The optimal α associated with f is found out by minimizing

1

2
�K̂α− y�2 + λ

2
αT K̂α

On solving this equation, we get α as

α = (K̂ + λI)−1y (5.11)

5.3 Nonlinear Combination of Kernels

We extended the above described MKL theory to nonlinear settings whose description is
given below.

In the case of nonlinear MKL, f ∗ is not a hyperplane. Also, the nonlinear combination
of kernels may not be positive definite, which can be explained as follows.
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Corresponding to each zi, i = 1, 2, . . .M2 as given in (5.10), define reproducing kernel
ki : X × X → R, such that,

ki(xk, xl) = k∗
�
zi, K̃(xk, xl)

�
, xk, xl ∈ X (5.12)

With respect to the data {xi}Ni=1, let Ki be the kernel matrix associated with reproducing
kernel ki. Let

KP =
�

βi>0

βiK
i

and
KN =

�

βi<0

βiK
i

where βi, i = 1, 2, . . .M is as given in (5.10).
Therefore in the case of nonlinear MKL, the matrix K̂ = KP −KN and hence it may

not be positive semi-definite matrix. Hence in this case it is assumed that f lies in RKKS
K with Hermitian kernel k̃. The RKKS concepts are explained below.

5.3.1 Reproducing Kernel Krein Space

The Krein space is an indefinite innerproduct space endowed with a Hilbertian topology.

5.3.1.0.1 Indefinite inner product space [76, 77] : Let K be a vector space over R. An
indefinite inner product < ., . >K on K is a bilinear form where for all f, g, h ∈ K,α ∈ R:

• < f, g >K=< g, f >K

• < αf + g, h >= α < f, h >K + < g, h >K

• < f, g >= 0, ∀g ∈ K =⇒ f = 0

5.3.1.0.2 Krein Space [76, 77] : An indefinite inner product space, (K, < ., . >K) is a
Krein space if there exists two Hilbert spaces H+,H− spanning K, such that,

• ∀fK ∈ K, fK = f+ + f−, where f+ ∈ H+ and f− ∈ H−

• ∀fK, g ∈ K, < fK, g >K=< f+, g+ >H+ − < f−, g− >H−

K is a reproducing kernel Krein space (RKKS) if H+ and H− are RKHSs [77, 76].
In a RKKS K, there is a unique symmetric kernel k(x, x�) with kx ∈ K such that the
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reproducing property holds: for all f ∈ K, f(x) =< f, kx >K and k = k+ + k− where
k+ and k− are the reproducing kernels of the RKHSs H+ and H−. Corresponding to any
symmetric non-positive kernel k that can be decomposed as the difference of two positive
kernels k+ and k−, there exists a RKKS associated to it.

In the next section we derive the indefinite kernel ridge regression.

5.3.2 Formulation of Indefinite Kernel Ridge Regression

The authors of [76] formulated SVM in Krein space. By making use of those concepts we
derived indefinite kernel ridge regression in Krein space.

The minimization problem related with KRR can be formulated in Krein space as

stabilize
fK∈K

1

2

N�

i=1

< (fK(xi)− yi), (fK(xi)− yi) > +
λ

2
< fK, fK > (5.13)

As per the Krein space theory, fK(x) = f+(x)− f−(x). Therefore (5.13) becomes

min
f+∈H+

max
f−∈H−

1

2

N�

i=1

(f+(xi)− f−(xi)− yi)
2

+
λ

2
< f+, f+ > −λ

2
< f−, f− >

(5.14)

Let K+ and K+ be the kernel matrices associated with f+ and f− respectively. There-
fore, (5.14) becomes

min
α+∈RN

max
α−∈RN

1

2
�K+α+ −K−α− − Y �2 + λ

2
α+K+α+ − λ

2
α−K−α− (5.15)

The solution for the above equation can be found by fixing the value of one parameter to
find the other.

On fixing the α−, the problem statement becomes

min
α+∈RN

1

2
�K+α+ −G−�2 +

λ

2
α+K+α+ − const (5.16)

where G− = Y +K−α−. The normal equation corresponding to the above minimiza-
tion problem is
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K+K+α+ −K+G− + λK+α+ = 0

On fixing α+, due to the negative quadratic term, the problem becomes a concave opti-
mization problem, that is,

max
α−∈RN

1

2
�G+ −K−α−�2 − λ

2
α−K−α− + const (5.17)

where G+ = K+α− − Y . The corresponding normal equation is

K−K−α− −K−G− − λK−α− = 0

The solutions to the above normal equations can be found by using two stage formula-
tion as described in section 5.2.1.

5.3.3 Computation of Parameters of Nonlinear MKL

As described earlier, the regression model involves the computation of f and f∗. The
function f ∗ from RKHS F can be found out using KRR. In nonlinear case it is assumed
that f lies in RKKS K. We applied indefinite kernel ridge regression to find the parameters
corresponding to f .

5.4 Experiments

5.4.1 Experimental Setup

The performance of the algorithms was assessed experimentally. The MKL model used in
the analysis consisted of 42 kernels as similar to the experimental setup in chapter 4.

The linear MKL model described in this chapter is named as Two stage Multiple ker-
nel learning approach for regression (TSMKLR) and that of nonlinear as Nonlinear Two
stage Multiple kernel learning approach for regression (NTSMKLR). The regression al-
gorithms were implemented in Matlab. The performance of NTSMKLR and TSMKLR
was compared with that of SimpleMKL [19] and SPG-MKL[78] (a modified version of
GMKL[21]). The codes for SimpleMKL [19] and SPG-MKL[78] were taken from the
repository [79] and [80] respectively. All the experiments were conducted in the same
machine throughout with 80 GB RAM, intel Xeon Processor. The performance for the pro-
posed model was assessed using root mean square (RMSE). The datasets were collected
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Figure 5.1: Data Compression Rate using Preclustering Algorithm

from UCI repository [60].

In the regression experiments, as similar to the rank analysis for classification experi-
ments in chapter 3, the models were ranked for their performance on each data. For exam-
ple: let M1 and M2 be two models; let P1 and P2 be the values of a performance measure
P for a given data set D. Then we say that M1 is better than M2 on the basis of P on D if
P1 < P2 and their difference is statistically significant.

5.4.2 Results and Discussions

Using pre-clustering approach the data was compressed. The ratio of compression for the
datasets is shown in Fig. 5.1. The compressed data is used to compute the training points
for f ∗. Using f ∗, f was computed. The experimental results are shown in Table 5.1. It
shows that NTSMKLR produced superior results in comparison with other models as it
scored the highest rank for all the data sets.

Table 5.1: TSMKL Results

Dataset KRR SimpleMKL SPG-GMKL TSMKL NTSMKL
Airfoil. 4.22529 ± +0.17282 (4) 3.83287 ± +0.20978 (3) 3.40593 ± +0.32411 (2) 3.13291 ± 0.29307 (1) 3.09874 ± 0.26234 (1)

Commun. & Cr. 5.82782 ± +0.33076 (2) 5.79657 ± +0.29028 (2) 5.86840 ± +0.29237 (2) 5.00437 ± 0.31056 (1) 4.91283 ± 0.26034 (1)

Conc. Sl. 7.53245 ± +0.51391 (5) 6.48337 ± +0.45852 (4) 6.09983 ± +0.52536 (3) 5.46865 ± +0.38802 (2) 5.276845 ± +0.36923 (1)

Eff. Cool 1.85125 ± +0.12772 (4) 1.33792 ± +0.10755 (3) 1.23957 ± +0.10164 (3) 1.15763 ± 0.10176 (2) 1.097123 ± 0.09034 (1)

Eff. Heat 2.68947 ± +0.18045 (5) 2.40471 ± +0.21294 (4) 1.40673 ± +0.13037 (3) 1.04312 ± +0.14548 (2) 1.00458 ± +0.09172 (1)

AVERAGE RANK 4 3.2 2.6 1.6 1
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5.5 Conclusion

The two stage MKL algorithm for regression domain is discussed in this chapter. The proof
of the ideal kernel regression, that is k(xi, xj) = yiyj is also described. The supervised pre-
clustering approach is used to select the vital data points for reducing the overall time and
space complexity. Using the concepts of Krein space, nonlinear MKL is formulated. The
experiment results clearly proved that the proposed framework is a suitable approach in
finding the optimal kernel for regression data.

In the next chapter we introduce a MKL model based on composite functions.
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Chapter 6

Learning Kernel using Composite Kernel
Functions

The formulation of MKL using composite kernel functions (MKLCKF), in which the op-
timal kernel is represented as the linear combination of composite kernel functions is de-
scribed in this chapter. For constructing a composite kernel model, with reference to each
data point, a composite kernel function is introduced such that it makes use of the informa-
tion of all the given P base kernels for finding the image at each of the points in its domain.
We are proposing two variants of this formulation. In the first variant, the optimal kernel is
represented as a linear combination of newly designed kernels. As each composite kernel
function is built upon a data point, we introduce a second variant in which the coefficients
of the linear combination are replaced with a neighborhood function of the reference data
point. This representation makes the algorithm more computationally efficient. We verified
the efficiency of the proposed models using real world data sets and compared its perfor-
mance with existing techniques. The proposed methods showed excellent performance. Of
the two variants of the approach, the performance of the second variant was found to be
better.

In section 6.1, the details of the theory behind the proposed weighted kernel approach
and its applications are given. The section 6.1.4 explains the localized approach and its
applications while the experimental analysis is given in section 6.2.
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6.1 Multiple Kernel Learning using Composite Kernel Func-
tions (MKLCKF)

Consider a pool of P kernels {k1, k2, . . . kp} from which the best combination of kernels
has to be chosen. For that using each data as the reference point we constructed N com-
posite kernel functions. This section describes the construction of those kernels.

Define an operator K̃ : X × X → �
P as

K̃(x, z) = [k1(x, z) k2(x, z) ... kp(x, z)]
T

where P is the number of base kernels.

Corresponding to each xj, j = 1, 2, . . . N , composite function, kj : X × X → �, is
constructed where

kj(xk, xl) = < kj
xk
, kj

xl
> = k∗

�
K̃(xk, xj), K̃(xj, xl)

�
, (6.1)

Here k∗ : Z × Z → � is any valid reproducing kernel and Z = R(K̃), where, R(K̃)

is the range space of K̃.

Theorem 1. The composite function given by (6.1) is a valid kernel.

Proof. Let φj(xk) = K̃(xk, xj) and φj(xl) = K̃(xj, xl). Then (6.1) becomes

kj(xk, xl) = k∗ (φj(xk),φj(xl))

By [4], k̂(x, x�) = k1(φ(x),φ(x
�)) is a valid kernel where φ : X → RM and k1 is a valid

kernel defined on RM . Therefore kj is a valid kernel.

Each kj consists of two layers of functions, where the first layer is defined from X ×
X → Z × Z and the second layer is from Z × Z → �. With the aid of such a design the
composite kernel makes use of the information of all the base kernels for finding the image.

Using this idea we developed two variants of MKL algorithm which we named as MKL-
CKF:I and MKLCKF: II.

68



6.1.1 MKLCKF:I

Let F j be the RKHS corresponding to kj, j = 1, 2, . . . N. The function f is assumed to lie
in a RKHS, F , with reproducing kernel k : X × X → � where

k(xk, xl) =
N�

j=1

βjk
j(xk, xl)

=
N�

j=1

βjk
∗
�
K̃(xj, xk), K̃(xj, xl)

� (6.2)

where, βj ≥ 0, ∀j = 1, 2, . . . , N .

Theorem 2. The kernel given by (6.2) is a valid kernel.

Proof. By theorem 1, kj, j = 1, 2, . . . N are valid kernels. Therefore k is a conical linear
combination of N kernel functions. Hence by [4] k is a valid reproducing kernel.

The representation of k as the linear combination of kj helps to include the information
of all the P base kernels in an efficient manner for finding f .

The cost function used for approximating f is as given below.

min
f∈F

N�

i=1

l (yi, f(xi)) + η�f�2. (6.3)

where l is a differentiable loss function. Then,

f(x) =
N�

i=1

αik(xi, x)

=
N�

i=1

αi

N�

j=1

βjk
∗
�
K̃(xi, xj), K̃(xj, x)

� (6.4)

In order to impose a controlled regularization, the constraint of
�N

i=1 βi = 1 can be
imposed. The whole idea is summarized in Fig. 6.1.
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Figure 6.1: MKLCKF:I

6.1.2 Application in Support Vector Machine (SVM)

For classification problems, SVM algorithm was used to determine the unknown function.
The optimization problem corresponding to SVM classification is

1

2
�f�2+C

�

i

ξi

sub to

yi(f(xi) + b)− 1 + ξi ≥ 0

ξi ≥ 0

The corresponding dual using the kernel given in equation (6.2) can be written as fol-
lows.

�

i

αi −
1

2

�

i

�

j

αiαjyiyj
�

k

βkk
∗
�
K̃(xi, xk), K̃(xk, xj)

�

sub to

0 ≤ αi ≤ C

βk ≥ 0
�

i

αiyi = 0

N�

k=1

βk = 1
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6.1.2.1 Optimization

For solving the above described optimization problem, in the first stage β is fixed as 1
N

and
then optimize for α using conventional SVM sovler, namely, SMO. In the second stage, the
β is updated using reduced gradient descent method as in [19].

6.1.3 Application in Support Vector Regression (SVR)

SVR algorithm was applied to determine the unknown function for regression problems.
The optimization problem corresponding to SVR is

1

2
�f�2+C

�

i

[ξi + ξ∗i ]

sub to

yi−f(xi)− b+ �− ξi ≤ 0

f(xi) + b− yi + �− ξ∗i ≤ 0

ξi ≥ 0

ξ∗i ≥ 0

where b ∈ R is the bias and C > 0 is the regularization parameter. The corresponding
dual using the kernel given in equation (6.2) can be written as follows.

N�

i=1

αiyi−�
N�

i=1

|αi|−
1

2

N�

i=1

N�

j=1

αiαj

�

k

βkk
∗
�
K̃(xi, xk), K̃(xk, xj)

�

sub to

− C ≤ αi ≤ C

βk ≥ 0
�

i

αi = 0

N�

k=1

βk = 1

The optimization is performed similar to that explained in section 6.1.2.1.
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6.1.4 MKLCKF:II

Using (6.2),

k(xk, xl) =< kxk
, kxl

>=

�



√
β1k

1
xk√

β2k
2
xk

...√
βNk

N
xk



,




√
β1k

1
xl√

β2k
2
xl

...√
βNk

N
xl




�
(6.5)

where,

kxk
=
��

β1k
1
xk
,
�

β2k
2
xk
, . . .

�
βNk

N
xk

�T

=
��

β1k
∗
K̃(x1,xk)

,
�

β2k
∗
K̃(x2,xk)

. . .
�

βNk
∗
K̃(xN ,xk)

�T

Thus in this method N parameters {β1, β2, . . . βN} have to be learned . For making
the approach more computationally effective we formulated the algorithm MKLCKF: II, in
which a neighborhood function ηi of xi is introduced in the place of βi. The whole idea is
summarized in Fig. 6.2. We defined
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Figure 6.2: MKLCKF:II

ηi(x) = exp (−γd(xi, x)) (6.6)

where d(xi, x) is a distance metric and γ > 0. Such a formulation is used as the composite
kernel ki depends greatly on the data point xi. We used Euclidean distance metric in our
experiments. It is clear from (6.6), ηi’s contribution is highest for xi’s neighbors and hence
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it helps to capture the local information of xi. Now

kxk
=




η1(xk)k
1
xk

η2(xk)k
2
xk

...
ηN(xk)k

N
xk



=




η1(xk)k
∗
K̃(x1,xk)

η2(xk)k
∗
K̃(x2,xk)
...

ηN(xk)k
∗
K̃(xN ,xk)




(6.7)

Therefore, the final kernel is,

k(xk, xl) =
N�

j=1

ηj(xk) ηj(xl)k
j(xk, xl)

=
N�

j=1

ηj(xk) ηj(xl) k
∗
�
K̃(xj, xk), K̃(xj, xl)

� (6.8)

Theorem 3. The kernel given by 6.8 is a valid kernel.

Proof. By theorem 1 kj, j = 1, 2, . . . N are valid kernels. Using (6.8), construct the N×N

matrix K = (k(xi, xj)), i, j = 1, 2, . . . N . Then K can be represented as

K =
N�

j=1

Λj Kj Λj (6.9)

where Λj is a diagonal matrix of order N×N such that, ith diagonal element, Λj(i, i) =

ηj(xi) and Kj is the kernel matrix of kj corresponding to N points {x1, x2, . . . xN} . Λj is
positive semidefinite (p.s.d) matrix as it is a diagonal matrix with diagonal entries positive
. Hence Λj Kj Λj is symmetric positive definite matrix. As K is a linear combination of
symmetric p.s.d matrices it is a symmetric p.s.d [4], [3]. Hence k is a valid kernel.

6.1.4.1 Computational Advantage of MKLCKF

The MKLCKF:I uses SimpleMKL for solving the dual function for which time complexity
is O(N2P ) + O(N2.2) where N is the number of training points and P is the number
of kernels. In MKLCKF:I approach, P = N . Therefore overall time complexity for
MKLCKF:I is O(N3P ) +O(N3) � O(N3P ).

In case of MKLCKF:II, there are no additional parameters for learning the kernel. The
construction of kernel corresponding to MKLCKF:II is given in Algorithm 4. The time
complexity for generating P base kernel matrices is O(N2Pd). Those kernel matrices are
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Algorithm 4 Kernel Construction Algorithm for MKLCKF : II
1: procedure COMPUTEKERNEL(datapoints)
2: Initialize K = zeros(N,N) � N is the number of data points
3: for i = 1 to N do
4: Ktemp = kernel(i, datapoints) � kernel() is the function which computes

the kernel matrix from (6.1)
5: eta = eta(i, datapoints) � eta is the function which computes η vector from

(6.6)
6: K = K + ((eta ∗ etaT ). ∗Ktemp)
7: end for
8: return K
9: end procedure

used for computing the output of K̃ (line 2). In Algorithm 4, the complexity for computing
the function kernel(i, datapoints) is O(N2P ) (line 4) and complexity for computing the
function eta(i, datapoints) is O(Nd) (line 5). The time complexity for line 6 is O(N2).
The lines 4, 5 and 6 are executed for N times. Thus the total time complexity of the Algo-
rithm 4 is O(N3P ) + O(N2Pd) � O(N3P ) (considering d < N ). Hence this algorithm
has the similar time complexity as that of the other high performing MKL approaches.

6.2 Experiments

6.2.1 Experimental Setup

The experiments were conducted using classification and regression datasets. The clas-
sification datasets used are listed in Table 6.1 which are binary class classification prob-
lems taken from UCI repository[60] and IDA benchmark repository [61]. The regression
datasets used for analysis are listed in Table 6.2. The datasets are taken from UCI, ml-
data.org and DELVE repositories.

In MKL algorithm the P base reproducing kernels are the 42 base kernels that were
generated as in the experimental setup with Chapter 4.

The specification of the machine used for the experiment was intel i7 M4810 processor
with 16GB RAM. The hyperparameters of the models used for our study were determined
using 5-fold cross validation. We used 30 times holdout technique for model evaluation.
Their performance were assessed using root mean square (RMSE) for regression and accu-
racy and F-measure for classification.

For our study we chose both ’large data’ as well as ’not large data’. The large data
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Table 6.1: Classification Datasets for Analysis using MKLCKF

Dataset Repo. Dim. Data Points
Arrythmia UCI 276 452
Haberman UCI 3 306
Heart UCI 13 303
Ionosphere UCI 33 351
Liver UCI 6 345
Musk 2 UCI 166 476
Parkinsons UCI 22 195
Pima UCI 8 768
Sonar UCI 60 208
Vert. Column UCI 6 310
WDBC UCI 30 569
Whole. Cust. UCI 7 440
Twonorm IDA 20 7400
Ringnorm IDA 20 7400

Table 6.2: Regression Datasets for Analysis using MKLCKF

Dataset Repository Points. Dim.
Ailerons mldata.org 13750 40

Airfoil Self Noise UCI 1503 5

Bank32NH DELVE 8192 32

Commun. and Crime UCI 2215 99

Concrete Slump Test UCI 1030 8

Elevators Exp. of Rui Camacho 16599 18

Energy Eff. Cool UCI 768 8

Energy Eff. Heat UCI 768 8

2D-Planes breiman1984 40768 10

Video Char. UCI 68784 20

Protein Tertiary Str. UCI 45730 9

is defined as those for which application of MKL produces out of memory problem in the
machine which we used for computation and others are being called ’not large’.

The performance of MKLCKF:I and MKLCKF:II was compared with the following
models:

1 SMO-SVM : Normal SMO-SVM model that uses a single kernel.

2 SimpleMKL[19] : Linear Combination of kernel approach is used in this model.
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3 TSMKL[1] : The model uses function approximation concepts and two stage learning
process termed as Two Stage MKL.

4 GMKL[21] : A regularized formulation of MKL termed as generalized multiple kernel
learning algorithm.

5 LpMKL [69] An Lp Norm regularized MKL Algorithm.

Codes for GMKL is taken from authors url [72] . For LpMKL we used the code from
LibMKL [74]. The framework in java for MKL named jKernelMachine [59] is used for
other state-of-the-art algorithms. The same framework was customized for implementing
the proposed algorithm.

The kernel k∗ for MKLCKF models was found using cross validation technique. The
kernel k∗ and the kernel selected for single kernel approach (SVM-SMO) was the same for
all the experiments.

6.2.2 Classification Experiments

Large data and not large data related with classification are selected for evaluating the
performance of the models. For not large data, the accuracy results are shown in Table 6.3
and F-measure results in Table 6.4. It is evident from the Table 6.3 that for datasets such
as Arrhythmia, Haberman, Heart, Ionosphere, Musk 2, Parkinsons, Pima and Wholesale
Customers, the proposed model MKLCKF:II produced good results. The MKLCKF:I is
performing well on Ionosphere, Liver and Parkinsons. For all other models, the results
are comparable with the best among state-of-the-art approaches. The F-measure analysis
results shown in Table 6.4 depicts a similar picture. Eventhough a few of the state-of-the-
art models produced good results for some datasets, none of those algorithms performed
consistently over all datasets. On the other hand our methods showed a consistent perfor-
mance.
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Table 6.3: Accuracy: Composite Kernel Function Models and other State-of-the -art Models

Dataset/Models SMO SVM SimpleMKL TSMKL LpMKL GMKL MKLCKF:I MKLCKF:II

Arrhythmia 76.98 ± 3.18 75.89 ± 3.19 74.96 ± 2.52 76.81 ± 2.60 76.42 ± 3.17 75.45 ± 3.29 79.38 ± +3.27

Haberman 73.22 ± 5.76 73.31 ± 5.23 73.84 ± 4.41 73.21 ± 1.71 73.75 ± 5.36 73.87 ± 3.49 74.62 ± +3.54

Heart 83.48 ± 3.28 82.78 ± 2.87 81.96 ± 3.08 82.84 ± 3.37 83.21 ± 3.19 84.23 ± 2.74 84.96 ± +3.07

Ionosphere 93.74 ± 2.20 93.87 ± 2.20 94.44 ± 2.15 94.52 ± 1.69 93.93 ± 2.31 95.55 ± 1.67 95.14 ± +2.20

Liver 71.42 ± 4.97 71.87 ± 3.97 73.04 ± 2.91 72.66 ± 3.69 71.25 ± 3.24 73.34 ± 2.89 72.83 ± +3.40

Musk 2 92.13 ± 2.76 92.51 ± 2.68 92.44 ± 1.80 92.10 ± 2.66 92.34 ± 2.61 92.79 ± 2.09 93.10 ± +1.88

Parkinsons 88.21 ± 4.67 88.39 ± 4.01 90.34 ± 3.40 90.29 ± 2.66 89.32 ± 4.25 91.42 ± 3.43 92.47 ± +3.60

Pima 76.53 ± 2.07 76.76 ± 2.86 75.78 ± 2.95 76.28 ± 2.39 74.89 ± 3.63 76.81 ± 2.41 77.74 ± +2.60

Sonar 85.03 ± 4.10 85.69 ± 4.47 88.06 ± 4.27 87.63 ± 4.01 86.24 ± 4.92 87.15 ± 3.29 88.39 ± +3.54

Vertebal Column 83.90 ± 3.64 84.13 ± 4.25 82.65 ± 2.46 83.23 ± 2.85 83.06 ± 2.78 84.08 ± 3.60 84.80 ± +3.16

Wdbc 96.94 ± 0.91 97.06 ± 0.83 97.03 ± 1.28 97.32 ± 1.01 97.29 ± 1.13 97.15 ± 1.13 97.12 ± +1.16

Wholesale Customers 90.73 ± 2.00 90.89 ± 2.52 90.78 ± 2.06 90.58 ± 1.45 90.65 ± 2.82 91.59 ± 1.96 92.22 ± +1.68
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Table 6.4: F Measure: Composite Kernel Function Models and other State-of-the -art Models

Dataset/Models SMO SVM SimpleMKL TSMKL LpMKL GMKL MKLCKF:I MKLCKF:II

Arrhythmia 79.71 ± 3.02 77.91 ± 3.24 77.17 ±2.26 77.93 ± 1.89 79.23 ± 3.42 78.53 ± 3.02 82.11 ± +2.70

Haberman 83.41 ± 4.05 83.11 ± 5.01 84.08 ± 2.87 84.11 ± 1.26 83.54 ± 4.15 84.43 ± 2.31 85.42 ± +2.33

Heart 81.28 ± 4.17 81.13 ± 3.45 80.10 ± 4.10 80.87 ± 4.12 80.73 ± 3.57 82.01 ± 3.36 82.90 ± +3.62

Ionosphere 95.20 ± 1.73 95.26 ± 1.75 95.72 ± 1.72 95.11 ± 1.28 95.38 ± 1.53 96.57 ± 1.29 96.08 ± +1.85

Liver 76.79 ± 4.42 77.13 ± 4.12 78.42 ± 3.09 77.17 ± 3.39 77.21 ± 4.22 78.78 ± 2.89 77.98 ± +2.96

Musk 2 90.91 ± 3.46 90.66 ± 3.10 91.52 ± 1.77 90.89 ± 3.01 90.67 ± 3.06 91.61 ± 2.38 91.94 ± +2.31

Parkinsons 92.53 ± 3.18 91.98 ± 2.65 92.69 ± 2.29 91.91 ± 1.76 91.83 ± 2.58 94.54 ± 2.30 94.93 ± +2.47

Pima 62.37 ± 3.42 62.61 ± 4.09 61.46 ± 4.50 61.38 ± 4.22 62.29 ± 3.92 62.54 ± 4.89 65.41 ± +3.56

Sonar 83.24 ± 5.12 83.77 ± 5.36 86.80 ± 4.71 85.31 ± 4.31 85.36 ± 4.62 85.98 ± 3.90 87.77 ± +3.55

Vertebal Column 87.99 ± 3.64 87.81 ± 3.98 87.07 ± 2.07 87.63 ± 2.14 87.27 ± 2.83 88.37 ± 2.96 88.66 ± +2.23

Wdbc 97.14 ± 0.76 97.17 ± 0.64 97.64 ± 1.04 97.53 ± 0.79 97.23 ± 0.60 97.84 ± 0.92 97.73 ± +0.91

Wholesale Customers 93.10 ± 1.55 93.24 ± 1.87 93.12 ± 1.58 93.07 ± 1.07 93.56 ± 2.37 93.82 ± 1.37 94.82 ± +1.36
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6.2.2.1 Analysis on Large Data Sets

MKL analysis over ringnorm and twonorm datasets ended in out of memory error. We
analysed the performance on these datasets by applying dictionary learning technique ex-
plained in 2.4.2. We followed a 30 times hold out approach for fixing the size of dictionary.
The dictionary points thus obtained are used as the fixed points in eqn. (6.8). That is if
dj, j = 1 . . . N1 are the dictionary atoms, then (6.8) becomes

k(xk, xl) =

N1�

j=1

ηi(xk)k
∗
�
K̃(dj, xk), K̃(dj, xl)

�
ηi(xl) (6.10)

The analysis results are plotted in Fig. 6.3 and Fig. 6.4. The superior performance of
MKLCKF models is evident from these results.
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Figure 6.3: Accuracy Analysis using Two Norm Data: MKLCKF and other state-of-the-art
MKL models

6.2.3 Analysis on Image Datasets

Apart from the data sets described above, we did analysis using image data sets also. Using
Caltech101 [81] and UIUC sports scene classification [82], the performance of MKLCKF:
II had been verified. Since MKLCKF:I is computationally expensive, we restricted the
evaluation to only MKLCKF:II. Caltech101 dataset consists of 101 classes and a total of
3131 images where as UIUC dataset consists of 1579 images. In this case, we followed
5-fold cross validatstion for comparing the performance of the models.

Deep Convolutional Neural Network [83] had been used for extracting the features.
We used a pretrained CNN which was trained over imagenet from [84]. As the CNN
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Figure 6.4: Accuracy Analysis using Ring Norm Data: MKLCKF and other state-of-the-
art MKL models

was trained over whole imagenet, a feature selection algorithm had been applied over the
features extracted from CNN, that is, the penultimate layer output of the CNN was fed to
a feature selection algorithm. The feature selection algorithm, we used was random forest
using scikit learn library [85]. .

The result over Caltech101 is shown in the Fig. 6.5 while the result for the experiment
on UIUC sports scene classification is shown in Fig. 6.6. The MKLCKF:II performed well
on image data.
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Figure 6.5: Accuracy: Caltech101 Image Classification using MKLCKF

6.2.4 Application in Kernelized Locally-Sensitive Hashing

We chose an application domain also for assessing the performance of the models. Using
MKLCKF: II we performed kernelized locally sensitive hashing (KLSH) [86] on image
data described in section 6.2.3. KNN based approach was used for evaluating the perfor-
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Figure 6.6: Accuracy: UIUC Sports Scene Classification using MKLCKF

mance of KLSH.

We compared the proposed model MKLCKF:II with single kernel approach and TSMKL
approach ([1] only as other models need theoretical modification for applying on KLSH.

The accuracy results for the experiments are shown in Fig. 6.7 and Fig. 6.8. The graph
plots the mean accuracy and its standard deviation of different models over 30 iterations of
hold out approach. The superior performance of MKLCKF:II is evident from these figures.

RBF TSMKL MKLCKF:II
52

54

56

58

60

62

64

A
cc

ur
ac

y

Figure 6.7: Accuracy: Caltech101 Image Classification using KNN-KLSH

6.2.5 Regression Experiments

Regression experiments are also carried over large data as well as not large data. In case of
regression experiments over large data, the preclustering algorithm for data compression,
described in section 2.4.1 is used. The hyperparameters of the preclustering algorithm
are the � value and step length h. In order to optimize the � value, we took a small part
of the data from the dataset and applied cross validation over different values of � from
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Figure 6.8: Accuracy: UIUC Sports Scene Classification using KNN-KLSH

{0.1, 0.11, ...1}. Based on the mean squared error performance as well as compression
rate for each � value, we chose the � which gives comparable MSE (within a threshold
range) and maximum compression. Rather than picking up a small subset from the dataset
randomly, we constructed a ball B(p, r), and the points coming in this ball are taken as
subset. In this ball, p is any random point and r is the radius of the ball. We adjusted the
radius value in such a way to get an optimum number of data points in the subset. The
optimum value of h is also found using a subset of the data.

6.2.5.1 Results and Discussions

The performance of the algorithms on ’not large data’ was assessed with all points and pre
clustered points. The performance of MKLCKF is comparable with that of conventional
MKL and single kernel SVR on ’not large data’ (Table 6.5).

Table 6.5: RMSE using all Data Points

Dataset SVR Simple MKL (SVR) MKLCKF:I (SVR) MKLCKF:II (SVR)

Airfoil Self Noise 3.83287 ± 0.20978 3.40593 ± 0.32411 3.53291 ± 0.29307 3.47891 ± 0.31476

Commun. and Crime 5.79657 ± 0.29028 5.86840 ± 0.29237 5.80437 ± 0.31056 5.81379 ± 0.31648

Concrete Slump Test 6.48337 ± 0.45852 6.09983 ± 0.52536 6.16865 ± 0.38802 6.08913 ± 0.36248

Energy Eff. Cool 1.33792 ± 0.10755 1.23957 ± 0.10164 1.25763 ± 0.10176 1.24912 ± 0.11345

Energy Eff. Heat 2.40471 ± 0.21294 1.40673 ± 0.13337 1.34312 ± 0.14548 1.36918 ± 0.13421

We analysed ’not large data’ using preclustering approach also, Fig. 6.9 shows the level
of compression achieved using pre-clustering algorithm which is calculated on the basis of
the average of the number of pre-clustered points obtained in each iteration during hold out
validation, while Table 6.6 shows the RMSE of each model with pre-clustered points. The
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results in Table 6.6 and 6.5 are comparable and therefore pre-clustering approach helped to
compress the data in a very effective manner. Also it is clear from the figures that with the
aid of pre-clustering the MKLCKF models showed better results than others.

Table 6.6: RMSE using Pre-clustered Data Points

Dataset SVR SimpleMKL (SVR) MKLCKF:I (SVR) MKLCKF:II (SVR)

Airfoil Self Noise 4.14588 ± 0.30715 3.96222 ± 0.39076 3.52020 ± 0.20978 3.49316 ± 0.21016

Commun. and Crime 6.45198 ± 0.49322 6.53542 ± 0.49109 6.16050 ± 0.45235 6.09381 ± 0.41351

Concrete Slump Test 6.54374 ± 0.42661 6.35594 ± 0.55881 6.12909 ± 0.43515 6.13249 ± 0.41277

Energy Eff. Cool 2.56802 ± 0.16839 2.54866 ± 0.19781 2.41040 ± 0.18034 2.29346 ± 0.17199

Energy Eff. Heat 2.59222 ± 0.22298 2.57326 ± 0.22317 2.47445 ± 0.18807 2.26533 ± 0.16736

0

10

20

30

2D
−P

la
ne

s 

A
ile

ro
ns

A
irf

oi
l S

el
f N

oi
se

B
an

k3
2N

H

C
om

m
un

. a
nd

 C
rim

e

C
on

cr
et

e 
S

lu
m

p 
Te

st

E
le

va
to

rs

E
ne

rg
y 

E
ff.

 C
oo

l

E
ne

rg
y 

E
ff.

 H
ea

t

P
ro

te
in

 T
er

tia
ry

 S
tr.

V
id

eo
 C

ha
r.

Datasets

Pe
rc

en
ta

ge
 o

f D
at

a 
Po

in
ts

Figure 6.9: Data Compression Ratio using Pre-clustering for MKLCKF

6.2.5.2 Analysis on Large Data Sets

We analysed the performance on large regression data sets by using the data compression
approach alone since other appraches are failing with out-of-the-memory error. With the
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aid of pre-clustering we successfully applied the proposed models over large data sets. For
all the large data sets we used, MKLCKF models showed a superior performance over other
models (Fig. 6.10). This is due to the fact that pre-clustering helps to remove the redundant
points and hence the proposed model is more efficient with the informative data points.
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Figure 6.10: Root Mean Squared Error for large Datasets over all Models

6.3 Conclusion

The MKLCKF, uses composite kernel functions for MKL. Using each data as reference,
composite kernels are designed in such a way that each of those consists of two functions
in which the first function makes use of all the P base kernels under consideration and the
second is a single valid kernel function. The optimal kernel is then represented as a linear
combination of N kernels. Two versions of MKLCF are formulated and assessed their
performance on classification as well as regression problems. For applying on large data
sets, to avoid the ’out of memory’ error, we have discussed the supervised pre-clustering for
regression and data dictionary methods for classification for finding the vital points. The
models we introduced showed a superior performance on large data sets in comparison with
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other state of art techniques. In the next chapter, we discuss the real world applications of
the MKL models we developed.
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Chapter 7

Real World Applications

The MKL architectures were applied on two real world applications. A detailed study of
their performance is given in this chapter. The applications were chosen from the areas of
demand sensing and news classification. The experiments we chose were dealt with the
sales forecasting of Mercedes C class and E class in USA. The ARIMA model was used
for the time series forecasting and the generated values were integrated with social media
sentiment score as well as news media sentiment score from data tweets and news for
improving the forecasting. Those sentiment scores were collected using crimson hexagon
API. The problem was formulated as a regression problem.

The second application described in this chapter is about the classification of public
news that publishes on various web sites. It consisted of 3 different classification tasks,
namely, the task that related with the classification of sectors, technology and startup related
news. The deep learning was used to generate the features of the data. The MKL models
we developed as well as the state-of-the-art MKL models and LSTM based model were
used for analysis. LSTM model is designed as a two layered neural network with first layer
is an LSTM layer with 32 hidden units and second layer is a fully connected dense network
with single output neuron. The loss function used is mean absolute error.

7.1 Demand Sensing for Mercedes cars sales prediction

The task is to forecast the sales of Mercedes C class and E class in USA for the year,
July 2016 to June 2017 using the sales data from Jan 2008 till Jun 2016 on a monthly
basis. Conventionally, the sales prediction is implemented through statistical methods.
Such techniques do not take into account the immediate and near future fluctuations in
the related market factors. Hence we made use of the demand sensing techniques. The
demand sensing deals with the correction of the long term forecasts using near real time
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information([87]).

The statistical methods such as ARIMA which are effective in finding out overall pre-
diction has to be enhanced with additional features to capture near future fluctuations. For
this purpose, in our analysis, social media sentiment and news media sentiment scores were
generated by hexagon API from the data tweets and news. On the basis of those scores,
the social media news and tweets were divided into positive, negative & neutral and those
information were incorporated with the ARIMA data. That is, for a training point (xt, yt),
yt represents the actual sale for the time t and xt consists of the following attributes:

• The sales forecasted by the ARIMA model for the time t. For forecasting, the
ARIMA model made use of the data collected from three consecutive years prior
to that of t.

• The following information collected from the previous month of time t: average of
positive news; average of neutral news; average of negative news; average of positive
tweets; average of neutral tweets; average of negative tweets.

The machine learning model has to predict the sales at time t. The process described
above is summarized in the block diagram of demand sensing architecture (Fig. 7.1).

ARIMA

Input: 3 year     
sales data

Forecasted data 
of 4th year

Crimson hexagon 
API

Machine 
Learning 
Model

Output: Final 

Demand

News and 
social media data

Figure 7.1: Demand Sensing Architecture: Block Diagram
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Figure 7.2: Monthly prediction for C-Class

7.1.1 Results and Discussion

The data was analyzed using the existing models, namely, ARIMA, SVR, SimpleMKL,
SPG-MKL, LSTM and the models we developed, namely, TSMKL, MKLCKF:II. The per-
formance measure used was RMSE value. The results are tabulated in Table 7.1. The
detailed monthly wise predictions for C-Class are given in the Fig. 7.2 and for E-Class in
the Fig. 7.3. The TSMKL showed the best performance followed by MKLCKF:II.

Table 7.1: Root Mean Squared Error in Sales Forecasting

Models C-Class E-Class
ARIMA 423.92 645.61
SVR 401.45 627.81
SimpleMKL 372.93 618.38
SPG-MKL 332.97 559.34
LSTM 357.61 608.16
TSMKL 303.50 533.71
MKLCKF:II 325.76 542.87

7.2 News Classification

The task is about classifying news as that related with sectors, technology, organization
etc. It is very much essential for the organizations like technology firms to get updated
themselves with the news related with start-ups, their competitors and those that of the
clients of the company, as such information help to plan the strategies related with matters
like profit making. However there exist millions of websites which carry useful information
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Figure 7.3: Monthly prediction for E-Class

and hence one has to do real time extraction and classification of all the information into
meaningful visualizations, which makes the task challenging as it involves a number of
tasks as listed below.

• From the large collection of web pages available, the relevant pages have to be iden-
tified using factors like popularity, rating and interests of the websites.

• Considering the information explosion happening around, it is crucial to prioritize
the information and identify the key trends happening.

• The selected news materials have to go through an analytical stage where it has to be
checked whether the news agree with current trends or not.

• The information identified has to be properly summarized for drawing conclusions.
Such a condensed form helps the management people to get the critical insights of
the scenario under consideration with minimum time and energy.

7.2.1 Classification tasks

The problem under study comprises of three main classification tasks as given below:

1. Sector classification
The objective in this task is to classify the news into following sectors: Banking and
Capital Marketing (BCM), Customer Products and Retail (CPR), Oil and Gas (O &
G), Wealth and Asset Management (WAM), Supply Chain and Operations (SCO),
Power and Utilities (P & U), Goverment and Public Sectors (GPS) and General.
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2. Technology classification

The subclasses involved in this task are Artificial Intelligence, Internet of Things,
Blockchain, Additive Manufacturing, Robotics and Mixed Reality.

3. Organization Classification

In this task, news has to be classified on the basis of Startups versus Other Organiza-
tions.

7.2.2 Experimental Settings

Two different approaches were used for analysing the news data, whose discussion is given
below.

1. LSTM approach

This approach consisted of the following steps. Each sentence was converted into
a vector representation. Skip-Thought vectors were used for this purpose. Skip-
thought vectors are the encoded vectors generated by the model skip-thoughts, where
skip-thought is an encoder-decoder model in which the encoder maps the input sen-
tence to a sentence vector and the decoder generates the sentences surrounding the
original sentence [88]. Thus each news article can be considered as sequence of
skip-thought vectors. These sequences were then fed into a LSTM (Long Short Term
Memory) architecture where LSTM is an advanced neural network architecture that
can capture the recurrent relations involved in the data.

2. Shallow learning

For applying shallow learning techniques, Doc2Vec ([89]) method was used for cre-
ating a vector representation of each news article. Doc2Vec takes a sequence of sen-
tences (paragraphs, news etc.) as input and map this input to a vector representation.
Thus it create a numeric representation of a document, regardless of its length.

In our analysis, Doc2Vec was implemented in the following way: a neural network
model which was trained over wiki-dataset was again retrained over the given news
data set for creating a more robust model and it was used for generating vectors
corresponding to each news. The shallow learning techniques were applied on the
resulting data.
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7.2.3 Results and Discussions

The algorithms used for the analysis were SVM, GMKL, LpMKL, LSTM, FSSMKL,
MKLCKF:I and MKLCKF:II. The results are tabulated in the Table 7.2. The best results
were obtained for FSSMKL. Eventhough the LSTM based deep learning architecture is
able to capture the hidden features, due to lack of enough training points (800 points), the
MKLCKF architectures produced better results in our analysis.

Table 7.2: Accuracy Table for News Classification

Sector Technology Organization

SVM 82.45 ± 2.35 87.81 ± 3.84 72.93 ± 5.45

GMKL 85.39 ± 3.59 88.54 ± 3.78 73.23 ± 5.84

LpMKL 87.36 ± 2.71 89.38 ± 3.74 74.23 ± 5.98

LSTM 87.23 ± 2.78 88.34 ± 3.82 74.96 ± 5.68

FSSMKL 90.12 ± 2.18 91.98 ± 3.23 77.83 ± 5.27

MKLCKF:I 88.18 ± 2.09 89.92 ± 3.37 75.19 ± 5.83

MKLCKF:II 89.79+-2.82 90.23 ± 3.65 76.70 ± 5.46
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Chapter 8

Conclusion & Future Work

The multiple kernel learning deals with the selection of optimum kernel for kernel algo-
rithms. We developed four different approaches for MKL. In the first approach, the data
feature’s intrinsic properties are made use for finding the optimal kernel. For that the data
features are subjected to clustering and a kernel is assigned to each cluster. The linear
combination of such kernels is used for representing the optimal kernel.

In the second approach, the MKL is represented as a supervised classification problem,
in which the problem of finding the optimal kernel and the decision function related with
the data, is formulated as a single approximation problem. For that it is assumed that the
solution of the approximation problem lies in a RKHS space, which is constructed as the
direct sum of RKHSs related with that of the unknown functions under consideration. This
formulation enables the kernel and classification function learning phases to associate with
each other. This approach is suitable for binary classification problems only.

The MKL is formulated as a regression problem also by adapting two stage optimiza-
tion frame work for analysing regression data. For that it is proved that ideal kernel for
regression is k(xi, xj) = yiyj . The supervised pre-clustering approach is used to select the
vital data points for reducing the overall time and space complexity. Using the concepts of
Krein space, nonlinear MKL for regression is formulated.

The concept of composite kernel functions has also been used for formulating MKL.
Using each data point as a reference point, a composite kernel is constructed such that it
makes use of all the P base kernels under construction. The optimal kernel is constructed
as the linear combination of such composite kernels. The framework is formulated for
classification as well as regression problems.

The comparative study of the performance of the models has been done by applying
them on two real world sets.
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8.1 Future Work

We have made contributions to the field of multiple kernel learning. There is very much
scope for further work in this domain. Given below is the description of the areas where
the developed work can be extended.

8.1.1 Feature wise combination of kernels

The feature wise kernel combination uses a cluster based approach for the kernel formu-
lation. A function approximation approach can be introduced for automatically assigning
features to appropriate kernels.

8.1.2 Multi-layered kernel learning

The single stage function approximation based binary classification can be made more
powerful by incorporating faster optimization techniques. A multi layered, deep like archi-
tecture can be implemented for function approximation based MKL.

8.1.3 Ideal kernel in regression domain

The ideal kernel we formulated for kernel ridge regression can be used for developing ideal
kernel based target techniques for regression problems.

8.1.4 Nonlinear kernel learning in Krein space for classification prob-
lems

Using Krein space concepts, the representation of optimal kernel using nonlinear combina-
tion of kernels, can be developed for classification based MKL techniques.
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