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Abstract

Any complex physical system, man-made or natural, consists of entities each of which

interacts with other entities in the system. Such complex systems can be modeled as net-

work graphs where the entities are nodes and their interactions are edges of the network

graph. Earlier studies reported possible mechanisms for the evolution of complex net-

works where size of the network is growing, in the context of nodes and edges, with time.

To the best of our knowledge, the characteristics of finite sized complex systems, which

can be seen in many real-world networks, such as relationships in community networks,

transportation networks, and wireless sensor networks, are not studied in depth. Here, the

finite sized networks mean that such complex physical systems are not growing in size

when the total number of nodes is concerned. This thesis aims to study the reasoning

behind the evolution of such finite sized complex networks.

We find that the greedy decision making, based on the optimization of certain network

metrics, results in unique structural characteristics during the evolution of many complex

networks. In a finite sized complex network, minimization of the end-to-end hop distance

using the optimal/near-optimal long-ranged link (LL) addition for minimizing the aver-

age path length (APL), maximizing the centrality measures, or maximizing the overall

network flow capacity, constitutes the greedy decision making. It is also observed that

when LLs are added optimally/near-optimally, e.g., by minimizing the APL, the resulting

network evolves to a scale-free network with a few hub nodes where a large number of

LLs are incident.

To study the greedy optimal/near-optimal decision based network evolution, we con-

sider addition of new LLs in a finite sized string topology network with the greedy near-

optimal decision to minimize the APL of the string network which can be considered to

be one of the most sparse regular network model. We observe that, in an N -node string

topology network, the first LL is always optimally connected between the anchor nodes
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at the 0.2N th and 0.8N th fractional locations. The fixed fractional locations of the anchor

nodes also have been analytically found at 0.2071 and 0.7929.

We then consider a model motivated by practical limitations, where constraints are

placed on the length of the LLs. It is found, in a finite sized complex network, with

the optimal addition of length constraint LLs, that there is a visible transition of a fixed

sized regular network in the following manner: from a regular network to a small-world

network, then to a scale-free network with the truncated degree distribution, and at last,

to a fully connected network.

As the greedy decision based LL addition is computationally intensive, a heuristic ap-

proach, sequential deterministic LL addition (SDLA) is also proposed in the context of

unweighted string network, to efficiently transform the network to a small-world network.

SDLA algorithm can help efficient design and deployment of moderate sized string topol-

ogy networks for various applications, such as community broadband networks, computer

networks, tactical networks, and emergency response networks.

Next, we apply our above observations to transform a finite sized string topology wire-

less sensor network to an APL to the base station (BS) optimal (APLB-optimal) small-

world wireless sensor network by introducing a few LLs. The optimal LL addition also

incorporates tradeoffs between the excess transmission power and the overall path length

reduction. Our analytical observations on the locations of newly added links (single and

two LLs) also satisfy the simulation and the approximate observations.

To the end of this thesis, we propose an exhaustive search based LL addition algo-

rithm, maximum flow capacity (MaxCap) that deterministically maximizes the average

network flow capacity (ANFC) in a weighted undirected network. Based on the obser-

vations from MaxCap, we propose a new link addition heuristic, average flow capac-

ity enhancement using small-world characteristics (ACES), that improves the end-to-end

distance traversed by incorporating the small-world characteristics, and also enhances the

overall performance of a network. We also validate our observations through exhaustive

simulations on various real-world road networks. ACES can find many real-world appli-

cations in communication networks, transportation networks, and tactical networks where

ANFC is a very critical parameter.
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Chapter 1

Introduction

Complex networks are networks that have complex and irregular connectivity patterns.

Unlike regular networks that have clear motifs on the organization of nodes and edges,

complex networks are challenging to understand and characterize. The study of complex

networks is important due to the fact that complex networks appear in many aspects of our

life, including, for example, biological networks, molecular networks, social networks,

transportation networks, electric power grids, communication networks, and the Internet.

In fact, most physical and biological systems can behave as a complex network of sub-

systems and connectivity between them. Therefore, complex network modeling spans a

large number of natural as well as man-made networks. Study of complex networks can

in fact help in the study of many of those physical systems.

In previous study, scientists observed evolution and corresponding characterization of

many real-world networks that are growing in the context of network size. However, there

exists no such literature on the characterization of finite sized complex networks where

the network evolution can be realized by addition of new links. This thesis investigates

the evolution and characterization of such finite sized complex networks where new links

are introduced based on the optimization of certain network metrics such as average path

length, centrality metrics, and average network flow capacity.

This chapter explains the key motivation behind carrying out this research work which

is followed by the major contributions of the thesis. Moreover, outline of the rest of the

thesis is also provided at the end of this chapter.

1.1 Motivation and Objectives

This thesis is an attempt to answer some of the open questions exist in the context of

the evolution in the finite sized complex networks. It can be seen that the evolution of



finite sized complex networks is not discussed much in the existing literature. Finite sized

complex networks can be realized in many real-world examples, such as the network of

relationships within a closed society, the airport network of certain country, the trans-

portation network of a city, and the computer network of an organization [1]. To the best

of our knowledge, this is the first attempt to study the evolution of such finite sized com-

plex networks. Note that the evolution of finite sized network is not in the number of

nodes, as considered in existing complex network literature, but in the number of links.

In this thesis, we consider networks where new links1 are added to an existing finite sized

regular network, such as a string topology network (STN) or a grid topology network.

Many real-world regular networks achieve small-world characteristics [2, 3, 4] with a

few long distance connections. By contrast, scale-free networks [5, 6, 7] that are abun-

dantly found in nature, follow small-world characteristics along with the power-law de-

gree distribution. Barabási et al. [5, 6] first explained the existence of scale-free character-

istics that can be observed in many real-world networks. The scale-free characteristics can

be achieved in a growing network when a newly introduced node preferentially attaches

to a few existing nodes, decided by the fitness of those nodes to attract new connections.

The process of the preferential attachment assumed to be a pure random phenomenon [8].

Papadopoulos et al. [9], conversely, observed that real-world network evolution is not

based on pure luck [10], instead, scale-free characteristics in real-world networks can be

realized, by optimization of the product of similarity and popularity scores of a network.

In this thesis, we find a sequence of greedy optimal/near-optimal decisions can also con-

tribute to the evolution of scale-free networks.

Therefore, in natural world, a sequence of greedy optimal/near-optimal decision mak-

ing for long-ranged link (LL) addition can result in the transformation of a small-world

network to a scale-free network [11]. By contrast, non-greedy LL addition does not result

in a scale-free network. Our finding of gradual transformation of a small-world network

to a scale-free network justifies that reason [5], optimization [9], or greed [11] plays key

role behind the transformation of many real-world networks (e.g., the Internet and world-

wide web (WWW), grid computing network, protein network in human body, ecological
1While creating a link in an existing network topology, the newly added link is named as a long-ranged

link (LL) or simply, a new link. In this chapter, and rest of the thesis, LL and new link are used interchange-
ably.
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interaction and food web, citation or social web networks, hubs in air traffic networks,

and supply chain management networks) into scale-free networks. Hence, reason wins

over luck in nature’s scale-free network formation.

In this thesis, we consider addition of deterministic LLs in a finite sized STN to

transform the network to a small-world network. We observe that addition of deter-

ministic LLs, based on the optimization of certain network metrics such as average path

length (APL), gradually transforms a finite sized regular network to a scale-free networks

by introducing a few hub nodes where one end of most of the LLs are incident. Further,

we observe that there are certain unique structural features when APL-optimal STNs are

concerned. Note that APL-optimal finite sized complex networks are beneficial in many

real-world deployments such as minimizing end-to-end hop distances, improving trans-

mission delay, and keeping a predefined quality of service in network operation. Further,

we also apply our observations to add optimal LLs (single as well as two) in various sized

string topology wireless sensor networks. At last, we propose a novel LL addition tech-

nique to maximize average network flow capacity of a weighted complex network. In the

next section, we detail our thesis contributions in what follows.

1.2 Major Contributions of the Thesis

Major contributions of this thesis are as follows:

1. We find that greedy optimal/near-optimal decision making,2 based on certain net-

work metrics such as APL, is one of the major reasons for the evolution of many

real-world complex networks. The greedy optimal/near-optimal decision incor-

porates small-world characteristics; and along with the phenomenon of the long-

ranged link affinity (LRA), a regular network can be transformed to a scale-free

network with the formation of a few hub nodes.

2. While experimenting with the greedy near-optimal decision based LL addition in

a finite sized STN, we discover that the location of the first LL always uniquely

finds 0.2N th and 0.8N th nodes in an N -node network. We call the unique nodes as
2Note that we restrict most of our studies to the greedy near-optimal decision because the greedy optimal

decision based LL addition is highly time complex, and not suitable for real-time applications.
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the anchor nodes. We also analytically find fractional locations of the anchor nodes

at 0.2071 and 0.7929 that validate our simulation observations on the evolution of

various sized string topology network.

3. We also consider restriction on the length of an LL, known as constrained LL, and

study the evolution of a finite sized complex network. The term constrained LL

means that the creation of an LL obeys certain rules at the time of deployment in

a network. We observe that, in a fixed sized complex network with the length con-

strained LL addition, there is a visible transition in the following manner: regular

network → small-world network → scale-free network with the truncated degree

distribution3 → fully connected network.

4. Based on the simulation and analytical observations on a finite sized STN, we

propose a heuristic strategy, sequential deterministic LL addition (SDLA), to ef-

ficiently transform a string topology network to an APL-optimal small-world net-

work. SDLA adds k LLs in an N -node network only in O(k ×N) time compared

to the greedy near-optimal LL addition strategy which takes O(k×N4 logN) time.

5. We then analytically determine locations of a single and two optimal LLs, to op-

timize APL to the base station (APLB) value, in a string topology wireless sensor

network (WSN). We also consider transmission power while optimizing the net-

work APLB value. Our analytical observations reveal that one end of single as

well as two LLs always connect to the BS which is assumed to be positioned at

one end of the string WSN. The analytical findings also match with the simulation

and approximate observations. The transformed small-world WSNs (SWWSNs)

can be beneficial reducing transmission delay, enhancing network reliability and

robustness, minimizing transmission packet loss, improving routing capability, and

enhancing longevity of energy-constrained sensor nodes.

6. Finally, we apply small-world characteristics in order to enhance average network

flow capacity (ANFC) of weighted undirected networks, such as real-world road

3Truncated degree distribution is a conditional distribution imposed by certain restriction. Details of the
truncated distribution can be found in Chapter 3.
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networks. We propose an exhaustive search based LL addition algorithm, maxi-

mum flow capacity (MaxCap), which deterministically maximizes the ANFC value

based on the maximum flow between node pairs in a weighted undirected network.

Based on the observations from MaxCap, we construct a new LL addition heuristic,

average flow capacity enhancement using small-world characteristics (ACES), that

significantly enhances ANFC, and the length-type product (LTP) of a network.

In conclusion, this thesis aims at understanding the evolution of finite sized com-

plex networks (based on fixed sized string and grid network topologies) and applies the

observations in designing efficient real-world networks to achieve certain performance

objectives.

1.3 Thesis Outline

The remaining thesis is structured as follows:

In Chapter 2, a review of important performance metrics, that are extensively used

to study finite sized complex network topologies, are carried out. We also introduce a

few complex network models, such as regular networks, random networks, small-world

networks, and scale-free networks, along with their characteristics.

In Chapter 3, greedy optimal/near-optimal decision based LL addition is carried out

to transform a finite sized string network to an APL-optimal small-world network. We find

that, while adding LLs with optimal/near-optimal decision, the string network gradually

evolves to an APL-optimal scale-free network. We identify that the first LL, based on

the APL-optimal decision in a string topology, always finds a fixed fractional locations,

referred as the anchor nodes.

Further, we put restrictions on the length of added LLs to study various transition

phases in the evolution of fixed sized complex networks. Based on the simulation ob-

servations on the finite sized string and grid network topologies, we observe that a fixed

sized network gradually evolves as follows: a regular network → a small-world network

→ a scale-free network with truncated degree distribution → a fully connected network.

In Chapter 4, we analytically find the fractional locations of the anchor nodes are
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at 0.2071 and 0.7929, where the first APL-optimal LL in a finite sized STN is added. The

analytical result also validate our simulation observations based on the greedy optimal/near-

optimal LL addition. We also study the importance of identification of anchor nodes to

design real-world networks.

In Chapter 5, a heuristic approach, sequential deterministic LL addition (SDLA) is

developed, based on the simulation and analytical observations on finite sized unweighted

STNs. SDLA can efficiently transform a regular STN to an APL-optimal small-world

network. The heuristic can efficiently deploy a few LLs in disaster response and other ad

hoc network deployment scenarios.

In Chapter 6, we analytically determine optimal locations of a single and two LLs,

in order to optimize the APLB values in a string topology WSN. We observe that one

end of a single optimal LL or two optimal LLs always connect to the base station (BS)

which is assumed to be situated at one end of a string topology WSN. We also incorporate

transmission power expended while creating an LL and observe that, due to the tradeoff

between the transmission power and the length of an LL, optimal locations of new LLs

are varied to account for the tradeoff constraints.

In Chapter 7, we study a set of arbitrary networks, such as STNs, grid networks, and

random networks, as well as a few real-world networks, such as road networks where

small-world characteristics are incorporated by creating a handful of LLs to enhance the

ANFC values. We also consider addition of a few LLs deterministically to weighted

undirected road networks in order to maximize the ANFC. Based on the observations from

LL addition, with the exhaustive search based strategy, we propose a heuristic approach

that can enhance the ANFC of a weighted network along with the LTP value.

In Chapter 8, we conclude our thesis with a few possible future research directions.

1.4 Summary

Complex networks, abundantly found in natural and man-made networks, are abstract

graphs with non-trivial topological features. Most of the existing literature focused on

understanding the evolution of real-world growing complex networks. However, there
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are very limited literature in the context of the evolution of finite sized complex networks.

In this thesis, we work toward gaining insights on the evolution of fixed sized complex

networks. In this chapter, we discussed key motivation of our thesis work, major contri-

butions of the thesis, and the organization of rest of the thesis.
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Chapter 2

Introduction to Complex Networks

A large number of physical systems in nature and technology are formed by a collection

of highly connected dynamical entities that can be modeled, represented, and character-

ized as complex networks.1 The term complex networks is coined from the fact that all

such physical systems have non-trivial topological features which cannot be thoroughly

studied and characterize with the conventional graph theoretical models. One such ex-

ample of a complex network is an electrical power-grid network formed by power gen-

eration sources, distribution lines, switches that control the transmission of electricity,

and consumer equipments. Another popular example of a complex network is a com-

puter network such as the Internet that consists of servers, clients, switches, and routers

interconnected by several communication links such as optical fiber, co-axial cables, Eth-

ernet cables, wireless links, and satellite links. Furthermore, natural networks such as

biological networks, food-web networks, protein-protein interaction networks, diseasome

networks [12], and ecological networks to human-made networks such as the author ci-

tation networks [13, 14], the world wide web (WWW) [15], transportation networks, and

mobile call networks [3, 7, 16, 17, 18, 19] are a few examples of complex networks.

This chapter discusses a few metrics that can be used to analyze characteristics of

large sized complex networks. Moreover, we study a few complex network models such

as regular, random, small-world, and scale-free networks which are heavily referenced to

characterize and study many real-world networks.

2.1 Real-World Complex Networks

An abstract model of any complex physical system gives rise to a complex network model.

Networks obtained by modeling complex systems result in a complex interconnection of

nodes (vertices) by links (edges or arcs). Such models of complex physical systems are

1In this chapter, and rest of the thesis, we use the terms network and graph interchangeably.



considered as complex networks. In the following, we discuss three real-world complex

networks: (i) an author citation network, (ii) the autonomous systems in the Internet,

and (iii) an air traffic network. Note that all the real-world networks discussed in this

section are realized with Gephi 0.9.1 graph visualization and analysis tool where various

communities are depicted in different colors.2

2.1.1 The Author Citation Networks

A co-authorship network is an example of a real-world complex network. In a co-authorship

network, nodes are researchers or authors, whereas links among nodes are considered

when a research paper is co-authored by two researchers. The size of a circle is based on

how many times an author has co-authored papers with other researchers. It also identi-

fies a key person on a certain specialization. Figure 2.1 has only a few nodes with many

connections (big circles), which act as hub nodes. Most of the nodes are attached with

only a small number of links. Therefore, in the figure, big circles are very influential

researchers in the particular field (here, we consider networking) where many researchers

have co-authored with them. It can also be noticed from Figure 2.1 that there exist a cou-

ple of scientific communities, in different specializations, on the broader research areas

of network theory.

2.1.2 The Autonomous Systems in the Internet

The Internet is an example of a technological complex network (see Figure 2.2). Fig-

ure 2.2 shows a segment of the Internet that is too large to visualize in the page of this

thesis. In this network, a node is an autonomous system (AS) and interconnection be-

tween two ASs is denoted by a link. An AS is a segment of the Internet under the control

of an autonomous administration. For example, an organization’s entire network can typ-

ically be considered as a single AS. Similar to the author citation network, a few nodes

in the Internet have millions of connections, whereas the rest of the nodes are associated

with only a few neighbors.

2Communities in real-world networks can be realized with the modularity score. Note that a high mod-
ularity score shows better internal community structure and helps in deciding the subnetwork compartmen-
talization.
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Figure 2.1: An example author citation network [20]. Data is drawn from a coauthorship
network on the scientific work on network theory. Here, a node is an author of a paper,
and a link exists between two authors if they co-authored a paper. The graph is generated
with Gephi 0.9.1, and the network layout is Fruchterman-Reingold.

2.1.3 The Air Traffic Networks

Another example of real-world complex network is air traffic network, as shown in Fig-

ure 2.3. Here, nodes in the network represent airports, and if a flight connects two airports,

a link is connected between the two. In the figure, it is observed that a few airports are con-

nected to a large number of airports (denoted as big black circle) that act as hub nodes.

One of the key purposes of a hub node is to create the shortest routes to economically

reach the most locations through the air traffic network.

In order to study the behavior of complex networks, a few important complex network

metrics are presented in the following.
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Figure 2.2: The network of autonomous systems (ASs) in the Internet [21] with 22,963
nodes and 48,434 links. A node in the network represents an AS and an edge represents
interconnection between two ASs. The graph is generated with Gephi 0.9.1 and the
network layout is ForceAtlas 2.

2.2 Complex Network Metrics

As the real-world complex networks are always evolving with time, microscopic study

of the networks, to understand their characteristics, is not a feasible solution. In order to

thoroughly characterize such large sized complex networks, one needs to view the net-

works macroscopically. There exist many popular metrics that can be used to measure

the macroscopic properties of complex networks. Examples of such metrics are (i) av-

erage nodal degree (AND), (ii) average clustering coefficient (ACC), (iii) average path

length (APL), (iv) network diameter, (v) degree distribution, and (vi) centrality metrics.
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Figure 2.3: An air traffic network [22] with 235 airports (nodes) in various part of the
world and 1297 flights (edges) that run between the airports. The graph is generated with
Gephi 0.9.1, and the network layout is ForceAtlas 2.

2.2.1 Average Nodal Degree

The AND of a graph G with N nodes can be defined as

AND(G) = 1

N

N�

i=1

di, (2.1)

where di is the degree of node i. For example, the AND value of the graph corresponding

to Figure 2.4(a) can be estimated as 1
6
× [(3× 4) + (2× 3) + (1× 2)] = 20

6
= 3.33. Note

that, in Figure 2.4(a), each link is assumed to be of unit weight.

2.2.2 Average Clustering Coefficient

The ACC value reveals local connectivity property of a network graph. ACC is measured

by taking summation of the clustering coefficient for each node averaged over the number

of nodes in the network. Hence, ACC for a network consisting of N number of nodes is

calculated as
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ACC =
1

N
×

�

i∈N
∀mi

2× epq
nmi

× (nmi
− 1)

, (2.2)

where vp, vq ∈ Vmi
, epq ∈ E. Note that, in Equation (2.2), mi is the number of one-hop

neighbor nodes (i.e., immediate neighbors) for ith node in the network, and epq is the one

hop connection between neighbors p and q (i.e., vp and vq). Therefore, the summation is

taken as the total number of neighbor connections among nmi
neighbors in the network

over the maximum possible connections among the neighbors. In Equation (2.2), 2 is

included due to the bidirectional (for directional link, possible number of links can be

formed among nmi
neighbors are [nmi

× (nmi
− 1)]) nature of the links. However, CC

value for a node with only one neighbor is considered to be zero. Figures 2.4(a) and (b)

depict example graphs to determine CC of a node.

v1 v2

v4 v3

v5 v6

(a) G1.

v1 v2

v4 v3

v5 v6

(b) G2.

Figure 2.4: Example graphs for ACC calculation.

In Figure 2.4(a), node v5 has four neighbors. Therefore, to calculate the clustering

coefficient for node v5, it can be found that the possible neighbor connections, among

the four neighbors, is six. However, only four connections exist among the neighbor

nodes. Therefore, the clustering coefficient value for node v5 shown in Figure 2.4(a) is 4
6
.

Similarly, for graph G2 of Figure 2.4(b), the clustering coefficient value of v5 is 2
6
. The

clustering coefficient for individual nodes can be averaged to obtain a network’s ACC.

For the graph G1, the clustering coefficient for each node is as follows: v1 = 2
3
, v2 = 3

6
,

v3 = 3
6
, v4 = 2

3
, v5 = 4

6
, and v6 = 1. The ACC of the graph G1 can be estimated as 2

3
.

Similarly, for graph G2 of Figure 2.4(b), the value of the ACC is 2
9
.

The ACC value in a regular network is typically low to moderate, as the neighbor

nodes are well connected. However, immediate neighbor nodes in a random network may

not always be connected. Therefore, ACC for a random network is typically low.
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2.2.3 Average Path Length

APL, which is a global network property, can be measured by the mean shortest path

distance or geodesic between two nodes averaged over all the nodes in the network graph.

The APL value of a network consisting of N nodes can be calculated as

APL =
2

N × (N − 1)

�

i�=j

d(i, j), (2.3)

where d(i, j) is the shortest hop distance between nodes i and j. Therefore, APL is cal-

culated as the summation of all shortest hop distances in a network averaged over all

possible connections in the network (in Equation (2.3), due to the bidirectional links in

the network, 2 is included).

In order to estimate the APL value of the graph G2 in Figure 2.4(b), at first all shortest

path distances from each node has to be evaluated. Then all such shortest path distances,

from all nodes, are added and divided by the maximum number of link possibilities of

the network. Therefore, the shortest path distances from node v1 are as follows: v2 : 2,

v3 : 2, v4 : 1, v5 : 1, and v6 : 3. Hence, the total shortest path distance from node v1 to

all other node is 9. The total shortest path distance from all nodes to all other nodes is

calculated to be (9 + 8 + 7 + 7 + 6 + 9) = 46. Therefore, the APL value of the graph G2

in Figure 2.4(b) can be estimated as 46
(6×5)

= 46
30

� 1.53. Likewise, the APL value of the

graph G1 in Figure 2.4(a) can be estimated as approximately 1.33.

2.2.4 Network Diameter

The diameter of a graph G is equal to the largest shortest path between any node pair in the

graph. It is represented by D(G). Let d(i, j) represents the shortest path distance between

nodes i and j in a graph, then the network diameter can be expressed as

D(G) = max∀i,j {d(i, j)}. (2.4)

In other words, d(i, j) represents the shortest path distance between nodes i and j

in a network, and the diameter represents the maximum of all shortest path distances.
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The network diameters of the graphs G1 and G2 of Figures 2.4(a) and (b) are 2 and 3,

respectively.

2.2.5 Degree Distribution

Degree distribution of a network reflects overall connectivity profile of a network. If k is

the degree of a node, P (k) measures the probability of a node with degree k. The degree

distribution is generally plotted by taking the normalized P (k) values. Figure 2.5(a)

shows a normal (Gaussian) distribution with the mean value at 0.

-3 -2 -1 0 1 2 3
k
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P
(k

)

(a)

100 101 102 103 104

k
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100

P
(k

)

(b)

Figure 2.5: Examples of (a) normal degree distribution with zero mean value and (b)
power-law degree distribution (in log− log scale) with slope = 2.5. Note that, here k
represents degree of a node and P (k) denotes probability of finding nodes with degree k.

The degree distributions of many real-world complex networks do not follow normal

distribution, instead, the real-world networks follow power-law distribution and classified

as scale-free networks (see Section 2.3.4 for a detailed discussion on scale-free networks).

In power-law distribution, the gradient of the distribution follows the relation P (k) ∼ k−γ

or P (k) = rk−γ , where r is a constant and γ ∈ R. By taking logarithm at both sides of

the expression, we get log(P (k)) = log(r) − γ log(k). Thus, the power-law distribution

has a negative gradient of γ with a Y-axis cut at log(r). Figure 2.5(b) shows an example

power-law curve on a log− log scale with γ = 2.5.

2.2.6 Centrality Metrics

Measure of importance or centrality is fundamental in understanding the structural and

dynamic properties of complex networks. Measuring centrality of a node in a network

is quantifying the importance of that node in the network. This quantification is carried

out based on various features, such as number of neighbors, ability of a node to quickly
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communicate with other nodes, role of a node in the flow control between other nodes,

and the influence of neighbors on a node. A number of centrality measures exist in the

literature, but one basic question arises: Which centrality measure is the best? The answer

to this question depends on the application at hand. One centrality measure may work well

in a particular application, however, it may fail in another. In the following, some of the

popular centrality measures are discussed.

Degree Centrality

The degree centrality (DC) is the simplest measure of centrality. DC of a node can be

defined as the sum of the edge weights incident on that node. DC of a node i in any

network can be calculated by the following equation:

DC(i) =
�

j

eij, ∀eij ∈ E. (2.5)

For any N -node network, normalized value of DC can be realized by comparing cen-

trality of a node in that network with respect to the central node of a star network consists

of N nodes (as the center node of a star network has the highest degree, i.e., N−1). Thus,

normalized DC (DC
�
(i)) of any network can be achieved by taking the ratio of degree of

the ith node to the degree of the central node of a star network, as given in the following

equation:

DC
�
(i) =

�
j eij

N − 1
, ∀eij ∈ E. (2.6)

A B

C

D E

(a) An example network.




A B C D E
A 0 1 1 0 0
B 1 0 1 0 0
C 1 1 0 1 1
D 0 0 1 0 0
E 0 0 1 0 0




(b) Adjacency matrix.

Figure 2.6: An example network and its adjacency matrix.

Figure 2.6(a) shows a sample unweighted network and corresponding adjacency ma-
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Table 2.1
Degree centrality

Node DC DC�

A 2 2/4
B 2 2/4
C 4 1
D 1 1/4
E 1 1/4

trix3 is mentioned in Figure 2.6(b). The DC scores of the nodes are listed in Table 2.1. It

can be seen that the DC score of node C is the highest, implying that node C is the most

central node (according to the degree based centrality measure).

Closeness Centrality

The closeness centrality (CC) measures how close a node is to other nodes in a network.

Nodes that are close in a network can interact with their neighbor nodes very quickly.

CC also measures the importance of a node in spreading information to other nodes in

a network. CC of ith node (i.e., CC(i)) in an N -node network can be measured by the

following equation:

CC(i) =
1�N

j=1 d(i, j)
, (2.7)

where d(i, j) is the length of the shortest path between nodes i and j. To get the normalized

value (i.e., CC
�
(i)) with respect to a star topology network, the following equation is

used [23]:

CC
�
(i) =

N − 1�N
j=1 d(i, j)

. (2.8)

Figure 2.6(a) shows a sample unweighted network and corresponding cost matrix4

is depicted in Figure 2.6(b). CC scores of the nodes are listed in Table 2.2. It can be

seen that, according to CC measures, node C is the most central (important) node in

the network. Also note that node C receives a maximum CC score of 1, because it is

3Adjacency matrix represents whether a link, between a node pair, is present (by 1) or not (by 0).
4Cost matrix represents shortest path distance between a node pair in a network.
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A B

C

D E

(a) An example network.




A B C D E
A 0 1 1 2 2
B 1 0 1 2 2
C 1 1 0 1 1
D 2 2 1 0 2
E 2 2 1 2 0




(b) Cost matrix.

Figure 2.7: A sample network and its cost matrix.

Table 2.2
Closeness centrality

Node
�

j d(i, j) CC CC
�

A 6 1/6 4/6
B 6 1/6 4/6
C 4 1/4 1
D 7 1/7 4/7
E 7 1/7 4/7

connected to all other nodes in the network.

Betweenness Centrality

Communication between two non-adjacent nodes in a network can be achieved via mul-

tiple paths. The betweenness centrality (BC) measures the extent to which one node lies

between the shortest paths of other nodes in the network. Therefore, BC measures the

importance of one node in making long-distance communications. BC can be measured

by calculating all possible shortest paths that pass through a particular node, as given by

BC(i) =
�

i�=j �=k

gjk(i)

gjk
, (2.9)

where gjk is the total number of shortest paths from node j to k in an N -node network,

and gjk(i) is the number of paths that pass through node i. To normalize the BC value for

a node, Equation (2.10) [23] is used:

BC
�
(i) =

BC(i)

[(N − 1)(N − 2)/2]
. (2.10)

In the network shown in Figure 2.8, nodes 1, 2, 4, and 5 are not present in any of the

shortest paths between any pairs of nodes in the network, thereby, result in score of 0 BC
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Figure 2.8: An example network to calculate betweenness centrality.

Table 2.3
Betweenness centrality

Node BC BC
�

1 0 0
2 0 0
3 5 5/6
4 0 0
5 0 0

for these nodes. In contrast, node 3 is present in various shortest paths. The BC score for

node 3 can be found as

BC(3) =
g12(3)

g12
+

g14(3)

g14
+

g15(3)

g15
+

g24(3)

g24
+

g25(3)

g25
+

g45(3)

g45

= 0 +
1

1
+

1

1
+

2

2
+

2

2
+

1

1
= 5.

Therefore,

BC �(3) =
BC(3)

(5− 1)(5− 2)/2
=

5

6
.

Graph Centrality

The graph centrality (i.e., GCmetric) is another important metric, which represents a com-

pact view of the network characteristics. That is, graph centrality identifies network cen-

tralization on the basis of the node-level information. GCmetric, in the context of DC, CC,

or BC, of an N -node network can be identified by the following equation:

GCmetric =

�N
i=1[GCmetric(x

�)−GCmetric(xi)]

max
�N

i=1[GCmetric(x�)−GCmetric(xi)]
, (2.11)
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where GCmetric(xi) is the centrality of node i, GCmetric(x
�) is the largest value of node

centrality in the N -node network, and metric can be any of the centrality metrics men-

tioned earlier. The denominator of Equation (2.11) identifies the maximum difference in

the node centrality [23].

GCmetric measures the deviation of GCmetric(x
�) with respect to the remaining nodes

in a network. The operating range of the graph centrality metric is 0 � GCmetric � 1.

Here, GCmetric = 0 indicates that all nodes in the network are of equal importance,

whereas, GCmetric = 1 indicates that the node with the highest centrality value dominates

the remaining nodes in the network. The graph centralities with DC (i.e., GCDC), CC (i.e.,

GCCC), and BC (i.e., GCBC) of an N -node graph can be estimated with the following

equations [23]:

GCDC =

�N
i=1[GCDC(x

�)−GCDC(xi)]

N2 − 3N + 2
, (2.12)

GCCC =

�N
i=1[GCCC(x

�)−GCCC(xi)]

(N2 − 3N + 2)/(2N − 3)
, (2.13)

and GCBC =

�N
i=1[GCBC(x

�)−GCBC(xi)]

N3 − 4N2 + 5N − 2
. (2.14)

2.3 Complex Network Models

Complex networks have complex and irregular patterns of connectivities among network

nodes such that the ordinary graph theoretical approaches cannot be directly applied to

understanding the characteristics of such networks. That is, the topological features of

complex networks can be considered as non-trivial compared to regular networks. In

many cases, the non-trivial connectivity pattern is exacerbated by the large size of the

network in terms of the number of nodes and edges. When complex physical systems

such as biological networks, social networks, technological networks, and the Internet are

modeled as graphs, complex networks result [24, 25].

Existing real-world complex networks can be broadly classified as: (i) regular net-
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works, (ii) random networks, (iii) small-world networks, and (iv) scale-free networks. In

the following, a brief description of each category is provided.

2.3.1 Regular Networks

A node in a regular network is mostly connected to all of its immediate neighbors [26].

For example, each node in an r-regular network is connected to its r neighbors. Consider

all possible graphs with N nodes each with degree r, and then select one of the graph

models at random to get a random r-regular network [27]. An example of a 4-regular

network is shown in Figure 2.9.

Figure 2.9: An example 4-regular network of 50 nodes.

A regular network has moderate to high value of ACC because most of its neighbors

are also connected.5 Thus, regular networks are robust against multiple link failures.

However, the APL value is also high as it takes multiple hops to reach a distant destination

node from a source node.

2.3.2 Random Networks

A random network can be evolved by randomly choosing a set of node pairs out of all

possible node pairs in a network. To create a random network of N nodes, the following

two approaches can be exercised:

� If the total number of links (e.g., M ) are known, then the network model can be

constructed based on the generating function F(N, M). That is, the random net-

5A string topology network or a grid topology network is a special case of regular network where the
ACC value is 0.
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work can be realized by creating M links randomly out of
�
N
2

�
possibilities in an

N -node network.

� Conversely, if the probability of the link creation (i.e., p), between a node pair is

given, then a random network can be evolved by adding new links based on the link

creation probability p. Therefore, the graph creation model can be expressed with

the generating function F(N, p). This approach of random network creation is also

popularly known as the Erdös-Rényi (ER) random network model [28, 29].

Erdös-Rényi Random Network Model

In an ER network, a node pair is connected if the presence of that link satisfies the link

creation probability p. That is, while creating a link between a node pair, the link creation

probability is compared with the expected link creation probability p and the link is added

if the link creation probability is greater than or equal to p. An ER graph consisting of 50

nodes is depicted in Figure 2.10. The edges, in this figure, are randomly connected among

node pairs with probability p = 0.06.

Figure 2.10: An example ER-network of 50 nodes with p = 0.06.

As shown in the figure, the immediate neighbors (i.e., nearby in terms of distance)

may not always be connected in an ER-network. As a result, the ACC value is low for the

ER network [30]. However, due to the presence of a few links between distant node pairs,

APL value of an ER-network is lower compared to a regular network.

2.3.3 Small-World Networks

A small-world network lies between a regular network and a random network, and incor-

porates the best features from both the networks. In a regular network, most of the nodes
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are well connected and hence, the ACC value is moderate to high. However, as multiple

hops are required to reach a distant node from a source node, the APL value is also high in

the context of a regular network. On the other hand, the ACC value is low as the neighbor

nodes are not well connected in a random network. However, the APL value is also lower

in the random network as there exist a few long distant connections.

In a small-world network, most of the nodes are connected like a regular network

topology and a small number of long-ranged links (LLs) are also present among distant

node pairs. Therefore, small-world networks exhibit lower value of APL along with mod-

erate value of ACC. A comparison of the three network topologies in terms of ACC and

APL is depicted in Table 2.4.

Table 2.4
The table compares regular networks, small-world networks, and random networks based
on the ACC and APL values. In a regular network, both the ACC and APL values are
moderate to high. However, the APL value is low for random networks along with lower
value of the ACC. Small-world networks inherit the best characteristics from regular as
well as random networks and exhibit lower value of the APL with moderate value of the
ACC. Asymptotic APL values are also provided in the following table.

Parameters Regular Networks Small-world
Networks

Random Networks

ACC Moderate Moderate Low

APL High Low Low

Asymptotic APL Values O(N) O(logN) O(logN)

From Table 2.4, it can be observed that regular networks and random networks are the

two extreme scenarios when network topologies are concerned.

A regular network can be transformed to a small-world network by either rewiring

minimal number of existing normal links (NLs) or adding a few LLs. The key char-

acteristics of a small-world network are lower values of the APL with low to moderate

values of the ACC. Figure 2.11(a) shows an example of a 10-node 4-regular network with

APL = 1.67 and ACC = 0.50. However, when very few existing NLs are rewired with the

rewiring probability p = 0.2 (a detailed discussion on rewiring can be found later in this

section), values of APL = 1.58 and ACC = 0.34 are changed in the resultant network, as

shown in Figure 2.11(b).
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(a) APL = 1.67, ACC = 0.50.
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(b) APL = 1.58, ACC = 0.34.

Figure 2.11: (a) An example 4-regular network. (b) A small number of NLs of (a) are
rewired with p = 0.2. The resultant network transforms to a small-world network.

It can be seen that as the size of the network in Figure 2.11(a) is small, change in the

overall APL value is not significant (only 6.59%) with rewiring probability of 0.2. As the

network size increases, improvement in the APL value can be observed. Table 2.5 shows

a few numerical observations in the context of different sized 4-regular networks (network

sizes are 100, 200, 300, 400, and 500). Note that the data in Table 2.5 is generated by

rewiring a few NLs with rewiring probability p ∈ {0.05, 0.1, 0.2, 0.5}.

From Table 2.5, it can be observed that as the network size increases, reduction in

the APL value is also improved. For example, with rewiring probability p = 0.05 in

a 100 node network, reduction of the APL value with respect to the regular network,

is approximately 44.18%. Conversely, the ACC value does not decrease in the same

manner compared to the improvement in the APL value. The decrease in the ACC value

is approximately 10% when rewiring with p = 0.05 in a 100 node network is concerned.

Instead of rewiring the existing NLs, new LLs can also be added in a regular network

to transform it to a small-world network. However, as time elapsed, with more number

of LLs the network becomes a fully connected mesh. In the following, a few small-world

network evolution models are discussed.

Rewiring of Existing Links

Rewiring is one of the mechanisms by which a regular network can be transformed to a

small-world network. In rewiring, some of the existing NLs are rewired to other nodes
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Table 2.5
The table shows data for transformation from various sized 4-regular networks (N )
to small-world networks with different rewiring probabilities p. In this table, N ∈
{100, 200, 300, 400, 500} and p ∈ {0.05, 0.10, 0.20, 0.30, 0.40, 0.50}. The ACC
value is always 0.50 before the rewiring operation. It can be seen that APL value is dras-
tically reduced with increasing p values. However, there is also a constant decrease in the
ACC value. The table also provides the percentage APL reductions with respect to the
APL values prior to rewiring.

No. of Nodes Rewiring
Probability

(p)

APL before
Rewiring

APL after
Rewiring

Percentage
Reduction in

APL

ACC after
Rewiring

100

0.05

12.88

7.19 44.18 0.45
0.10 4.55 64.67 0.32
0.20 4.01 68.87 0.24
0.50 3.50 72.83 0.07

200

0.05

25.38

7.40 70.84 0.43
0.10 6.04 76.20 0.36
0.20 4.91 80.65 0.25
0.50 4.17 83.57 0.09

300

0.05

37.88

9.77 74.21 0.44
0.10 6.57 82.66 0.36
0.20 5.20 86.27 0.24
0.50 4.55 87.99 0.09

400

0.05

50.38

9.29 81.56 0.43
0.10 7.58 84.95 0.38
0.20 5.93 88.23 0.29
0.50 4.73 90.61 0.06

500

0.05

62.88

11.68 81.42 0.45
0.10 7.64 87.85 0.37
0.20 5.86 90.68 0.25
0.50 5.00 92.05 0.08

based on certain probability p, where 0 � p � 1 [3]. In the process of rewiring, a regular

network can be transformed to a completely random network. During the transforma-

tion from regular networks to random networks, small-world networks can be observed

when the rewiring probability is lower. This situation is depicted in Figure 2.12. In Fig-

ure 2.12(a), a regular grid network is shown with the rewiring probability p = 0. AND of

the regular network is moderate, whereas the APL value is large because the end-to-end

hop distances between the distant node pairs are more in Figure 2.12(a).
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(a) p = 0. (b) 0 < p < 1. (c) p → 1.

Figure 2.12: Rewiring in a regular grid lattice. (a) A regular grid with the rewiring
probability p = 0. (b) The grid is transformed to a small-world network with the rewiring
probability 0 < p < 1. (c) The grid is transformed to a random network with the rewiring
probability p → 1. Here, the dashed lines represent the NLs and the bidirectional links
represent the LLs.

When some NLs are removed from one end and then are reconnected with probability

0 < p < 1 to certain distant nodes (the bidirectional solid line in Figure 2.12(b)) as

LLs, the APL value of the network is reduced. Thus, in the process of rewiring a small

number of existing NLs, lower value of APL can be attained. However, the ACC value

is kept nearly unchanged compared to the regular network. When NLs are rewired with

the rewiring probability p → 1, as shown in Figure 2.12(c), the regular grid network

becomes a random network with the least value of APL along with the reduced ACC

value. Hence, in order to realize a small-world network, a limited number of LLs are

sufficient as depicted in Figure 2.12(b).

Random Addition of New Links

In this link addition technique, a new LL in an already existing network is added between

any two distant nodes based on the new link creation probability p ∈ [0, 1] [4]. It can

be noticed from the previous discussion that rewiring [3] involves removing one end of

an existing NL and then connecting the open end to a long distance node in the network.

However, rewiring is equivalent to dynamically changing the existing network topology,

and thus, phase of the network is also changing continuously along with the changed

direction of an NL. Random LL addition, on the contrary, does not involve removal of

existing NLs. In Chapter 3, a detailed discussion on random link addition is carried out.
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Euclidean Distance based Addition of New Links

An LL, in this link addition strategy, can be added based on the Euclidean distance or

Manhattan distance [31, 32]. The Euclidean distance or Manhattan distance is measured

between two points as the absolute difference in their coordinates. The probability of

an LL addition is estimated by p = d(u, v)−α/
�

v �=u d(u, v)
−α, where d(u, v) is the

Euclidean distance between node u and node v (see Figure 2.13), which is averaged over

all node distances (the distant node pairs are at least � 2 hops apart) to get the normalized

probability. Here α is the clustering exponent and takes the value equal to the network

dimension. The observation revealed that for a 2-D grid network, α = 2 gives the lowest

value of the APL [32].

u

v
Normal Link

Long-ranged Link

d(u, v)

Figure 2.13: Addition of a few LLs are carried out based on the Euclidean distance in
a 2-D lattice network. According to the LL addition strategy, an LL is added between
nodes u and v based on the link addition probability p = d(u, v)−α

�
u�=v d(u, v)−α , where α is the

clustering exponent.

In the Euclidean distance based LL addition model [32], the probability of addition

of LL was based on the Euclidean distance between the node pairs, and the clustering

exponent α. However, the location information of the distant node is required to measure

the Euclidean distance. Hence, some prior information about the network topology is

required to implement the LL addition strategy.

2.3.4 Scale-Free Networks

A network is considered to be scale-free when the degree distribution of the network fol-

lows power-law. That is, the fraction of the nodes with degree D, that can be represented
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as P (D), is related as P (D) ∼ D−γ , where γ is the scaling exponent. An example power-

law plot can be found in Figure 2.5(b). The relative nodal degree in a scale-free network

greatly exceeds the average degree because of the existence of a few nodes with huge

number of connections. The highly connected nodes are called hub nodes. Scale-free net-

works are very robust against random attacks, as there exists very low possibility to affect

the hub nodes. Conversely, the scale-free networks are highly vulnerable to concentrated

attacks because targeting a few hub nodes may turn a scale-free network dysfunctional.

An example scale-free network is shown in Figure 2.14, where most of the nodes have

just a few links and a few nodes have large number of connections. The nodes with a large

number of links, that is, the hub nodes, are depicted in the figure by a circle around the

nodes.

Figure 2.14: An example scale-free network of 50 nodes.

Network designers have explored many ways to create scale-free networks. The most

common approaches are network formation (i) by preferential attachment, (ii) by a fitness

based model, (iii) by varying intrinsic fitness, (iv) by local optimization of similarity and

popularity, and (v) with exponent 1. However, we show in Chapter 3 that the greedy

decision making, based on certain network metrics, such as APL, can also transform a

regular network to a scale-free network.

Scale-Free Network Creation by Preferential Attachment

A network can evolve to a scale-free network when addition of nodes or links follows

growth along with preferential attachment [5]. The preferential attachment strategy is

also known as the Barabási-Albert (BA) model. In the BA network evolution model, while

creating a few LLs, a newly introduced node in an existing network is more inclined to
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connect to the nodes with higher degree values. Hence, high-degree nodes have higher

chance to connect to other nodes in the network. A few nodes, according to the BA model,

thus evolve as hub nodes over time.

Scale-Free Network Creation by Fitness based Modeling

In this form of scale-free network creation, fitness [33] plays a major role in network

evolution. In general, all existing nodes in a network are not equally successful in acquir-

ing new connections. In the preferential attachment based model, new nodes are mostly

inclined to make connections with older nodes (those spend more time in the network).

However, there are numerous examples where a newly introduced node gets many connec-

tions. For example, a new web page turns out to be very popular within a short timespan,

a person becomes very influential within a community, or a research article receives a

large number of citations in a very limited time. It can be seen from these networks that

a few nodes turn out to be very popular or influential in a short timespan. The fitness

based model can be studied to understand this kind of network evolution by incorporating

a fitness parameter, to account for the sudden popularity, along with the BA model.

Scale-Free Network Creation by Varying Intrinsic Fitness

In the intrinsic nodal fitness model [34], a newly introduced node can be attached to an

existing node based on certain characteristics of the node by which the attached node

pair can mutually benefit. Note that the intrinsic fitness model does not take into ac-

count global information, such as degree based probability measure, which is the basic

assumption in the preferential attachment and the intrinsic nodal fitness based network

evolution models where certain fitness parameters can be considered along with the pref-

erential attachment model. For instance, when a new person enters a community, he/she

may not have information about individual connections. However, the person creates new

links with other people based on certain behavioral characteristics or social influences by

which the person thinks he/she may get some social advantages.

As it can be seen that the decision is solely based on the intrinsic characteristics of

other nodes in a network, the network evolution model does not follow preferential at-

tachment based link creation. This method also works differently from the fitness based
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model, which considers fitness as one extra parameter in the growth and preferential at-

tachment based network evolution.

Scale-Free Network Creation by Optimization

In this approach, a new node is added to the network based on the optimized score of the

product of similarity and popularity of existing nodes in the network [9]. Here, popularity

means how long a node has been in the network. Hence, popularity is similar to the fitness

of a node in a network. Similarity is a measure of the closeness of a node with the newly

introduced node in the network. That is, if a new node is closer to an existing node, the

chance of connecting to the existing node is higher. The optimization framework takes

care of the two above mentioned dynamics to gradually transforms a network to a scale-

free network.

Scale-Free Network Creation with Exponent 1

In this scale-free network creation model, the scaling exponent (i.e., γ) of the network is

evaluated to be 1 [35]. The realization of a scale-free network with exponent 1 is based on

the equilibrium network models that produce the degree exponent value as 1. The network

evolution model exercises the method of rewiring to transform a network to a scale-free

network with exponent 1. In particular, the concept of random multiplicative process is

applied to generate the scale-free model with γ = 1. In random multiplicative process,

fluctuation of a random variable is proportional to its value in the system. In scale-free

network modeling, the value of a random variable is taken as the degree of a node, and

the fluctuation is realized by incorporating rewiring a connection at each time-slot, and

the rewiring is proportional to the probability of the nodal degree in the network.

2.4 Summary

In this chapter, various complex network metrics, that are useful in exploring structure

and dynamics of complex networks, are reviewed. The review was followed by a brief

discussion of a few important complex network models such as regular networks, random

networks, small-world networks, and scale-free networks. Hereafter, complex network

metrics and network models are directly referred, wherever necessary, in rest of the thesis.
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Chapter 3

Greedy Link Addition in Finite Sized Networks

Many real-world networks exhibit small-world characteristics where small-world refers to

the fact that it requires only a small number of hops to reach a distant node from a source

node. The main advantage of a small-world network is that it lies between a regular net-

work and a random network, and incorporates beneficial characteristics from both the

networks. The key characteristics of small-world networks include lower value of aver-

age path length (APL) and low to moderate value of average clustering coefficient (ACC).

This chapter deals with the evolution of APL-optimal small-world networks, from regu-

lar networks, by introducing a few long-ranged links (LLs) with greedy decision making.

Further, the gradual transition of a finite sized regular network to a fully connected net-

work, with the addition of a few constrained LLs, is also studied toward the end of this

chapter.

3.1 Existing Literature

In 1967, a social psychologist Stanley Milgram first observed the small-world (SW) char-

acteristics in his message passing experiment [2] where it was found that any two acquain-

tances in the world can be connected by means of a very small number of intermediate

acquaintances (median value being 5 to 9), popularly known as the six degrees of separa-

tion. In the late 1990s, the concept of SW characteristics became popular in several fields

of study such as communication, transportation, and real-world social networks. More-

over, it was observed that many of the natural networks follow SW characteristics. Watts

and Strogatz [3] first observed this feature in a few natural networks (e.g., neural networks

of the bacteria Caenorhabditis Elegans, power-grid networks of the western USA, and the

collaboration graph of film actors). SW characteristics of a network can be identified by

low APL and low to moderate ACC. The concept of SW characteristics can also be used

to design various networks.



In the following, a few existing literature on creation of small-world networks with

(a) random decision and (b) deterministic approaches are discussed.

3.1.1 Creation of Random Small-World Networks

A small-world network can be realized by creation of random LLs between distant node

pairs in a network. LLs can either be created based on rewiring of existing normal

links (NLs) or by adding new LLs.

Rewiring of Existing Links

Rewiring is one of the techniques by which a regular network can be transformed to a

small-world network. In rewiring, a few existing NLs are rewired to other nodes based on

the rewiring probability p where 0 � p � 1 [3, 36]. Here, a regular network (with prob-

ability p=0) is converted to a completely random network (p=1). In the transformation

from a regular to a complete random network, small-world characteristics can be observed

for 0 < p < 1. In the process of rewiring a small number of existing NLs, lower value of

APL can be attained. However, ACC is kept nearly unchanged compared to the regular

network. A detailed discussion on rewiring technique can be found in Section 2.3.3.

Pure Random Addition of New Links

It can be seen that rewiring [3] involves removal of one end of an existing NL and then

connecting the open end to a long distant node in the network. However, in pure random

addition new LLs are added between two distant nodes in a network based on the link

creation probability p ∈ [0, 1] [4]. That is, two distant nodes are randomly selected with

a certain probability q and a link is then added between the node pair if the link addition

probability satisfies the condition q � p. The operational complexity of pure random link

addition technique is lower compared to the rewiring of the existing NLs. Section 3.2

discusses LL addition based on the pure random decision making.
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New Link Addition based on Euclidean Distance

In this LL addition strategy (also known as Kleinberg’s model), a new link is added based

on the Euclidean distance or Manhattan distance [31, 32]. The probability of an LL addi-

tion can be estimated as p = d(u, v)−α/
�

v �=u d(u, v)
−α, where d(u, v) is the Euclidean

distance between nodes u and v. Here, α is the clustering exponent which represents the

network dimension. That is, for example, α = 3 when a 3-D network is concerned. Klein-

berg’s observation revealed that for a 2-D grid network, α = 2 returns the lowest value

of the APL. However, as location information of a distant node is essential to measure

the Euclidean distance, some prior information about the network topology is required to

implement the LL addition strategy.

The above discussed small-world network evolution strategies create new LLs based

on the random decisions. In the following, a few existing deterministic LL addition strate-

gies to realize small-world networks are briefly reviewed.

3.1.2 Creation of Deterministic Small-World Networks

Here we discuss a few deterministic LL addition strategies where LLs are added in a

network to achieve certain performance benefits or to optimize certain network character-

istics in the context of network performance.

Small-World Creation based on Constant and Variable Degree

This small-world model deterministically converts a regular network to a small-world

network. The deterministic model [37] talks about two such approaches, constant and

variable degree based small-world network creations. In the constant degree based small-

world network creation model, a node in an N -node arbitrary network is replaced by

a fully connected network. The fully connected network consists of same number of

neighbor nodes (say k) the replaced node had. The resulting deterministic small-world

network has k×N nodes along with the diameter of 2r+1 and the clustering coefficient

of N−2
N

, where r � logk−1 N . Conversely, in variable degree based small-world network

creation the original arbitrary network is kept intact. However, fully connected networks
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of variable sizes are attached to each node of the base network.

Small-World Creation based on Edge Iteration

The iterative new link creation strategy [38] to realize a deterministic small-world network

is as follows: at time t = 0, there is a triangle shaped network. At time t = 1, each link

of the triangle makes connection to a new node and hence, both the nodes of the edge

get connected to the newly introduced node. Therefore, at t = 1, three new nodes are

introduced and total six new links are added to the network. Similarly, at t = 2, six nodes

are introduced and the connections are created as mentioned in the case of t = 1.

The deterministic small-world network, evolved in this iterative manner, contains a

total of 3× 2k nodes and 3× 2k+1 − 3 links after the iteration step at t = k.

Small-World Creation based on Various Optimized Network Parameters

To create a deterministic small-world network, an LL can also be added in a network to

optimize certain network characteristics. However, the deterministic LL addition involves

exhaustive search of possible locations of LLs and thus, time complexity for finding an

optimal LL location is high [39]. The small-world networks, in this category, can be con-

structed based on various strategies such as minimize APL (MinAPL), minimize average

edge length (MinAEL), maximize betweenness centrality (MaxBC), or maximize close-

ness centrality (MaxCC) metrics. The resultant small-world networks, with these LL-

addition strategies, optimize when APL, AEL, BC, or CC performances are concerned.

In the following, random as well as greedy decision based LL addition strategies are

discussed. Note that the simulation study is conducted on finite sized string topology

networks (STNs) of varying sizes. The primary reason for choosing string topology, as

the primary network to add LLs, is that there exists only limited literature that studied the

properties of finite sized STNs. String topology is one of the most sparse network topolo-

gies and can be deployed to model practical networks such as highway communication

networks, disaster response networks, and tactical networks. Moreover, STN can also be

utilized to provide seamless wireless connectivity in rural or community networks where

infrastructure networks are unavailable.
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3.2 Random LL Addition

In this link addition technique, a new LL in an already existing network can be added

between any two distant nodes based on new link creation probability p ∈ [0, 1] or on the

basis of pure random decision. In first method, a small number of new links are added

with link addition probability p. That is, two distant nodes in a network are randomly

selected with probability q and then an LL is created between the node pair, if the LL

addition probability satisfies the condition q � p. The second method, on the other hand,

randomly chooses two distant nodes and connects an LL if they are not connected already.

Figure 3.1(a) depicts an example STN consisting of 40 nodes (only relevant nodes are

shown). The random LL addition algorithm is listed in Algorithm 3.1.

Algorithm 3.1 Random LL Addition
Require:

G = (V , E) — A network graph with V nodes and E edges
(u, v) — A link between node u and node v
k — Number of LLs to be added in G
PossibleLL — A set of LL possibilities between node pairs in G

1: for i = 1 → k do
2: PossibleLL = {(u, v) | (u, v) �∈ E}
3: (u, v) ← random(PossibleLL)
4: E ← E ∪ (u, v)
5: end for

In Algorithm 3.1, a node pair in an N -node network is randomly chosen from all new

LL addition possibilities and then an LL is added (lines 2-3). Algorithm 3.1 is O(k) time

complex to add k LLs randomly in the network. Figures 3.1(b) through (e) show random

addition of one, two, four, and six LLs in a 40-node STN. Figures 3.1(a) through (e) also

depict the APL and the highest nodal degree (HND) values. Here, HND represents the

degree of a node with the most number of connections in a network. It can be seen that

the APL value decreases moderately as the LLs are added to the STN by incorporating

the small-world characteristics.
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Normal Link (NL)Node ith Long-ranged Link (LLi)ior

12 38372811 18 403927191621 22

(a) A 40-node string topology network with APL = 13.67 and HND = 2.

LL1

12 38372811 18 403927191621 22

(b) APL = 10.58 and HND = 3, after addition of LL1.

LL1LL2

12 38372811 18 403927191621 22

(c) APL = 8.13 and HND = 3, after addition of LL2.

LL1LL2

LL4LL3
12 38372811 18 403927191621 22

(d) APL = 6.03 and HND = 3, after addition of LL3 and LL4.

LL6

LL5LL1LL2

LL3 LL4
12 38372811 18 4039191621 22 27

(e) APL = 5.16 and HND = 3, after addition of LL5 and LL6.

Figure 3.1: Pure random LL addition strategy is shown in an example undirected 40-
node STN. (a) The STN before the pure random LL addition. The APL value is 13.67
along with the HND of 2. HND represents the node with the most number of connections.
In (b), the first LL (LL1) is added randomly between node 18 and node 27. The bi-
directional dashed line represents newly connected LL. The APL value, after the addition
of LL1, is reduced to 10.58 and the HND changes to 3. Similarly, (c), (d), and (e) show
the evolved network after the addition of two, four, and six LLs. It can be observed that
the corresponding APL values are also reduced after the addition of new LLs.

3.2.1 Nodal Degree Distribution with Random LL Addition

The performance of the random LL addition strategy is studied in the context of various

sized STNs (10 to 50 nodes). LLs are added in an N -node STN such that either the
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network becomes fully connected or the STN accommodates N
2

LLs in the network. The

nodal degree distribution is plotted, as can be seen in Figure 3.2, after the addition of

moderate number of LLs with the random LL addition strategy.

100 101 102
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3.2: The degree distribution after the addition of N
2 LLs with the pure random

strategy, with Algorithm 3.1, in the context of N -node STN. Plot of the degree distribu-
tion is in the semi-log scale where the ‘X’ axis represents degree value (D) of a node in
logarithmic scale and the ‘Y’ axis depicts the probability of nodes with degree D (P (D))
in linear scale. The figure shows the degree distribution for 10, 20, 30, 40, and 50 node
STNs where it can be noticed that, as most of the nodes have same degree, all distribution
curves follow a distribution similar to the bell-shaped distribution.

In Figure 3.2, the degree distribution curves for five sets of results (10, 20, 30, 40,

and 50 node STNs) are plotted. It can be seen from the figure that each degree distribution

curve follows a bell-shaped pattern as the degree of most of the nodes are similar and

centered around the mean of the distribution.

Table 3.1 lists the betweenness centrality (BC) values for all relevant nodes after the

addition of each LL in Figure 3.1. The BC value identifies the most important node or a

set of important nodes in a network. Higher the value of the BC of a node, more central

the node is in a network. If an LL connects between a node pair with higher influences,

the probability of formation of more number of shortest paths through the LL is also

increased. As a result, the BC values of the node pair are also improved. In Table 3.1, BC

values of a node pair is highlighted where an LL is added. That is, for example, first LL is

added between nodes 18 and 27 and corresponding BC values are highlighted (shown in

boldface) in the table. However, when LLs are added with pure random decision, it may

not always find the best possible node pair locations to add an LL in order to maximize
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the BC value. It can be observed from the table that none of the nodes in the STN of

Figure 3.1 has significantly higher value of the BC [23] when random decision based LL

addition is used.

In random LL addition strategy, LLs are added in a network without any prior motiva-

tions such as optimizing the network performance or enhancing the network throughput.

Random LL addition involves searching a node pair, based on certain probability, and

creates an LL if the node pair is not already been connected. The LL addition strategy

reduces the APL value of the STN, however, without guaranteeing the minimized value

of the APL. The BC values of the nodes, as shown in Table 3.1, with respect to the STN

with no LLs, are not significantly improved. Only the LL connecting nodes improve their

respective BC values (shown in boldface in Table 3.1).

3.3 Greedy Decision based LL Addition

In order to achieve the objective of transforming a network to an APL-optimal small-

world network, we propose greedy decision based LL addition strategy where an LL is

added in a network such that the overall network APL can be minimized. The APL-

optimal network is extremely efficient when minimizing the end-to-end transmission de-

lay in a network is concerned.

The greedy decision based LL addition strategy can be subdivided into the following:

(i) greedy optimal LL addition, and (ii) greedy near-optimal LL addition.

3.3.1 Greedy Optimal LL Addition

In the greedy optimal LL addition strategy,1 an LL is created between a node pair in a

network to deterministically optimize certain network characteristics. To add k LLs with

the optimal LL addition strategy, all k LLs should be concurrently deployed in a network.

Algorithm 3.2 lists the greedy optimal LL addition strategy to minimize the APL value of

a network.

1In this chapter and rest of this thesis, the greedy optimal and the optimal are used interchangeably.
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Algorithm 3.2 Greedy Optimal LL Addition
Require:

G = (V , E) — A network graph
k — Number of LLs to be added in G

1: Check for all possibilities to get the lowest value of APL in G after adding k LLs
2: if More than one possibility exists to add k LLs then
3: Choose the only possibility which returns the minimum APL in G
4: end if

Algorithm 3.2 searches for all possible LL locations, with brute-force, in order to

add k LLs that minimize the APL value (line 1). If more than one possibilities exist to

add the k LLs, then the optimal algorithm searches for each possibility and thus, after all

searched combinations, the algorithm selects the best LL connecting locations (line 3).

Time Complexity of Greedy Optimal LL Addition Algorithm

The time complexity of the greedy optimal LL addition strategy (see Algorithm 3.2) can

be determined as follows: To add an LL with the optimal strategy, N2 possibilities exist

in an N -node network. Further, in order to identify all-pair shortest paths (APSPs) in

a network of N nodes, the optimal strategy uses Dijkstra’s shortest path algorithm [40,

41] which is O(N2 logN) time complex to determine the APSPs. Therefore, the first

optimal LL can be created with Algorithm 3.2 in O(N2×N2 logN) or O(N4 logN) time.

Likewise, to add two optimal LLs in an N -node network, there exist
�
N2

2

�
possibilities.

Hence, the time complexity becomes O
��

N2

2

�
×N2 logN

�
or O(N6 logN). Similarly,

three optimal LLs can be created in O(N8 logN) time. To find the optimal locations for k

LLs, the brute-force strategy has to be executed repeatedly. Therefore, to add k concurrent

LLs optimally, Algorithm 3.2 takes O
��

N2

k

�
×N2 logN

�
or O(N2k+2 logN) time.

The implementation of Algorithm 3.2 is not a feasible solution in the context of real-

time deployment of the APL-optimal LLs. In the following, an efficient greedy near-

optimal deterministic LL addition strategy is proposed.
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3.3.2 Greedy Near-Optimal LL Addition

The greedy near-optimal algorithm,2 that is presented in Algorithm 3.3, is an efficient de-

terministic LL addition strategy. The near-optimal strategy searches for the possible node

pairs in an N -node network to add the ith LL, with the greedy decision making, which

gives the lowest value of the APL. However, if multiple LL-location choices are identified

for the ith LL, one node pair is selected randomly, as presented in Algorithm 3.3. Since

the ith LL position is identified before the (i + 1)th LL, the number of choices for the

(i+ 1)th LL is not as exhaustive as in the case of the greedy optimal LL addition. There-

fore, the near-optimal solution uses the brute-force strategy in a limited and sequential

manner compared to the optimal LL addition algorithm (Algorithm 3.2).

Algorithm 3.3 Greedy Near-Optimal LL Addition
Require:

G = (V , E) — A network graph
k — Number of LLs to be added in G

1: for i = 1 → k do
2: Check for every possibility to construct ith LL over N nodes in G
3: Estimate the APL of the network for each possibility at the last step
4: if More than one lowest APL LL possibility exists then
5: Randomly select one node pair having the least value of APL
6: end if
7: Add ith LL between selected node pair giving lowest APL
8: Update network graph G
9: end for

Algorithm 3.3 identifies LLs in a sequential manner by exhaustively searching for

the N2 LL connecting possibilities for a certain LL (lines 1-3). However, for multiple

LL connection possibilities, the near-optimal strategy randomly selects an LL connecting

location and thus, reduces the computational complexity (lines 4-6).

Figure 3.3 shows an example of greedy near-optimal strategy based LL addition where

all the newly added LLs are shown in bidirectional dashed lines in an STN of 40 nodes.

The greedy LL addition strategy finds node 8 and node 32 to connect the first LL (LL1)

in the network. The greedy LL addition strategy optimally selects the 0.2N th and 0.8N th

2In this chapter and rest of this thesis, the greedy near-optimal and the near-optimal are used inter-
changeably.
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Normal Link (NL)Node ith Long-ranged Link (LLi)ior

LL1

8 3832287 18 403926201421 22
(a) APL = 8.41 and HND = 3, after addition of LL1 in a 40-node string topology network.

LL2
LL1

8 3832287 18 403926201421 22
(b) APL = 6.75 and HND = 4, after addition of LL2.

LL4LL3

LL2
LL1

8 38287 18 403926201 2214 322

(c) APL = 5.46 and HND = 6, after addition of LL3 and LL4.

LL6

LL5
LL4LL3

LL2
LL1

8 38287 18 4039201 22142 26 32

(d) APL = 4.14 and HND = 8, after addition of LL5 and LL6.

Figure 3.3: An STN of 40 nodes where six LLs are added with the greedy near-optimal
LL addition strategy. A new LL is shown in the dashed bidirectional line. The APL
and the HND values are also mentioned in the figure. (a) The near-optimal LL addition
strategy finds nodes 8 and 32, which are the 0.2N th and 0.8N th nodes looking from
node 1 to N (in this example, N = 40), to add the first LL. (b) The second LL (LL2)
connects node 20 with node 32 which is the common node of LL1 and LL2. (c) The third
and the fourth LLs (i.e., LL3 and LL4) select node 32 as one of the LL connecting nodes.
(d) Similarly, the fifth and the sixth LLs also find node 32 as one of the LL end points,
and thus node 32 gradually emerges as a hub node.
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nodes looking from node 1 to connect LL1. The location of LL1 is found to be valid

for the larger networks too. The nodes at 0.2N and 0.8N are called the anchor nodes.

With the greedy near-optimal LL addition strategy, new LLs are always inclined toward

one of the anchor nodes, where LL1 is connected, and this phenomenon is termed as the

long-ranged link affinity (LRA). The LRA continues in the network and one of the anchor

nodes attracts more and more LLs and thus turns out to be a hub node.

In Figure 3.3(b), it can be seen that the near-optimal addition of the second LL (LL2)

also finds node 32 as one of the LL connecting nodes. Similarly, addition of four sequen-

tial LLs are shown in Figure 3.3(c). For each LL addition (i.e., addition of LL3 and LL4),

the LRA influences the LL to select one of the anchor nodes with a substantially large

number of connections in the network. As six or more LLs are added using the greedy

near-optimal LL addition (Figure 3.3(d)), a hub node emerges at node 32 and thus the

network gradually transforms to a scale-free network. It can be observed that as more

number of LLs are added in a network with the near-optimal decision, a small-world

network gradually transforms to a scale-free network by introducing hub node(s) in the

network.

Time Complexity of Near-Optimal Algorithm

The time complexity of Algorithm 3.3 can be estimated as follows: As the APSP algo-

rithm runs in O(N2 logN) time [41], the greedy near-optimal strategy requires O(N2 ×
N2 logN) or O(N4 logN) time to add an LL in an N -node network. Therefore, when k

LLs are added sequentially with the near-optimal strategy, total computational complex-

ity becomes O(k ×N4 logN) which is much lower than the greedy optimal LL addition

strategy discussed in Algorithm 3.2.

3.3.3 Degree Distribution

The degree distribution, after the LL addition with the greedy near-optimal strategy,

for 10, 20, 30, 40, and 50 nodes STNs are shown in Figure 3.4. The plots show the P (D)

values with respect to the log(D) values, where D denotes the number of neighbor con-

nections of a node in a network, and P (D) represents the probability of nodes with de-
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gree D. It can be observed from the figure that the curves follow a power-law distribu-

tion (i.e., P (D) ∼ D−γ [5]) with the scaling exponent value γ � 1.80 [11].

100 101 102
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0.4

0.5
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Figure 3.4: The degree distribution after the addition of N
2 LLs with the greedy near-

optimal strategy in different sized STNs. The degree distribution is plotted in the semi-
log scale. The figure shows degree distribution for 10, 20, 30, 40, and 50 node networks
where it can be noticed that one of the anchor nodes is evolved as the hub node due to the
LRA phenomenon and the degree distribution follows the power-law. Hence, the near-
optimal LL addition transforms an STN to a scale-free network. The value of the scaling
exponent for the power-law degree distribution is found to be γ ≈ 1.80.

After the addition of each LL, one of the anchor nodes emerges as the node with the

largest value of the betweenness centrality (BC) [23], and the node gradually exhibits the

rich get richer principle by attracting more number of LLs. Table 3.2 shows the BC values

of the network nodes mentioned in Figure 3.3. Note that BC values of LL connected nodes

are highlighted (shown in boldface) after each LL addition in the network. From Table 3.2

it can be seen that, with the greedy near-optimal decision based LL addition, node 32 has

evolved as the hub node as new LLs are more inclined to connect to the one of the anchor

nodes (node 32 in a 40-node STN) with higher BC score.

It can be observed that the greedy decision making is one of the possible reasons be-

hind the evolution of many real-world networks. For example, a small number of airports

are directly connected to many other airports when the air traffic networks are concerned.

The identification of those few airports, which are acted as the hub nodes, are mostly based

on the greedy decision making of certain metrics such as the availability of the passengers,

minimization of the travel time, and minimization of the fuel consumption. Hence, the

evolution of a few hub nodes transforms the air-traffic network into a scale-free network.
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Further, the business supply chain management networks, the author citation networks,

and the telephone exchange networks are also some of the real-world examples where the

networks are evolved to scale-free networks by means of the greedy decision making [1].

Therefore, it can be seen from the previous discussion that the APL-optimal small-

world STNs (SWSTNs) may not be achieved with the random decision based LL addition

strategy. To achieve the APL-optimal SWSTNs, the greedy decision based LL addition

strategy can be exercised.

3.4 Length Constrained LL Addition

It can be observed from the last section that a few LLs can be added with the greedy

near-optimal decision, in a finite sized network, to achieve an APL-optimal small-world

network. However, we imposed no restriction to those cases on the length of an LL. In

this section, we study the evolution of a finite sized network when a few LLs are added

with certain imposed constraints while achieving the APL-optimal small-world network.

The term constrained LL means that the creation of an LL obeys certain rules at the time

of deployment in a network. In our study, the LLs are created with the restriction on

the maximum length. That is, for instance, with the maximum length of five hops, no

constrained LL with more than five hops is allowed to be added in a network. Note that

the minimum length of an LL is always assumed to be 2 hops.

We study the evolution of finite sized STNs as well as grid topology networks when

a set of LLs are added with the greedy near-optimal decision to minimize the network

APL. The performance of the near-optimal decision based constrained LL addition is

measured in STNs of varying sizes (ranging from 50 to 200 nodes) and grid topology

networks (ranging from 10 × 10 to 25 × 25 nodes). We add N
2

and N2

2
constrained LLs

in the context of an N -node STN and N × N node grid network. In case of an STN,

the length of a constrained LL (LLMaxLen) varies from 2 hops to N
2

hops. Conversely,

LLMaxLen2D ranges from 2 hops to N
2

hops when an N ×N grid network is concerned.

48



3.4.1 Constrained LL Addition in Finite String Topology Networks

In order to study various network characteristics, N
2

constrained LLs are added with the

greedy near-optimal strategy in an N -node STN, where N ∈ {50, 100, 150, 200}. In

the following, we study the nodal degree and the the average length of an LL after the

addition of N/2 constrained LLs in various sized STNs.

Observations on Nodal Degree

Figure 3.5 plots the maximum degree (Dmax), the second maximum degree (Dmax2), and

the third maximum degree (Dmax3) values in the context of STNs of varying sizes. The

observation is carried out to identify the gradual evolution of an STN with respect to the

varying LLMaxLen values.

It can be observed from the figure that the differences between the Dmax value and

the Dmax2 as well as the Dmax3 values are significant when the LLMaxLen value reaches

toward N
2

. As the LLMaxLen values are increasing, a certain node gradually evolves as the

hub node by attracting most of the constrained LLs in the network. The evolution results

in a scale-free network. From Section 3.3, it can also be observed that as the LLMaxLen

value reaches 0.6N , the first optimal LL in an N -node STN is always connected between

the anchor nodes situated at the 0.2N th and 0.8N th fractional locations.

However, when 0.3N < LLMaxLen < 0.4N , the Dmax and Dmax2 values have min-

imal deviation while the Dmax3 value greatly deviates from the rest. The observations

also indicate the presence of multiple hub nodes and the network behaves as a scale-free

network. Conversely, when LLMaxLen � 0.2N , the network acts similar to a small-world

network (as no hub node emerges) where the differences among the Dmax, Dmax2, and

Dmax3 values are minimal.

Average Length of a Constrained LL

Figure 3.6 shows plots of the average length of an LL (Davg) after the addition of all LLs

in an STN with different LLMaxLen values. It can be seen from the figure that the average

length of an LL is approximately 0.6×LLMaxLen. Moreover, there is a minimal change in
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the Davg value in the range 0.3N < LLMaxLen < 0.4N . This observation is valid because

the STN behaves as a small-world network when 0.3N < LLMaxLen < 0.4N .

3.4.2 Constrained LL Addition in Finite Grid Topology Networks

We also add N2

2
constrained LLs with the greedy near-optimal strategy in an N ×N grid

network where N ∈ {10, 15, 20, 25}. The maximum value of an LL in a grid network

is in the range LLMaxLen2D ∈ [2, N
2
). Note that, in case of a grid network, the maximum

value of the LLMaxLen2D value is equal to the row-size of the grid network.

Observations on Nodal Degree

Figure 3.7 shows plots of the maximum nodal degree (Dmax), the second maximum nodal

degree (Dmax2), and the third maximum nodal degree (Dmax3) after the addition of N2

2

constrained LLs.

It can be seen from the figure that the Dmax values show significant differences with

respect to the Dmax2 values when the LLMaxLen2D value approaches N2

2
. Therefore, a

certain node in a grid network gradually attracts most of the LLs and evolves as a hub

node. However, when the LLMaxLen2D value ranges between 0.3N and 0.6N , multiple

hub nodes can be evolved in the network and thus, the regular grid is gradually trans-

formed to a scale-free network. Moreover, with the LLMaxLen2D values in the range

between 2 and 0.3N , the grid network behaves as a small-world network. Note that, in

the simulation, the maximum value of the LLMaxLen2D is kept as N which is the row-size

in a grid network. This particular setting of the maximum value of the LLMaxLen2D is due

to the fact that once the LLMaxLen2D value becomes greater than the row-size in a grid

network, a certain node attracts most of the LLs and gradually transformed to a hub node.

Average Length of a Constrained LL

Figure 3.8 shows the plot of the average length of a certain LL after the addition of all LLs

in grid topology networks of varying sizes with different LLMaxLen2D values. It can be

observed that the average length of an LL is approximately 0.8 × LLMaxLen2D. Further,
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there is a minimal change in the Davg value as the LLMaxLen2D → N . This observation

can also be validated from the plot of the maximum nodal degree, in Figure 3.7, where it

can be seen that as the LLMaxLen2D value approaches the size of the row of a grid network,

a single hub node is gradually emerged.

From the above discussion on greedy near-optimal constrained LL addition in finite

sized string as well as grid networks to optimize the network APL, it can be observed that

there is a gradual transition in the network as follows: A finite sized regular network such

as a string or a grid network is gradually transformed to a small-world network with the

optimal-APL. As more LLs are introduced to the network, a few nodes in the network thus

turn out to be the hub nodes by attracting most of the LLs and, the network is gradually

transformed to a scale-free network with the potentially truncated degree distribution. The

degree distribution truncates because the network size (i.e., the total number of nodes) is

fixed, and with time, as the number of the LLs increases, the scale-free behavior gradually

fades away and the network shifts toward a fully connected mesh. It can be seen that

the evolution of a finite sized network to a fully connected network takes place in the

following manner: A regular network → a small-world network → a scale-free network

with the truncated degree distribution → a fully connected network.

3.5 Summary

In this chapter we studied the evolution of the APL-optimal small-world networks by

adding a few LLs with random as well as the greedy near-optimal decision. It was ob-

served that during the transformation of a finite sized STN of N nodes to an SWSTN, the

first LL always finds a unique location between the anchor nodes situated at the 0.2N th

and 0.8N th fractional locations. However, the random decision based LL addition could

not achieve the APL-optimal SWSTN. Moreover, we further studied the evolution of the

finite sized STNs as well as the grid topology networks by adding the length constrained

APL-optimal LLs. We observed from the simulation results that a finite sized network

evolves in the following way: A regular network → a small-world network → a scale-

free network with the truncated degree distribution → a fully connected network.
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Chapter 4

Analytical Identification of Anchor Nodes

In the last chapter, while creating a few long-ranged links (LLs) with the greedy near-

optimal decision to achieve average path length (APL) optimal small-world string topol-

ogy network (STN), it was observed that the first LL always finds an optimal location

between the 0.2N th and 0.8N th node pair in an N -node STN. We termed the fixed frac-

tional locations of the nodes as the anchor nodes because one of the nodes attracts most of

the LLs, when added with the greedy decision making, and gradually evolves as the hub

node. In this chapter we develop an analytical model to identify the fixed fractional loca-

tions of the anchor nodes in a string topology network. We also validate our observations

on the importance of the anchor nodes through exhaustive simulation study.

4.1 Existing Literature

The problem of adding new LLs to a network can be formulated as an edge addition prob-

lem for a graph [31, 42, 43, 44], where the graph models the connectivity of a network.

A graph G consists of a set of N nodes and E links1 such that a node corresponds to a

network entity, and a link represents connectivity between two entities in the network. LL

addition in order to minimize the APL has been considered in [31, 42, 43, 44].

In [31], a decentralized link addition algorithm was proposed under the assumption

that the edge-length between two neighboring nodes is related to the Euclidean distance

between the nodes. The authors of [42] obtained the edge addition algorithms which

approximately minimize the weighted network APL. The authors also observed that for

the problem of minimizing the total path length for a single source, the optimally added

links will all be incident on the source node. The authors proposed an approximation

strategy for APL minimization for a general graph, where a source node is chosen which

1We use links and edges in this chapter, and rest of this thesis, interchangeably.



is close to all other source nodes, and links are added in order to minimize the total

path length for the chosen node. In [43], constant factor approximation algorithm was

developed to identify possible edges to be added in order to minimize the network APL.

In [44], a path screening strategy was also proposed to obtain possible edges to be added.

We proposed our greedy near-optimal algorithm [11] to minimize the APL for an

N -node STN (see Chapter 3). It has been found that the time complexity to add an APL-

optimal LL with the greedy near-optimal decision is O(N4 log N) (see Section 3.3.2). It

is important that at least for certain simple graphs, which find applications in modeling a

wide variety of real-world networks, some approximations are obtained. These approx-

imations are significant since they potentially lead to good initial points for search and

optimization algorithms, which can be used for further exact optimal LL addition. The

string (linear) graph is used to model practical networks such as highway communica-

tion networks, disaster response networks, rural community networks, and tactical net-

works. For an STN, we already observed that the network after the greedy near-optimal

LL addition had a simple structure where the positions of hub nodes as a fraction of N

is approximately fixed even N is varied. Since the hub nodes anchor the optimally added

links, their identification in the initial graph is important. Figure 4.1 shows a 40-node

STN where six LLs are added to achieve APL-optimal small-world network. It can be

seen from the figure that one of the nodes, where the first optimal LL is added, gradually

attracts other optimal LLs and evolves as a hub node.

I

II
III

IV
V VI

8 14 3920 26 32 401 2

Normal Link (NL)Node ith Long-ranged Link (LLi)ior

Figure 4.1: Addition of six LLs (I to VI) to a 40-node STN to minimize the APL. It
has been seen that the optimal LL addition leads to a single hub node in the STN (see
node 32). In this figure, the hub node is shown by a dark colored filled double circle.
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4.2 Significance of Anchor Nodes

The identification of anchor nodes in an STN can serve many purposes. For example, in

a community broadband network with string topology, one of the anchor nodes can serve

as a gateway to the Internet and thus, overall data transmission time in the community

broadband network can be improved. When an ad hoc communication network is de-

ployed as part of a military communication or during an emergency response situation,

APL-optimal network can be created by adding a few LLs in the network with one of the

anchor nodes as hub node.

The identification of anchor nodes is also beneficial when vehicle-to-vehicle com-

munication in platoons [45] is concerned. In a platoon,2 the platoon controller must be

knowledgeable about the real-time positioning, vehicle speed, and overall fuel consump-

tion of other vehicles to efficiently control the transportation network. This real-time

information is transmitted to the controller over unreliable wireless channel, leading to

significant delay. By identifying the anchor nodes and, thereby, creating an LL with the

directional antenna systems, the delay can be minimized to enhance the controller accu-

racy for maintaining the platooning systems.

In social networks, where the linear ordering of nodes in a string graph could model

nodes ordered according to their addition times to the network or a hierarchy among

nodes, anchor nodes can be considered as epochs in time or places in the hierarchy to

which other nodes should attach in order to enhance the network influence. Hence, anchor

nodes play a crucial role in communication and social networks.

4.3 Identification of Anchor Nodes

In Chapter 3, while sequentially adding LLs with the greedy near-optimal decision, it was

observed that the added LLs were all incident on a single node in the network, which

behaves similar to a hub node. Moreover, it was observed that the fractional position of

2A platoon, which is a smart technology based transportation system, consists of a number of vehi-
cles equipped with sensor devices with which one vehicle can closely follow and communicate with other
vehicles.
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the hub node, that is, the node index as a fraction of N , is constant for N � 10. In

Figure 4.1, we have shown an example of a 40-node STN where six edges are added with

near-optimal strategy and we observe that node 8, that is, the 0.2N th node, becomes a

hub node (shown by a filled double circle). It was found that the first LL always connects

between the 0.2N th and the 0.8N th nodes in an N -node network. We refer to the node at

this fixed fractional position as an anchor node.

We note that the fractional positions of the anchor nodes could be obtained by finding

out the nodes on which the first optimally added link is incident. In the following, we an-

alytically identify the fixed fractional positions of the nodes by considering APL optimal

addition of the first link for a dense string network obtained in the asymptote of large N .

4.3.1 Problem Statement

We assume that G = (V, E) is a string graph where V is set of nodes, with |V| = N ,

and E is set of edges. Let nodes p1 and p2 be such that if an LL is added between p1

and p2, the graph APL is minimized. From the earlier discussion, we have that either p1

or p2 would be the anchor node. Therefore, in order to identify the anchor nodes obtained

by APL optimal addition of LLs to a string graph, it is sufficient to find out where a single

LL should be added (to identify p1 and p2) in order to minimize the graph APL.

We analytically identify the nodes p1 and p2 by considering a dense string graph. A

dense string graph is of unit diameter where infinitely large numbers of nodes are present.

Formally, a dense string graph can be obtained as a limit of a sequence of string graphs,

each with nodes (1, 2, . . . , N), as N → ∞. It can be assumed in a dense string graph

that the distance between the nodes i and i + 1, as well as the LL to be added between

nodes p1 and p2, is 1
N

. We note that as far as optimization of APL is concerned, scaling

all distances in a graph by the same quantity does not matter. The scaling which we have

chosen leads to a limit graph consists of a continuum of nodes in the interval [0, 1] (see

Figure 4.2(a)).

The single edge addition problem for this limit graph can be formulated as follows.

We assume that the LL is added between the positions p1 and p2 for the limit graph where

p1, p2 ∈ (0, 1) and p1 < p2. For the limit graph in Figure 4.2(a), suppose the shortest
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path length between nodes s and d is p (s, d). We note that p(s, d) is a function of p1

and p2. By a change of variables, p(s, d) can be written as p(s, x), where x = d−s. Then

the total path length of all shortest paths starting from s (and considering only those d to

the right of s) is
� 1−s

x=0
p(s, x)dx. Then the total path length is

� 1

s=0

� 1−s

x=0

p(s, x)dxds. (4.1)

We note that minimization of the APL for a given graph is equivalent to minimizing

the total path length. Hence, our problem is to find p∗1 and p∗2, optimal points for p1 and p2,

respectively, that minimize the total path length in Equation (4.1).

4.3.2 Anchor Nodes for a Dense String Network

We first obtain APL for the limit graph in Figure 4.2(a) as an explicit function of p1

and p2. Then we show that the minimization of APL is a convex optimization problem for

which unique optima p∗1 and p∗2 can be obtained. We analytically identify p∗1 and p∗2, and

find that they are approximately the same as that observed in the greedy near-optimal LL

addition [11].

The function p(s, x) is different depending on whether s ∈ [0, p1] , (p1, p2) , [p2, 1].

Therefore, we consider Equation (4.1) as the sum of the three integrals, S1, S2, and S3,

where each term corresponds to the integral of s in [0, p1], (p1, p2), or [p2, 1]. Each case

is discussed in the following.

Case 1:

When s ∈ [0, p1], the following subcases arise (see Figure 4.2(a)):

1. When s+ x � p1, p (s, x) = x.

2. When p1 < s+ x � p2, then

p (s, x) = min (x, p1 − s+ p2 − (s+ x))

= min (x, p1 + p2 − 2s− x) .
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1ps0 d 1x 2p

(a)

1p s0 d 1x 2p

(b)

1p0 12p s

(c)

Figure 4.2: A dense string graph obtained as the limit of a string graph with N nodes
as N → ∞ is shown in (a). APL is optimized with respect to the fractional posi-
tions p1 and p2 of the two anchor nodes where the first optimally added LL is con-
nected. The shortest path length p(s, d) is different depending upon whether s is in
[0, p1], (p1, p2), [p2, 1]. These three cases are shown in (a), (b), and (c). In (a), s
is placed at the left side of p1 (i.e., Case 1), in (b), s is in between anchor node p1 and
anchor node p2 (i.e., Case 2), and in (c), s is at the right side of p2 (i.e., Case 3).

3. When p2 < s+ x

p (s, x) = p1 − s+ (s+ x)− p2

= x+ p1 − p2.

Then we have that

S1 =

� p1

0

� 1−s

0

p(s, x)dxds, (4.2)

where
� 1−s

0
p(s, x)dx is

� p1−s

0

xdx+

� p1+p2
2

−s

p1−s

xdx+

� p2−s

p1+p2
2

−s

(p1 + p2 − 2s− x) dx+

� 1−s

p2−s

(x+ p1 − p2) dx.
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Case 2:

When s ∈ (p1, p2), there are two possibilities (see Fig. 4.2(b)) for the shortest path

p (s, x):

1. When s+ x � p2,

p (s, x) = min (x, s− p1 + p2 − (s+ x))

= min (x, p2 − p1 − x) .

2. When s+ x > p2,

p (s, x) = min (x, s− p1 + (s+ x)− p2)

= min (x, 2s+ x− p1 − p2) .

Similarly, using Equation (4.1) we get S2 as

� p2

p1

� 1−s

0

p (s, x) dxds = (4.3)

� p1+p2
2

p1

Y ds+

� p2

p1+p2
2

� p2−s

0

xdxds+

� p2

p1+p2
2

� 1−s

p2−s

xdxds,

where Y =
� p2−p1

2

0
xdx+

� p2−s
p2−p1

2

(p2 − p1 − x) dx.

Case 3:

When s ∈ [p2, 1] (see Figure 4.2(c)) we get from Equation (4.1) that

S3 =

� 1

p2

� 1−s

0

xdxds. (4.4)

Combining Equation (4.2), Equation (4.3), and Equation (4.4), we obtain that
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Therefore, our problem is to

minimize P (p1, p2) (4.6)

such that p1, p2 ∈ (0, 1),

p1 < p2.
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Figure 4.3: Objective function P (p1, p2) in the constraint set p1 < p2.
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We check whether P (p1, p2) is convex by considering the determinant of the Hessian (H)

of Equation (4.5)

det(H) =

������
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We note that P (p1, p2) is a strictly convex function (since H is positive definite) in

the constraint set and can be solved in constant time.

The optimal values of p1 and p2, that is p∗1 and p∗2, respectively, can be obtained from

Equation (4.6), as 0.2071 and 0.7929 which are unique [46]. Figure 4.3 shows 2-D con-

tour plot of the objective function P (p1, p2). From the analytical derivation, therefore,

it can be seen that the fractional positions of the anchor nodes for a dense string topol-

ogy network coincides with the observation of the greedy near-optimal strategy based

APL-optimal LL addition [11].

4.4 On the Locations of Anchor Nodes

In order to understand why the fixed fractional position of the anchor node is either

at 0.2N or 0.8N , we compare APL-optimal LL addition of an STN with that for a ring

topology network (see Figure 4.4(a)). We assume that the distance between neighboring

nodes for the ring network and that for the STN network is 1.

An APL-optimal LL can be added between the 0.25N th and 0.75N th nodes, as can be

found with the greedy near-optimal strategy, for the ring network. Now suppose the edge

between 1 and N for the ring network is removed to obtain a string network (see Fig-

ure 4.4(b)), then the nodes at which the APL-optimal LL is added is shifted from 0.25N

to 0.2N and 0.75N to 0.8N (see Figure 4.4(b)).

Table 4.1 shows the total path length (PL) experienced from different fractions of

string as shown in Figure 4.5. It can be seen from Table 4.1 that PL1−0.2N (i.e., sub-

string from node 1 to node 0.2N ) and PL0.8N−N are contributing equal fractions of the

path length (24.8% with respect to the total network path length), whereas PL0.2N−0.8N
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Figure 4.4: (a) An example ring topology of N nodes. (b) The ring topology can be
converted to an STN by removing a link.

PL1-0.2N PL0.8N-NPL0.2N-0.8N 16 2041

Figure 4.5: An example 20-node finite string topology. The fractions
of PL1−0.2N , PL0.2N−0.8N , and PL0.8N−N of an N -node network are shown in the figure
where PL is the total path length. Note that, for instance, PL1−0.2N is pointing to the
substring from node 1 to node 0.2N (in this figure, node 4).

Table 4.1
Total path length experienced by different parts of string topology networks

Sl. No. Number of Nodes PL1−0.2N PL0.2N−0.8N PL0.8N−N

1 20 660 1,340 660

2 40 5,288 10,744 5,288

3 60 17,852 36,276 17,852

4 80 42,320 86,000 42,320

5 100 82,660 167,980 82,660

fraction is contributing approximately 50.4% path length to the total path length of the

network. Since the nodes toward the extremities of the STN contribute more to the total

path length (and hence, the APL for a fixed N ), the positions of the first optimally added

LL are closer to the extremities for the case of the STN as compared to the ring network.
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4.5 Influence of the Anchor Nodes

In the last section, we analytically determined the fixed fractional locations of the anchor

nodes in an STN. We also mentioned that how the locations of the anchor nodes help

in minimizing the total path length of an STN. To further study the importance of the

anchor nodes, we perform simulation study in 30- and 40-node STNs where six LLs

are added with the following strategies: (i) With random decision (i.e., Algorithm 3.1),

(ii) with greedy near-optimal decision (i.e., Algorithm 3.3), and (iii) with the combination

of the both random and greedy near-optimal strategies. We experiment with only six

LLs because of the high time complexity of the greedy near-optimal decision based LL

addition, as discussed in Chapter 3.

4.5.1 Based on Random LL Addition

When six LLs are added based on the random decision, it can be observed that no hub

node is evolved in the network. Figure 4.6(a) shows a 40-node STN where six LLs are

added with the random decision. It can be noticed from the figure that as LLs are added to

the STN randomly, no hub node can be seen in the network. Table 4.2 also shows that the

APL deviation is approximately 48.65% from the greedy near-optimal LL addition (where

the hub node is at 0.8th). As all LLs are added randomly to the network, the random LL

addition strategy could not find any anchor node in the network. Therefore, random LL

addition fails to transform the network to a scale-free network by attracting subsequent

LLs to the anchor node and eventually transforms the anchor node to a hub node.

4.5.2 Based on Greedy Near-Optimal LL Addition

When six LLs are added with the greedy near-optimal decision, the first LL is always

connected between the anchor nodes located at the 0.2th or 0.8th fractional locations in an

STN. Figures 4.6(b) and 4.6(c) show the two situations where 0.2th and 0.8th nodes are

found out to be the hub nodes, in a 40-node STN, to achieve the APL-optimal scale-free

networks. The hub nodes are depicted in the figures as the filled circle nodes.

It can also be seen that the 0.8th node becomes the automatic choice for the hub

node (see Figure 4.6(c)). This is due to the higher betweenness centrality value [23]
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Figure 4.6: Six LLs are added, with different strategies, in an example 40-node STN.
The evolved hub node in the STN is depicted as the filled circle. All corresponding APL
values, after the addition of six LLs, are depicted in Table 4.2. (a) Six LLs are added with
the random decision and we see that no hub node is created. (b) Addition of six LLs with
the greedy near-optimal decision where node 8, that is, the 0.2th node, evolves as the hub
node. (c) Addition of six LLs with the greedy near-optimal decision where node 32, that
is, the 0.8th node, evolves as the hub node. (d) LL1 is added based on the near-optimal
decision which is followed by the random addition of five LLs. It can be observed that
no hub node is formed as the subsequent LLs addition after the first optimal LL does not
follow the objective of APL-optimal STN. (e) LL1 is added based on the near-optimal
decision and then subsequent LLs are added randomly by keeping 0.2th node, that is
node 8, as one of the LL-connecting nodes. (f) The strategy of (e) is followed by keeping
0.8th node, that is node 32, as one of the LL connecting nodes. (g) LL1 is added randomly
and then subsequent LLs are added with the greedy near-optimal decision.

of the 0.8th node than that of the 0.2th node after the addition of LL1. However, the

APL deviation is very low, as can be seen from Table 4.2, if 0.2th node is selected as

the hub node (approximately, 0.35% for the 30-node network and 0.86% for the 40-node

network).
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4.5.3 Based on Combination of Both LL Addition

We study LL addition with different combinations of random and greedy near-optimal

decisions in 30- and 40-node STNs. Figures 4.6(d) through (g) show addition of six LLs,

in a 40-node STN, with the following strategies: (i) The first LL is added based on the

greedy near-optimal strategy and the rest of LLs are added with random decision (see

Figure 4.6(d)), (ii) the first LL is added with greedy near-optimal decision and other five

LLs are added randomly by keeping the 0.2th node as one of the LL-connecting nodes (see

Figure 4.6(e)), (iii) the first LL is added with the greedy near-optimal decision and rest

of the LLs are added randomly by keeping the 0.8th node as one of the LL-connecting

nodes (see Figure 4.6(f)), and (iv) the first LL is added randomly and rest of the LLs are

added with the greedy near-optimal decision (see Figure 4.6(g)).

Table 4.2
APL values for different positions of anchor nodes in string topology networks

Total number of LLs added = 6

No. of

Nodes

Random

Addition

(20 Seed)

Near-optimal Addition

with hub node at

0.2N th

Near-optimal Addition

with hub node at

0.8N th

Optimal LL1

Remaining LLs with

Random Addition

Optimal LL1

Remaining LLs with

Random Addition

keeping hub node at

0.2N th

Optimal LL1

Remaining LLs with

Random Addition

keeping hub node at

0.8N th

Random LL1

Remaining LLs with

Near-optimal Addition

30 5.09 3.39 3.41 4.56 4.36 3.86 3.58

40 6.05 4.10 4.07 5.92 5.84 5.37 4.31

In Figure 4.6(d), LL1 is added with the greedy near-optimal decision, and the remain-

ing LLs are added randomly. It can be seen that no hub node is evolved in the 40-node

STN due to the fact that no optimality criterion was involved while adding the random

decision based LLs. Hence, anchor nodes only can attract LLs that are added with the

objectives of APL-optimal transformation in the network.

Conversely, in Figures 4.6(e) and 4.6(f), 0.2th and 0.8th nodes are selected as one of

the random LL-connecting nodes in the STN. In spite of selecting one of the anchor nodes

as the hub node, it can be seen from Table 4.2 that the APL-optimal STN is not achieved

because of the absence of greedy decision making in creating new LLs.

In Figure 4.6(g), the first LL is added randomly and the remaining five LLs are added

with the greedy near-optimal decision. It can be observed that the 0.8th node is evolved as

the hub node in the network. However, the APL deviation from the LL addition strategy
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of Figure 4.6(c) is approximately 5.93% in the 40-node STN.

From the above discussion it can be seen that to realize APL-optimal STNs, two cri-

teria have to be considered: (i) Identification of the anchor nodes, and (ii) LL addition

based on the greedy near-optimal decision making [47]. If one of the two criteria is not

present, an STN cannot be transformed to an APL-optimal small-world STN. Further,

near-optimal LL addition is also responsible for transforming one of the anchor nodes as

the hub node where most of the APL-optimal LLs are getting connected.

4.6 Summary

The locations of the anchor nodes were identified when we added LLs with the greedy

near-optimal decision in order to achieve APL-optimal small-world STNs. In this chapter,

we analytically determined the fixed fractional locations of the anchor nodes, at 0.2071

and 0.7929, in an STN. We also found, through exhaustive simulations, that identifica-

tion of anchor nodes as well as the greedy near-optimal decision based LL addition are

responsible for realizing APL-optimal small-world STNs by transforming one of the an-

chor nodes to a hub node.
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Chapter 5

Sequential Deterministic Long-Ranged Link Addition

Transforming a string topology network (STN) to an average path length (APL) opti-

mal small-world STN is highly time complex. The greedy near-optimal decision based

long-ranged link (LL) addition is not a feasible solution for faster network deployment

scenarios, such as creation of ad hoc networks for military applications and setting up

communication networks for highways or during natural calamities. In this chapter, a

heuristic strategy called sequential deterministic long-ranged link addition (SDLA) is pre-

sented. SDLA efficiently creates a set of LLs in an STN to optimize the end-to-end hop

distances between node pairs. This chapter discusses SDLA algorithm, its time com-

plexity analysis, and performance comparison from the greedy near-optimal LL addition

strategy.

5.1 Observations from Previous Study

From previous chapters we observed that the greedy near-optimal decision based LL ad-

dition transforms a finite sized STN to an APL optimal small-world STN (SWSTN). We

also noticed that the first LL is always connected to the fixed fractional locations, known

as the anchor nodes. However, the greedy near-optimal LL addition is O(k ×N4 log N)

time complex to add k APL-optimal LLs in an N -node STN. Addition of six LLs in

a 30-node STN with the near-optimal decision making (see Algorithm 3.3) is shown in

Figure 5.1.

In Figure 5.1, it can be seen that the first LL always finds its location between the

0.2N and 0.8N nodes, also known as the anchor nodes, in an N -node STN. A detailed

discussion about the anchor nodes can be found in Chapter 4. It can also be seen that

the 0.8N node evolves as a hub node where rest of the LLs are connected to achieve an

APL-optimal SWSTN. However, for a large value of N , the greedy near-optimal strategy
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Figure 5.1: The greedy near-optimal LL addition in a 30-node STN. Each LL is marked
with a Roman number. The first LL is added between node 6 (0.2N ) and node 24 (0.8N )
which are designated as the anchor nodes. It can be seen that node 24, that is, one of
the anchor nodes attracts all subsequent LLs and gradually evolves as a hub node. Only
relevant nodes are depicted in the figure.

is not a better choice when real-world deployment of new LLs are concerned. In the

following, we propose a heuristic approach named sequential deterministic long-ranged

link addition (SDLA) to efficiently add k LLs with only O(k ×N) time.

5.2 LL Addition with SDLA Heuristic

In this section we discuss SDLA based LL addition in an N node undirected and un-

weighted STN. In a real-world deployment scenario, an STN with N nodes, numbered

from 1 to N , can be routers that are positioned as static nodes in a multi-hop commu-

nication network and are capable of communicating in multi-channel mode. That is, a

set of channels can be used for creating normal links (NLs) with peer nodes, and others

are reserved for creating the LLs with distant nodes. All LLs in an STN can be formed

by either long-distant wired links or deploying highly directional antennas at the router

nodes.

We note from the last section that APL-optimal LL addition with the greedy near-

optimal strategy is highly time complex when real-time deployment of LLs is concerned.

By contrast, SDLA is a heuristic approach where a set of LLs can be added in a relatively

less time. SDLA does not search an LL location exhaustively, in order to get an APL-

optimal network, and thus overall time complexity to add an LL is reduced as compared

to the greedy near-optimal link addition approach. The SDLA heuristic is designed based

on the observations from the greedy near-optimal strategy based LL addition strategy.
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Further, the design of SDLA is also influenced by the observations on the fixed fractional

locations of anchor nodes in an STN. In the following, the SDLA algorithm is discussed

in detail.

5.2.1 The SDLA Algorithm

In order to add k LLs in an N -node STN, we propose SDLA algorithm, presented in

Algorithm 5.1. The first LL (LL1) in Algorithm 5.1 is added based on the simulation and

analytical observations [11, 46] on the locations of anchor nodes. The SDLA strategy

searches the 0.2N th and 0.8N th nodes, from node 1 in an N -node STN, to add LL1 which

involves no randomness. LL1 addition is optimal because it gives the lowest value of

APL for the SWSTN. Rest of the sequential LLs are added with the SDLA algorithm by

measuring the span distance between the two consecutive LL-node pair. In Figure 5.2,

addition of six LLs with the SDLA strategy is shown in a 30-node STN.
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Normal Link (NL)Node ith Long-ranged Link (LLi)i

6 11 2715 20 24 301 3

Figure 5.2: Six LLs are added, with SDLA algorithm, in a 30-node STN. First LL (LL1)
is always added between the 0.2N and the 0.8N nodes in an N -node STN. Here, LL1

is added between nodes 6 and 24. The 0.8N th-node, that is, node 24 evolves as the hub
node for subsequent LL addition. Rest of the LLs are added based on the maximum span
distance. Only relevant nodes are numbered and shown in the figure.

In Figure 5.3, LL1 is added between the 0.2N th and 0.8N th nodes. To add the next

LL (LL2) in the STN, the span distance, that is SDIST (j, j+1), is measured among node

pairs (1, 6), (6, 24), and (24, 30). After comparing all the span distances, SDLA divides

the maximum SDIST into two equal parts in order to select the mid-node between jth and

(j+1)th LL-nodes as shown in Figure 5.3. It can be seen that the span distance of (6, 24)

is the maximum, therefore, to create next LL in the STN, the mid-node, that is node 15,

is connected to H . The SDIST estimation is explained in the following.
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Algorithm 5.1 Sequential Deterministic LL Addition
Require:

G = (V , E) — A network graph of V nodes and E edges
k — Number of long-ranged links (LLs) to be added in G
(u, v) — A link between node u and node v
H — The hub node
SNLL(i) — Source node ID for ith LL
DNLL(i) — Destination node ID for ith LL
SDIST(j, j+ 1) — Span Distance between jth LL-node and (j + 1)th LL-node

1: for i = 1 → k do
2: if i = 1 then
3: SNLL(1) ← �0.2×N�th Node
4: DNLL(1) ← �0.8×N�th Node
5: H ← DNLL(1)

6: (u, v) ← (SNLL(1), H)
7: E ← E ∪ (u, v)
8: else
9: for j = 1 → (N − 1) do

10: Find jth and (j + 1)th node pair in G such that
11: SDIST(j, j+ 1) is the maximum
12: if More than one maximum SDIST occurs then
13: Select the maximum SDIST looking from node 1
14: end if
15: end for
16: SNLL(i) ←

�
SNLL(j)+SNLL(j+1)

2

�th
Node

17: DNLL(i) ← H
18: (u, v) ← (SNLL(i), DNLL(i))
19: E ← E ∪ (u, v)
20: end if
21: end for

To add rest of the LLs (after LL1) in an STN, 0.8N th node is considered as the hub

node and denoted as H . SDLA calculates the maximum span distance by measuring

SDIST (j, j+1) to determine the next location of LL addition. SDIST is measured as hop-

distance between jth LL-node and (j + 1)th LL-node. Here, jth and (j + 1)th LL-nodes

in SDIST is determined by either of the following methods:

1. jth LL-node and (j + 1)th LL-node are consecutive nodes in an STN with different

LL connections. Here, jth node is counted from node 1.

2. One of the nodes in jth and (j + 1)th node pair is the extreme node without an
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Figure 5.3: Determination of the span distance is explained in a 30-node STN. The
first LL (LL1) is added between nodes 6 and 24. The fractional location of LL1 is al-
ways found to be fixed for different sized STNs. The 0.8N th node (in this example,
node 24) is designated as the hub node where subsequent LLs are incident. To add
the next LL, as shown in the figure, the span distance (SDIST ) is calculated among
{(1, 6), (6, 24), (24, 30)}. As SDIST (6, 24) is the largest, it is divided into two
equal parts and LL2 is added between the mid-node of the partitions (here, node 15) and
the hub node. Subsequent LLs can also be added using the same strategy. Only relevant
nodes are numbered and shown in this figure.

LL (either node 1 or node N ), and the other node is the nearest LL connecting node

in the STN.

In Figure 5.2, LL2 to LL6 are added by estimating the maximum span distance. How-

ever, the locations of LLs with SDLA strategy differ from the LL-locations that are found

with the near-optimal strategy (see Figure 5.1). This deviation of LL-locations creates

only negligible differences in the network properties.

Time Complexity of SDLA Algorithm

The time complexity to add k LLs with the SDLA strategy can be estimated as follows:

The first LL is added to an N -node STN in O(1) time. This is due to the fact that LL1 is

always connected between the anchor nodes, that is, the 0.2N th and 0.8N th nodes. Rest

of the LLs can be added based on the determination of the maximum span distance which

can be evaluated in O(N) time. Therefore, an LL can be added in O(1)+O(N) or O(N)

time. Hence, to add k LLs SDLA strategy takes only O(k ×N) time.
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5.3 Performance Analysis of SDLA Algorithm

To understand the network performance after the addition of a few LLs with SDLA, we

simulate STNs with varying nodes from 20 to 100. We also compare the performances of

SDLA based LL addition and the greedy near-optimal strategy based LL addition in order

to quantitatively estimate the efficiency of SDLA to transform an STN to an APL-optimal

STN.

5.3.1 Average Path Length Reduction with SDLA

Figure 5.4 shows the APL values, after the addition of six LLs in STNs of varying sizes,

with the following strategies: (i) APL values of STNs without LL, (ii) with the random LL

addition, (iii) with the near-optimal LL addition, and (iv) with SDLA. It can be seen that

the APL value for 100-node STN increases above 30, whereas the random LL addition

brings down the APL value nearly to 13. However, the near-optimal and SDLA strategies

perform very closely and further bring down the APL about 8.10 to 8.40.

0

5

10

15

20

25

30

35

40

45

20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

A
ve

ra
ge

P
at

h
Le

ng
th

(A
P

L)

R
el

at
iv

e
%

D
ev

ia
ti
on

of
SD

LA
fr

om
N

ea
r-

O
pt

im
al

Number of Nodes

APL (Without LL)
APL (Random LL Addition)
APL (Near-Optimal LL Addition)
APL (SDLA)
Rel. % Dev. of SDLA from Near-Optimal

Figure 5.4: Variation of the APL values are shown for different sized STNs for the
following cases: (i) APL value before the LL addition, (ii) with the random LL ad-
dition (Algorithm 3.1), (iii) with the near-optimal LL addition (Algorithm 3.3), and
(iv) with SDLA (Algorithm 5.1). The relative percentage deviation of the APL values
of SDLA from the near-optimal LL addition strategy is also shown in the right Y axis.
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From the right Y-axis of Figure 5.4, it can be seen that the relative percentage de-

viation of the APL value, obtained with the SDLA algorithm, is within 6.50% from the

near-optimal LL addition algorithm. SDLA allows LL creation in a deterministic man-

ner, thereby, eliminating the random decision based LL addition approach that performs

poorly. Further, SDLA is O(k ×N) time complex than O(N2k+2 log N) for the optimal

LL addition and O(k×N4 log N) for the near-optimal LL addition strategies (see Chap-

ter 3), when k LLs are to be added in an N -node STN. The SDLA algorithm is efficient

in terms of the time complexity and also deviates negligibly from the near-optimal based

LL addition when the objective is to achieve an APL-optimal STN.

Table 5.1
The APL value is calculated in a 50-node STN after the addition of 5, 10, 15, 20, and 25
LLs with the following strategies: (i) random LL addition, (ii) near-optimal LL addition,
and (iii) SDLA. It can be seen from the table that the near-optimal and SDLA based LL
addition strategies outperform the random LL addition strategy. The percentage deviation
of the APL values with SDLA is below 10% (from the table, the maximum deviation is
6.17% with five LLs) from the near-optimal strategy.

Total

Number of

Added LLs

Random LL

Addition

Near-

Optimal LL

Addition

SDLA % Deviation of

SDLA from

Near-Optimal

5 8.21 5.50 5.84 6.17

10 6.10 3.90 4.13 6.06

15 4.82 3.25 3.33 2.49

20 4.35 2.90 2.99 2.89

25 3.91 2.72 2.81 3.24

Table 5.1 demonstrates an example scenario for a 50-node STN, where the APL values

are tabulated after various numbers of LL addition with the following strategies: (i) with

the random LL addition (all values averaged over 20 seeds), (ii) with the near-optimal LL

addition, and (iii) with SDLA strategies. It can be seen from the table that the maximum

relative percentage deviation of SDLA from the near-optimal algorithm is 6.17%, whereas

the APL values with the random LL addition significantly deviates from the APL values

with the near-optimal and SDLA strategies.
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5.3.2 Average Clustering Coefficient and Centrality Measures

Average clustering coefficient (ACC) reveals the local connectivity properties of a net-

work (for a detailed discussion on ACC, see Section 2.2.2). As an STN is a sparse net-

work, there is no noticeable variations in the ACC value after the addition of six LLs

with the near-optimal and SDLA based LL addition strategies [48]. However, there is a

significant change in the centrality measures [23].

Centrality in a network measures the importance of each node. Network central-

ity (or graph centrality), on the other hand, indexes the tendency of a node to be more

central than other nodes. Measure of various graph centralities, such as graph degree

centrality (GCDC), graph closeness centrality (GCCC), and graph betweenness central-

ity (GCBC), give measure of compactness index. All graph centrality values reflect the

dominance of a single node with the maximum centrality measure (see Section 2.2.6 for

more details on graph centrality).

Table 5.2 shows three centrality measures, (i) with no LL, (ii) with the near-optimal

LL addition, and (iii) with SDLA, where the network sizes are varied from 20 nodes to 100

nodes. In the case of 20-node, the deviation of all centrality values with SDLA is high

from the near-optimal strategy. In all centrality measures, with the first LL connected in

the network, the maximum centrality point [23] is shifted to the hub node which gradually

dominates future network evolution by attracting most of the LLs. Therefore, the graph

centrality measures for greedy near-optimal and SDLA based strategies are higher com-

pared to the graph centrality values when no LLs are added. Furthermore, it can be seen

that the graph centrality values for SDLA (shown in boldface) is comparable to the values

obtained from the greedy near-optimal strategy based LL addition. Hence, it can be ob-

served from Table 5.2 that overall performance of the evolved network with SDLA based

LL addition strategy is comparable to the exhaustive search based greedy near-optimal

LL addition.
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5.4 Observations and Discussion

SDLA is an efficient LL addition strategy which can be deployed for network topology

design in time critical situations, such as emergency response scenarios and ad hoc de-

ployment of military communication networks. In particular, the APL value reduction

with SDLA is deviating less than 10% in our experimental cases, from the near-optimal

LL addition strategy. The time complexity of executing SDLA is only O(k×N) to add k

LLs in an N -node STN. By contrast, the near-optimal decision based LL addition strategy

is O(k×N4 log N) time complex, and is not a feasible solution when the size of an STN

is very large. Due to the reduced time complexity, SDLA is a better choice for deploying

a few LLs in a time critical scenario.

The main concern about SDLA strategy is the traffic fairness issue, as the 0.8N th

node (the hub node) has to handle higher data traffic. This observation is evident from

the point betweenness centrality value of the hub node where most of the traffic in the

network is processed. However, in a practical deployment scenario, data carrying capacity

of the 0.8N th node can be improved easily, because, the exact location of the node in

the network is known. By keeping sufficient energy and computing resources at the hub

node, overall performance of the network can be enhanced with minimal deployment time

complexity. For example, in a military ad hoc STN, the hub node can be a vehicular node

capable of carrying many radio/network transceivers and better energy sources.

5.5 Summary

This chapter proposed an efficient LL addition heuristic, sequential deterministic LL ad-

dition (SDLA), which can be beneficial for deployment of few LLs in a real-world STN.

The SDLA strategy achieves significantly reduced time complexity compared to the near-

optimal decision based LL addition strategy. In particular, the complexity of the SDLA

algorithm is far superior with O(k × N) time than the near-optimal algorithm that takes

O(k × N4 logN) time. Further, the APL deviation with SDLA from the near-optimal

strategy is also negligible. SDLA can help efficient design and deployment of mod-

erate sized SWSTNs for applications, such as community computer networks, tactical

networks, and emergency response networks.
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Chapter 6

Optimal Link Addition in Wireless Sensor Networks

This chapter discusses a real-world application in the context of average path length (APL)-

optimal long-ranged link (LL) addition in wireless sensor networks (WSNs). WSNs

consist of power constrained sensor nodes that collect raw-data from surveillance and

security applications. Sensor nodes are required to send the collected data to the base sta-

tions (BSs) using multi-hop relaying for further processing. In many applications, there

exists a strict delay deadline on the transfer of data. Addition of a few LLs, that directly

connect some sensor nodes to a BS, can achieve small-world properties and, thereby,

reduce the delay of transfer to the BS with a corresponding tradeoff in increased trans-

mission power for the LLs. In this chapter, we characterize this tradeoff for the string or

linear topology sensor network. We also analytically determine the approximate optimal

locations of a single LL as well as two LLs, that can be deployed to the BS in order to

achieve the APL to the BS (APLB)-optimal WSNs.

6.1 Existing Literature

WSNs are low-powered, low-cost, power constrained [49] multi-hop wireless relaying

networks [50], which are densely deployed for military and wildlife surveillance, habitat

monitoring, health monitoring of patients, geological surveying, and smart home applica-

tions. The WSN nodes are required to collect and transfer data using multi-hop relaying

to a BS under latency constraints. Designing a multi-hop network topology for achieving

such latency requirements is challenging and is the motivation for pursuing this piece of

work.

In [51], it has been shown that the quality of service requirements on the end-to-

end latency in multi-hop networks under low traffic load is equivalent to upper bound

constraints on the hop-distance between nodes and the BS. Motivated by this, we consider



the problem of minimizing the APLB, of the WSN nodes, by adding a few LLs to an initial

topology of the WSN. However, there also exists transmission power cost over an LL and

the APLB has to be traded off with the power cost. We also note that addition of LLs to

the network can be viewed as transforming a WSN to a small-world WSN (SWWSN) [1,

2, 3, 4, 32] with the characteristics, such as improved network robustness and reliability,

reduction in transmission packet loss, and better routing capability.

Existing approaches to achieve SWWSNs can be classified into two categories: (i) wired

LL based approaches, and (ii) wireless LL based approaches. In a large sensor field, with

either stationary sensors or sensors with limited mobility, wired LL based approach is a

reliable method to create an SWWSN [52]. Conversely, wireless LL based approaches

are classified into two categories: (i) heterogeneous SWWSNs and (ii) homogeneous

SWWSNs.

Heterogeneous SWWSNs [53, 54, 55] have certain WSN nodes that are more capa-

ble than the rest of the WSN nodes to form the LLs. In homogeneous SWWSNs [56],

each WSN node is expected to have LL realization capability. Another classification of

wireless LLs is based on the physical or virtual nature of the LLs that are formed in

an SWWSN [57]. In certain SWWSNs, a physical wireless LL may be formed, and in

the rest, a virtual wireless LL may be formed. One example to form a virtual LL based

SWWSNs is by using unmanned aerial vehicles, to realize temporary periodic or aperiodic

LLs, for creating backbones for gathering data. There exists limited literature on deter-

ministic addition of LLs to transform a WSN to a performance optimized SWWSN (a

detailed discussion on the existing deterministic LL addition strategies can be found in

Section 3.1.2).

To the best of our knowledge, there exists no analytical approach to identify the lo-

cations at which an LL should be added in a WSN to achieve an APL-optimal SWSWN.

In this chapter, we analytically identify the optimal locations of a single and two con-

current optimal LLs in a string topology WSN to optimally tradeoff the APLB value and

the transmission power in the network.1 We consider the case of a single BS where all

sensor nodes send raw-data over the multi-hop relaying. Our finding leads to the fast LL

1Note that our analytical approach is equally applicable when more than two optimal LLs are concerned.
However, in this thesis, we restrict our observations only up to two optimal LLs.
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deployment algorithms to obtain network topologies with reduced APLB. Achieving the

same objective with the exhaustive network simulation has high time complexity [46] and

is not a feasible solution for real-world implementation.

6.2 System Model and Link Addition Problem

We consider an N -node WSN, with the nodes indexed by (1, 2, . . . , N). The nodes are

assumed to have a linear topology, so that the ith node transmits to the (i+1)th node and so

on. The N th node is considered to be the BS to which all other nodes are sending data via

multi-hop relaying. We also assume that the distance between the ith and (i+ 1)th nodes

is unity. In many real-world scenarios the WSN can be deployed in a linear topology, such

as along a highway with uniform distance between the nodes. Since we are interested in

the number of hops as a distance measure, such an assumption is reasonable. The APLB

of a string topology WSN can be estimated as follows:

1

N

N−1�

i=0

d(i, N), (6.1)

where d(i, N) is the length of the shortest path between node i and the BS positioned at

the N th fractional location in an N -node string topology WSN. We assume that LLs can

be added between M pairs of nodes in (1, 2, . . . , N) so as to reduce the APLB. When LLs

are added, the APLB reduces since d(i, N) reduces for some set of nodes i. However,

when such links are added then there is additional transmission power that needs to be

expended.

Suppose an LL is added between nodes i and j in a linear topology WSN. We model

the power expended as being proportional to the square of the distance between the two

nodes, that is, the excess power expended in transmission over the LL is K(i − j)2,

where K is a positive constant (accounting for the path-loss; fast fading is not considered

since the sensors and environment are assumed to be stationary). We assume that the

transmitted power is 10 dBm for a 10-hop LL, so that K is 0.1 for a received power level

of –20 dBm leading to a bit error rate (BER) of 10−3 when the binary frequency shift

keying (BFSK) modulation is used. The LL addition problem that we consider here is to
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optimally add M LLs to an STN so as to minimize the APLB values subject to a constraint

on the excess power in transmission over the LLs. We consider the problem of adding M

LLs so as to minimize

N−1�

i=0

d(i, N) + λK
M�

m=1

(im − jm)
2 (6.2)

where the mth LL is added from im to jm and λ is interpreted as a positive Lagrange

multiplier (we consider λK � λ). We note that instead of APLB, the total path length

term can be considered since N is fixed. The total path length term does not have a closed-

form expression in terms of the decisions, that is, the locations im and jm, and hence, the

optimization problem of Equation (6.2) is not in an easily solvable form. We propose an

approach which obtains an approximate closed-form expression for the total path length

in terms of the decisions im and jm using a dense graph approximation. The optimization

problem of Equation (6.2) then becomes more amenable to an analytical solution. We

present approximate solutions for the case where M=1 and M=2.

6.3 A Dense Graph Approximation: Analytical Solution

We obtain an N -node dense string graph as a limit of a sequence of string graphs, each

with nodes (1, 2, . . . , N), as N → ∞. We assume that the distance between the nodes i

and i+1, as well as the link to be added between p1 and p2 is 1
N

. We note that as far as the

optimization of APL is concerned, scaling all distances in a graph by the same quantity

does not matter. The scaling which we have chosen leads to a limit graph consists of a

continuum of nodes in the interval [0, 1]. Suppose dsp(s) is the shortest path length of a

node at position s to the BS. The total path length fsp for the limit graph is
� 1

0
dsp(s)ds.

We also note that dsp(s) changes according to the number and positions of the added LLs.

We explicitly obtain dsp(s) for two cases below.
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1
ps0 12

p BSs s2 31

Figure 6.1: A single long-ranged link is optimally added in a string topology wireless
sensor network to minimize the objective function in Equation (6.2). There are three
cases, based on the location of a source node s (i.e., s1, s2, and s3), [0, p1], (p1, p2),
and [p2, 1] to estimate the shortest path toward the base station.

6.3.1 Case where M=1

Here, we consider the case where only a single LL is added. The LL is added between

the nodes at positions p1 and p2 (see Figure 6.1) for the dense limit graph. The total path

length is a function of p1 and p2 and is denoted as fsp(p1, p2) =
� 1

0
dsp(s)ds. It can be

seen that dsp(s) depends on whether s is in [0, p1], (p1, p2), or in [p2, 1]. If s ∈ [0, p1],

the shortest path from s to 1 is s to p1, then via the LL (p1, p2) and then p2 to 1. Therefore,

dsp(s) = p1 − s + 1 − p2. If s ∈ [p1, p2], then dsp(s) = min(s − p1 + 1 − p2, 1 − s).

With the similar approaches, we obtain that

dsp(s) =





p1 − s+ 1− p2 if s ∈ [0, p1] ,

s− p1 + 1− p2 if s ∈
�
p1,

p1+p2
2

�
,

1− s if s ∈
�
p1+p2

2
, p2

� �
[p2, 1] .

Since fsp(p1, p2) =
� 1

0
dsp(s)ds, substituting the above expressions for dsp(s) we obtain

that

fsp (p1, p2) =
3

4
p21 −

1

2
p1p2 −

1

4
p22 +

1

2
. (6.3)

The power required for transmitting over the LL is

fe(p1, p2) = λ(p2 − p1)
2. (6.4)
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Therefore, the objective function f(p1, p2) to be minimized for the dense graph is

f(p1, p2) = fsp(p1, p2) + fe(p1, p2), (6.5)

and our problem is to

minimize f(p1, p2) (6.6)

such that p1, p2 ∈ (0, 1),

p1 < p2.

Equation (6.6) has no extrema for (p1, p2) in the interior of the constraint set. There-

fore, any minima is on the boundary of the constraint region. We note that there exist

different possibilities as shown in Figure 6.2.

1
p0 12

p BS

Scenario I Scenario II

Figure 6.2: Two scenarios to add an optimal long-raged link: (i) (first node, p2) and
(ii) (p1, BS).

In Figure 6.2, two possible cases are shown: (i) an LL is connected between the first

node and p2, or (ii) the LL is added between p1 and the BS. To find the optimal location

of the first LL, we need to consider each scenario, as depicted in Figure 6.2, separately as

described in the following.

Scenario I: LL between (first node, p2)

We first consider the case where the LL is added between the first node and p2 (see Sce-

nario I in Figure 6.2). Then we have that dsp(s) depends on whether s ∈ [0, p2) or [p2, 1].

Proceeding as before we obtain that

fsp (p2) =
1

2
− 1

4
p22. (6.7)
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By considering the power term, we have that

f (p2) =
1

2
− 1

4
p22 + λp22. (6.8)

If λ � 1
4
, the optimal value of p2 is identified to be 0 and hence, f(p2) � 1

2
. By contrast,

if 0 � λ < 1
4
, the optimal value of p2 becomes 1 and f(p2) � 1

4
+ λ.

Scenario II: LL between (p1, BS)

We again consider the case where the LL is added between p1 and the BS (see Scenario II

in Figure 6.2) where the BS which is situated at the N th location in an N node string

WSN (p2 = 1). The evaluation of dsp(s) depends on whether s ∈ [0, p1) or [p1, 1].

Proceeding as before, we obtain that

fsp (p1) =
1

4
(p1 − 1)2 +

1

2
p21. (6.9)

Similarly, by considering the power expression, we have that

f (p1) =
1

4
(p1 − 1)2 +

1

2
p21 + λ(1− p1)

2. (6.10)

Since d2f(p1)

dp21
� 0 for all p1, it is clear that the optimal value of p∗1 minimizing f(p1) is

p∗1 =
1 + 4λ

3 + 4λ
. (6.11)

The minimum value of f(p1) is 1+4λ
2(3+4λ)

. Note that for any value of λ, f(p1) < f(p2).

The optimal location of a single LL is always between (p∗1, BS). When there is no power

constraint, that is, λ = 0, p∗1 is identified at 0.33 for the dense limit graph. The approx-

imate solution to Equation (6.2) is that the first LL to be added between nodes n and N

such that n
N

≈ 0.33. We compare our approximate solution (with λ = 0) to the solu-

tion obtained by the greedy optimal search in Table 6.1. The greedy optimal LL addition

strategy tries all possible locations of i1 and j1 in a string graph for a given N , that is,
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min
i1∈{1, 2,..., N−1}
j1∈{i1+1,..., N}

�
N−1�

i=0

d(i, N) + λ(i1 − j1)
2

�
,

in order to obtain the minima. We find that our approximate solution yields the same value

of APLB for a number of values of N (the mismatch in the location depends on how n,

such that n
N

≈ 0.33, is chosen). Assumptions that are considered for simulation of the

greedy optimal decision based LL addition are as follows: An N -node STN is taken and

the N th node is assumed to be the BS. An optimal LL is then added between a node pair

based on the greedy optimal LL addition algorithm (see Algorithm 3.2 in Section 3.3.1).

Note that we show, in Table 6.1, the APLB value after a single LL addition with the

approximate solution as well as with the greedy optimal LL addition strategy. We observe

from the table that our approximate solution efficiently finds optimal location of a single

LL in the string topology SWWSN.

Table 6.1
Location of a single optimal long-ranged link: analytical and simulation observations.
Note that we consider no power constraint (λ = 0) in this observation.

No. of Nodes
Analytical Observations Simulation Observations
Location of
Single LL

APLB Location of
Single LL

APLB

10 (4, 10) 2.33 (3, 10) 2.33
20 (7, 20) 4.00 (6, 20) 4.00
30 (10, 30) 5.66 (10, 30) 5.66
40 (14, 40) 7.33 (13, 40) 7.33
50 (17, 50) 9.00 (16, 50) 9.00

Tradeoff of APLB with Power

The location of LL for M=1 with one end at the BS, are functions of λ which is the weight

factor for the LL transmission power. There exists a natural tradeoff between the APLB

values and the amount of transmission power which can be obtained by varying λ. From

Equation (6.4) we have that the length of an LL is directly proportional to the required
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transmission power to deliver a data packet. To minimize the transmission power, the

length of an LL should be small. Conversely, to minimize the end-to-end hop distance be-

tween a sensor node and the BS, APLB has to be reduced, and thus, the LL length should

be large. This tradeoff in APLB and transmission power is shown in Figure 6.3. For

calculating the transmission power, we assume a minimum received power of –20 dBm

for a BER of 10−3 (with BFSK) at the BS [58]. The approximate solution is estimated

by identifying the LL locations, with varying λ, from analytical solution and then di-

rectly provide the LL locations to the simulation experiment. It can be observed from the

figure that the tradeoff curve achieves through the analytical solution always shows the

lower bound responses. We also observe that the tradeoff curves of the simulation and

the approximate solutions are exactly matching for different values of N . Further, from

Figure 6.3, it can be observed that one end of the relative fractional locations of a single

LL is moving toward the BS when minimizing the transmission power is concerned.

0 2 4 6 8 10 12

Transmission Power with different λ (in milliwatt)

6

8

10

12

14

16

A
P
L
B

Simulation: 40 Nodes
Analytical: 40 Nodes
Approximation: 40 Nodes
Simulation: 50 Nodes
Analytical: 50 Nodes
Approximation: 50 Nodes

Figure 6.3: Tradeoff of APLB and the transmission power, for 40- and 50-node string
topology wireless sensor networks (see legends), with a single optimal LL (M=1): Min-
imum received power is assumed to be –20 dBm and BFSK modulation with minimum
BER of 10−3, where λ ranges from 0 to 1.

6.3.2 Case where M=2

We consider the case for M=2, that is, two LLs are added to the string topology WSN. In

order to obtain the locations analytically, we make a simplifying assumption that one end

of both the LLs are connected to the BS. The theoretical motivation for this simplification
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is that for M=1 we have obtained that one end of the single LL is connected to the BS.

We also note that in practical scenarios, the BS in a WSN can be equipped with more

energy resources and higher computing power. It is reasonable to have the LLs connected

to the BS.

We assume that the two optimal LLs are connected between (p1, BS) and (p2, BS),

where p1 < p2. Note that this assumption is only needed to analytically identify the LL

connecting locations in the limit graph. The shortest path is again a function of p1 and p2,

that is, fsp(p1, p2) =
� 1

0
dsp(s)ds, and dsp(s) can be obtained based on the location of s

in [0, p1], (p1, p2), or [p2, 1] as follows:

dsp(s) =





p1 − s if s ∈ [0, p1] ,

s− p1 if s ∈
�
p1,

p1+p2
2

�
,

p2 − s if s ∈
�
p1+p2

2
, p2

�
,

s− p2 if s ∈
�
p2,

p2+1
2

�
,

1− s if s ∈
�
p2+1
2

, 1
�
.

Using the method similar to Section 6.3.1, we get that

fsp (p1, p2) =
1

2
p21 +

1

4
(p1 − p2)

2 +
1

4
(p2 − 1)2 . (6.12)

Therefore, after adding the power optimization terms, we get that

f (p1, p2) =
1

2
p21 +

1

4
(p1 − p2)

2 +
1

4
(p2 − 1)2 + (6.13)

λ(1− p1)
2 + λ(1− p2)

2.

We check whether f(p1, p2) is convex by considering the determinant of the Hessian (H)

of Equation (6.13)

det(H) =

������




3
2
+ 2λ −1

2

−1
2

1 + 2λ



������
� 0.

90



Since H is positive definite, Equation (6.13) is strictly convex and if p∗1 ∈ [0, 1] and

p∗2 ∈ [0, 1] can be found satisfying ∂f(p1,p2)
∂p1

= 0 and ∂f(p1, p2)
∂p2

= 0, then p∗1 and p∗2 are the

minima. We obtain that

p∗1 =
2λ+ 0.5p2
1.5 + 2λ

, (6.14)

p∗2 =
(0.5 + 2λ)(3 + λ) + 2λ

(1 + 2λ)(3 + λ)− 0.5
,

and the minimum value of f(p1, p2) is

512λ6 + 3840λ5 + 10112λ4 + 10136λ3 + 4321λ2 + 744λ+ 90

4(16λ3 + 68λ2 + 62λ+ 15)2
.

Table 6.2
Locations of two optimal long-ranged links: analytical and simulation observations. Note
that we consider no power constraint (λ = 0) in this observation.

No. of Nodes
Analytical Observations Simulation Observations
Locations Two

LLs
APLB Locations of

Two LLs
APLB

10 (2, 10), (6, 10) 1.78 (2, 10), (5, 10) 1.78
20 (4, 20), (12, 20) 2.79 (4, 20), (11, 20) 2.79
30 (6, 30), (18, 30) 3.79 (6, 30), (17, 30) 3.79
40 (8, 40), (24, 40) 4.79 (8, 40), (23, 40) 4.79
50 (10, 50), (30, 50) 5.80 (10, 50), (29, 50) 5.80

If λ = 0, then p∗1 and p∗2 are 0.2 and 0.6, respectively. For N -node graph, we add two

LLs (n1, N) and (n2, N) such that n1

N
≈ 0.2 and n2

N
≈ 0.6. A similar procedure can be

used for any λ. We compare our approximate solution for M=2, with no power constraint,

to the solution obtained by the greedy optimal LL addition strategy in Table 6.2. We find

that the approximate solution yields the same value of APLB for different values of N .

Tradeoff of APLB with Power

The locations of the LLs for M=2 with one end at the BS, are also functions of λ. The

tradeoff in the APLB and transmission power, with M=2, is shown in Figure 6.4. To cal-

culate the transmission power, similarly as M=1, we assume a minimum received power

of –20 dBm for a BER of 10−3 (with BFSK) at the BS. It can be seen from Figure 6.4 that
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Figure 6.4: Tradeoff of APLB and the transmission power, for 40- and 50-node string
topology wireless sensor networks (see legends), with the two optimal LLs (M=2): Min-
imum received power is assumed to be –20 dBm and BFSK modulation with minimum
BER of 10−3, where λ ranges from 0 to 1.

the tradeoff curve achieved through the analytical solution always shows the lower bound

responses. Further, it can also be observed that the tradeoff curves of the simulation and

approximate solutions are within 10% for different values of N . Moreover, similarly as

M=1, the relative fractional locations of one end of the optimal LLs are also changing (by

keeping other end fixed at the BS) with different values of transmission power.

6.4 Summary

In this chapter we analytically determined the approximate locations of a single and two

optimal LLs when the BS of a WSN is situated at one end in a finite sized STN. We

observed that one end of an optimal LL is always connected to the BS. Such an addition

is feasible as the BS can be equipped with more energy resources and computing power.

The optimal fractional locations of a single LL is (0.33, BS) and two LLs are (0.2, BS)

and (0.6, BS) when there is no constraint on the transmission power. The effect of

increase in the transmission power is also studied after the addition of a single or two LLs.

The design of an APL-optimal SWWSN is beneficial for the efficient data transmission

and enhancing the longevity of the sensor nodes.
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Chapter 7

Achieving Capacity-Enhanced Small-World Networks

Until now, we considered deterministic LL addition to minimize the end-to-end hop dis-

tance in a network and to incorporate small-world characteristics. However, a real-world

network, whether it is communication or transportation, can suffer from degradation in av-

erage network flow capacity (ANFC) due to the presence of one or more bottleneck nodes.

In this chapter, an exhaustive search based LL addition algorithm, maximum flow capac-

ity (MaxCap), which deterministically maximizes ANFC based on the maximum flow

between node pairs in the context of weighted undirected networks is presented. Further,

based on the observations from MaxCap, an LL addition heuristic, average flow capac-

ity enhancement using small-world characteristics (ACES), which significantly enhances

ANFC and the length-type product (LTP) of a link in a weighted undirected network is

proposed. The chapter discusses performance of ACES through exhaustive simulations on

various arbitrary and real-world road networks. Further, we compare MaxCap and ACES

performances, with existing deterministic LL addition strategies such as near-optimal-,

maximum betweenness centrality-, and maximum closeness centrality based LL addition,

in the context of maximizing ANFC values.

7.1 Existing Literature

Network flow capacity (NFC),1 which is defined as the maximum amount of information

or the highest number of objects (e.g., vehicles) that can be transmitted (or transported)

over a network in unit time, is one of the most critical parameters while designing an

efficient communication or transportation network. However, a network with large end-

to-end hop distance (EHD) results in higher transmission delay due to the presence of

several intermediate bottleneck nodes. Deploying a few LLs can efficiently reduce EHDs

1In this chapter, network flow capacity and network capacity are used interchangeably.



in a regular network and thus, overall flow capacity of the network can be improved.

With the creation of a few LLs, a regular network is gradually transformed to a small-

world (SW) network [2, 3]. The SW characteristics in a network can be defined by lower

average path length (APL) along with low to moderate value of average clustering coeffi-

cient (ACC) [30].

There exist many real-world scenarios, such as road networks, communication net-

works, and transportation networks where NFC is one of the crucial parameters. For

example, a few flyovers can be constructed in road networks [59] to avoid traffic conges-

tion. However, without proper identification of the flyover locations, a road network may

not get benefited, when traffic fairness and flow capacity enhancement are concerned.

To the best of our knowledge, NFC enhancement has been considered only in a hand-

ful of literature. In [60], authors considered data model as well as graph model for design-

ing an efficient hierarchical road network in order to better organize the route planning

in vehicle navigation system. Here, data model represents hierarchical road networks

and graph model mimics multi-layered model of road networks. On the other hand, au-

thors in [61] developed a hierarchical community detection algorithm which incorporates

within-community as well as between-community routing strategies, and also supports

effective route computation on large road networks.

In [62], based on the cell transmission model of freeway traffic flow, a macroscopic

traffic flow model was developed to analyze dynamical systems in the context of equilib-

rium flow and convergence. Furthermore, based on the observations, authors proposed

an optimal ramp metering strategy to maximize network throughput. In [63], a vehi-

cle rerouting strategy was discussed to avoid congestion due to some unexpected events

such as road accidents. Moreover, the proposed strategy helps in achieving average lower

travel time while guaranteeing higher travel time reliability when rerouting in a congested

network is concerned. Recently, authors in [64] proposed a set of strategies to identify

optimal locations of check-in nodes (where services such as refueling can be carried out)

in a real-world road network to maximize overall profit in the network.

It can be seen that none of the existing literature implements the small-world charac-

teristics to enhance the NFC value. We propose an exhaustive search based LL addition
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algorithm, maximum flow capacity (MaxCap), to deterministically maximize the average

NFC (ANFC) of a weighted undirected network2 that cannot be achieved with existing

random and deterministic LL addition strategies. Moreover, based on the observations

from MaxCap based LL addition algorithm, we propose a heuristic, average flow capac-

ity enhancement using small-world characteristics (ACES), which transforms a regular

network to a capacity-enhanced small-world network by adding a few LLs.

In the following, we discuss average network flow capacity which will be used later

in this chapter to explain the performances of MaxCap and ACES based LL addition

strategies.

7.2 Average Network Flow Capacity

To identify the maximum flow capacity (FC) between a node pair in a network graph G,

in this chapter, we use the max-flow min-cut theorem [65]. Network flow capacity (NFC),

on the other hand, can be estimated by summing maximum FCs among all possible node

pairs as follows:

NFC =
�

i�=j

FCij. (7.1)

In Equation (7.1), FCij represents the maximum flow capacity between a node pair

(i, j). Before explaining ANFC of a network, we briefly discuss max-flow min-cut theo-

rem.

7.2.1 Max-Flow Min-Cut Theorem

The max-flow min-cut theorem finds the maximum flow capacity of a network. A cut

is a partition of network nodes into two sets such that the source node is in one set and

the destination node is in the other set. Max-flow min-cut theorem [65] states that the

maximum value of a flow between a source node (SN) and destination node (DN) pair

2In this chapter, we consider only undirected network with positive weights. Note that an unweighted
network is a special case where link weights are assumed to be unity.
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can be evaluated as the minimum value of capacities of all cuts that separates the SN from

the DN in a network. In order to understand the max-flow min-cut theorem, an example

of 5-node undirected weighted network is shown in Figure 7.1.
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Figure 7.1: An example 5-node weighted undirected graph and its all possible cuts
between {SN, DN}. In (a), an example 5-node weighted undirected network graph is
shown. From (b)-(i), all possible min-cuts between node 1 (source node) and node 5 (des-
tination node) are given. From all possible min-cuts, the cut of (c) (i.e., the cut B) is the
lowest with value 3. Therefore, the maximum flow capacity between nodes 1 and 5 is
evaluated to be 3 units.

In Figure 7.1(a), weight of each link is scripted which represents the maximum link

capacity in the network. In this example, SN is node 1 and DN is node 5. When a

cut separates the SN from the DN, maximum flow capacity of the cut is evaluated by

summing all outgoing link capacities from the cut. In Figure 7.1(a), all links are assumed

to be undirected, therefore, weights of all links that are coming out from the cut are to be

added in order to get the maximum flow capacity of the given cut.

Let P be all possible sets of nodes containing node 1 (i.e., the SN) and P̄ be all

possible set of nodes with node 5 (i.e., the DN). Then, the capacity of each cut is calculated

as the sum of link capacities present between nodes of P and nodes of P̄. Note that only

2(N−2) sets are possible in an N -node network. Figures 7.1(b)-(i) show all possible cuts
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Table 7.1
All possible flow capacities between a source node and a destination node. Here, all
possible flow capacities are listed between nodes 1 (SN) and 5 (DN) of Figure 7.1(a).
Note that cuts identified by P and P and their capacities are listed in the table.

Cut ID Node Set P Node Set P Capacity
A {1} {2, 3, 4, 5} 6
B {1, 2} {3, 4, 5} 3
C {1, 3} {2, 4, 5} 13
D {1, 4} {2, 3, 5} 10
E {1, 2, 3} {4, 5} 10
F {1, 2, 4} {3, 5} 7
G {1, 3, 4} {2, 5} 9
H {1, 2, 3, 4} {5} 6

between nodes 1 (i.e., SN) and 5 (i.e., DN) and corresponding flow capacity values are

also noted which can be found in Table 7.1.

For example, Figure 7.1(b) shows a cut, where P={1} and the corresponding capacity

is (4 + 2) or 6 units. Similarly, for another cut, P={1, 3}, the capacity is (4 + 2 + 4 + 3)

or 13 units (see Figure 7.1(d)).

In Table 7.1, there are eight possible cuts out of which the cut with P={1, 2} has

the lowest value of capacity. Therefore, by max-flow min-cut theorem [65], maximum

possible capacity between node 1 and node 5 is 3 units (see Figure 7.1(c)). Therefore, if

a link with weight 3 units can be added between node 1 and node 3, maximum capacity

of the network (with SN-DN pair as {1, 5}) enhances to 6 units as shown in Figure 7.2.

Note that, in this example scenario, we have added an LL of weight 3 units because next

min-cut capacity cannot reach beyond 6 units.

Note further that the network APL has become smaller than the original network when

a new link between nodes 1 and 3 is added. Therefore, small-world network creation can

also be carried out with the dual objectives of network capacity enhancement and APL

reduction.
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Figure 7.2: Addition of one link of 3 units between node 1 and node 3 can increase the
flow capacity to 6 units between {SN, DN}. The newly added link is showing with a
dashed line.

Why to Consider Average NFC (ANFC)?

In the discussion of the max-flow min-cut theorem, procedure of calculating maximum

flow capacity between a pair of nodes is explained. Now, to calculate the network flow

capacity (NFC) of a network, it is required to add maximum flow capacity values among

all possible node pairs in the network. NFC is a cumulative sum of all possible node pairs.

The average NFC (ANFC) of an N -node network can be expressed as follows:

ANFC =
NFC
NC2

. (7.2)

ANFC is considered over a certain flow capacity due to the fact that the LL addition

strategy based on maximizing flow capacity frequently finds pendant nodes3 in a network

to add an LL. This is because of the limitation imposed by the max-flow based capacity

evaluation (see Section 7.2.1), where the maximum possible network capacity of a net-

work is the minimum cut present in the network [65]. Hence, the choice may not always

be helpful and practical when real-world networks are concerned. ANFC helps in effi-

cient network design by avoiding the selection of pendant nodes which do not contribute

significantly enhancing the flow capacity of the entire network.

3A pendant node is a node with a single link (i.e., the nodal degree is 1) in a network.
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7.3 Link Addition with Maximum Flow Capacity

Maximum flow capacity (MaxCap) algorithm4 deterministically maximizes the ANFC

value in a weighed undirected network. MaxCap algorithm, at each step, adds an LL in

order to maximize ANFC of a network. MaxCap is described in Algorithm 7.1.

Algorithm 7.1 Maximum Flow Capacity Algorithm
Require:

G = (N, E , C) — A network with N nodes and E links with link capacity of C
(i, j) — A link exists between i and j
ANFC — Average network flow capacity of G
CV ar — Variable capacity value of an LL
CFix — Fixed capacity value of an LL
max_cap — Maximum value of ANFC
max_cap_LL — LL location that returns max_cap
k — Number of long-ranged links (LLs) to be added in G
Initialization: max_cap ← 0 and max_cap_LL ← ∅

1: for i = 1 → k do
2: for p = 1 → N − 1 do
3: for q = p → N do
4: if (p, q) /∈ E then
5: Add an LL between (p, q) node pair in G
6: Assign CV ar or CFix // Based on the capacity assignment
7: Calculate ANFC
8: if ANFC > max_cap then
9: max_cap ← ANFC

10: max_cap_LL ← (p, q)
11: end if
12: Remove the LL
13: end if
14: end for
15: end for
16: Add ith LL between the node pair in max_cap_LL
17: Assign corresponding CV ar or CFix

18: Update network graph G
19: max_cap ← 0
20: max_cap_LL ← ∅
21: end for

For each LL addition, Algorithm 7.1 searches for all possible node pairs to add an

4Rest of the chapter exercises the following naming conventions: MaxCap based LL addition strategy
and MaxCap are synonymous and used interchangeably.
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LL. Note that, the algorithm does not consider any parallel link or self loop. Algo-

rithm 7.1 initializes max_cap which holds the maximum value of ANFC in a network

and max_cap_LL which holds the corresponding LL location. The MaxCap algorithm is

explained in the following.

To select an LL location that results in maximum ANFC value, Algorithm 7.1 exhaus-

tively searches for all possible LL locations in a network (lines 2-15). In order to assign

corresponding link flow capacity to the LL added (lines 5-6), two different strategies are

followed:

(I) In case of variable link capacity assignment to an LL added, the value of CV ar is

set to be the maximum of the flow capacity values of all links that are connected to

either of the end nodes of the LL.

(II) On the other hand, value of link capacity is fixed to a certain value for all LLs when

link capacity assignment based on CFix is concerned.

After assigning link capacity to the LL added, ANFC is calculated with Edmond-

Karp algorithm [66] and checks whether it is larger than the already existing max_cap

value. If so, the max_cap value is updated with the current ANFC value and correspond-

ing LL location is stored in max_cap_LL (lines 7-11). After selecting the LL that returns

maximum ANFC, corresponding link capacity (i.e., CV ar or CFix based on the capacity as-

signment strategy) is assigned (lines 16-18). After this step, max_cap and max_cap_LL

are again initialized to zero and null, respectively, to search the next deterministic LL in

the network (lines 19-20). Algorithm 7.1 continues searching for the next capacity max-

imized deterministic LL until k LLs are added to the network. Figure 7.3 shows three

example road networks where 10 LLs are added, each with variable flow capacity, based

on MaxCap based LL addition.

7.3.1 Time Complexity of MaxCap Algorithm

In order to estimate the time complexity of MaxCap strategy to add k LLs in an N -node

network, time complexity to estimate the flow capacity between a node pair needs to be

identified. Here, the flow capacity between a node pair is measured using Edmond-Karp
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algorithm [66], in O(N3) time, at each step of the possible LL location. Hence, to check

all LL possibilities, MaxCap algorithm takes O(N2 × N3) time to identify an LL which

gives maximum ANFC value for the network. Therefore, to add k LLs, Algorithm 7.1 is

O(k ×N5) time complex.

(a) Delhi. (b) London. (c) Manhattan.

Figure 7.3: Three different road networks including (a) Delhi, (b) London, and (c) Man-
hattan, where 10 LLs are added with MaxCap strategy with variable flow capacity values.
Note that the dark colored lines are the LLs added in the networks with MaxCap.

7.4 Average Flow Capacity Enhancement using Small-

World Characteristics

From the previous section, it can be seen that MaxCap takes significant amount of time

to decide the location of an LL to maximize ANFC. To overcome the shortcoming of

MaxCap we propose a heuristic, average flow capacity enhancement using small-world

characteristics (ACES), based on the observations from the locations of LLs which are

added with MaxCap strategy. ACES strategy is discussed in Algorithm 7.2.

In Algorithm 7.2, min_degree represents minimum degree of a node under consider-

ation. ACES starts with min_degree=1. Hence, the algorithm searches for all nodes with

degree 1 and store them in node_set. Moreover, ACES also stores those nodes which are

r-hop away from the nodes with min_degree (lines 2-7). When the search is complete,

the algorithm identifies whether the total number of LL possibilities using the nodes in

the node_set is sufficient to create k LLs (lines 8-11). If k LL creation possibilities exist,

ACES calculates the Euclidean distances between all possible node pairs in the node_set

and k LLs are then added between node pairs (with corresponding CV ar or CFix values) in

the descending order of the Euclidean distances (lines 12-15).
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Algorithm 7.2 Average Flow Capacity Enhancement using Small-world Characteristics
Require:

G = (N, E , C) — A network with N nodes and E links with link capacity of C
min_degree — Minimum degree of a node in G
NEi(r) — r-hop neighbors of node i
D(i) — Degree of node i
node_set — Set of nodes for possible LL creation
CV ar — Variable capacity value of an LL
CFix — Fixed capacity value of an LL
k — Number of long-ranged links (LLs) to be added in G
Initialization: r, node_set ← ∅ and min_degree ← 0

1: min_degree ← min_degree+ 1
2: for p = 1 → N do
3: if D(p) = min_degree then
4: node_set ← node_set ∪ p // Add node with min_degree
5: node_set ← node_set ∪NEp(r) // Add r -hop neighbors
6: end if
7: end for
8: count ← |node_set| // Cardinality value of node_set
9: if |countC2 − E| < k then // |countC2 − E| to discard existing links

10: go to 1
11: end if
12: Calculate the Euclidean distance between node pairs in node_set
13: Sort node pairs in descending order based on the Euclidean distance
14: Add k LLs among first k sorted node pairs in node_set
15: Assign CV ar or CFix to each LL according to the strategy

On the other hand, if creation of k LLs is not possible between the possible node

pairs of node_set, Algorithm 7.2 increments the min_degree value by one, and enhance

the LL connection possibilities by adding more nodes in the node_set (lines 8-11). Fig-

ure 7.4 depicts three example road networks where 10 LLs are added based on ACES with

variable flow capacity assignment to each LL.

7.4.1 Time Complexity of ACES

The time complexity of ACES algorithm (i.e., Algorithm 7.2) is evaluated as follows:

Identifying nodes for the set min_degree, to add possible LLs, takes O(N) time in an

N -node network (lines 2-7). To get first k LL locations, sorting operation is performed

on the set of Euclidean distances between possible LL connecting node pairs. Hence,
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(a) Delhi. (b) London. (c) Manhattan.

Figure 7.4: Three different road networks including (a) Delhi, (b) London, and (c) Man-
hattan, where 10 LLs are added with ACES strategy with variable flow capacity for each
LL. Note that the dark colored lines are the LLs added in the networks with ACES.

first k LL locations, from the sorting operation in descending order, can be found in

O(k × N2) time (lines 13-14). All other operations in Algorithm 7.2 can be executed

in O(1) time. Therefore, the time complexity to add k LLs with the ACES strategy is

[O(N) +O(k ×N2) +O(1)] or O(k ×N2).

7.4.2 Why does ACES Work?

The heuristic design of ACES strategy is primarily based on the observations from the

MaxCap algorithm where an LL is added to maximize the ANFC value of a real-world

network. It can be observed that, from Figure 7.3, most of the LLs find pendant nodes or

their neighbors as one of the connecting points. In particular, both MaxCap and ACES

can successfully identify the importance of a few pendant nodes to significantly enhance

the ANFC values of real-world road networks. However, with MaxCap, some LLs are

also added between nodes which are geographically nearer.

ACES, on the other hand, identifies all pendant nodes and their r-hop neighbors and

then connect an LL between the node pair with the highest geographical distance as can

be seen in Figure 7.4. The concept of r-hop neighbors also helps ACES to efficiently

search LL locations in a network.

7.5 Performance Evaluation of ACES

In the following, quantitative comparison results are shown to estimate the ACES per-

formance with respect to other deterministic LL addition strategies such as MaxCap, the
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near-optimal decision based LL addition to minimize network APL,5 maximum between-

ness centrality (MaxBC), and maximum closeness centrality (MaxCC) [39], when en-

hancing ANFC of a network is concerned. In near-optimal LL addition, an LL is added

between a node pair such that overall APL value of the network is minimized. Simi-

larly, in MaxBC and MaxCC, an LL is added to maximize the betweenness centrality and

the closeness centrality measures [23] of the network, respectively. In the following, the

LL addition strategies are studied, after the addition of 10 LLs, in the context of various

arbitrary network topologies and real-world networks. Note that in all simulation experi-

ments, ACES considers only 1-hop neighbor information. That is, r = 1 for node i when

NEi(r) is concerned (see Algorithm 7.2).

7.5.1 Arbitrary Networks

We consider regular (a string and a grid networks) as well as random network topologies

to study various deterministic LL addition strategies to enhance ANFC values. In the

experiment, each of the networks are with 100 nodes where the flow capacity value of

each link is randomly assigned in the range [1, 13]. Note that the 100-node random

network is generated with link creation probability p = 0.02 and then flow capacity of

each link is randomly assigned in the range [1, 13]. The results for all arbitrary networks

are also averaged over 10 simulations.

ACES Performance: LLs with Fixed Flow Capacity

To account for ANFC improvement after addition of 10 deterministic LLs in various arbi-

trary network topologies such as string, grid, and random networks, we deploy MaxCap,

ACES, near-optimal, MaxBC, and MaxCC based LL addition strategies. Note that the

LLs are added with the fixed flow capacities of 10 units (CFix = 10).

Figure 7.5 depicts the percentage improvement of the ANFC values after the addi-

tion of 10 LLs, and each with a fix flow capacity of 10 units, with various deterministic

LL addition strategies. It can be seen that the improvement in the ANFC values is the

5Hereafter, the near-optimal decision based LL addition strategy to minimize the network APL is men-
tioned as the near-optimal decision or the near-optimal throughout the chapter.
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Figure 7.5: ANFC performance after addition of 10 LLs with various deterministic
strategies in the context of three arbitrary network topologies: a string network, a grid
network, and a random network. Note that each LL is added with fixed value of flow
capacity (Flow capacity value is 10 for each LL).

highest when MaxCap based LL addition is concerned. ACES based LL addition, on the

other hand, also enhances the ANFC values. However, the percentage deviation from the

MaxCap based LL addition is more when string topology network is concerned. Other

deterministic LL addition strategies fail to improve the ANFC values in the arbitrary net-

works.

ACES Performance: LLs with Variable Flow Capacity

Similarly, Figure 7.6 shows ANFC values after the addition of 10 LLs with five determin-

istic LL addition strategies. Note that the assigned flow capacity for each added LL, in

Figure 7.6, is equal to the maximum of the flow capacity values of all links attached to

either of the LL connecting nodes (i.e., CV ar).

It can be seen from the figure that the percentage improvement in the ANFC value

is the highest when MaxCap is concerned. ACES also improves the ANFC values. By

contrast, the deviation from MaxCap is more in a string topology network. Other LL

addition strategies fail to improve the ANFC values for the other three arbitrary networks.
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Figure 7.6: ANFC performance after addition of 10 LLs with various deterministic
strategies in the context of three arbitrary network topologies. The flow capacity of
each LL is equal to the highest flow capacity of links attached to the either of the LL
connecting nodes.

Performance on Average Path Length Reduction

APL of a network is evaluated as the EHD between a node pair averaged over the network.

Lower the value of APL, delay in transmission/transport can be lowered. By adding a few

LLs in a network, APL of the network can be greatly reduced.

Figure 7.7 shows performance of all deterministic LL addition strategies when per-

centage reduction in APL values are concerned. Note that as MaxCap and ACES take

into account fixed or variable flow capacity while deciding the location of an LL, corre-

sponding strategies are presented in Figure 7.7 as MaxCapFix, MaxCapV ar, ACESFix,

and ACESV ar, respectively.

It can be seen from Figure 7.7 that the near-optimal strategy performs the best in

minimizing the network APL. The MaxBC and MaxCC based deterministic LL addition

strategies also reduce the network APL comparable with the near-optimal strategy. By

contrast, as MaxCap and ACES are mostly concerned with improving the ANFC value

for a network, they fail to significantly reduce the network APL.
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Figure 7.7: APL performance in the context of three arbitrary network topologies
where 10 LLs are added with fixed or variable flow capacities.

In the following, performance of ACES is evaluated in six real-world road networks.

Further, a comparison study is also carried out with the different r-hop neighbors when

ACES is concerned.

7.5.2 Real-world Road Networks

We also study all LL addition strategies (i.e., MaxCap, ACES, near-optimal, MaxBC, and

MaxCC), with 10 LLs, in the context of six real-world road networks (Bangalore, Delhi,

London, Paris, New York, and Manhattan) as tabulated in Table 7.2.

All road networks, as listed in Table 7.2, are exported from OpenStreetMap [59] and

the required information is then extracted to create the corresponding network graphs.

A junction, in this context, represents a node, and a road connecting two junctions cor-

responds to a link. The flow capacity of each link is set based on the corresponding

road-type. That is, a wider road in a road network is assigned higher flow capacity value

and vice versa. Table 7.3 lists all possible road-types and associated flow capacity values.

Note that the types of roads are listed in the descending order of their width.
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Table 7.2
Characteristic features of six real-world road networks

Name of the City Number of Nodes Number of Links

Bangalore 103 139
Delhi 101 120
London 99 127
Paris 103 119
New York 100 136
Manhattan 104 152

Table 7.3
Various road-types and corresponding flow capacity values

Road-types Flow Capacity

Motor-ways 13
Motor-way Links 12
Trunk 11
Primary 10
Secondary/Link Roads 9
Tertiary/Tertiary Links 8
Unclassified 7
Residential/Business 6
Service 5
Living Street 4
Pedestrian 3
Cycle-way 2
Foot-way/Track/Steps/Paths 1

In the LL addition experiment, the flow capacity of an LL can be assigned based on

the strategy as mentioned in Section 7.3. Hence, in case of fixed flow capacity assignment

to an LL (i.e., CFix), the assigned flow capacity value is 10 which represents the primary

road-type. The selection of fixed flow capacity value is based on the observations that

most roads in real-world road networks are of the type primary roads [59]. On the other

hand, in case of variable flow capacity assignment to an LL (i.e., CV ar), the LL is assigned

a flow capacity value equal to the widest road that is linked to either of the junction nodes

where an LL is to be connected.
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ACES Performance: LLs with Fixed Flow Capacity

When LLs are added with fixed flow capacity in various road networks, it can be seen that

MaxCap enhances ANFC value to the maximum. We add 10 LLs, in each road network,

with various LL addition strategies such as MaxCap, ACES, near-optimal, MaxBC, and

MaxCC. Figure 7.8 shows ANFC improvement results for different road networks with

10 LLs, each with fixed flow capacity value. In the simulation, CFix value is assumed to

be 10.
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Figure 7.8: ANFC performance of various LL addition strategies in the context of six
real-world road networks. Note that 10 LLs are added with fixed value of flow capac-
ity (Flow capacity value is 10 for each LL).

From Figure 7.8, it can be observed that MaxCap strategy improves ANFC value

by nearly 42.73% (Bangalore) with respect to the base network without any LLs (see

the first histogram, in each road network, with the legend Capacity). For all other road

networks, MaxCap improves over corresponding base networks approximately 52.65%

(Delhi), 63.34% (London), 60.67% (Paris), 28.09% (New York), and 29.40% (Manhat-

tan). On the other hand, ACES based LL addition deviates from MaxCap with only 5.24%

(Bangalore), 12.36% (Delhi), 9.71% (London), 13.13% (Paris), 3.00% (New York), and

5.91% (Manhattan). However, as can be seen from the figure, other LL addition strategies

fail to achieve noticeable improvement in ANFC.
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Performance of LL Length-Type Product (LTP): Figure 7.9 shows results on the

product of LL-length and LL road-type (i.e., flow capacity) for each road network. LTP

can be considered analogous to the bandwidth-delay product (BDP) [67] in a communi-

cation network.
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Figure 7.9: LTP performance of various LL addition strategies (with fixed flow capacity)
in the context of six real-world road networks.

BDP represents how much data can be successfully transferred over a communication

link. Therefore, in order to get high data rate or throughput, BDP should be sufficiently

large. In case of road networks, bandwidth can be the road-type of a link and delay can

be idealized by the length of the link. Hence, to achieve higher ANFC, LTP should have

a larger value.

In Figure 7.9, we show the LTP performance for all LL addition strategies in six real-

world road networks. From the figure, it can be observed that ACES outperforms other

LL addition strategies considered in this chapter. In particular, ACES gains approximately

65.12% (Bangalore), 84.16% (Delhi), 49.05% (London), 38.68% (Paris), 50.30% (New

York), and 51.38% (Manhattan) with respect to the MaxCap after adding 10 LLs with

fixed value of flow capacity. Hence, the ACES strategy performs better when LTP is

concerned.
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ACES Performance: LLs with Variable Flow Capacity

Next, 10 LLs with variable flow capacity values are added to the road networks with the

five LL addition strategies. Figure 7.10 depicts the performance of all strategies when

ANFC is concerned. It can be noticed that MaxCap and ACES outperform other LL

addition strategies.
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Figure 7.10: ANFC performance of various LL addition strategies in the context of six
real-world road networks. The flow capacity of an LL is equal to the highest flow capacity
of links attached to the either of the LL connecting nodes.

We also study the road-type distribution of LLs added with variable flow capacity val-

ues. From Figure 7.11, road-type distribution of any road network can also be identified.

Note that road-type distribution of LLs with fixed flow capacity is not shown as all LL

road-types are of type primary roads (Type 10).

For instance, many roads in New York are secondary/link roads (Type 9) as most

of the LLs that are added are of same type (see Figure 7.11). Similarly, many roads in

London can be identified as of type residential/business roads (Type 6). However, in case

of Bangalore, Delhi, and Paris, LLs are distributed to different road-types. On the other

hand, Manhattan city is mostly dominated by residential/business (Type 6) and tertiary

links (Type 8).
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Figure 7.11: LL road-type distribution with ACES, in six real-world road networks, after
addition of 10 LLs with variable flow capacity.
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Figure 7.12: LTP performance of various LL addition strategies (with variable flow
capacity) in the context of six real-world road networks.

Performance of LL Length-Type Product (LTP): Figure 7.12 shows results for LTP

for different LL addition strategies with variable flow capacity for each LL added in six

different road networks. From the figure, it can be noticed that ACES performs better

than all other LL addition strategies. Moreover, ACES is approximately 14.19% (Ban-
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Figure 7.13: APL performance in the context of six real-world road networks where 10
LLs are added with fixed or variable flow capacities.

galore), 84.89% (Delhi), 52.06% (London), 52.67% (Paris), 16.73% (New York), and

46.01% (Manhattan) better with respect to the MaxCap strategy.

Performance on Average Path Length Reduction

In the simulation experiment, 10 LLs are added based on various LL addition strategies.

Note that APL results do not consider road-type of a link. However, as MaxCap and

ACES take into account road-types while deciding the location of an LL, we represent

corresponding strategies in Figure 7.13 as MaxCapFix, MaxCapV ar, ACESFix, and

ACESV ar, respectively.

From Figure 7.13, it can be seen that near-optimal outperforms all other LL addi-

tion strategies when minimizing APL of a network is concerned. In particular, near-

optimal decision based LL addition reduces APL values approximately 11.10% (Ban-

galore), 17.73% (Delhi), 18.20% (London), 11.79% (Paris), 9.80% (New York), and

8.80% (Manhattan) with respect to the APL values of the networks without any LLs (see

the first histogram, in each road network, with the legend APL). However, MaxCap and

ACES do not achieve a significant reduction in APL as compared to near-optimal (Maxi-

mum deviation is approximately 20%).
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7.6 Observations and Discussion

It can be observed from Section 7.5 that ACES significantly enhances ANFC and LTP

in the context of various real-world road networks. In particular, ACES performance is

also comparable with respect to MaxCap based deterministic LL addition strategy when

ANFC is concerned (Maximum percentage deviation is 15%). On the other hand, rest

of the deterministic LL addition strategies such as near-optimal, MaxBC, and MaxCC,

cannot guarantee improvement in the flow capacity of a network.

We also analyze ACES performance with different r-hop neighbors in the context

of fixed as well as variable flow capacity assignment to an LL. Tables 7.4 and 7.5 list

ANFC values for different r-hop neighbor information. In the simulation experiment, we

consider up to 8-hop neighbors of a pendant node. The percentage deviations of ACES

based highest ANFC values (shown as boldface in Tables 7.4 and 7.5) are taken with

respect to the MaxCap based ANFC values. It can be observed, from both tables, that

various road networks return highest ANFC values with different r-hop information.

Moreover, the time complexity of running ACES is O(k×N2) in an N -node network

where k LLs are added. However, MaxCap maximizes ANFC value of a network with a

cost of O(k×N5) time to add k LLs. Therefore, MaxCap is less efficient as compared to

ACES when real-world deployment of LLs takes place for enhancing ANFC in a limited

time frame. Other deterministic LL addition strategies such as near-optimal, MaxBC, and

MaxCC are also significantly time complex, in the order of O(k × N4 logN) [39], and

fail to match with the ANFC performance when MaxCap and ACES based LL addition

strategies are concerned.

Furthermore, ACES performance on LTP also outperforms other LL addition strate-

gies. As mentioned in Section 7.5.2, LTP resembles BDP of a network which in turn

identifies flow capacity of a link. From Figures 7.9 and 7.12, we can see that ACES based

LL addition strategy is more capacitative with respect to other LL addition strategies.

Therefore, ACES can be used to construct efficient high capacity flyovers when real-

world road networks are concerned. ACES can also find applications in transportation

networks, communication networks, and many other man-made networks.
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The major concern about the real-world deployment of ACES strategy is the improve-

ment in traffic congestion. Addition of new links such as flyovers in road networks may

not enhance the ANFC value. On the contrary, according to the Braess’ paradox [68], new

link addition in networks sometimes results in reduced ANFC. Braess’ paradox states that

if each vehicle in a road network intends to use the optimal path to reach the destination,

then the resultant time taken to reach the destination may not be minimum. As a result of

that overall network congestion also increases. Therefore, taking the principle of Braess’

paradox into consideration, the ACES strategy can be modified to achieve better ANFC

performance along with better traffic distribution.

7.7 Summary

In this chapter we proposed a novel LL addition heuristic, average flow capacity enhance-

ment using small-world characteristics (ACES), which significantly enhances the average

network flow capacity (ANFC) of an N -node network with only O(N2) time while adding

an LL. Furthermore, ANFC value with ACES deviates maximum of 15% as compared to

the maximum flow capacity (MaxCap) strategy which adds an LL deterministically in

O(N5) time. We also studied the LL length-type product (LTP) to understand the flow

capacity of a deployed LL. We found that ACES outperforms MaxCap as well as other

deterministic LL addition strategies such as near-optimal, MaxBC, and MaxCC, when

enhancing LTP is concerned. ACES can be deployed in many real-world application sce-

narios where enhancing ANFC and LTP, in limited time, are very crucial.
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Chapter 8

Conclusions and Future Research Directions

8.1 Conclusions

This thesis work investigates some of the open questions in the context of the evolution of

finite sized complex networks. In particular, we observed transition of fixed sized com-

plex networks by adding a few long-ranged links (LLs) with random as well as based

on greedy decision making. We found that greedy decision making, based on certain

network parameters such as average path length (APL) and average network flow capac-

ity (ANFC), transforms a regular finite sized network to a scale-free networks. However,

random decision based LL addition fails to transform a network to a scale-free network.

In the following, we summarize major contributions of the thesis.

1. We found that a sequence of greedy optimal/near-optimal decision making resulted

in the transformation of a small-world network to a scale-free network. We added

a few LLs in a finite sized string topology network (STN), with the greedy near-

optimal LL addition strategy, to achieve an APL-optimal small-world network. We

observed, during APL-optimal LL addition, that most of the LLs inclined toward

a particular node, at the 0.8N th in an N -node STN, due to the long-ranged link

affinity (LRA) and thus, the STN gradually transformed to an APL-optimal scale-

free network by introducing hub node at the 0.8N th location. However, random

decision based LL addition failed to achieve APL-optimal small-world network.

2. We also observed that, with length constrained LL addition, a regular network

evolves in the following manner: regular network → small-world network → scale-

free network with truncated degree distribution → fully connected network.

3. While experimenting with the greedy near-optimal decision based LL addition on a

finite sized STN, we discovered that the location of the first LL is always uniquely



find 0.2N th and 0.8N th nodes in an N -node STN. We called the unique nodes as

anchor nodes. We also analytically found the fractional locations of the anchor

nodes at 0.2071 and 0.7929. During the APL-optimal evolution of an STN, one of

the anchor nodes get transformed to a hub node.

4. Based on the simulation and analytical observations on the creation of APL-optimal

small-world networks, we proposed a heuristic strategy, sequential deterministic

LL addition (SDLA), to efficiently transform an N -node STN to an APL-optimal

small-world network only in O(k ×N) time by adding k LLs.

5. We analytically determined the locations of a single and two optimal LLs in a string

topology wireless sensor network (WSN) to minimize average path length to the

base station (APLB) value. Our analytical observations also match with the sim-

ulation as well as approximate results. Further, we studied the effect of power

constrained LL addition in a string topology WSN where we found that a natural

tradeoff exists between minimizing APLB value and total expended transmission

power to construct an optimal LL. We found, with no power constraints, fixed frac-

tional locations of a single optimal LL is at (0.33, BS), and the two concurrent LLs

can be found at (0.2, BS) and (0.6, BS).

6. To the end of this thesis, we also applied small-world characteristics in order to

enhance the ANFC value and the length-type product (LTP) of weighted undirected

complex networks. We applied an exhaustive LL addition strategy, maximum flow

capacity (MaxCap), to maximize ANFC value of a network. Further, based on

the observations from MaxCap, we proposed a heuristic, average flow capacity en-

hancement using small-world characteristics (ACES), to efficiently enhance ANFC

and LTP values.

8.2 Future Research Directions

In the following, a few possible extensions of this thesis work are discussed.

1. Most of the existing solutions, to create an LL, consider unweighted networks.
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However, in real-world scenarios, LL may not always be unweighted. How to

realize an LL edge-weight in a realistic small-world network, can be a possible

extension of the thesis.

2. In this thesis, we studied evolution of a fixed sized regular network to a fully con-

nected network. However, there is no existing theoretical framework to explain such

network evolution. Modeling a mathematical framework to study the evolution of

finite sized complex networks can be an interesting research problem.

3. Existence of anchor nodes, as in a 1-D topology such as an STN, is not known in

a 2-D network. Therefore, another very compelling open question is that whether

there exists any anchor node in a 2-D network, and if so, how to find the location of

the anchor node.

4. SDLA algorithm was developed for an unweighted STN. Therefore, it will be inter-

esting to extend the SDLA algorithm in a general setting where weighted arbitrary

networks can be considered. Testbed implementation and performance analysis of

SDLA algorithm can also be considered as a possible future extension.

5. Optimal power constrained LL addition was studied, in a string topology WSN, for

a single as well as two LLs. Design of a generalized algorithm to add k LLs in

such a network is an open research problem. Further, analytical derivation can also

be extended to identify optimal locations of power efficient LLs in a 2-D network

regime.

6. Real-world deployment of deterministic LL addition strategies such as ACES al-

ways may not improve traffic/congestion situation because of the Braess’ paradox

which states that addition of additional LL could actually increase overall conges-

tion in a network. Therefore, the design of more efficient capacity-enhanced LL

addition algorithm to overcome the Braess’ paradox is another open research prob-

lem. A few more key metrics, such as travel time, traffic management issues, and

other environmental impacts, while applying small-world characteristics in the de-

sign of efficient real-world road networks, can also be exercised.
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