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ABSTRACT 
The problem of generating optimal landing trajectory design and optimal guidance laws 

for Moon landing is solved in this research. First, the lunar soft landing trajectory 

design problem is formulated and the resulting two-point boundary value problem 

(TPBVP) is solved using different approaches. Two independent approaches i) direct ii) 

indirect are used to solve the problem. Two of the gradient free (Particle Swarm 

Optimization-PSO and Differential Evolution-DE) optimization techniques and a 

gradient based optimization technique (Sequential Quadratic Programming-SQP: 

fmincon-MATLAB) have been used to solve the problem formulated using both direct 

and indirect approaches.  A scheme based on the indirect approach and DE is evaluated 

to be superior for the soft landing trajectory design. The challenge in the indirect 

approach lies in finding suitable initial co-states with no prior knowledge available 

about them. In the second part of the research, the challenge related to initial co-states is 

dealt with and overcome. The co-states are determined using the Differential 

Transformation (DT) technique, for a given flight duration (unknown) and a target site. 

The only unknown flight time is determined using the DE technique. This novel 

computational scheme, called DT-DE scheme, uses Differential Transformation in multi 

steps to ensure the precise landing at the target site. This scheme is uniformly valid for 

the performance measures like fuel-optimal, energy-optimal or time-optimal. In DT-DE 

scheme, the major advantage is that the co-state equations need not be numerically 

integrated to find the control variables at each computational step. Furthermore, the 

number of unknowns reduces to one, the flight time, resulting in a reduction of 

computational time. Another important step of a lander mission is to guide the vehicle 
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to the pre-selected target site. Towards achieving this, a DT based novel guidance 

algorithm with real time computational strategy for the determination of flight time is 

developed. Two guidance schemes (i) fuel-optimal (ii) energy-optimal to realize soft 

landing at a desired location on the Moon are developed using the optimal control laws. 

The optimal control laws are obtained as functions of co-states. The DT technique is 

employed to determine the unknown co-states at each time instant of landing trajectory 

using the information on the current vehicle state, target landing site (loaded on-board a 

priori), and the time-to-go. The time-to-go, a critical parameter for any guidance 

scheme, is computed and updated in real time using a simple strategy that uses the 

current and end states. Further, the new guidance schemes are compared with other 

popular guidance schemes. Other features of the proposed schemes are that they do not 

assume a constant gravity field and independent of the reference trajectory. The 

proposed methods for landing trajectory design and guidance design have been 

implemented and the numerical results have been analyzed. Some of the important 

findings are: (i) The computational time (CPU time) to generate optimal trajectory using 

the DT-DE scheme is significantly less (35 to 40 s) compared to the CPU time required 

to generate the solution using the DE technique alone (170 s).  (ii)The landing mass 

achieved by fuel-optimal DT guidance is remarkably close (the difference is less than 

one kg) to the landing mass of open-loop fuel-optimal trajectory. (iii) The Fuel-optimal 

DT guidance lands more mass than the energy-optimal DT guidance. (iv) The DT based 

energy-optimal guidance scheme performs betters than other energy-optimal guidance 

schemes (v) The simple strategy proposed for the real-time computation of time-to-go 

performs very well and helps in achieving the target site precisely.   
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Chapter 1 

Introduction and Literature Survey 

1.1 Introduction 

Space exploration is now moving towards planetary landing, asteroid landing 

and sample return collection etc. For planets like Mars that have an atmosphere, it is 

possible to decelerate the module using atmospheric braking. Landing on planetary 

bodies with a weak atmosphere is achieved by reducing the velocity to an acceptable 

limit at touch down using rocket engines with appropriate thrust level and suitable 

steering. Asteroid landing is similar to lunar landing mission. The difference lies in the 

gravity field due to a smaller asteroid size and it causes the possibility of vehicle 

rebound after touch down. The renewed interest shown by different nations on lunar 

missions, concentrates on search for water at the South Pole and helium and other 

minerals on the surface of the Moon.   Establishing human habitats and lunar bases are 

other motives of lander missions. These lander missions rekindled the development of 

new methods of trajectory, guidance and control designs, robotics, propulsion system, 

navigation systems etc. The criticality of soft landing mission on a planetary surface is 

to identify appropriate mechanisms to slow down the lander module to acceptable limits 

at touchdown. For a successful mission it is important to land at a specified location 

using minimum fuel, which helps to carry more scientific payloads for planetary 

exploration closer to the area of interest. Therefore, it is essential to find the fuel-

optimum thrust steering and the sequence of landing operations before the actual 

mission to ensure that all mission and vehicle related constraints are not violated and 

landing is executed successfully. 

 

A lunar soft landing mission starts from a parking orbit (assumed to be 100 km 

circular) around Moon and with a de-orbit burn, the module is transferred to an 

elliptical transfer orbit  with periapsis altitude varying between 30 km to 15 km. At a 
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pre-specified time (based on landing location), descent begins from the periapsis of the 

elliptical transfer orbit and ends at touchdown by reducing velocity to acceptable 

velocity level.  This powered descent phase of trajectory is the focus of the current 

research. Generating fuel- optimal descent trajectory is the first requirement of any 

lander mission during mission planning phase. These open-loop schemes are not used in 

real-time because the navigation and propulsion dispersions result in deviations in the 

vehicle state. However, these open loop trajectories serve as reference trajectories for 

the development of closed loop guidance schemes. They provide the interim target 

states required for closed loop guidance algorithms.  For the successful pinpoint landing 

at a selected target site, closed loop guidance algorithms play an important role. 

Towards realizing a successful mission, efficient methods to generate the optimal 

landing trajectory design and guidance design have been developed and discussed in 

this research. 

1.2 Historical Perspective 

The former Soviet Union executed many successful lunar missions starting from 

Luna 1 (1959) to Luna 24 (1976). A total of eight spacecraft landed on Moon and two 

of the landers deployed rovers. The Surveyor program of USA focused on unmanned 

lunar landings. The first lunar lander mass was about 300 kg. At about 96 km in altitude 

Surveyor was re-oriented (Cheng et al., 1966) and the propulsion system (non-

throttlable) was fired continuously to reduce the velocity magnitude by 95%. At about 7 

to 8 km altitude, the retro motor jettisoned and the vernier engines (throttlable between 

thrust of 130 N to 460 N) used for attitude control and to bring the remaining 5% (100 

m/s) of velocity to near zero level. The Surveyor project was conceived as a preparation 

for human missions of the Apollo project. 

 

The Apollo project includes six successful lunar landings on the Moon and one 

aborted mission (Apollo 13). Apollo 11 became the first human landing on the Moon. 

The Apollo mission had several phases during descent (Klumpp, 1974). The first phase 

of landing was to change the orbit size from 110 km circular to 110 km X 15 km 
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elliptical orbit. At 15 km, a powered descent initiation (PDI) was executed, resulting in 

continuous firing of the descent propulsion system (DPS). The second and third phases 

were approach and landing phases respectively designed for crew visibility and manual 

controllability. The nominal DPS burn time was 676 s and the vertical descent was from 

30 m. The total mass of lunar module was about 15 t. The DPS had a maximum thrust 

of about 44.5 kN and it was capable of maximum 6 deg. gimbal motion for control and 

it was throttlable to about 10% of maximum thrust. Also it had 16 RCS thrusters of 445 

N thrust level each for attitude control along with DPS. The Apollo and Surveyor 

landing sites are closer to flat visible equator region. However, the trends for future 

missions are to land at Polar Regions or in the far invisible regions and craters. 

 

The Japanese Hiten satellite (Uesugi, 1996) orbited around Moon in 1990. 

NASA’s Clementine mission (Nozette, 1995) in 1994 and the Lunar prospector in 1998 

(Hubbard et al., 1998) provided a clear understanding of Lunar terrain and atmosphere. 

In November 2004, the first European spacecraft, SMART-1 (Foing et al., 2005), 

orbited around Moon. Later India’s Chandrayaan and Moon Impact Probe (MIP) 

(AshokKumar et al., 2009) missions provided the valuable information of the lunar 

terrain and traces of water. LCROSS mission provided additional information of the 

south poles and traces of water (Ennico et al., 2012). China successfully landed on 

Moon twice (Donna Lu, 2020). These attempts help to speed up lunar exploration 

planning by several countries. 

1.3  Literature Survey  

The soft-landing mission can be direct descent from Lunar transfer trajectory or 

descent from Lunar parking orbit (Klumpp, 1968). The criticality in direct descent is the 

timing of Earth departure (lunar transfer injection) maneuver. In addition, the landing 

mission success is highly dependent on navigation instruments because of availability 

of very small time for correction maneuver (Klumpp, 1971). These limitations are 

overcome by the insertion of a module into a lunar parking orbit. In such missions, the 

landing site can be decided based on the observations of navigation and optical 
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instruments. Historically, all lunar landing missions followed the powered soft landing 

from a lunar parking orbit (Klumpp, 1974). In general, the optimal trajectories are 

generated with one of the following objectives (i) fuel-optimal (ii) energy-optimal (iii) 

time-optimal. However, most of the early lunar missions did not stress optimality. 

 

Mason and Brainin (1962) generated the descent trajectory with the help of 

approximations. The main assumption involved is landing trajectory is constrained in a 

vertical plane with constant gravity.  Cheng and Pfeffer (1962) provided a scheme for 

the generation of real time commands of soft landing trajectory and its sequence of 

execution during terminal descent phase. Cheng and Conrad (1964) provided the design 

aspects of terminal descent phase of trajectory of Surveyor mission addressing fuel 

requirement and sensor characteristics. Surveyor (Lunar) and Viking (Mars) mission 

used gravity turn concept for soft landing (Cheng et al., 1966). Gravity-turn concept 

requires the thrust vector of the module to be aligned opposite to the instantaneous 

velocity vector during the descent phase. The gravity turn law ensures that the module 

to be vertical on the lunar surface when velocity converges to zero. The main limitation 

of the algorithm is that the mission must start at higher altitude to ensure enough time 

for velocity braking. The advantage of gravity turn algorithm is that the velocity losses 

are minimum. The downside of the algorithm is that it is incapable of landing at a 

specified location and handling the retargeting capability. Another disadvantage 

(Sostaric and Rea, 2005) is that touchdown conditions are dependent on the initial 

conditions selected during gravity turn descent. Pinpoint landing using gravity turn 

concept requires the complete knowledge of perturbations during the trajectory and in 

turn, it requires the spacecraft to be at a specific initial state at the start of descent. The 

modified version of gravity turn algorithm was developed for descent from circular 

orbit with the approximation of constant gravity by McInnes (2003). 

 

Cavoti (1966) solved the problem of minimum fuel soft lunar landing trajectory 

by approximating the powered braking phases into two. He derived closed form 

expressions for the soft-landing trajectory. Bennett and Price (1964) presented an 
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analytical study for lunar landing maneuver for a constant thrust level.  The factors that 

influence the fuel-optimal performance are the altitude at the initiation of this phase and 

the thrust level used. The Apollo mission trajectory (Bennett, 1970) was not a truly 

optimal trajectory with respect to time or fuel. The focus was to achieve high 

probability of mission success and safety. In addition, the computational power was 

limited for both offline and real-time computations of trajectory and guidance design. 

Another limitation was the lack of information about the lunar terrain and the 

uncertainties in measurements. Hence, to enhance the safety aspects, during the terminal 

touchdown phase, the pilot assisted landings were followed to assist the landing site 

evaluation (Bennet, 1972). 

 
Many numerical solution schemes have been explored in literature to generate 

an optimal powered braking trajectory since the first Apollo mission. Meditch (1964) 

presented an optimal thrust programming and trajectory design for terminal vertical 

landing phase and it was shown to be equivalent to minimum time problem. The thrust 

profile is a bang-bang thrust profile, which switches the thrust between minimum and 

maximum instantaneously. Bennet (1970) discussed the Apollo lunar landing mission 

design and he approximated the optimal trajectory as a polynomial for real-time usage. 

 

Wilhite and Wagner (2008) analysed soft-landing mission strategies using POST 

software (Brauer et al., 1975). Many of the other landing trajectory design schemes are 

based on optimal control theory (Kirk, 1970; Bryson and Ho, 1975; Subchan and 

Zikowski, 2009). The optimal control problems are fundamentally different from the 

nonlinear static optimization problems since they involve unknown functions in time 

(control and state) and the dynamics of the process must be considered as constraints 

(Ben Asher, 2010). It is well known that an optimal control problem can be solved 

mainly by two approaches, (i) direct approach (ii) indirect approach. Different 

researchers (Betts, 1998; Rao, 2009; Conway, 2012) present comprehensive survey of 

different solution approaches. Topcu et al. (2007) formulated the problem of a fuel-

optimal powered descent for terminal phase of Mars landing. The results showed that 
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the optimal thrust profile is a bang-bang profile and it stated that the proposed lander 

propulsion system must be capable of throttling between its minimum and maximum in 

30 to 40 milliseconds.  

 

In the direct approach, the optimal control problem is converted into a parameter 

optimization problem by discretizing the state and control variables (sometimes, state 

variables are obtained by numerical integration) and it is solved by Non-Linear 

Programming (NLP) approach. This method of discretization of state and control 

variables is called collocation scheme (Hargraves and Paris 1987; Stryk, 1993) and it is 

used for different space vehicle trajectory optimization. Two commercially, available 

software for collocation scheme of optimal control with gradient based solvers are 

DIDO (Gong et al., 2008) and GPOPS (Rao et al., 2010). They mainly use pseudo 

spectral methods to discretize the states and control variables at the selected nodal 

points along the trajectory. It is well known that the solution accuracy of direct 

approach depends on the number of nodes and their distribution. When the number of 

nodes increases, the number of unknowns also increases, making the problem 

computationally expensive. Further, a good initial guess of state and control variables at 

each node is essential for rapid convergence. 

 

Vasik and Floberghagen (1998) formulated the soft landing problem in planar 

form using direct scheme and solved by using Newton’s method. The SELENE orbiter 

and lander trajectory formulation using direct approach for different phases are 

provided by Kawakatsu et al. (1998).  Park et al. (2011) presented a two-dimensional 

trajectory optimization for soft lunar landing considering a landing site. Also, the same 

problem was extended to three-dimensional motion and solved by Park and Tahk (2011) 

using sequential quadratic programming (CFSQP).  In this paper, the equations of 

motion for the system dynamics is formulated in spherical (latitude, longitude and 

altitude) coordinates and it has singularity when latitude=90 deg.  Tu et al. (2007) 

formulated the planar case of soft landing problem using direct collocation method and 

solved using nonlinear programming solver. Many authors (Hawkins, 2005; Mathavaraj 
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et al., 2017) have solved the lunar landing problem by using the software DIDO. Zhou 

et al.  (2010) solved the soft landing problem as an optimal parameter selection problem 

using the optimal control software package MISER (Jennings et al., 1991). Huiping et 

al. (2017) used a direct scheme to find the optimal landing trajectory with constraints 

for a planar case. Henzeh Leeghim et al. (2016) computed the optimal terminal phase 

landing trajectory with a modified version of gravity turn. In MISER software, the 

control parameters are expressed as a linear combination of simple basis functions to 

reduce the computational complexity. 

 

In the indirect scheme, the problem is transformed into a two-point boundary 

value problem involving the state and co-state variables and the related equations 

representing their variations. The control law is obtained as a function of time-varying 

co-state variables. Ramanan and Madan Lal (2005) solved the lunar soft-landing 

optimal trajectory in planar form using indirect approach. For trajectory optimization in 

the solution process, these authors used Controlled Random Search (CRS) a gradient 

free optimization technique.   

 

Vasile et al. (2008) tested different global optimization algorithms for space 

trajectory design and compared their performances. The evolutionary optimization 

methods are found to be very powerful methods by Vasile and Minisci (2010) for 

solving complex aerospace engineering problems. Some of the methods are Genetic 

algorithms, Particle Swarm Optimization (PSO), Differential Evolution (DE), Simulated 

Annealing, Ant colony optimization etc. PSO (Venter and Sobieski, 2003) is an 

evolutionary computational algorithm based on the movement and intelligence of 

swarms. It is a gradient free stochastic search algorithm and it is suitable for dynamic 

optimization of continuous systems. Hassan et al. (2005) compare the performance of 

PSO with Genetic algorithm and concluded that PSO is better in terms of function 

evaluations. PSO was effectively used (Pontani and Conway, 2010; Pontani et al., 2012) 

for solving different aerospace trajectory design problems. PSO combined with pattern 

search algorithm was explored for propulsion system optimization related problem by 
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Jenkins and Hartfield (2012). DE is now becoming popular due to its convergence 

capability with lesser number of function evaluations. PSO and DE (Storn and Price, 

1997) have fewer procedural steps and are easier to implement compared to Genetic 

algorithm. Olds et al. (2007) generated interplanetary mission opportunity using DE. It 

involves complex dynamics like multiple gravity assists and parking orbit 

considerations. These optimization techniques do not require initial guess of decision 

variables.  

 

 In the indirect approach, determining suitable values of initial co-state variables 

is a challenging problem. Many researchers attempted to find the initial co-states by 

introducing assumptions. Fahroo and Ross (2001, 2004) presented a Legendre 

pseudospectral method and Benson et al. (2006) presented a Gauss pseudo spectral 

method to find the co-state history. These studies attempted to solve the optimal control 

problem using direct approach by representing the problem as a nonlinear programming 

problem through pseudo spectral methods. As pointed out earlier, the number of 

unknowns depends on the number of nodes. Further, in these formulations, if the final 

time is unknown, the number and distribution of nodes also change depending on the 

change in the final time. Taheri et al. (2006) obtained the co-states using shape-based 

method for trajectory construction. The trajectory construction is carried out using 

constant thrust. These formulations are specific to some objective function and many of 

them are valid for minimum time problems only in which the final time is free.  

 

  In the current research, the Differential Transformation (DT) technique is 

employed to determine the initial co-states using the information about the required 

target site. The DT technique was proposed by Pukhov (1981) in which the solution of a 

differential equation is expressed as a series expansion of step size on the independent 

variable. The DT technique converts ordinary differential equations into algebraic 

equations, which are then computationally easier to solve. This technique has been used 

for solving a two-point boundary value problem by several authors (Hwang et al., 2008; 

Huang et al., 2009) when the final state and the time are known. However, for landing 
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at a target site problem, in general, the final state that represents the target landing site is 

known but the final time (flight time) is unknown. 

The literature on the guidance design which is another important step in 

achieving a successful mission is abundant. Three different classes of guidance 

algorithms are mostly in use and they are open loop, explicit guidance schemes with 

analytical expressions and numerical algorithms. The open loop algorithm depends on 

the pre-loaded time/altitude/velocity dependent optimal thrust acceleration vector. The 

drawback of this scheme is that it does not account for the real-time state given by 

navigation for steering command generation and the dispersions of the propulsion 

system during the flight.  

The explicit scheme uses the current state of the space vehicle and an analytical 

expression that generates the thrust acceleration vector to guide the space vehicle to the 

target vector. The advantage of this scheme is that it considers the current state obtained 

from navigation system. However, the derivation of analytical expression is based on 

some assumptions. Hence, these algorithms need to be checked extensively prior to 

flight. 

Numerical algorithms are theoretically more robust but need more 

computational time when compared to explicit schemes. These algorithms must be used 

with extreme care because of the real-time computational risk related to convergence. 

 

The requirement of guidance algorithm is computing the steering commands in 

real time to reach the target consuming minimum fuel. The computations should be 

simple so they can be implemented on-board for real-time use. The guidance 

computations need to be close to the optimal trajectory if fuel mass required is a major 

concern during the mission. Mainly guidance algorithms can be divided into open loop 

and closed loop algorithms. In an open loop mode of guidance, the trajectory steering 

command is generated offline and used in real-time with appropriate interpolations. 

Here, the target locations are planned prior to the mission and the freedom of target 

modification is absent. These modes are sensitive to real-time perturbations and not 
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suitable for landing that may require changes in target conditions. Closed loop guidance 

uses the current state information from navigation to compute the steering command to 

reach the desired location and this computation will repeat in every computational 

cycle. 

The first real-time computation of thrust vector was based on a gravity turn 

concept (Cheng, 1964) and was used for the Surveyer landing. The main feature of this 

scheme, as discussed earlier, is that the thrust vector is oriented opposite to the 

instantaneous velocity vector. In this scheme, to nullify the velocity at touchdown, the 

guidance law needs to be initiated at an appropriate altitude of parking orbit, which 

depends on the maximum thrust level available. A guidance law based on gravity turn 

concept was investigated by McInnis (1995, 1996, and 1999). Viking landers (Ingoldby, 

1978) and the terminal descent phase of Phoenix lander (Guo et al., 2012) used gravity 

turn guidance. A feedback guidance scheme was proposed by Citron et al. (1964) 

combining gravity turn concept and another algorithm to minimize the horizontal 

component of velocity. A planar case of fuel-optimal guidance law was proposed by 

Hall et al. (1963) and used for vertical landing for computing the pitch angle program 

for thrust orientation. This pitch steering angle was found to be sensitive to the initial 

altitude, maximum thrust level, and specific impulse and thrust to weight ratio. 

 

Most of the research for guidance was during the Apollo era in the 1960s. 

Bennett and Price (1964) divided the powered descent phase of the Apollo landing 

trajectory into three phases for trajectory design and analysis and they are the braking 

phase, approach phase, and terminal descent phase. Klumpp (1971) provided different 

methods used for guidance, navigation, and control during the Apollo missions. The 

Apollo soft landing guidance design approximated the trajectory with polynomials and 

used variable thrust through throttling. This algorithm requires the information about 

current and target position, velocity and acceleration vectors and it guides the lander to 

a specified target state in specified flight time, popularly known as time-to-go ( ). The 
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altitude at which powered descent starts and the parameter  are selected through 

extensive ground simulations.  

 

The merits and demerits of polynomial guidance algorithm for the lunar pinpoint 

soft landing problem was presented by Guo and Han (2009) and it concluded that the 

polynomial guidance law could achieve precise pinpoint landing with appropriate  

computation. Lu (2019) presented an augmented version of Apollo guidance algorithm.  

He introduced autonomous determination of suitable altitude for powered descent 

initiation and the parameter  in the near fuel-optimal algorithm. Another enhanced 

version of Apollo guidance algorithm was presented by Bishop and Azimov (2008). 

 

Explicit guidance law generates the steering commands using the current vehicle 

state and the current target conditions. The time to reach the target conditions is 

computed in every computational cycle and the computations are performed until the 

time to go approaches zero. It generates the steering commands using polynomial or 

analytical expressions. One of the earliest explicit guidance algorithm, named E-

guidance, was formulated by Cherry (1963, 1964) for the Apollo landing missions. It 

generates the required acceleration vector in every computational cycle for 3-DOF soft 

landing trajectory. Different versions of this algorithm exist and they are capable to land 

the vehicle at re-designated target locations. D'Souza (1997) presented a near optimal 

guidance scheme which is derived based on Pontryagin’s maximum principle. This 

scheme optimizes the energy (control effort) instead of fuel to avoid computational 

complexities.  

 

Ebrahimi et al. (2008) proposed a feedback guidance algorithm based on the 

concepts of Zero Effort Miss (ZEM) and Zero Effort Velocity (ZEV) for Mars soft 

landing. ZEM is the miss distance from the target if no guidance command acceleration 

is applied from current instant. ZEV is similar to ZEM concept applied to velocity. 

ZEM/ZEV based guidance algorithms with feedback control are presented by Wang et 

al. (2008). Based on these concepts, Guo et al. (2011) and Hawkins et al. (2011) 
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developed Constrained Terminal Velocity Guidance (CTVG). CTVG generates the 

required thrust acceleration profile using the terminal target boundary conditions of 

position and velocity vector with the assumption of constant gravity acceleration during 

the landing phase. ZEM/ZEV guidance algorithm was used for asteroid landing and 

proximity operations by Hawkins et al. (2012).  Further modifications to ZEM/ZEV 

algorithm were proposed by Guo et al. (2013) to handle waypoint-optimized targeting. 

A modified version of the ZEM/ZEV guidance scheme (Je Liuyu, et al., 2014) was 

proposed for Mars landing by including a feature to handle constraints to avoid the 

impact on surface. This constraint is handled by including in the performance index for 

minimum control effort. 

 

Lunghi and Lavagna (2015) proposed a semi analytical guidance scheme for 

lunar soft landing to compute the required acceleration command. This scheme 

represents the trajectory in polynomial form for the specified flight time. Lunghi et al. 

(2016) extended this semi-analytical guidance to make it adaptive guidance by using 

differential algebra. Shuang Li et al. (2016) presented a near fuel-optimal guidance 

algorithm and this scheme was used in Change E-3 mission. Steinfeld et al. (2010) 

presented the summary of guidance, navigation, and control technologies that could be 

used for pinpoint landing on Mars. An analytic optimal lunar trajectory was proposed 

by Li et al. (2010) by expanding the thrust acceleration, gravitational acceleration and 

the cosine of the vertical attitude angle to a high-order polynomial. The specified 

boundary conditions used to get the polynomial coefficients. A three-dimensional 

guidance algorithm was proposed by Ueno and Yamaguchi (1999) for SELENE mission 

with certain assumptions and approximations. The terminal landing velocity and 

altitude are specified as boundary conditions in this algorithm and the terminal landing 

point is not specified. A guidance algorithm for the terminal phase of lunar soft landing 

guidance was presented by Najson and Mease (2006) in which the solution of optimal 

control problem is expressed in analytical closed form. Mehedi and Kubota (2011) 

presented a guidance algorithm for a powered braking from orbital conditions by 
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approximating the centrifugal acceleration term and with constant acceleration due to 

gravity. 

 

Uchiyama et al. (2002, 2005) proposed a jerk based lunar soft landing guidance 

algorithm and its implementation for real time usage.  This algorithm is based on a 

simplified spacecraft dynamics, which incorporates various assumptions such as a flat 

lunar surface, a small variation of downrange angle and constant gravity model.  An 

analytical expression for acceleration command during the terminal phase of a lunar 

landing was derived by Banerjee and Padhi (2017) with minimum jerk-based guidance. 

 

Furfaro et al. (2011) proposed a non-linear sliding guidance algorithm for 

precision lunar landing and it had a base on non-linear sliding mode control theory 

(Won and Hedrick 1996). This algorithm generates the thrust acceleration command, 

which drives the deviation of vehicle position and velocity from the target (i.e sliding 

surface vectors) to zero in finite time. This non-linear sliding mode guidance algorithm 

was used by Furfaro et al. (2013) for landing on asteroid. Kozynchenko (2010) had 

formulated a planar guidance algorithm for a constant thrust magnitude based on a 

direct approach, which involves finding the solution of non-linear equations for selected 

boundary conditions.  Banerjee et al. (2015) formulated the planar lunar soft landing 

guidance problem using a model predictive static programming (MPSP). MPSP 

converts the dynamic programming problem into a static optimization problem with 

flight time as unknown. The flight time is selected using a gradient based optimizer 

offline. MPSP based guidance algorithm formulated by Banerjee and Padhi (2020) was 

used to achieve the terminal position, velocity and terminal orientation requirement. 

The requirement of spacecraft terminal orientation is embedded in the guidance 

formulation as soft constraints. 

 

Most of the numerical algorithms reported are in the context of Mars missions. 

Ploen et al. (2006) presented a survey of various Mars landing guidance schemes. 

D’Souza et al. (2014) presented a literature survey of past and present planetary entry 
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guidance algorithms and they categorized them based on the planetary atmosphere that 

the vehicle is entering. Gerth and Mooij (2014) consolidated a comprehensive review of 

various types of guidance algorithms.  Wong et al. (2006) provided a guidance 

algorithm for Mars landing similar to the one used for the Apollo Lunar Module to 

guide the vehicle from its current state to the desired target state. The acceleration 

profile used to command thrust in that profile is linear in the vertical channel, and 

quadratic in the horizontal channel. Açıkmeşe and Ploen (2007) proposed a numerical 

algorithm that solves the terminal powered descent landing problem using direct 

approach of optimal control and convex optimization theory. In their study, the powered 

landing problem is converted to a convex optimization problem under certain 

assumptions. This convex optimization problem is then parameterized and converted 

into a second-order cone programming problem (SOCP) and numerically solved 

(proposed for on-board use). Numerical interior point optimization methods are used to 

solve the SOCP to find a global optimum along with another parameter to find with 

iterative scheme is optimal time-of-fight.  The disadvantage of this scheme is that it 

needs a numerical solver and unreliable real time convergence capability. To overcome 

these issues, a scheme was proposed with an augmentation (Açıkmeşe et al., 2008) for 

generating a set of near optimal, preflight trajectories with different initial conditions. 

These trajectories were proposed to be used in a table look up form for on-board use.  

With this background, G-FOLD (Guidance for Fuel Optimal Large Divert) guidance 

(Blackmore et al., 2010) based on convex programming (Acikmese and Blackmore 

2011) was presented for terminal phase of Mars landing. It has advantage of including 

many constraints, and the disadvantage is the requirement of a numerical solver. The 

retargeting capabilities of the algorithm and the convergence are yet to be demonstrated 

for real-time planetary landing applications. Lu et al. (2017, 2018) developed a fully 

numerical predictor-corrector numerical algorithm for entry guidance of mars missions. 

Lu et al. (2017) presented a fuel-optimal guidance algorithm, which solves the optimal 

control problem using indirect approach in the context of Mars landing. Rea et al. 

(2010) developed an analytical fuel-optimal guidance law assuming constant thrust for 

Moon landing problem. 
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  Lee et al. (2010) presented the Altair Lunar lander guidance, navigation and 

control System schematic and preliminary details. Altair Lunar guidance algorithm 

(Lee, 2011) uses a polynomial to minimize the fuel usage and to maximize the landing 

point accuracy. The optimal trajectory profile of a lander with a cost function that 

penalizes both the touchdown velocity and the fuel cost of the descent engine is 

generated. In this formulation, achievement of a zero-touchdown velocity is not a 

requirement and only a touchdown velocity that is required to meet the landing gear 

design. 

 

In many of the studies, the value for   is either computed based on extensive 

ground simulations and preloaded or computed in real-time on-board. Some approaches 

make an estimate of   assuming gravity turn trajectory and some solve a cubic or 

quartic equation to get an estimate. 

1.4 Motivation of the Research 

For safe and precise lunar landing in a pre-specified target location within 

specified accuracy limits, it is required to steer the lander module to the target site. For 

the survival of the module after landing it is required to bring the velocity to a near zero 

level from 1.7 km/s.  With the Moon having very weak atmosphere, the reduction of 

velocity to zero must be achieved using chemical propulsion, which calls for 

minimizing fuel consumption. To achieve the fuel-optimal design of mission and 

trajectory, thrust vector need to be steered and throttled in an optimum way. The 

landing trajectory design problem is to find the optimum thrust-direction profile (in 

plane and out of plane directions), for maximizing the landing mass while transferring 

the module from a given parking orbit. Among the two basic approaches, the inherent 

well known complexities of the direct approach are: (i) number of discrete nodes 

decides the accuracy of the solution (ii) the dimension of the problem increases when 

number of nodes increased (iii) good initial guess for the unknowns etc. So, an indirect 
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approach is adapted for this research because it avoids the complexities of direct 

approach. 

For the indirect scheme of solution approach, determining the unknown co-

states is a challenging problem since they do not represent any physical phenomena.  

This is the major reason for the non-convergence encountered while using gradient-

based methods through indirect approach. Many researchers have attempted to find the 

initial co-states by introducing assumptions. However, these methods are specific to 

certain objectives either to fuel-optimal or energy-optimal.   

So, development of a method to determine the initial co-states, which is 

uniformly valid for all objectives viz. time-optimal, fuel-optimal and energy-optimal 

etc., is attempted.  With the unknown co-states determined using Differential 

Transformation technique, the number of unknowns reduces to one viz. the flight time. 

This indirect approach based method leads to reduction in computational time. 

 The current research focusses on developing a new computational scheme, in 

which the computation of initial co-states is carried out using Differential 

Transformation technique. The DT technique needs a flight duration to determine the 

initial co-states. This flight duration is selected using the Differential Evolution 

technique. The scheme uses the pre-specified target state vector and the flight time 

selected using Differential Evolution for the computation of co-states. With the co-

states determined using the DT technique, the soft-landing trajectory problem becomes 

easily and quickly solvable with reduced number of unknowns and the numerical 

integration of co-states is avoided.  

Furthermore, two main observations based on the guidance algorithms reported 

in the literature can be made (i) fuel-optimal guidance is not addressed by many studies, 

especially under variable thrust, because of the theoretical complexity involved in 

deriving analytical design. Most of the studies are based on energy optimal approach (ii) 

all the guidance algorithms depend heavily on the parameter time-to-go ‘ ’. In many 
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of the studies, the value for   is either computed based on large ground simulations 

and preloaded or computed in real-time on-board.  The current research is motivated to 

develop a fuel-optimal guidance scheme and analyze various mission scenarios. It is 

well known that the use of optimal control theory makes any guidance scheme robust.   

This motivated the use of optimal control theory to derive the fuel-optimal guidance 

laws and energy- optimal guidance laws as a function of co-states. In the proposed 

guidance scheme, the Differential Transformation (DT) technique is employed to 

determine the unknown co-states using the information on the current vehicle state 

(obtained from navigation), target landing site (loaded on-board apriori) and  time to go.  

A simple strategy to compute   based on current and end states is introduced. The 

retargeting capability is another main feature of guidance.  

1.5 Objectives of the Research 

  The main aim of the research work is to develop an optimal lunar soft landing 

trajectory design technique along with a real time implementable guidance scheme that 

meets the following objectives, 

i. Use indirect approach to avoid the complexities of direct approach. The 

determination of unknowns of this approach, although in small number, is 

challenging. 

ii. Reduce the number of unknowns for the trajectory design process for faster 

convergence. 

iii. Avoid any initial guess for the unknown variables involved for trajectory design 

process. 

iv. Develop a computational scheme, which is uniformly valid for all performance 

measures. 

v. Develop real time implementable computational fuel-optimal and energy-

optimal guidance scheme. In addition, the scheme should be independent of any 

reference optimal trajectory and optimal flight time. 
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vi. Develop a simple computational strategy to compute   based on current and 

end states. 

1.6  Research Summary 

At first, the soft landing trajectory design problem is formulated using different 

approaches and the resulting two-point boundary value problem (TPBVP) is solved 

using different optimization techniques. Two independent approaches i) direct  ii) 

indirect are used to formulate the problem. Two of the gradient free (Particle Swarm 

optimization-PSO and Differential Evolution-DE) optimization techniques and a 

gradient based optimization technique (SQP ) are explored to solve the problem for both 

direct and indirect approaches. In all, six solution schemes, each consisting of one of the 

approaches and one of the optimization techniques have been explored and evaluated. 

As is well known, the gradient based methods work well with good initial guesses on 

unknowns and the accuracy of the solution increases (control profile) with more number 

of discrete points. Among the gradient free methods (i) PSO (ii) DE, the performance of 

DE is found to be better in terms of number of function evaluations and computational 

time for both direct and indirect approaches.  

 

 The challenge in the indirect approach lies in finding suitable initial co-states 

with no prior knowledge available about them. In the above study, the number of 

unknowns are seven initial co-states and the flight time. In the second part of the 

research, an attempt to reduce the number of unknowns has been made. A new 

computational scheme that combines DT and DE techniques has been developed to 

realize the objective of reducing the number of unknowns. The co-states are computed 

using Differential Transformation (DT) technique, for a given flight duration. The 

unknown flight time is determined using the DE technique. DT is a recently proposed 

method in which the solution of a differential equation is expressed as a series 

expansion of step size on the independent variable. The DT technique converts ordinary 

differential equations into algebraic equations, which are then computationally easier to 
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solve.  This novel computational scheme uses Differential Transformation in multi 

steps, to ensure the precise landing at the target site. In the DT-DE scheme, the major 

advantage is that the co-state equations need not be numerically integrated to find the 

control variables at each computational step. Furthermore, the number of unknowns 

reduces to one, the flight time. In a conventional indirect approach without DT, the 

numbers of unknowns are eight and numbers of equations are fourteen including the co-

state equations. The robustness and validity of the proposed scheme is demonstrated for 

three popular objectives (i) energy-optimal (minimum control effort): a) with variable 

thrust; b) with limited thrust and throttling (ii) fuel-optimal: with limited thrust and 

throttling (iii) time-optimal: with limited thrust and throttling.  

 

In the final part of the research, optimal analytical guidance schemes with 

objectives as (i) fuel-optimal (ii) energy-optimal are developed.  These analytical 

schemes compute the time varying optimal thrust acceleration vector during the 

powered descent phase. First, the soft landing problem is transformed into a two point 

boundary value problem using Pontryagin’s principle and the control laws for the three 

objectives are obtained. These control laws, which produce the optimal thrust 

acceleration components, are used in the proposed guidance scheme. In the control 

laws, the components of thrust acceleration at a time instant are dependent on 

instantaneous co-states. The challenge of finding analytically suitable co-states, with 

no prior knowledge available about them, is handled. In the proposed guidance 

scheme, the Differential Transformation (DT) technique is employed to determine the 

unknown co-states using the information on the current vehicle state (obtained from 

navigation), target landing site (loaded on-board a priori)  and the flight time required to 

land from the current state.  

 

The DT based approach provides a unified approach to handle all the 

performance measures in the context of guidance.  For guidance scheme, the parameter 

time-to-go ( ) is to be updated in real-time for the computation of thrust acceleration 

commands. In the proposed scheme, the parameter  is determined in real time. A 
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simple strategy is used to compute  based on current and end states. The real time 

computation of   helps the algorithm to guide the lander to the landing site even 

when the trajectory is nonlinear.  The fuel-optimal and energy-optimal guidance 

schemes are compared for test cases and the fuel consumptions are quantified. The 

advantage of this novel scheme is the fast computation of optimal real-time 

trajectory without any prior guess of initial co-states and it requires only the 

information on the current vehicle state with terminal state along with flight time.  

The DT guidance scheme is an optimal fuel-optimal guidance scheme in closed form on 

which there are not many studies. Guidance schemes are evaluated for both limited and 

unlimited thrust cases. For thrust limit case thrust is assumed to be limited to some 

value and throttleable between a maximum and minimum level.  The ideal navigation is 

assumed which is substituted by numerical integration. 

1.7 Thesis Architecture  

The current thesis has six chapters, which are outlined below. 

 Chapter 1:  This chapter introduces the topic of the research. A survey of the 

available literature for trajectory and guidance design schemes is consolidated.  

The limitations of the existing schemes, which motivated the current research, 

are discussed. The objectives of the research and a brief research summary are 

presented along with thesis architecture. 

 

 Chapter 2:  The problem of lunar soft landing is formulated and solved using 

different solution schemes. A formulation using planar dynamics is presented. 

Two evolutionary optimization methods i.e Particle Swarm Optimization (PSO) 

and Differential Evolution (DE) along with MATLAB based gradient 

optimization scheme are tested independently for solving the optimal control 

problem of lunar soft landing trajectory design. The details of six direct and 

indirect approach solution schemes and their merits and demerits are 
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highlighted. The evaluation of all schemes, results in the selection of an indirect 

solution scheme that uses Differential Evolution. 

 

 Chapter 3:  This chapter outlines the formulation of soft landing problem using 

three degree of freedom (3-DOF) system dynamics. The formulations of the 

optimal control problem using indirect approach (Pontryagin’s principle) for 

different performance measures such as, energy-optimal (or minimum control 

effort), fuel-optimal, time-optimal are provided. This chapter also includes the 

details of a new scheme introduced to find the unknown co-states to compute the 

control history for the above mentioned performance measures. This new 

scheme that is based on Differential Transformation (DT) is described and the 

number of unknowns needs to be obtained using optimizer is reduced to one, i.e 

flight time. The single unknown (flight time) is selected using Differential 

Evolution(DE). The new technique named as DT-DE scheme that uses DT and 

DE to find the unknown co-states at different time instants during the descent 

phase of trajectory is presented. A comparison of DT-DE scheme with the other 

conventional techniques are briefly presented. 

 

 Chapter 4: This chapter discusses the performance of DT-DE scheme to 

generate the optimal open loop trajectory for different mission scenarios.  

 
 Chapter 5: This chapter includes the details of fuel-optimal and energy-optimal 

guidance methods using DT for real-time computation of instantaneous thrust 

acceleration vector. The unknown instantaneous time-to-go parameter is 

computed using a new technique which involves the downrange and cross range 

to be covered and current altitude at every computational step.  The fuel-optimal 

and energy-optimal guidance schemes are compared and evaluated and the 

details are presented in this chapter. The proposed guidance schemes are 

compared with the other popular guidance schemes and the details are 

highlighted in this chapter. The performance of the scheme for retargeting is 
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discussed. The robustness of DT based guidance schemes is demonstrated using 

Monte Carlo analysis. 

 
 Chapter 6:  This chapter consolidates the major inferences for the proposed 

DT-DE trajectory optimization scheme and DT guidance schemes.  The future 

scope of the research is also presented. 
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Chapter 2 

Optimal Lunar Landing Trajectories and Solution 

Schemes 

Chapter Summary 

The problem of soft landing on Moon is formulated and solved using different 

solution schemes. Each solution scheme consists of one of the two approaches i) direct 

ii) indirect and one of different optimization techniques. Gradient free (Particle Swarm 

Optimization and Differential Evolution) and gradient based optimization techniques 

have been used to solve the problem through both direct and indirect approaches. In the 

indirect approach, the optimal control problem is transformed into a two-point boundary 

value problem (TPBVP) using Pontryagin’s minimum principle and the appropriate 

initial co-states are selected using different optimization techniques. In the direct 

approach, it is transformed into a nonlinear programming (NLP) problem and is solved 

by using an optimizer.  The performance of the direct schemes is compared with 

indirect schemes. A scheme based on the indirect approach and Differential Evolution 

technique is evaluated to be better than other schemes for the soft landing trajectory 

problem.  

2.1 Dynamics of Landing Trajectory 

As the main aim of this chapter is to evaluate different solution schemes and to 

select one for use in further research, planar motion for landing trajectory design is 

considered. The number of unknown design variables are less and so, it helps for quick 

evaluation of the solution schemes. Also, it provides deep insight for 3-DOF 

formulation and solver. The lander module is assumed to be a point mass (cf. Fig. 2.1). 

The vehicle state equations in radial transversal coordinates used for the trajectory 

simulation are as follows. 
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                                                                  (2.1a) 

                                                                   (2.1b) 

                                                    (2.1c) 

                                                   (2.1d) 

                                                               (2.1e) 

 

Moon

r

T
Vr

V

Lunar Parking
Orbit

 

Fig. 2.1. Parameters for planar trajectory design 

where r is radius at the module location;   is the horizontal velocity;  is the vertical 

velocity; T is thrust level; m is mass;  is the angle between the initial position and the 

current position (range angle) of space module and  is the angle from the local 

horizontal to the thrust direction. In the planar motion, the state vector is    

. The following assumptions have been used. 

 

i. The tenuous atmosphere of Moon is ignored 

ii. Moon is assumed to be spherical and non-rotating.  
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iii. Gravity perturbations due to the Earth and Sun are neglected.  

iv. Constant thrust and constant specific impulse assumed for planar case of 

trajectory  

v. Mass consumption is dependent only on constant propellant mass flow rate. 
The constants used are: 

i. Lunar equatorial radius 1738000 m 

ii. Lunar gravitational parameter 4.902800476E12 m3/s2 

 

The trajectory design problem is to find the thrust-direction profile, (t), to 

maximize the landing mass while transferring the module from a given initial orbital 

conditions to the specified target  conditions with the given constant thrust level and Isp. 

This optimal control problem to find the optimal thrust steering formulated with direct 

and indirect approach. In indirect approach, the problem is transformed into a two-point 

boundary value problem using Pontryagin’s principle and solved. The challenge in the 

indirect approach lies in finding suitable initial co-states with no prior knowledge 

available about them. To solve this problem an NLP solver and the Evolutionary 

optimization technique of Particle Swarm (PSO) and Differential Evolution (DE) are 

used and their performances highlighted. 

2.2 Formulation of Optimal Control Problem – Indirect Approach 

Because the mass consumption is dependent only on the constant propellant 

flow rate, the problem of maximizing the landing mass is equivalent to minimizing the 

time. The present problem is treated as a minimum time problem that results in a 

Lagrange problem. Accordingly, the performance measure is set as, 

                                                                  (2.2) 
The Hamiltonian is given by 

                                                         (2.3) 

The co-state variables are: 

                                                              (2.4) 



26 
 

 
 

The co-state rates variables are given by 

                                                       (2.5) 

The co-state equations are :  

                                         (2.6a) 

                                                                                                (2.6b) 

                                                          (2.6c) 

                                                                          (2.6d) 

                                              (2.6e) 

The optimum thrust steering angle ( ) is found by minimizing the Hamiltonian with 

respect to the control variable ‘ ’ at every instant of time.  

                                                                                        (2.7) 

The optimal thrust angle is given by 

                                                                             (2.8) 

At the end of powered braking phase (at touch down), the velocity must be brought to 

near zero.  So the terminal boundary conditions are given by Eq.(2.9). 

                                 (2.9) 

Where  is radius of the spherical Moon. Because the range angle at time  is free, 

we have   ( ) =0.  Also, we have that its co-state rate is zero, i.e . So, it leads 

to (t)=0 ,  t  [ 0, ].  Furthermore, the Hamiltonian is not an explicit function of 

time and so it will be constant for all t  [ , ]. The value of the Hamiltonian depends 

on the boundary conditions at the end of horizontal braking phase. The transversality 

(boundary) conditions are: 
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                              (2.10a) 

where       ;    is Lagrange multiplier variables 

associated with the terminal state constraints. An additional relation for the Hamiltonian 

is derived from the transversality conditions. Consider the second term in Eq. (2.10a). It 

is the boundary condition for the terminal time and because the final time is free,  

                                                  (2.10b)

 

 

                                                 (2.10c) 

                                               (2.10d) 

                                                               (2.10e) 

The constant Hamiltonian depends on mass flow rate and the Lagrange multiplier for 

boundary conditions of mass (cf. Eq. (2.9)). To get the multiplier value use the first 

term from Eq.(2.10a). Because the final mass is free (final time free), we have,  

                                                             (2.10f) 

                                                          (2.10g) 

                                                      (2.10h) 

Eq. (2.10h) provide additional help in verifying the optimal solution. 

2.3 Solution of the Optimal Control Problem 

Any optimal control problem can be solved using two approaches (i) Indirect 

approach (ii) Direct approach. In this study, both the approaches have been tried.  

2.3.1 Indirect Approach 

The time dependent control variable is a function of instantaneous values of the 

co-state variables (Eq. 2.8).  If suitable initial value of co-states (at ) are known 
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then the co-states can be propagated numerically and so, control variable can be 

determined.  But the initial co-states are unknown. Because the Hamiltonian H is 

homogenous in co-state variables, it is possible to fix the initial value of one of the co-

states. Also, we already have that the co-state of the state variable ,  is zero at 

. So there are only three unknown co-states and are found using an optimizer. Equation 

(2.9) presents the boundary conditions for the states and the cost function at the terminal 

time for optimal trajectory design problem, used in the optimization technique is set as 

                                                      (2.11) 

The third variable ‘ ’ is used for terminating the numerical integration of the state 

variables.  With the initial state and the co-state variables known (chosen by optimizer), 

the equations of motion (state and co-state) are integrated and the optimum thrust 

steering angle computed using the control law (Eq. (2.8)).  

 

Three optimizers i) Particle Swarm Optimization ii) Differential Evolution iii) 

SQP of MATLAB have been used to solve this problem. So, three solution schemes 

have been explored through indirect approach. The functional block diagram for 

indirect approach is shown in Fig. 2.2. 

 
Fig. 2.2. Indirect approach schematic 
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2.3.2 Direct Approach 

In this approach, the control variable is dealt without the help of co-state 

variables.  The control parameter is selected at discrete time intervals and the state 

equation alone is numerically integrated (schematic is shown in Fig. 2.3). The solid line 

in Fig. 2.3 represents the state (radius) obtained by numerical integration. Another 

control variable is the final time since the flight time is unknown. The control 

parameters are interpolated between the time intervals. The performance of the scheme 

depends on the number of discrete time intervals at which control parameter is selected.  

TIMEC
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  S
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Fig. 2.3. Direct approach schematic 

For the soft landing problem, the control variable is set as the rate of change of 

the control variable (thrust direction angle).  With a guess on initial thrust direction 

angle (@time =0) and guessed angular rates at different times, thrust direction angles 

are computed at different time intervals. For the interpolation of rates at timings 

different from the discrete times, linear and Lagrange interpolation methods are 

explored. A fourth-order  Runge–Kutta (RK4) method is used for the propagation of the 

state equations. The guesses on the thrust angle rates are updated using an optimizer. As 

discussed in the previous section three optimization techniques have been used to 

generate the solution using the direct approach. 
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2.3.3 Solution Schemes 

The soft landing problem is solved (to find appropriate initial co-state or control 

angle history) using different solution schemes listed in Table 2.1. Each solution 

scheme consists of one of the two approaches and an optimizer.  

Table 2.1 Summary of different solution schemes 

Soft Landing Trajectory Design Problem 

Solution Scheme Approach Optimizer Selected 

Scheme 1 Indirect  PSO 

Scheme 2 Indirect DE 

Scheme 3 Indirect  MATLAB (SQP) 

Scheme 4 Direct PSO 

Scheme 5 Direct DE 

Scheme 6 Direct  MATLAB (SQP) 

2.4 Optimization Techniques 

Most of the traditional optimization techniques calculate the first derivatives to 

locate the optima on a given constrained surface and the second derivatives are used to 

establish the optimality. To overcome the difficulties in evaluation of the first and the 

second derivatives for discontinuous optimization spaces, several derivatives-free 

optimization methods have been developed in recent time. In the present study, Particle 

Swarm Optimization (PSO) and Differential Evolution (DE) techniques are used to 

solve the soft landing trajectory optimization problem and the results are compared. 

Also MATLAB based gradient constrained optimization (SQP) is tried to solve the 

problem with initial guess from PSO/DE. The different optimization techniques are 

briefly discussed below. 



31 
 

 
 

2.4.1 Particle Swarm Optimization (PSO) 

In PSO algorithm, a number of swarms (possible solution vector) are considered in 

the design space and these swarms are moving with their own individual experience and 

the experiences of other particles. Every particle will keep track of its position ( ) and 

velocity ( ) and it will move according to the best solution (fitness) achieved (Venter 

and Sobieski, 2003). Another value that is tracked by the PSO is the best value ( ) 

achieved so far by any particle. The concept lies in changing the velocity of each 

particle toward its  and the  position at each step. Each particle tries to modify 

its current position and velocity according to the distance between its current position 

and , and the distance between its current position and . 

                                                        (2.12) 

where  ,   : position of particle at nth and n+1th  iteration ,  : particle velocity 

at n+1th iteration.  =1 (unit time step) ; The velocity update is given by 

                          (2.13) 

where  is the inertia weight =( +1)/2;  is a uniform random number between 0 

and 1 and controls the momentum of particles by weighting the contribution of the 

previous velocity;  and  are the uniform random numbers between 0 and 1;   and  

   are constants that fix how much the particles directed towards good positions. In 

the current problem after few trials, the values have been fixed at 1.5 for both   and  

  which results in faster convergence. Similarly, the swarm population size is fixed at 

40. The termination criteria for PSO is fixed based the on number of iterations or by 

keeping track of global best solution or the particle positions. If all particles converge to 

a same feasible point, then the global optimum is ensured. The unknown values of 

position of particles (initial co-states in this problem) are chosen from predefined 

bounds. 

                               (2.14) 
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where are the upper and the lower bound and  is the uniform random 

number between 0 and 1.  PSO velocity vector is defined as  

                                                                           (2.15) 

  

Initialization of the velocity of the particles is as follows, 

                                             (2.16) 

Equation (2.16) provides the initial velocity of the particles and Eq.(2.13) provides the 

velocity updates in subsequent iterations. The advantages of the PSO scheme are the 

initial guess is not necessary and there are only few algorithm parameters for tuning.  

 

2.4.2 Differential Evolution (DE) 

This algorithm has three steps namely mutation, crossover and selection. Mutation 

will expand the search space by adding the difference between two individual 

population members to a base element (Storn and Price, 1997). DE randomly selects 

two population vectors x2 and x3 and makes use of the difference between them with a 

scaling factor (Fm) to mutate xl. Some of the popular mutation schemes are presented in 

Table 2.2 along with the performance for the soft landing trajectory design problem.  

Performance of mutation scheme 3 in terms of function evaluations and the CPU time 

required is better than other schemes. The results are generated according to third 

mutation scheme. The mutation factor Fm is fixed at 0.8 and the population size is fixed 

at 30 after a few trial runs with the present problem. 
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Table 2.2 DE mutation schemes and sensitivity comparison 

S.no Mutation Scheme Mutation No. of 
function 

evaluation 
required 

CPU 
time 
(s) 

1 DE/rand/1 zi=x1+ Fm (x2-x3) 4085 1290 
2 DE/best/1 zi=xbest+ Fm (x2-x3) 2734 987 
3 DE/rand to best/1 zi=x1+ Fm (x2-x3)+ Fm ( xbest -x3) 2397 764 
4 DE/rand/2 zi=x1+ Fm  (x2-x3+ x4 –x5) 4426 1412 
5 DE/best/2 zi=xbest+ Fm (x2-x3+ x4 –x5) 3594 1076 

After the mutation, a binominal crossover operates on the selected vector zi to 

expand the diversity of the population.  The purpose of this phase is to mix the 

successful solutions from the previous generation with the current vector. This is done 

as follows: 

                                                                (2.17) 

CR is the cross over probability which is usually set a fixed value between (0, 1) and in 

the present case it is set as 0.9 and ri is a uniform random number between 0 and 1. 

In the third step i.e selection, ui is compared with xi based on function evaluation 

and the one with better function value will be selected to be a member of DE population 

for the next generation. The selection scheme is as follows 

xi
k+1= ui

k    ;     if f(ui
k) ) < f(xi

k) )                                               (2.18a) 

xi
k+1= xi

k    ;     if f(ui
k) ) > f(xi

k) )                                               (2.18b) 

In the first step of Differential Evolution technique, an initial population of a 

fixed size (NP) is built. If there are ‘N’ unknown variables, the population matrix is of 

the size NP x (N+1).  Of the N+1 elements of each row, first ‘N’ of them are unknown 

variables selected randomly from their respective bounds according to uniform 

distribution and the (N+1)th element is the objective function value. The set of randomly 

selected unknowns are used to evaluate the objective function at touchdown after 

numerical propagation. In the second step, each row (say ) of the population 

undergoes three operations: mutation, crossover and selection and a new set of elements 
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is constructed. These two steps are repeated until the value of objective function is less 

than a prefixed small tolerance value.  

2.4.3 Gradient Based Optimizer (SQP) 

The Sequential Quadratic Programming (SQP) is used in the current research and 

the function ‘fmincon’, a built in MATLAB function for constrained optimization, is 

utilized in this study. Apart from SQP, the function ‘fmincon’ has provision to use other 

methods such as (i) active-set (ii) interior point (iii) trust-region-reflective.  It finds the 

constrained minimum of a function of several variables (Venkataraman, 2009). The 

function requires initial guesses of the unknown variables along with their bounds 

(lower and upper). The search starts from initial guess and moves towards the optimum. 

The initial guess must be provided within the parameter bounds. It uses finite 

differences to compute the gradients and Hessian using the selected unknown 

parameters within the bounds. It uses one of the four methods (user selected) to update 

the initial guess. The user needs to supply the maximum number of function evaluations 

and tolerance level of objective functions.  

2.5 Results and Analysis 

The initial mass is set as 880 kg in a 100x 100 km orbit with engine thrust level of 

2200 N and Isp of 315 s. Typical initial conditions for a planar case are provided in 

Table 2.3  

Table 2.3 Initial state parameters 

Parameter Value 
Radius  - m 1753000 

Horizontal velocity (  ) – m/s 1692 
Vertical Velocity ( ) –  m/s 0.0 

Range angle ( – deg. 0.0 
Mass at 100 x 100km orbit (kg) 880 
Mass at 100 x 15km orbit (kg) 874.4 

 



35 
 

 
 

The terminal boundary conditions to be achieved are:  
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                         (2.19)

 

 

2.5.1 Performance of Indirect Schemes 

The initial co-states are selected by using PSO, DE and SQP independently and 

their results have been compared. To ensure consistency, the codes for PSO and DE 

have also been implemented in the MATLAB environment. Three results match very 

closely (Fig. 2.4) and the maximum difference in altitude between the schemes is about 

0.08m.  It is to be noted that for scheme 3 (gradient based scheme) requires a good 

initial guess and bounds for unknown variables for convergence. The sensitivity to the 

initial guess for scheme 3 is discussed in a separate subsection. Fig. 2.5 and 2.6 shows 

the comparison of horizontal and vertical velocity. Fig. 2.7 depicts the optimum thrust 

direction angle for safe landing.  During the descent phase, the optimum control angle 

varies from 180 to 145 deg. The initial co-state for mass is fixed at one and the other 

appropriate co-states are selected using the optimizer. Fig. 2.8 and 2.9 show the 

Hamiltonian and co-state variation for the optimal trajectory design. Clearly, the 

Hamiltonian is constant on the optimal trajectory, since it is not an explicit function of 

time. The optimum converged values of the initial co-states are listed in Table 2.4 for 

solution scheme 1, 2 and 3.  



36 
 

 
 

 

Fig. 2.4. Altitude profile with solution scheme 1,2 and 3 

 

 

Fig. 2.5. Horizontal velocity vs time with solution scheme 1,2 and 3 
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Fig. 2.6. Vertical velocity vs time with solution scheme 1,2 and 3 

 

 

Fig. 2.7. Optimum thrust direction angle with solution scheme 1,2 and 3 
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Fig. 2.8. Hamiltonian variation with solution scheme 1,2 and 3 

 

 

Fig. 2.9. Co-state variation for optimal trajectory –Scheme 2 
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Table 2.4 Initial co-states – comparison of converged values for solution scheme 1, 2 
and 3 

Co-state Optimizer 
PSO 

Scheme -
1 

DE 
Scheme -2 

SQP (with close 
initial guess) 
  Scheme -3 

pm 1 1 1 
pr -0.001589 -0.001588 -0.001577 
pvr 0.027866 0.027865 0.027855 
pv  -0.907962 -0.907960 -0.907957 

 

2.5.1.1 Implication of Initial guess on Convergence of Gradient Based Scheme 

(Solution Scheme 3)  

Figure 2.10 shows the optimal thrust direction variation with time for SQP with 

different initial guesses to assess the sensitivity of the solution. If the initial guess is 

widely off from the solution, SQP does not converge. Also, when the initial co-state 

guess far-away from the actual value the thrust direction angle profile shows the sudden 

variation of about +180 deg. This discontinuity leads to the non-convergence of 

gradient based scheme. Table 2.5 provides the sensitivity of the solution to the initial 

guess and the converged co-states for Scheme 3.  Four different initial guesses 

considered for SQP are provided in Table 2.5. The bounds for all these initial guesses is 

set as 1.  With the initial guess sets ig1 and ig2, convergence did not happen because of 

high sensitivity of the solution to the low magnitude co-states. With the close initial 

guess (ig4), SQP converges (cf. Fig.2.10) and the results match well with scheme 1 and 

2. It is well known that arriving at good initial guess for a completely new problem will 

require numerous iterations and sometimes even after iterations solution may elude.  
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Fig. 2.10. Optimum thrust direction angle – comparison of solution Scheme 3 
sensitivity with initial guess 

Table 2.5 Initial guesses and the sensitivity of solution – Scheme 3 

Initial guess 
No 

Initial guess and Converged co-states Landing mass 
(kg) pr pvr pv  

ig1 1.0 1.0 1.0 Not converged 
ig2 0.01 

-0.003657 
0.1 

-0.150808 
-1.0 

-0.996084 
Not converged 

ig3 -0.002 
-0.00175 

0.03 
0.0287 

-1.0 
-0.973 

485.6 

ig4 -0.0016 
-0.001577 

0.026 
0.027855 

-0.91 
-0.907957 

486.924 

2.5.2 Comparison of Indirect Schemes 

Table 2.6 summarizes the performance of the schemes 1 and 2 for two sets of 

bounds on initial co-states (i) 1000 (ii) 1 and the performance of the scheme 3 for the 

initial guess ig4. The PSO technique requires more computational time than DE, while 

the optimum landing mass and flight time are very close (the problem has a unique 

solution).  As is well known, SQP requires good initial guess as well as close bounds to 
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achieve convergence. Figure 2.11 shows the cost function variation for the two-

optimization schemes, Scheme 1 and 2 for initial co-state bounds of 1000. 

 

Fig. 2.11. Comparison of solution schemes 1 and 2 

Note that both PSO and DE converge even for a very wide bound on the initial 

co-states. If the bounds on the co-states are restricted to 1, there is a 30 to 50% 

reduction in number of function evaluations and the computational time. The DE 

technique clearly performs better than PSO in terms of number of function evaluations 

for convergence and computation time for both the sets of bounds on the co-states.   

 

 

 

 

0

1000

2000

3000

0 2500 5000 7500 10000 12500

Scheme 2 - DE
Scheme 1- PSO

Number of Function Evaluations

O
bj

ec
tiv

e 
fu

nc
tio

n

0

50

100

150

200

2500 5000 7500 10000

Scheme 2 - DE
Scheme 1- PSO

Number of Function evaluations

Ob
jec

tiv
e f

un
ct

io
n



42 
 

 
 

Table 2.6 Comparison summary for solution schemes 1, 2 and 3 

Optimizer Optimum 
landing 

mass (kg) 

Optimum 
flight 

time (s) 

CPU time required (s) Number of function 
evaluations 

Co-state 
bounds 

1000 

Co-
state 

bounds 
1 

Co-state 
bounds 

1000 

Co-
state 

bounds  
1 

PSO-Scheme 1 486.924 544.086 3312 1586 11898 7689 
DE-Scheme 2 486.925 544.085 1120 764 4512 2397 

SQP (with 
closer initial 
guess (ig4)) - 

Scheme 3 

486.924 544.086 No 
convergence 

712 No 
convergence 

 
2007 

If the initial guess for SQP is closer to a global minimum, the convergence will 

be faster than PSO and DE. In indirect approach a good guess of co-states is not 

possible and so, the performance of the gradient based scheme cannot be compared with 

PSO and DE. With the results of the above cases, it can be concluded that PSO and DE 

are capable of locating the global minimum while DE requires less number of function 

evaluations and hence less time for convergence. So, scheme 2 is selected out of the 

three indirect schemes for further analysis. 

2.6 Optimal Landing Trajectories with Different Initial Thrust to Mass 

Ratio 

The soft landing optimal trajectory design is generated with various constant 

thrust levels for powered braking maneuver represented by initial thrust to mass ratio. 

The initial mass is set as 880 kg and Isp is 315 s. 

The number of function evaluations and the computational time are provided in 

Table 2.7 for Scheme 1 and Scheme 2 by varying initial thrust to mass ratios between 1 

and 3.  The number of function evaluations required to generate the optimal solution is 

insensitive with different thrust to mass ratio. Figure 2.12 shows the altitude variation 

with different constant thrust levels. The plot shown corresponds to the design with the 

DE technique (scheme 2). The PSO results (solution scheme 1) are very close hence it is 
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not shown. The altitude rise and the time required for soft landing depends on the thrust 

level. If thrust level increases the flight time required for soft landing reduces and also 

the peak altitude. It can be concluded that with sufficient energy available for braking, 

the rise in altitude is minimum. Figure 2.13 shows the thrust direction profiles for 

different thrust levels. With the reduction in the thrust levels the nonlinearity of the 

solution (thrust direction angle profile) decreases except for the thrust to mass ratio of 

one. 

Table 2.7 Optimum landing mass with solution scheme 1 and 2 for different thrust level 

Initial 
thrust to 

Mass 
ratio 

Optimum landing mass 
(kg) 

and flight time (s). 

Number of function 
evaluations and CPU 

time required (s) 
Scheme 1- 

PSO 
Scheme 2- 

DE 
Scheme 1- 

PSO 
Scheme 2- 

DE 
1.0 385.71 

(1715.5) 
385.72 

(1715.46) 
7896 

(2169) 
2534 

(1265) 
1.5 457.296 

(976.253) 
457.3 

(976.2) 
7738 

(1984) 
2498 

(1078) 
2.0 479.2 

(693.6) 
479.2 

(693.6) 
7630 

(1821) 
2420 
(877) 

2.5 486.924 
(544.086) 

486.925 
(544.085) 

7689 
(1586) 

2397 
(764) 

3.0 491.7 
(447.7) 

491.7 
(447.7) 

7525 
(1367) 

2278 
(723) 
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Fig. 2.12. Altitude variation with different thrust levels 

 

Fig. 2.13. Optimum thrust direction angle for different thrust levels 

2.7 Results using Direct Approach Based Schemes (4, 5 and 6) 

In the present case, initial control angle (@time=0) and thrust direction angle 

rates at different time instants are the unknown design variables and selected using the 

optimizer. The angular rates are interpolated at different time steps to find the 
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instantaneous control angle. The performance of the direct approach is dependent on the 

interpolation method used to compute the control angles at different nodes. An optimal 

landing trajectory is generated using direct scheme 5 and the solutions are generated 

using linear and Lagrange interpolation techniques.  The solutions are compared with 

the solution of scheme 2. It is found that when Lagrange interpolation scheme is used 

the results are very close to the solution of indirect scheme compared to linear 

interpolation scheme.  The optimum thrust angle is plotted in Fig.2.14. Five thrust angle 

rates (at different time intervals) are selected for linear interpolation whereas for 

Lagrange interpolation three thrust angle rates are found to be sufficient to get close 

match with the indirect approach (cf. Table 2.8). So, for further analysis, Lagrangian 

interpolation method is adapted. A brief account of Lagrange interpolation is provided 

below. 

Lagrange polynomial interpolation involves finding a polynomial of order ‘N’ that 

passes through the ‘N+1’ data points. Let xi and yi - vectors of (N+1) data values. N is 

the degree of interpolation polynomial which represents the function y=f(x). The data 

points are (x0, y0), (x1, y1), (x2, y2)… (xN,yN). The Lagrange interpolating polynomial is 

given by  

)()()(
0

i

N

i
iN xfxLxf

                                                  (2.20a)
 

N

ij
j ji

j
i xx

xx
xL

0
)(

                                                   (2.20b)

 

where Li(x) is a weighting function that includes a product of  N-1 terms  except j=i.  
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Fig. 2.14. Direct approach solution sensitivity with interpolation methods 

 

Table 2.8  Evaluation of interpolation schemes 

Solution 
Scheme 

Interpolation 
scheme of thrust 

angular rates 

Converged values of  
thrust angular rates at 
discrete time interval 

(deg/s) 

Flight 
Time (s) 

Landing 
Mass (kg) 

Scheme 5 Linear with 5 
angular rates 

-0.026149   
-0.026953 
 -0.027853   
 -0.039853 
-0.044462 

544.088 486.918 

Scheme 5 Lagrangian -0.027149    
-0.027253 
-0.047462 

544.086 486.924 

The performance of Schemes 4, 5 and 6 is assessed in terms of altitude profile 

(Fig. 2.15) and thrust direction profile (Fig. 2.16). The altitude profiles for the schemes 

4, 5 and 6 are very close.  It is experienced that for SQP, the initial guess must be very 

close to the solution along with close bounds for the unknowns for quick convergence. 

Figure 2.17 and 2.18 show the horizontal velocity and the vertical velocity variations on 

the optimal trajectory. 
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Fig. 2.15. Altitude profile comparison for solution scheme 4, 5 and 6 

 

 

Fig. 2.16. Optimum thrust direction angle for solution scheme 4,5 and 6 
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Fig. 2.17. Horizontal velocity variation for solution scheme 4, 5 and 6 

 

Fig. 2.18. Vertical velocity variation for solution scheme 4, 5 and 6 
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Figure 2.19 shows the variation of objective function with the number of 

function evaluations. Table 2.9 provides the summary of the performance of optimizers 

and the various parameters of interest. The optimum landing masses and the flight time 

for different schemes are very close. With the close initial guess, SQP convergence is 

faster. The techniques PSO and DE require no initial guess and it is capable of 

generating the optimum solution within about 5000 function evaluations without the a 

prior knowledge of the solution. Also, the DE performance is better than PSO in terms 

of function evaluations.  The converged design is given in Table 2.10. Scheme 6 

requires closer bounds of ±0.05 deg/s (cf. Table 2.10)   and closer initial guess (cf. 

Table 2.11) for convergence. The implication of initial guess and the wider bounds for 

SQP is given in Tables 2.10 and 2.11. The computational time increases for non-closer 

initial guess and there is no convergence for some guesses for SQP.  

 

Fig. 2.19. No of function evaluations for solution scheme 4, 5 and 6 
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Table 2.9 Performance summary of solution scheme 4, 5 and 6 

Optimizer Optimum 
landing 

mass(kg) 

Optimum 
flight time 

(s) 

CPU time 
required (s) 

No of 
function 

evaluations 
PSO (Scheme 4) 486.921 544.087 606 4945 
DE (Scheme 5) 486.924 544.086 267 2434 

SQP - with close initial 
guess (Scheme 6) 

  486.92 544.088 79 412 

 

Table 2.10 Converged design using direct approach 

Optimizer  Converged Design Landing 
mass 
(kg) 

Initial Thrust 
direction 

angle (  @ 

time=0 ) 

Thrust 
direction 
angle rate 

bounds  

Thrust direction 
angle rates 

(deg/s) 

Flight 
time (s) 

PSO (Scheme 4) 178.255 
 

+1 deg/s -0.027152 
-0.027301 
-0.047457 

544.087 486.921 

DE (Scheme 5) 178.26 +1 deg/s -0.027149 
-0.027253 
-0.047462 

544.086 486.924 

SQP 
(Scheme 6) 

178.3 -0.05 
deg/s 

 

-0.027152 
-0.027605 
-0.046907 

544.088 486.92 
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Table 2.11 Performance of gradient based method with arbitrary initial guess (scheme 
6) 

Initial 
guess 
No 

Initial guess and Converged co-states Landing 
mass Initial Thrust 

direction angle 
(  @ time=0 ) 

and  
Converged  

angle  

Guess of 
thrust 

direction 
angle rate  

Converged 
thrust 

direction 
angle rate 

(deg/s) 

Initial 
guess on 

flight 
time 
and 

converged 
fight time 

1 177 
 

-0.5 
-0.5 
-0.5 

 
Not converged 

2 177 
175.3 

-0.1 
-0.1 
-0.1 

-0.034535 
 -0.029033 
-0.05565 

550 
544.6 

485.2* 

3 170 
178.8 

-0.05 
-0.05 
-0.05 

-0.037016 
-0.026311 
-0.041005 

550 
544.3 

486.1* 
 

4 177 
178.3 

-0.05 
-0.05 
-0.05 

-0.027152  
  -0.027605 

   -0.046907 

550 
544.088 

486.92 

*Results after 5000 function evaluations 

The number of function evaluations and CPU time required for convergence are 

provided in Table 2.12 for DE and PSO with wider bounds on thrust direction angle 

rates. Scheme 6 requires close bounds for convergence hence it is not added in Table 

2.12 for comparison. 

Table 2.12 Performance of DE and PSO with wide guess of thrust direction angle rate 

Bounds on Thrust 
direction angle rate 

(deg/s) 

No of Function 
evaluations 

CPU time 
(s) 

DE PSO DE PSO 
±1 2434 4945 267 606 

±1.5 6544 12986 595 1280 
±2 >20000 >20000 >5000 >5000 
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2.7.1 Comparison of direct and indirect approaches 

By comparison of Table 2.6 and Table 2.12, it is clear that in direct approach, if 

the bounds are wide, then even the evolutionary techniques take more function 

evaluations and computing time compared to indirect approach. Also, the performance 

of DE is better than that of PSO. So, the scheme 2 that uses indirect approach and DE 

for optimization is used for further studies of this research. 

2.8 Trajectory Design by 3-DOF Dynamics  

For further studies of this research, 3-DOF equations of motion are used to deal 

with out-of-plane motion also. The natural extension of the equations of motion for 

planar motion is use of equations of motion represented in radial-transversal-normal 

(RTN) frame (Fig.2.20). Here the vehicle motion evaluation is done in 3D space (x, y, z) 

without considering the attitude dynamics of the vehicle. 

 

c1
C2

C3

r

V

 
Fig. 2.20. Schematic RTN frame  
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In the RTN frame, the axes C1 is towards periapsis of the orbit at the start of 

descent, C2 is towards transversal direction, and C3 forms the right handed system (orbit 

normal). The fundamental plane is the orbital plane at the start of descent with origin at 

the center of the Moon. The motion of the lander module is represented by three 

variables, r- radius,   and , the in-plane and out-of-plane angles respectively. The 

velocity vector is represented by the components of the frame denoted by   is the 

vertical (radial) velocity;   is the horizontal (parallel) velocity  is lateral (normal) 

velocity.  The equations of motion (Pontani, 2015) are: 

                                                                     (2.20a) 

                                                              (2.20b) 

                                                                     (2.20c) 

                                  (2.20d) 

                                                  (2.20e)   

                                             (2.20f) 

                                                                          (2.20g) 

 

where T is thrust level; m is mass;  is the angle from the horizontal velocity vector (in 

local horizontal plane) to the thrust direction;  is the out of plane angle from the 

horizontal velocity vector (in local horizontal plane) to the thrust direction and g is 

acceleration due to gravity of Earth(at sea level) . 

The above set of equations has singularity for =90 deg.  Also the co-state 

equations are complicated and lengthy. Another option is velocity and its spherical 

angles flight path angle and azimuth. They also have singularity at the time of touch 

down. So, a set of variables (position and velocity components) in Moon Centered 

Inertial (MCI) coordinate frame is used. The details are provided in Chapter 3. 
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2.9 Conclusion 

 Six direct and indirect schemes have been evaluated using two evolutionary 

optimization methods i.e PSO and DE along with MATLAB based gradient 

optimization method (SQP) for soft landing trajectory optimization. Both the 

evolutionary optimization methods are found to be capable of locating the optimum 

solution even with very wide bounds. However, PSO requires more function 

evaluations compared to DE to arrive at the global optimum. Gradient based 

optimization schemes require reasonably accurate initial guess of the solution. Among 

the direct approach based schemes, the computational times of even the evolutionary 

techniques depend on the bounds on the unknown design variables. Apart from good 

initial guess, the solution accuracy of the direct approach depends on the number of 

discrete points and the interpolation schemes. For a new problem prior information 

about nature of the solution is unknown. So, the indirect approach using the Differential 

Evolution technique is recommended for the design of optimal soft landing trajectory on 

the Moon. 
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Chapter 3 

An Indirect Scheme for Optimal Lunar Pinpoint Soft 

landing Trajectories 
 

Chapter Summary 
In this chapter, the problem of precise and soft lunar landing in a pre-specified 

target location, is solved using a numerical scheme based on an indirect approach. In the 

indirect approach, the problem is transformed into a two point boundary value problem 

using Pontryagin’s principle and solved. The state vector components and their 

variations are used to study the motion. Three formulations to meet three different 

objectives are presented. The challenge in the indirect approach lies in finding suitable 

initial co-states with no prior knowledge available about them. The Differential 

Transformation (DT) technique is employed to determine the unknown initial co-states 

using the information on the target site and the flight time. The proposed new scheme 

reduces the number of unknowns to one from eight. The flight time, the only unknown, 

is determined by Differential Evolution, an optimization technique. The novel 

computational scheme that combines Differential Transformation and Differential 

Evolution techniques uses Differential Transformation in multi steps, to ensure the 

precise landing at the target site. The guidelines that help fixing the bounds for the flight 

time are provided. The proposed scheme, named as DT-DE scheme is uniformly valid 

for various performance measures like fuel-optimal, energy-optimal, and time-optimal. 

Also, it is capable of introducing coasting during descent while maximizing the landing 

mass. Numerical results are provided to demonstrate the numerical scheme for all 

performance measures.  
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3.1 Introduction 

The problem of precise and soft lunar landing in a pre-specified target location, 

is formulated with a scheme based on indirect approach. In the indirect approach, the 

problem is transformed into a two-point boundary value problem using Pontryagin’s 

principle and solved. The two-point boundary value problem involves the state and co-

state variables and the related equations representing their variations. The control law is 

obtained as a function of time-variant co-state variables. The variation of co-states is 

governed by co-state dynamics which is derived using Pontryagin’s principle. But the 

initial co-states (corresponding to the components of the state vector) are unknown and 

are obtained using, in general, some optimization technique.  The challenge in the 

indirect approach lies in finding suitable initial co-states with no prior knowledge 

available about them. Many researchers attempted to find the initial co-states by 

introducing assumptions and these approaches are mainly restricted a certain objective. 

 In the current research, a computational scheme to determine the initial co-

states, which is uniformly valid for all performance measures Viz. fuel-optimal, energy-

optimal and time-optimal, etc, is developed. In the proposed computational scheme, the 

computation of initial co-states is carried out in a multi-step Differential Transformation 

(DT) technique using the pre-specified target state vector and the randomly selected 

flight time. The process of selection of flight time and the computation of initial co-

states is continued until the touchdown boundary conditions are met. This novel scheme 

is named as DT-DE scheme.  The technique DE needs only bounds for the unknown 

parameter. The guidelines to arrive at narrow bounds for the only unknown the flight 

time are also discussed herein. With the co-states determined using multi-step DT 

technique and the guidelines, for selecting bounds for the unknown flight time 

available, the soft landing trajectory problem becomes easily solvable. The robustness 

and validity of the proposed scheme is demonstrated for three popular performance 

measures (i) energy-optimal (ii) fuel-optimal (iii) time-optimal.  For all three problems, 
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the thrust is assumed to be limited and throttling is available. For the energy-optimal 

case, it is capable to handle unlimited thrust also. 

First, the system dynamics are given, and in subsequent sections, different 

formulations are described. In another section, the solution scheme based on DT and 

DE is discussed. Subsequently, the performance of the scheme and its advantages are 

discussed. 

3.2 System Dynamics  

As discussed in Chapter 2, the equations of motion in terms of the state 

variables: the spherical coordinates of the position vector and components of velocity 

vector in radial-transversal-normal frame has singularity. So, to represent the dynamics 

of motion, the Moon Centered Inertial (MCI) coordinate frame (XYZ) is used with 

origin at Moon’s centre. The schematic of coordinate system and landing trajectory is 

shown in Fig. 3.1. In this frame, X –axis is toward the 0 deg. longitude (prime meridian 

of moon) and XY plane coincides with equatorial plane of Moon and Z axis is toward 

north pole of moon. This coordinate system is not inertial because of the rotation of 

Moon about its axis. However, this effect is very small during the landing phase 

(landing duration is very small compared to rotation period) and so, it is neglected.  

The orbital elements at the start of the final maneuver (from periselenium of 

intermediate orbit) are the inputs for the state equations. The orbital elements converted 

to MCI frame using the transformation of Eq. (3.1a). The lander module to be 

transferred from an initial orbit to a target site such that the touchdown velocity is zero. 

The state vector of target site is computed using Eqs. (3.1b)- (3.1d). 
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where,   is the radial distance from Moon’s center,  is the gravitational parameter of 

Moon. The orbital parameters at the start of final maneuver are the following:  is 

argument of periselenium,  is true anomaly,  is right ascension of ascending node,  

is eccentricity,  is inclination of the orbit,    is semi latus rectum ( )  and 

 is semi major axis of orbit. The Cartesian components of the target site are 

                                                     (3.1b) 

                                                     (3.1c) 

                                                                  (3.1d) 

where  are radial distance, selenocentric latitude and selenocentric longitude  

respectively.  To achieve precise and soft landing, the thrust magnitude and direction 

along the trajectory must be chosen satisfying the appropriate performance measure.    
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                   Fig. 3.1. Soft landing coordinate System and thrust vector schematic 
 

The assumptions used in the formulations are : (i)  lander is a point mass with 3 degree 

of freedom (ii) specific impulse of engine is constant (iii) Moon is spherical (iv)  

rotational effect of the Moon on the landing trajectory is negligible. The equations of 

motion in vector form are: 

                                                                         (3.2a) 

                                                              (3.2b) 

                                         (3.2c) 

where   , , ,   are position and 

 are velocity components,  is the radial distance from Moon’s centre. All 

these quantities are in SI units i.e position in meter and velocity in meter per second. 

The quantities are acceleration components of thrust (T) and k is the 

throttling parameter. The parameters   are the mass of the lander 

module, maximum thrust, specific impulse, sea level acceleration due to gravity of 

Earth (9.80665 ms-2) and gravitational parameter of Moon (4.902800476E12 m3s-2 ) 
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respectively.  Note that for propulsion system in which the thrust is restricted (referred 

to as limited thrust),   the throttling parameter  varies between 0 and 1. For a 

propulsion system with unlimited thrust, the actual required thrust will be computed. 

3.3 Formulation for Landing Problem (Indirect Approach) 

Introduce co-state variables  

corresponding to the state variables .  The control variables 

of the problem are given by     . 

Let the performance measure be 

                                                                (3.3a) 

 is the generic representation of the minimization parameter and it depends on  the 

formulation cases. The representations for the three cases are as follows, 

Energy-optimal                              (3.3b) 

Fuel-optimal                                                                  (3.3c) 

Time-optimal                    (3.3d) 

For energy-optimal case, the term  can be avoided or it can be assumed to unity. 

Following Pontryagin’s principle, the Hamiltonian  is written as  

                                                               (3.4) 

The co-state dynamics is derived using  

                                               (3.5)  

The control law by the optimality condition is given by 

                                                               (3.6) 
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3.3.1 Formulation for Energy-optimal 

 The performance measure of energy-optimal problem with variable thrust is given by  

                                         (3.7)   

The Hamiltonian  is written as  

                                             (3.8) 

The co-state equations of motion (cf. Eq. (3.5)) are  

                                (3.9a) 

                                (3.9b) 

                                (3.9c) 

                                                              (3.9d) 

                                                              (3.9e) 

                                                               (3.9f) 

                                         (3.9g) 

3.3.1.1 Unlimited Thrust 

For energy-optimal, ideally, the thrust available must be unbounded. So, for 

unlimited thrust, the control variables are considered as . That 

means the product of the acceleration component and the throttling parameter is 

considered as a single parameter. So, there are only three control parameters for this 

formulation and they are, given by the control laws [cf. Eq.(3.6)] for  

                                                                                                (3.10a) 

                                                                                                (3.10b) 

                                                                                               (3.10c) 

The control laws obtained using Eq. (3.10a)-(3.10c) are given by 
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                                                          (3.11a) 

                                                          (3.11b) 

                                                           (3.11c)      

                                      (3.11d) 

For computation purposes, the parameter ‘ ’ is set to equal to 1. The above control laws 

(cf. Eqs.(3.11a)-3.11c) are valid for unbounded thrust. But, in actual missions, the thrust 

available is limited. 

3.3.1.2 Limited Thrust 

If the required thrust computed using the Eq.(3.11d) is higher than the available 

maximum thrust, the control laws are modified using Pontryagin’s principle. According 

to Pontryagin’s principle, the thrust must be chosen satisfying the constraint on the 

maximum thrust and still minimizing the Hamiltonian.  It can easily be verified by 

selecting the terms that contain control variables that H is minimum when the thrust is 

set to the maximum permissible value. The unit vector along the co-state of velocity 

vector, which is optimally, computed using Eqs. (3.11a)-(3.11c), is used for thrust 

direction. Combining these strategies, to suit the limited thrust conditions, the maximum 

thrust acceleration is resolved along the unit vector of the co-state velocity vector (

. The energy-optimal control laws that provide the thrust acceleration 

components are  

                                                           (3.12a) 

                                                          (3.12b) 

                                                           (3.12c) 

where 
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To summarize, the Eqs. (3.12a)-(3.12c) are used as control laws if the required thrust is 

less than the maximum thrust. Otherwise the Eqs. (3.11a)-(3.12c) are used as control 

laws. For computation purposes, the parameter ‘ ’ is set to equal to 1.  Note that the 

control laws are independent of the co-state of the mass ( ).  

3.3.2 Formulation for Fuel-optimal 

 For the fuel-optimal problem, the thrust is limited to a maximum value and the 

thrust variation is handled using the throttling parameter ( ). The flight time of the fuel-

optimal problem can be either free or fixed. Note that the minimizing the fuel 

consumption leads to maximum landing mass. The performance measure of the fuel-

optimal problem with limited thrust is given by 

                                    (3.13)         

The Hamiltonian  is written as  

                                              (3.14)
 

The co-state equations of motion (cf. Eq. (3.5)) except for mass are as given in Eqs. 

(3.9a)–(3.9f). The co-state equation for mass is  

                                                     (3.15)
                                

Note that the Eq. (3.15) and Eq. (3.9g) are not same. The optimal thrust acceleration 

components and magnitude are found using the optimality condition (Eq. (3.6)) and 

they are as given below. 

                                                        (3.16a) 

                                                        (3.16b) 

                                                         (3.16c) 

                                                  (3.16d) 
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Equation (3.16d) represents the constraint on maximum thrust. To solve for the 

throttling parameter , group the terms containing  in Hamiltonian (cf. Eq. (3.14)) 

                   (3.17a) 

Let                                                                             (3.17b) 

 where, 

                                      (3.17c)
 

It can also be easily verified that the quantity  is invariant along the 

trajectory. Clearly, the minimum of  is controlled by the function ( ), known as 

switching function. The function  is minimum, when 

01
00

Sfor
Sfor

k                                                                            (3.18)                    

When , the value of  is set to zero or one based on the previous value of  . This 

clearly, is a bang-bang type of control. That means, for fuel-optimal problem, the thrust 

level is set either to maximum or to zero, along the trajectory.  Note that the initial value 

of co-state of mass ( ), cannot be equal to one.  When set to one,   and the co-

state of m is frozen to one always and the Eq. (3.17) becomes indeterminate. This 

observation will be used in the formulation for the Differential Transformation 

technique. 

3.3.3 Formulation for Time-optimal 

The performance measure of time-optimal problem is given by 

                                                                        (3.19) 

The Hamiltonian  is written as  

                                                                    (3.20) 

The co-state equations of motion (cf. Eq. (3.5)) except for mass are as given in Eqs. 

(3.9a)–(3.9f) 

The co-state equation for mass is  
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                                                                       (3.21)
                                

The optimal thrust acceleration components obtained using the optimality condition 

(Eq. (3.6)) is: 

                                                    (3.22a) 

                                                          (3.22b) 

                                                      (3.22c) 

                                                 (3.22d) 

 

As in the case of fuel-optimal, to find the throttling parameter , group the terms 

containing  in Hamiltonian (cf. Eq. (3.20)) and the resulting switching function is   

                                         (3.23)
 

It can also be easily verified that the quantity  is constant along the trajectory. 

The minimum of is controlled by the function  . For   to be minimum, the choice 

of  is as follows: 

01
00

Sfor
Sfor

k
                                                                 (3.24)

    

When , the value of  is set to zero or one, based on the previous value of . The 

sign of the switching function ( ) (refer Eq.(3.23)) depends on the sign of the co-state 

. If   then   and hence   which implies that 

 So,  remains negative in the time interval , ] which, in turn, leads to 

no thrust throughout which means the probe is not descending. Therefore, the initial co-

state   cannot have a negative value or zero. It must remain always positive which 

makes the throttling parameter  as one always.   
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3.4 Solution Scheme 

In all the above formulations, the control variables are expressed as functions of 

co-state variables (cf. Eqs. (3.11), (3.12), (3.16), (3.22)).  As pointed out earlier, in the 

indirect approach, if the initial co-states are known, the time history of control can be 

computed. The determination of co-states is attempted, in general, using optimization 

techniques. The objective function for optimization (different from the one for optimal 

control) represents the achievement of the target site with zero velocity.  

                       (3.25) 

It is well known that the gradient based technique fails in the absence of good initial 

guess.  In this problem, there is no prior knowledge of initial co-states and so gradient 

techniques are not suitable for solving an optimal control problem using indirect 

approach. In Chapter 2, the Differential Evolution (DE) technique has been used to 

determine the unknown co-states.  The advantage of the DE technique is that it does not 

need an initial guess for the unknown and needs only bounds within which the unknown 

varies.  When very wide bounds for the unknowns are used, the process requires large 

computational time.  

  

3.4.1 DT-DE Solution Scheme 

To overcome the complexity in determining the co-states and reduce the 

computational time, a novel computation scheme is proposed in this chapter. The 

unknown initial co-states are determined using the Differential Transformation (DT) 

technique. However, in addition to target state, the time of flight must be known for the 

use of the DT technique. Although for landing problem the target site is known, the 

flight time is an unknown quantity. So, in this computation scheme, the unknown flight 

time is randomly selected using the DE technique and DT determines the initial co-

states using the selected flight time. Both DE and DT operate concurrently to minimize 

the function ‘F’. In the following sections, procedure to determine the co-states using 

DT is explained. Finally, the computation scheme is presented. 
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3.4.2 Initial Co-states using Differential Transformation 

  DT is a technique that is used for solving a two point boundary value problem 

when the final state and the time are known. DT transforms the equations from time 

domain into a set of nonlinear algebraic equations in a transformed domain. In DT, 

unlike Fourier and Laplace transforms, the transformed function is expressed in terms 

of differential operators. That is, if ) is a function where , the image of 

this function  (F( )) for  in the transformed domain is  given by    

                                     ,                                (3.26) 

and  is the jth order differential spectra of  f(t) at the time instant . Now the 

solution to the function in the original domain is obtained using inverse 

transformation as given below: 

                                                                            (3.27)                  

The solution is obtained as a Taylor series expansion about the step size of the 

independent variable. For various types of functions, the expressions for images are 

available in the literature (Pukhov, 1981; Hwang et al., 2008). Some examples are: 

when the function is a differential function ( , the jth order transformed 

function is given by  when the function is an algebraic expression 

( , the jth order transformed function is given by . 

 

The following example is used to demonstrate the DT technique. Consider a system of 

differential equations,  

 

The exact solution is given by  

 

By applying DT scheme,  
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and so on. The solution of the system is given by 

 

So,  

 

It is found that for this problem when the number of terms in the series 

expansion is 15 or higher, the solution is very close to exact solution. For the soft 

landing problem an assessment on number of terms is included in later section.  

In the current problem, the unknown initial co-states are obtained using the DT 

technique. The details of the procedure are given below.  For use in DT, it is convenient 

to express the state and co-state equations (Eqs. (3.2) and (3.9)) in state space matrix 

form. Let , ,  be the state, co-state and the control vectors of the system, where  

                                                              

 

 

The mass state (m) is not considered in the DT process because of the following reasons 

(i) the co-state equation of m does not explicitly depend on either  or   (ii) the control 

law does not depend on the co-state of ‘m’ for minimum control effort case (iii) there 

are invariant quantities  and  for time-optimal and fuel-optimal 

cases. For these reasons, the co-state of  m need not be determined through DT 

technique. 
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For all performance measures, the co-state equations are same except for co-state 

equation of mass. So, the state and co-state equations (Eqs. (3.2) and (3.9)) are rewritten 

as  

                                                                                          (3.28a) 

                                                                                                          (3.28b) 

where 

                                                                 (3.28c) 

                                                                           (3.28d)   

    (3.28e) 

Eqs. (3.28a) and (3.28b) can be written in the matrix form by substituting optimal 

control law (ref. Eq. (3.11) of energy-optimal. 

                                                                       (3.29a) 

where  

                                                         (3.29b)

 

The matrix  will have to be set according to the performance measure.  

Let   

Then, for time-optimal case, matrix  becomes 
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                                                         (3.29c) 

For fuel-optimal case, matrix  becomes 

                                                         (3.29d) 

Let the matrix  be  

                                                                      (3.29e) 

The initial and final conditions are given by 

  and                                                        (3.30) 

Now, define a single vector to represent state and co-state variables together as follows.  

                                                                  (3.31) 

 and the Eq. (3.28) becomes  

                                                                                                     (3.32)                                

Let the variables  be represented by respectively in the 

transformed domain. Applying the DT concept for the Eq. (3.32), we get 

j+1                                                             (3.33) 

for  (the infinite series is restricted to ‘n’ terms).  The value for ‘n’ 

depends on the problem sensitivity. Using the above recursive relation (cf. Eq. (3.33)) 

we get 

                                                          (3.34a) 

where  . It is represented as 

                                           (3.34b) 

Applying inverse transformation, we get  

                                                        (3.35) 

                                                         (3.36) 

When   , and on expansion of Eqs. (3.35) and (3.36) we have  
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       and                                         (3.37)   

The state vector at the flight time is given by, 

                                        (3.38) 

Equation (3.38) can be rewritten using Eq.(3.34), as 

                                                 (3.39)   

Expanding Eq.(3.39), 

                                    (3.40) 

                  (using Eq. (3.37))                         (3.41a)                                

where  

  and                              (3.41b)                       

Rearranging the Eq. (3.41a)  we get,   

                                                                       (3.42)  

Using Eq. (3.42), the initial co-state can be computed if the final state is known. The 

step size ( ) used in the determination of initial co-states is referred to as the DT 

step size. 

In the proposed computational scheme, the computation of initial co-states is 

carried out in multiple steps for DT technique using the pre-specified target state vector 

and the randomly selected flight time. The process of selection of flight time and the 

computation of initial co-states is continued till the touchdown boundary conditions are 

met. This novel scheme is named as the DT-DE scheme.  The technique DE needs only 

bounds for the unknown parameter. So, guidelines to arrive at narrow bounds for the 

only unknown the flight time are discussed herein. 
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3.4.3 Guidelines for Bounds for Flight time 

For DT-DE scheme, the flight time is selected using Differential Evolution. The 

DE technique needs bounds for the unknown flight time. The bounds for the flight time 

are fixed by using the ideal rocket equation and the burn duration.  

                                                     (3.43) 

                                                 (3.44)
 

where  are initial and final masses. For this computation, it is assumed that 

the thrust is continuous and constant throughout the descent. The constant mass flow 

rate is given by, 
 

                                                                        (3.45)
 

In general, the thrust level ( ), , and initial mass are the known quantities. To derive 

the guidelines, the orbital velocity is treated as the minimum velocity impulse the 

propulsion system needs to produce. The burn time required for the reduction of orbital 

velocity provides the minimum limiting value for the actual flight time. However, these 

guidelines are not applicable, for the performance measure of energy-optimal with 

unlimited variable thrust case which is, however, practically improbable scenario. 

3.5  DT-DE Scheme –Algorithm 

Combining Differential Evolution and Differential Transformation techniques, a 

novel computational scheme is presented. With the co-states determined using multi-

step DT technique and the guidelines, for selecting bounds for the unknown flight time 

available, the soft landing trajectory problem becomes easily solvable. The robustness 

and validity of the proposed scheme is demonstrated for three popular performance 

measures (i) energy-optimal (ii)  fuel-optimal (iii) time-optimal.  For all three problems, 

the thrust is assumed to be limited and throttling is available. For the energy-optimal 

case, it is capable to handle, unlimited thrust also. 
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In the landing problem on hand, there are eight unknowns in all, namely flight 

time and the seven initial co-states. As pointed out earlier, the co-state  need not be 

determined in the DT scheme and it can be assigned an arbitrary value. The remaining 

six co-states are determined using the DT scheme as described in the previous section. 

For the DT process, the flight time must be a known parameter. But in the landing 

problem, as pointed out earlier, the flight time is an unknown parameter. In the 

proposed scheme, the unknown flight time is selected using the DE technique. The DE 

technique explores over a range of values to obtain the optimal flight time. With each 

randomly selected value of flight time from DE, the co-states are computed using DT. 

Using these co-states, the state equations are propagated to find the objective function 

(cf. Eq. (3.25) of the optimization process.  

The performance of the DT process with step size as the whole flight time 

(chosen using DE) is found to result in large target deviations. So, the chosen flight time 

is split into several intervals resulting in discrete time instants ( and at each 

time instant DT is applied to determine the co-states at that instant.  So, there are two 

step sizes in this scheme (i) propagation step size (eg. ( etc.), used for 

the numerical propagation of system dynamics (ii) DT step size (initially ( , then 

reduces to ( and so on), used for the determination of co-states at 

different time instants of numerical propagation. The multi-step DT process along with 

DE is named as DT-DE scheme.  

The steps of the DT-DE algorithm are the following. 

I. By fixing ‘NP’ as the size of the population, a population matrix (NP x 

2) each row of which consists of the unknown flight time and the 

objective function is constructed. The objective function is evaluated 

after propagating system dynamics. The steps involved in constructing 

initial population are given below. 

1. Choose  randomly from its bounds. 

2. Compute the co-states at   using the specified terminal states and 

 as the DT step size  
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3. Compute the thrust accelerations at  as in Eq. (3.11) or (3.12) or (3.16) 

or (3.22) (depending on the performance measure) using the determined 

co-states. 

4. Propagate the state equations to next time step ( ) using numerical 

integration. 

5. Update the DT step size as . Compute the co-state at  

using   and the states at . During propagation, at different time 

instants ( ), . 

6. Repeat the steps 3 to 5 untill  is reached and evaluate the final 

objective function given by Eq. (3.25) 

          At the end of step (6) one row of the population is generated. 

7. Repeat the steps (1) to (6) for different randomly selected flight times 

until the population is built.  

II. Find the minimum of the objective function values of the population 

matrix. If Objective function <  ( a small prefixed tolerance value), the 

solution is obtained. 

III. Otherwise update the population. In the update process, each row is 

subjected to three operations (mutation, crossover and selection) as 

mentioned in section 2.4.2. For each trial parameter (flight time, ), 

steps I-(2) to I-(6) are executed to evaluate  the objective function.  

IV. Steps (II) and (III) are repeated till convergence 

In the DT-DE scheme, the major advantage is that the co-state equations need not be 

numerically integrated to find the control variables at each computational step. 

Furthermore, the number of unknowns reduces to one. FORTRAN codes developed for 

the proposed DT-DE scheme and existing DE scheme have been implemented in a desk 

top computer with specification of Intel Core i5 (3570 CPU @3.4GHz) processor and 

4GB RAM. 
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3.6  Soft Landing Trajectory Design and Analysis with Various 

Performance Measures 

 For the case studies presented in this thesis, the parking orbit size and shape 

correspond to a 100 x 15 km lunar orbit. The braking maneuver starts from the perilune, 

i.e when true anomaly is zero. The values of physical constants are : Equatorial radius 

of Moon ( ) = 1738000 m and gravitational constant of Moon  ( ) = 4.902800476E12 

m3/s2. The initial location is chosen on the equator (0 deg. latitude and 0 deg. 

longitude). The initial state at which the landing starts corresponds to the orbital 

elements given in Table 3.1. To demonstrate the performance of the DT-DE scheme a 

target landing site is required. For this purpose, the time-optimal formulation is solved 

using Differential Evolution and the resulting landing site is used as the target site.  To 

have confidence in the optimal solution of DT-DE scheme, all problems have been 

solved using DE scheme also for which all the initial co-states are the unknowns.  

Table 3.1 Input parameters 

Parameters Value 
Semi-major axis  (m) 1795.5E3 

Eccentricity 0.023670287  
Inclination (deg.) 90 

Argument of perilune (deg.) 0 
Longitude of ascending node (deg.) 0 

True anomaly (deg.) 0 
Maximum Thrust (N) 2200 
Specific Impulse (s) 315 

Mass (kg) @ 100x15km orbit 874.4  
Mass (kg) @ 100x100km orbit 880.0 

 

3.6.1 Time-optimal Trajectory using Differential Evolution for Target Site 

Generation 

To generate a target site for use in the DT-DE algorithm, the time-optimal 

problem is solved using the DE scheme. As pointed out earlier, there are eight 
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unknowns: seven co-states and the flight time for this scheme. Considering the 

conditions that the co-state of mass cannot be negative and equal to zero (section 3.3.3), 

the initial co-state of mass is arbitrarily fixed at +3.  For all other initial co-states, [-3, 3] 

is used as bounds. Because the flight time is unknown, the objective function given in 

Eq. (3.25) is computed by terminating the numerical integration at touchdown.  By this 

choice of termination, determination of one of the unknowns, flight time is eliminated.  

The threshold value for convergence is kept as 1.0E-02. This value ensures an accuracy 

of < 1 cm/s in velocity and < 1 mm in position.  Table 3.2 presents the initial co-states 

obtained for the minimum time landing trajectory. The values of the ratio ( are given 

for comparison with the result of the DT-DE algorithm. The optimal flight time and the 

related landing mass are given in Table 3.3. The landing site of the optimal trajectory is 

given in Table 3.4 and is used as the target site in the studies with the DT-DE algorithm. 

 

Table 3.2 Unknown initial co-states for  time-optimal trajectory using DE 
Co-state Initial co-states  

 0.00219852       -385.63   
 -0.0000000006      1.413E9        
 -0.000079799       10624        
 -0.0473366245   17.911       
  1.7490189757E-07 -4.8474E6             
 -0.84782335801       1 

 

 
Table 3.3 Time-optimal trajectory parameters 

Parameter DE scheme 
Flight time (s) 543.955 

Landing Mass( kg) 487.043 
 

 
Table 3.4 Landing site of the time-optimal trajectory 

 

 Parameter Value 
Latitude (deg. North) 16.1508 

Longitude (deg.) 0.0 
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3.6.2 Sensitivity of the DT Scheme Parameters 

To assess the performance of the DT scheme, the optimal flight time obtained in 

the previous section is used as the flight time (cf. Table 3.3) with other input parameters 

remaining same as given in Table 3.1 and Table 3.4.  As discussed in section 3.4.2, the 

number of DT terms is fixed as 15 to assess the sensitivity of time step to be used for 

trajectory design. The critical parameter in the DT scheme is the size of the time step 

used, referred to as the DT step size. To demonstrate the criticality of the time step, first 

the whole flight time is used as the step size, which means that determination of co-

states using the DT scheme is attempted in a single step at descent phase initiation. The 

co-states determined using single step is given in Table 3.5 using whole flight time 

obtained by the DE scheme (cf. Table 3.3) as single step. To assess the accuracy of 

these initial co-states, the equations of motion of state (Eqs. (3.2a)– (3.2b)) and co-

states (Eqs. (3.9a)–(3.9f) and Eq. (3.21)) are numerically integrated until the final flight 

time. The deviations in the position and velocity from the target site are found to be 

large. So, in order to reduce the deviations, a multi-step DT scheme is proposed to get 

the co-states at a regular interval of time during the descent phase. The computed co-

states are used (to find the thrust acceleration components) along with numerical 

integration of state (Eqs. (3.2a)– (3.2b)) equations to get the soft landing trajectory.  The 

advantage of a multi-step DT scheme is that numerical integration of co-states avoided. 

The deviations in the target state are given in Table 3.6 for different DT step sizes. It 

was noted that with the decrease in the DT step size the deviations in the target state 

decrease. The error stabilizes after the DT step size of 0.5 s and so, for all further 

studies a step size of 0.5 s is used. 

Table 3.5 Determined initial co-states with single step using DT 
Co-state  Initial co-states 

 0.0021967561 
 -0.0000000005 
 -0.0000821967 
 -0.0499497483 
 0.0001835 
 -0.8887777192 
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Table 3.6 Influence of DT step size on DT scheme 
Target 

Parameter 
deviations  

Single step 
(step 

size=543.955 s) 

Multi-step DT 
Step 
size 
50 s 

Step 
size  
5 s 

Step 
size 
1s 

Step 
size 
0.5 s 

Step 
size 
0.1 s 

Position   (m) 17890 14726 1270 1.02 0.35 0.35 
Velocity  (m/s) 520 65 6.48 0.76 0.036 0.036 

 

Another parameter that influences the performances of DT is the number of terms to be 

considered in the series expansion (as discussed in the example provided in section 

3.4.2). Table 3.7 provides the summary of the deviations from the target state for 

different number of DT terms and DT step size together. When the number of term is  

 the deviations remain same. So, for further studies, the number of DT terms is fixed 

at 15 and the step size for multi-step DT scheme is fixed as 0.5s. The term multi-step 

DT scheme is named as the DT scheme for further cases studies. 

Table 3.7 Influence of number of terms of series expansion (n) and step size on the DT 
scheme 

3.6.3 Time-optimal Trajectory using Multi-step DT Scheme (DT-DE Scheme) 

As discussed earlier, in the DT-DE scheme, the flight time is an unknown 

parameter. The unknown flight time is selected using DE and the multi-step DT scheme 

is employed to find the deviation of state from target state. at the selected flight time. 

The objective function for the optimization process is the deviation in the position and 

velocity components of corresponding to the target site (cf. Eq. (3.25)). The target site 

Number 
of DT 
terms 

DT step size 5.0 s DT step size 1.0 s DT step size 0.5 s DT step size 0.1 s 
Position 
deviation 

from 
target (m) 

Velocity 
deviation 

from 
target 
(m/s) 

Position 
deviation 

from target 
(m) 

Velocity 
deviation 

from target 
(m/s) 

Position 
deviation 

from target 
(m) 

Velocity 
deviation 

from target 
(m/s) 

Position 
deviation 

from 
target (m) 

Velocity 
deviation 

from 
target 
(m/s) 

3 16570 102 65 98 8 95 8 80 
5 1522 93 15 32 3 26.5 3 25.5 
10 1310 6.9 8.4 1.6 0.382 0.04 0.382 0.0393 
15 1270 6.48 1.02 0.76 0.35 0.036 0.35 0.036 
20 1270 6.48 1.02 0.76 0.35 0.036 0.35 0.036 
50 1270 6.48 1.02 0.76 0.35 0.036 0.35 0.036 
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given in Table 3.4, as mentioned earlier, is used. The optimal flight time and the landing 

mass obtained using DT-DE scheme are given in Table 3.8. Note that the optimal 

trajectory with DE scheme (cf. section 3.6.1) is reproduced and the target site is 

achieved using the DT-DE scheme. 

 

The profiles of altitude, velocity and thrust acceleration components are given in 

Figs. 3.2 -3.4 for both DE and multi-step DT-DE schemes.  Also the differences 

between the altitudes and velocities of the two schemes are given in Fig. 3.2 and 

Fig.3.3.  A perfect match of the profiles for the two schemes can be seen.  

 

The initial co-states determined using DT is given in Table 3.9. Note that the 

initial co-states determined using the DT scheme (cf. Table 3.9) close to the initial co-

states obtained using the DE scheme (cf. Table 3.2).  The profiles of the control 

variables of the two schemes are exactly same. Further, the ratios of z-component of 

velocity to other co-state variables given in Table 3.2 and Table 3.9 are nearly same. 

 

The computational time for the DT-DE scheme is very less compared to DE 

scheme (cf. Table 3.10). The computational time for the DE scheme will be even larger 

than 170 s if wider bounds are used for the unknowns.  

 

Table 3.8 Time-optimal trajectory using multi-step DT-DE scheme 

Parameter Value 
Flight time (s) 543.96 

Landing Mass( kg) 487.04 
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Fig. 3.2. Altitude profile comparison – time-optimal solution 

           
                          Fig. 3.3. Velocity profile comparison – time-optimal solution 

 
Fig. 3.4. Thrust acceleration components- time-optimal case 
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Table 3.9 Determined initial co-states using multi-step DT-DE scheme 

Co-state Initial co-states  

 0.0021950378     -386.27 
 -0.0000000005     1.6957E9         
 -0.0000783060     10828 
 -.047307780   17.923   
 1.7490112E-007 -4.8477E6             
 -0.84787407188 1 

 
Table 3.10  Comparison of computational time 

 

 

 

3.6.4 Energy-optimal Trajectory Using DE and DT-DE Schemes (Unlimited 

Thrust) 

For energy-optimal case, ideally, the thrust available needs to be unbounded and 

the optimal thrust acceleration components are computed as given in Eqs. (3.11a)–

(3.11c).  In this formulation, the control variables do not depend on the co-state of mass 

of the lander module. Therefore, the computation of co-state of mass is not necessary in 

the solution process.   

Table 3.11 Unknown initial co-states – energy-optimal (unlimited thrust) 

co-
states 

DE scheme DT-DE Scheme 
initial  

co-states 
 

 

initial  
co-states 

 

 
 0.01027842 71.595 0.01027986      71.529         
 -0.0000002 -3.6794E6 -0.0000002      -3.6765E6        
 -0.01224733 -60.085 -0.01225106     -60.02       
 0.79802162 0.92213 0.79823871      0.92116   
 -0.00000064 -1.1498E6 -0.00000064     -1.1489E6             
 0.73588012 1 0.73530857     1 

 

Solution 
scheme 

Computational 
time (CPU 

time) s 
DE 170 

DT-DE 35 
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Table 3.12 Optimal trajectory – energy-optimal (unlimited thrust) 

Parameter DE scheme DT-DE Scheme 
Flight time (s) 454.140 454.149 

Final Mass( kg) 494.317 494.311 
Computational Time (s) 168 40 

 

For the DT-DE scheme as in the case time-optimal problem, the flight time is an 

unknown parameter. The unknown flight time is selected using DE and the multi-step 

DT scheme is employed to find the deviation at the selected flight time. The target site 

given in Table 3.4, as mentioned earlier, is used for demonstration. The initial co-states 

and trajectory parameters obtained using the two schemes are provided in Table 3.11 

and 3.12 for the optimal trajectory. The flight time is less compared to time-optimal 

problem because of the assumption of unlimited thrust. The profiles of thrust and thrust 

acceleration components are given in Figs. 3.5-3.6 for both DE and multi-step DT-DE 

schemes. A perfect match of the profiles from the two schemes can be seen. 

 

 
Fig. 3.5. Required thrust profile comparison: energy-optimal -unlimited thrust 
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Fig. 3.6. Required thrust acceleration comparison: energy-optimal -unlimited thrust 

 

3.6.5 Energy-optimal Trajectory using DE and DT-DE Schemes (With Limited 

Thrust) 

For demonstration, the thrust limit is kept as 2200 N. Table 3.13 provides the 

optimal trajectory parameters. The final landing mass is close to the landing mass 

obtained in minimum time solution (cf. Table 3.3). Figure 3.7 depicts the thrust 

acceleration profiles. The initial co-states obtained using both schemes are given in 

Table 3.14 and ratios are also provided in Table 3.14. The optimal trajectory parameters 

and the control parameters are same.   

 
Table 3.13 Optimal trajectory parameters – energy-optimal with limited thrust 

 
Parameter DE scheme DT-DE scheme 

Flight time (s) 543.982 543.99 
Final Mass( kg) 487.02    487.01   

Computational Time (s) 172 38 
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Table 3.14 Unknown initial co-states comparison – energy-optimal with limited thrust 

Co-
state 

Initial values 
DE scheme DT-DE scheme 

initial co-states  

 

initial co-states  

 
 0.00553760 458.2 0.00553760 458.21 
 -0.000000101 -2.5123E7 -0.000000103 -2.4635E7 
 -0.00143334 -1770.3 -0.00143334 -1770.3 
 0.02238520 113.35 0.02238524 113.35 
 -0.00000053 -4.7876E6 -0.00000053 -4.7876E6 
 2.53740946 1 2.53740936 1 
   

 

 
Fig. 3.7. Thrust acceleration profile comparison – energy-optimal with limited thrust 

 

3.6.6 Fuel-optimal Trajectory Using DE and DT-DE Schemes 

The fuel-optimal trajectory is generated using the DE scheme and the DT-DE 

scheme and is provided in Table 3.15. The trajectory corresponds to the input 

conditions provided in Table 3.1 and target site as given in Table 3.4. As in other cases, 

the initial co-states obtained using the two schemes are given in Table 3.16.  The 

optimal trajectory is generated by both the schemes are very close. 
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Table 3.15 Optimal trajectory – fuel-optimal 

Parameter DE scheme DT-DE scheme 
Flight time (s) 543.96 543.97 

Landing Mass( kg) 487.04 487.03 
Computational time 167 35 

 

Table 3.16 Unknown initial co-states – fuel-optimal 

Co-
states 

at 
time=0 

DE scheme DT-DE scheme 
Initial co-

states 
 

 

Initial co-
states 

 

 
 -0.0012602    448.15 -0.0012636    446.94 
 0.00000009  -6.2751E6       0.000000091 -6.2061E6 
 0.0003581      -1577.1       0.0003559    -1586.8        
 -8.093487E-3   69.78 -8.19694E-3 69.899   
 1.20203E-07    -4.6984E6             1.201609E-7  -4.771E6 
 -0.56476102 1.0 -0.56475694   1.0 

 

The profiles of thrust acceleration components are given in Fig. 3.8 for both DE and 

multi-step DT-DE scheme. A perfect match of the profiles from the two schemes can be 

seen. 

 

Fig. 3.8. Thrust acceleration components – fuel-optimal 
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3.6.7 Comparison of Optimal Solution with Different Performance Measures 

The optimal solution with the DT-DE scheme as discussed in sections 3.6.3, 

3.6.5 and 3.6.6 for time-optimal, energy-optimal (with limited thrust) and fuel-optimal 

are summarized in Table 3.17. It is to be noted that results for all three formulations are 

nearly same.  These results are nearly the same because of the following reasons (i) the 

target landing site of minimum time solution is used as the target in all cases (ii) energy-

optimal case thrust limited to a maximum value (iii) time-free problem.  For the time-

optimal trajectory, the thrust settles at maximum throughout the descent phase. For the 

fuel-optimal trajectory (for final time free problem) to the target landing site of 

minimum time solution, the thrust settles to the maximum throughout the descent. For 

the energy-optimal trajectory, (for final time free problem), to the target landing site of 

minimum time solution, the thrust settles to maximum value in the limited thrust case. 

So in all cases the optimal solution is nearly same.  The theoretical formulations given 

in sections 3.3.1, 3.3.2 and 3.3.3 also clearly support these phenomena. 

Table 3.17 Comparison of optimal solutions - DT-DE scheme 

  Parameter Value 
Time-

optimal 

Energy-optimal  

with thrust limit 

Fuel-

optimal 

Flight time (s) 543.96 543.99 543.97 
Landing Mass (kg) 487.04 487.01 487.03 

 
For a time-fixed problem for fuel-optimal/energy-optimal (limited thrust) the 

results could be different. Also, if there is a change in the target site the solutions will 

be different. To demonstrate this, an alternate landing site very close to the minimum 

time trajectory is selected along the orbital track which is 2 deg. ahead of minimum 

time impact latitude (cf. Table 3.4) and it is provided in Table 3.18. The optimal 

solutions that lead to soft landing on this site under fuel-optimal and energy-optimal 

performance measures are given Table 3.19. Note that although the landing site is 

different from the reference target site, the landing masses are only marginally different 

from the solutions of reference target. The fuel-optimal formulation introduces coasting 
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(zero thrust) and achieves the optimal landing mass. Furthermore, the solution of 

energy-optimal, especially flight time, is different from the other two solutions. The 

thrust is varied within the limit (no zero thrusting periods) throughout the descent and 

the target site is achieved.  Whereas, for fuel-optimal trajectory, zero thrusting duration 

is introduced by the formulation. The thrust-time profiles are given in Fig.3.9 and 

Fig.3.10. In Fig.3.9, the vertical line during the thrusting phase indicates zero thrust for 

certain time instants and introduction of optimal coasting duration realizes the 

maximum landing mass. The landing target longitude and latitude are varied and the 

performance of fuel-optimal and energy-optimal are summarized in Table 3.20 and 

3.21. The penalties on landing mass are marginal for different along track target site (0 

deg. longitude cases). The landing mass penalty observed for 2 deg. and 4 deg. out of 

plane targets (cf. Table 3.20 and Table 3.21) are 5 kg and 17 kg respectively. 

Table 3.18 Alternate landing site  
Parameter Value 

Latitude (deg. North) 18.1508 
Longitude (deg.) 0.0 

 
Table 3.19 Comparison of optimal solutions 

  Parameter Value 
Energy-optimal 
with thrust limit 

Fuel-optimal  

Flight time (s) 588.06 579.98 
Landing Mass (kg) 486.6 486.671 

Zero thrust duration (s) - 35.98 
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Fig. 3.9. Fuel-optimal thrust profile 

 

 
Fig. 3.10. Energy-optimal thrust profile- with limited thrust 

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600

Fuel-optimal 

Time(s)

Th
ru

st
 (N

)

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600

Energy-optimal 

Time(s)

Th
ru

st
(N

)



89 
 

 
 

 
 

Table 3.20 Performance summary of energy-optimal: alternate landing sites 
Latitude (deg. 

North) 
Longitude 

(deg.) 
Flight time 

(s) 
Landing mass 

(kg) 
16.1508 0.0 543.99 487.01 
18.1508 0.0 588.06 486.6 
20.1508 0.0 630.46 485.8 
18.1508 2.0 590.17 481.06 
20.1508 4.0 636.56 468.27 

 

Table 3.21 Performance summary of fuel-optimal: alternate landing sites 
Latitude 

(deg. North) 
Longitude 

(deg.) 
Flight time 

(s) 
Zero thrust 
duration (s) 

Landing mass 
(kg) 

16.1508 0.0 543.97 0.0 487.03 
18.1508 0.0 579.98 35.98 486.67 
20.1508 0.0 615.5 71.5 486.65 
18.1508 2.0 583.2 32.6 482.4 
20.1508 4.0 625.9 56.1 469.8 

 

3.6.8 Performance of Gradient Based Method with DT 

In this section, the efficiency of gradient based scheme in selecting the single 

unknown parameter of flight time is explored. In this study, the MATLAB function 

‘fmincon’ is used to find the flight time and used in DT scheme. This scheme is named 

as the DT-SQP scheme and its performance is compared with the DT-DE scheme. The 

performance measure chosen for this assessment is energy-optimal with unlimited 

thrust. For this case, the guidelines for getting the bounds for flight time are not 

applicable.  Both DE as well as SQP needs a range of values (bounds) for the unknown 

and additionally, SQP needs an initial guess for the unknown parameter. For the flight 

time bounds [400 s 600 s], DT-SQP scheme converges and the solution closer to the 

DT-DE scheme (cf. Table 3.22). However, when the range is wider, SQP converges to a 

local minimum with the initial guess as 400 s. Therefore, the DT-DE scheme which 

avoids non-convergence is preferred over DT-SQP. 
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Table 3.22 Comparison of computational time  

Bounds on Flight time DT – DE Scheme DT-SQP  
(Initial guess = 400 s) 

Landing mass (kg) Landing mass (kg) 
400 s – 600 s 494.311 494.309 

300 s – 1000 s 494.311 486.6 (local minimum) 
 

3.6.9 Summary of Merits and Demerits of Different Solution Schemes 

The merits and demerits of different solution schemes are compared in Table 3.23. In 

DT-DE scheme, the major advantage is that the co-state equations need not be 

numerically integrated to find the control variables at each computational step. 

Furthermore, the number of unknowns reduces to one. In a conventional indirect 

approach without DT, the numbers of unknowns are eight and numbers of equations are 

fourteen including the co-state equations. In direct scheme, the number of unknowns 

depends on the number of nodes selected.  

Table 3.23 Comparison of solution schemes 
Solution Scheme Number of 

unknowns 
Unknown variables Number of 

equations 
numerically 
integrated 

Indirect approach 
(Conventional) 

Eight  Initial co-states and flight time 
 

Fourteen 

 Direct approach  

using NLP  
3*No. of 

Nodes selected 
+ flight time 

Depends on number of Nodes. At 
each node the thrust acceleration 

components are the unknowns along 
with flight time 

Seven 

DT-DE ( proposed ) One Flight  time (tf) Seven 
 

3.7 Strategy for Vertical Landing at Touch down 

In this section a strategy is included in the DT-DE formulation to achieve vertical 

landing at the time of touchdown. In this strategy, the horizontal velocity is nullified 

and an appropriate vertical velocity is achieved at a chosen altitude. This strategy results 
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in zero acceleration components (except vertical) at the chosen altitude ensuring vertical 

orientation for landing. Required vertical velocity at chosen altitude can be selected 

using DE along with unknown flight time. Therefore, the number of unknown becomes 

two for this strategy. The bounds on the vertical velocity for DE can be computed with 

acceleration level (assumed to be constant) during the vertical braking phase using one-

dimensional kinematic equation . The procedural steps for the strategy 

are the following, 

 

1. Input  target longitude and latitude and the altitude at horizontal braking end ( 

say 30m) and find the initial position vector 

                                                 (3.46a) 

                                                 (3.46b) 

                                                              (3.46c) 

Where    are radial distance (Moon radius +30 m), lunar centric latitude 

and lunar centric longitude respectively. 

2. Select the flight time and vertical velocity  at the end of horizontal braking 

using DE 

3. Use the vertical velocity  at the end of braking  to compute the target 

velocity vector at the end of horizontal braking  

                                      (3.47a) 

                                        (3.47b) 

                                                      (3.47c) 

4. Simulate the trajectory up to chosen altitude (using DT for co-state computation 

in multi steps). Further simulate from chosen altitude till touchdown. In this 

phase, the co-state computation with DT not required since thrust direction is 

vertical. 

5. Compute the deviation in target velocity at chosen altitude and position at 

touchdown.  If the deviation is within threshold stop the computation 

6. If the deviation is more, go to step 2. 
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The next step is to find the thrust attitude angle which needs to be vertical at the end 

of horizontal braking phase. The formulation uses a Local-Vertical Local-Horizontal 

(LVLH) coordinate frame. LVLH frame is aligned such that the x-direction is in the 

local vertical (‘radial’), the z-direction is in the direction of the orbit normal, and the y-

direction is along track direction and it forms a right-handed coordinate system. The 

origin of the system is at the center of mass of the module. The acceleration and 

velocity vector is transformed from Moon centered frame to LVLH frame with the 

following transformation to find the terminal thrust acceleration attitude. 

)(
)(
)(
)(

_

vr
vr

rvr
rvr

r
r

R LVLHMCI                                                                (3.48)

 
Where     and   are position and velocity vector in MCI frame. If the acceleration unit 

vector components represented in LVLH frame . The thrust 

acceleration attitude from local horizontal computed as  

In plane angle                                                                      (3.49a) 

Out of plane angle                                                                (3.49b)   

To demonstrate the strategy, an altitude of 30 m is chosen at which zero 

horizontal velocity and appropriate vertical velocity at 30 m to be selected by the 

optimizer. The altitude may be chosen according to the mission needs. The steps to find 

the target velocity/position are the following, 

The input parameters provided in Table 3.1 are considered for this study. The 

target conditions to be achieved at 30 m altitude are given in Table 3.24. Because of the 

assumption of non- rotating Moon and vertical landing, the latitude and longitude are 

same at 30 m altitude as that of target landing site.  Fuel-optimal and energy-optimal 

DT-DE schemes have been evaluated with this strategy for vertical orientation and 
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presented in Table 3.25 and 3.26. The flight time from 30 m altitude to touch down is 

about 4.3 to 4.5 s and the landing mass is 485.6 kg for fuel-optimal and 485.2 kg for 

energy-optimal DT-DE scheme. The thrust attitude variation is shown in Fig. 3.11 for 

fuel-optimal and energy-optimal case and the required thrust attitude of 90 deg. is 

achieved for both cases during the terminal vertical landing phase. 

Table 3.24 Target conditions 
Parameter Value 

Latitude (deg. North) 16.1508 
Longitude (deg.) 0.0 

Target Terminal altitude (m) 30 
Target Terminal velocity in radial direction (m/s) Selected by DE 

Target terminal velocity in horizontal direction (m/s) 0.0 
 

 
Fig. 3.11. Thrust direction variation for fuel-optimal and energy-optimal DT-DE 

schemes. 

 
Table 3.25 Performance of the DT-DE scheme (fuel-optimal)  for vertical landing 

 

Parameter DE scheme DT-DE scheme 
Flight Time (s) (touch down time) 548.9 548.91 

Time to reach 30m altitude (s) 544.39 544.4 
Landing Mass (kg) 485.61 485.6 

Zero thrust duration (s) 1.9           2.0 
Horizontal velocity @ 30m altitude (m/s) 1.5E-6 4E-6 

Vertical velocity @ 30m altitude (m/s) -13.14 -13.13 
Vertical velocity @  touchdown (m/s) 0.01 0.01 
Terminal thrust direction from local 

horizontal (deg.) 
90 90 
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Table 3.26 Performance of the DT-DE scheme (energy-optimal) with terminal vertical 
thrust direction 

Parameter DE 
scheme 

DT-DE 
scheme 

Flight Time (s) ( touch down time) 549.09 549.1 
Time to reach 30m altitude (s) 544.8 544.8 

Landing Mass (kg) 485.2 485.2 
Horizontal velocity @ 30m altitude (m/s) 1.5E-6 2.1E-6 

Vertical velocity @ 30m altitude (m/s) -13.16 -13.16 
Vertical velocity @  touchdown (m/s) 0.01 0.01 

Terminal thrust direction from local horizontal (deg.) 90 90 

3.8 Conclusion 

The challenge in determining the initial co-states is dealt through a new 

computational indirect scheme. The efficiency of the multi-step Differential 

Transformation (DT) technique in achieving the target site precisely is demonstrated. 

With a step size of 0.5 s, the deviation in the target site is brought down to 35 cm in 

position and to 3.6 cm/s in touchdown velocity. The number of unknowns of the two-

point boundary value problem is reduced to just one, which removes the complexity in 

the solution process to a large extent. The Differential Evolution (DE) technique obtains 

the solution very quickly using the initial co-states determined by the DT technique and 

the guidelines on the flight time. The optimal landing trajectory is generated quickly 

without losing the advantages of the indirect scheme. The computational time to 

generate the optimal solution using the DT- DE scheme is about 35 to 40 s and whereas 

using the DE scheme, which uses bounds for initial co-states also, it is about 170 s. The 

computational time for the DT-DE scheme is comparable with a gradient based 

optimizer that uses the initial co-states determined by the DT technique.  Further, the 

use of the DE technique along with the DT technique avoids non-convergence and local 

convergence scenarios, which occur when gradient based optimizer is used. The 

robustness of the scheme is demonstrated through the performance of the proposed DT-

DE scheme for different performance measures. The ability of the proposed scheme to 

introduce coasting during descent is demonstrated. 
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Chapter 4 

Performance and Design analysis using the DT-DE 

scheme 

Chapter Summary 

The performance of the DT-DE scheme is assessed for different mission scenarios. 

The implication on optimal landing mass when the descent is initiated from different 

periapsis altitudes is assessed. The capability of the DT-DE scheme to introduce 

coasting or variation of thrust during descent for higher flight durations to land at the 

pre-fixed target site is demonstrated. A strategy to select a suitable choice of 

periselinum location and true anomaly of the intermediate orbit to realize this scenario 

is discussed. An assessment of landing masses for different objectives (i) fuel-optimal 

and (ii) energy-optimal is presented.  

4.1 Optimal Trajectory Design from Different Perilune Altitudes  

In Chapter 3, in all the case studied to generate an optimal soft landing trajectory, 

the powered braking phase is initiated at 15 km altitude (cf. Table 3.1).  In this section, 

the effect of initiating powered phase at different perilune altitudes of intermediate 

transfer orbit is studied. Both fuel-optimal and energy-optimal trajectories that land at 

the target site are generated. The results are summarized in Table 4.1 and Table 4.2 for 

fuel-optimal and energy-optimal (limited thrust) formulations respectively. As expected, 

with higher perilune altitude, the flight time to touch down increases. The fuel-optimal 

thrust profiles adjust the zero thrust duration and achieves the target site with a landing 

mass close to the case of 15 km perilune. In the energy-optimal case, the thrust 

magnitude is varied to achieve the soft landing at the target site.  The thrust profile for 

the case of perilune altitude of 20 km is shown in Fig.4.1 for fuel-optimal and in Fig. 

4.2 for energy-optimal formulations. For about 100 s (from 100 s to 200 s) the thrust 
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requirement is less than the maximum available thrust level of 2200 N for the energy-

optimal formulation.  For higher perilune altitudes, the marginal advantage of landing 

mass for fuel-optimal over energy-optimal increases. In Fig.4.1 (also in Figs. 4.4, 4.8, 

5.3 and 5.7) the vertical line during the thrusting phase indicates that thrust becomes 

zero to achieve maximum landing mass. For many mission scenarios, the fuel-optimal 

DT guidance provides bang-bang control as the solution in which the engine is to be 

operated in on-off mode. Practically it may be difficult to operate the main engine in the 

on-off mode. For practical guidance applications the engine can throttle to a lower limit 

of 40% or 60% of full thrust. The performance of the algorithm is analyzed in section 

5.4.2 for 40 % of lower thrust instead of zero thrust. 

Table 4.1 Sensitivity to Perilune altitudes for fuel-optimal trajectory 

Perilune 
altitude 

(km) 

Flight 
time (s) 

Landing mass 
(kg) 

Zero thrust 
duration (s) 

15 543.97 487.03 0.0 
20 546.8 487.01 2.97 
25 548.5 486.7 4.1 
30 552.1 485.6 4.5 

 
Table 4.2 Sensitivity to Perilune altitudes for energy-optimal (limited thrust) trajectory 

Perilune altitude (km) Flight time (s) Landing mass (kg) 
15 543.99 487.01 
20 548.21 486.5 
25 551.17 485.7 
30 554.1 484.5 
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Fig. 4.1. Thrust profile for fuel-optimal formulation for initial perilune altitude of 20 km 

 

 

Fig. 4.2. Thrust profile for energy-optimal (limited thrust) formulation for initial 
perilune altitude of 20 km 
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4.2 Realization of a Target Site with Different Descent Flight 

Durations with a Fixed Periapsis Location 

With the selection of true anomaly at the start of powered braking, the initial 

altitude at powered braking changes appropriately to meet the target conditions. For the 

fuel-optimal case, the thrust throttling time duration varied for the fuel-optimal usage. 

In the energy-optimal case with limited thrust, the thrust level optimally varied to meet 

the target conditions. 

Usually for soft landing mission studies, the target location will be fixed and the 

initial state need to select optimally for powered braking initiation. For all cases 

discussed in Chapter 3, the braking maneuver starts from the perilune of 100x15 km 

lunar orbit, i.e when true anomaly is zero. In this section, the capability of the DT-DE 

scheme (for fuel-optimal and energy-optimal formulations) explored for the case with 

fixed flight time and final target, and the initial true anomaly is optimally selected using 

DE. With this, the altitude at the initiation of braking maneuver selected by the selection 

of true anomaly. The different initial and final states are provided in Table 4.3. Here the 

target is fixed as 0 deg. longitude and 0 deg. latitude below the selected nominal orbital 

track.  

Table 4.3 Input parameters 

Parameters Value 
Semi-major axis  (m) 1795.5E3 

Eccentricity  0.023670287           
Inclination (deg.) 90 

Argument of perilune (deg.) 0 
Longitude of ascending node (deg.) 0 

True anomaly (deg.) Selected using DE 
Maximum Thrust (N) 2200 
Specific Impulse (s) 315 

Mass (kg) @ 100x100km 880.0 
Mass (kg) @ 100x15km 874.4  
Target Latitude (deg.) 0.0 

Target Longitude (deg.) 0.0 
Flight time (s) fixed 
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4.2.1 Performance of Fuel-optimal DT-DE scheme 

For thrust limit cases as in Chapter 3 (Maximum thrust limited to 2200 N), the 

minimum time required for powered braking is about 544 s (cf. Table 3.3). Therefore, in 

the present analysis, the flight time fixed higher than 544 s and the different cases with 

results are provided in Table 4.4.  Initial true anomaly is optimally selected to start the 

landing phase from appropriate altitude in the parking orbit of 100x15 km. Figure 4.3 

shows the altitude and latitude profile (longitude is zero throughout the descent phase 

because inclination is 90 deg.) for the landing trajectory for three cases as in Table 4.4. 

For these cases the required thrust profile are shown in Fig. 4.4. For higher flight time 

cases, the trajectory need to be initiated at higher altitude and latitude to land at 

specified location. With this, the lander module needs to travel at a higher range before 

touch down. To cover the higher range in an optimal way, the thrust needs to be 

minimum (cf. Fig. 4.4) during the initial part of the descent. The optimal thrust profile 

with a higher zero thrust duration, achieves nearly same landing mass for all flight times 

when the fuel-optimal trajectory is attempted. 

 

Table 4.4 Fuel-optimal DT-DE:  touch down parameters with optimum initial true 
anomaly 

Case 
No. 

Flight 
time 
(s) 

Optimum 
initial 
true 

anomaly 

Initial 
altitude 

(km) 

Initial 
longitude 

(deg.) 

Initial 
latitude 
(deg.) 

Final 
landing 
mass 
(kg) 

Zero 
thrust 

duration  
(s) 

1 600 -19.14 17.24 0.0 -19.14 486.95 55.9 
2 800 -30.15 20.5 0.0 -30.15 486.92 255.27 
3 1000 -41.1 25.05 0.0 -41.1 486.9 455.3 
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Fig. 4.3. Fuel-optimal trajectory profile for different fixed flight times 

 
Fig. 4.4. Fuel-optimal thrust profiles for different fixed flight times 
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landing trajectory for three cases as in Table 4.5. For these cases, the required thrust 

profiles are shown in Fig. 4.6. For higher flight times, the powered phase needs to be 

initiated at a higher altitude to realize landing at a specified location and so, the landing 

module needs to cover a larger range before touch down. To cover larger range in 

optimal way, the required thrust is lower (cf. Fig. 4.6) during the initial part of the 

descent.  The nonlinear variation of the thrust profile results in an altitude profile that is 

not similar for all three cases. 

 

Table 4.5 Energy-optimal formulation - touch down parametrs with optimum initial true 
anomaly 

Case 

No. 

Flight 

time (s) 

Optimum 

initial true 

anomaly (deg.) 

Initial 

altitude 

(km) 

Initial 

longitude 

(deg.) 

Initial 

latitude 

(deg.) 

Final 

landing 

mass (kg) 

1 600 -18.69 17.14 0 -18.69 486.2 
2 800 -29.04 20.11 0 -29.04 484 
3 1000 -37.4 23.4 0 -37.4 473.9 

 

Fig. 4.5. Energy-optimal trajectory profiles for different fixed flight times 
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Fig. 4.6. Energy-optimal thrust profiles for different fixed flight times 

4.3 Realization of a Target site with Different Descent Flight Durations 

by the Choice of Periapsis Location 

In this section, the capability of the DT-DE schemes (for fuel-optimal and energy-

optimal formulation with limited thrust) to reach the selected target site is explored for 

different flight times. This is achieved by selecting an appropriate argument of perilune 

using DE.  Note that, in the earlier section, the argument of perilune is fixed and the true 

anomaly was selected using DE to achieve the target. When true anomaly is selected, 

the altitude at the start of powered phase varies. In this section, because argument of 

perilune is selected, the powered braking initiation happens always at perilune.  

4.3.1 Performance of the Fuel-optimal DT-DE 

Figure 4.7 shows the altitude and latitude (zero longitude during descent) 

profiles for the landing trajectory for three cases as in Table 4.6. For higher flight times, 

the zero thrust duration (cf. Fig.4.8) is higher (during the initial phase of descent). 

Therefore, the landing mass for the three cases are nearly same. 
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Table 4.6 Fuel-optimal DT-DE :  Touch down parametrs with optimum initial argument 
of perilune (AOP)  

Case 
No. 

Flight 
time (s) 

Optimum 
initial AOP 

(deg.) 

Initial 
longitude 

(deg.) 

Initial 
latitude(deg.) 

Final 
landing 

mass (kg) 

Zero thrust 
duration (s) 

1 600 -19.11 0 -19.11 486.96 56.05 
2 800 -30.1 0 -30.1 486.92 255.27 
3 1000 -40.66 0 -40.66 486.91 455.4 

 

 

Fig. 4.7. Fuel-optimal trajectory profiles for different fixed flight times  
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Fig. 4.8. Fuel-optimal thrust profiles for different fixed flight times 

4.3.2 Performance of the Energy-optimal Limited Thrust DT-DE 

Figure 4.9 depicts the altitude, latitude and longitude profiles for the landing 

trajectory for three cases as in Table 4.7.  For higher flight times the required thrust is 

lower (cf. Fig.4.10) during the initial phase of descent.  The landing mass achieved with 

energy-optimal formulation results in heavy penalty (cf. Table 4.7) for higher flight 

times. The penalty for the fuel-optimal formulation is only marginal (cf. Table 4.6).  

 

Table 4.7 Energy-optimal DT-DE : Touch down parameters with optimum  initial 
argument of perilune (AOP)  

Case 
No. 

Flight 
time 
(s) 

Optimum initial 
Argument of 

perilune (deg.) 

Initial 
longitude 

(deg.) 

Initial 
latitude(deg.) 

Final landing 
mass (kg) 

1 600 -18.69 0.0 -18.69 486.5 
2 800 -29.07 0.0 -29.07 484.1 
3 1000 -37.36 0.0 -37.36 474.0 
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Fig. 4.9. Energy-optimal trajectory profiles for different fixed flight times with optimum 
initial argument of perilune  

 

Fig. 4.10. Energy-optimal thrust profiles for different fixed flight times 
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4.4 Conclusions 

The capability of DT-DE schemes (fuel-optimal and energy-optimal) to find the 

initial conditions of optimal trajectory for different mission scenarios is demonstrated. 

For higher perilune altitudes, the marginal advantage of landing mass for fuel-optimal 

over energy-optimal increases. For fuel-optimal formulation, higher flight times result 

in longer zero thrust duration and hence achieves nearly same landing mass for all flight 

times. But for energy-optimal formulation achieves soft landing with penalties on the 

landing mass.  When the target site is fixed, the soft landing can be achieved either by 

changing the initial true anomaly or the argument of perilune. The use of DE is 

demonstrated to find the appropriate initial true anomaly /argument of perilune.  The 

DT-DE scheme for fuel-optimal adjusts the zero thrust duration to land on the selected 

target. The DT-DE scheme for energy-optimal computes the required thrust acceleration 

by varying thrust profile and achieves the target landing conditions. For fuel-optimal 

trajectories, the penalties on landing mass is only marginal whereas the penalty on 

landing mass is high for energy-optimal formulation.   
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Chapter 5 

DT Guidance Algorithms for Lunar Pinpoint Soft 

Landing 
 

Chapter Summary 

Guidance schemes with performance measures of (i) fuel-optimal (ii) energy-

optimal to realize soft landing at a desired location on the Moon are developed using 

optimal control laws.  The optimal control laws are obtained by solving a two-point 

boundary value problem formulated based on Pontryagin’s principle. The guidance 

laws, adapted from the optimal control laws, are obtained as a function of unknown co-

state variables. The Differential Transformation (DT) technique is employed to 

determine the unknown co-states at each time instant of landing trajectory using the 

information on the current vehicle state, target landing site (loaded on-board apriori) 

and the time-to-go.  A simple real time strategy which uses the current and end states is 

presented to compute the time-to-go, a critical parameter for any guidance scheme. The 

performance of the simple strategy for time-to-go even when the shape of the trajectory 

is nonlinear is demonstrated.  Extensive analysis evaluating and comparing the 

proposed guidance schemes is presented. Further, a brief summary of existing guidance 

algorithms commonly used for planetary landing is provided in this chapter and 

compared with the DT guidance schemes.  

5.1 Introduction 

A new algorithm that generates optimal landing trajectories was presented in 

Chapter 3. Motivated by the use of the Differential Transformation technique, its use to 

develop an efficient guidance algorithm is attempted. To land at a specified location, the 

propulsion system must be capable of generating variable thrust through throttling.  
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Also, if the landing point changes during the powered descent phase, retargeting of 

landing point with a fixed thrust is not possible. Therefore, any guidance algorithm 

must be capable of finding the required thrust acceleration vector to meet the terminal 

boundary conditions. A novel guidance scheme based on Differential Transformation 

(DT) to land at the specified target is developed and the details are provided in this 

chapter. As pointed out in Chapter 1, fuel-optimal guidance schemes are scarce in the 

literature and most of the schemes produce near-optimal guidance by minimizing 

energy. The proposed DT based guidance scheme provides fuel-optimal guidance in a 

closed form. Also, the energy-optimal guidance scheme is developed and both of them 

are evaluated for several mission scenarios. First, a brief summary of existing and 

commonly used guidance algorithms (i) Explicit guidance algorithm, (ii) Constrained 

Terminal Velocity Guidance (CTVG) and (iii) Polynomial guidance algorithm for 

planetary landing are presented in this chapter. Then the DT based algorithm is 

provided in detail. The DT based proposed schemes help to quantify the landing masses 

for fuel-optimal and energy-optimal objectives. Other features of the proposed schemes 

are that they do not assume constant gravity field and are independent of reference 

trajectory. The numerical integration of co-state dynamics is avoided due to the DT 

based approach. 

5.2 Some Guidance Schemes for Landing at a Specified Location – 

With Variable Thrust 

5.2.1  E-Guidance 

E-Guidance algorithm for variable thrust proposed by Cherry (1963, 1964).  

This guidance algorithm requires information about the current vehicle state vector and 

the target state vector (position and velocity).  The equations of motions are given by 

                                                                                  (5.1a)                                

                                                                       (5.1b) 
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where   , , ,   are position and 

 are velocity components,  is the radial distance from Moon’s centre. The 

parameters   are the mass of the lander module, maximum thrust, 

specific impulse, acceleration due to gravity of Earth (9.80665 ms-2) and gravitational 

parameter of Moon (4.902800476E12 m3s-2 ) respectively. All these quantities are in SI 

units i.e position in meter and velocity in meter per second. The quantities 

are acceleration components of thrust (T). 

Equation (5.1b) is nonlinear and in coupled form. We can linearize and decouple the 

equations by defining the thrust acceleration components as.   

                                                                   (5.1c) 

                                                                  (5.1d) 

                                                                  (5.1e) 

Substituting Eq.(5.1c)-(5.1e) in Eq.(5.1b), then Eq. (5.1b) becomes linearly decoupled 

and it follows that, 

                                                             (5.2a) 

                                                             (5.2b) 

                                                              (5.2c) 

If we get the parameters  it is possible to find the required thrust acceleration 

components using Eq.(5.1c)-(5.1e). Integrating Eqs.(5.2a)-(5.2c) twice from the current 

time   to the final flight time(  and rearranging the equations to get . The 

coefficients  are derived with terminal boundary conditions of position and 

velocity and they are the following : 

                       (5.3a) 
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                       (5.3b) 

                       (5.3c) 

where . 

If required thrust exceeds available maximum thrust, the thrust acceleration is resolved 

along the unit vector of unlimited thrust acceleration vector. 

                                                                          (5.3d) 

The steps of the E-Guidance algorithm are : 

1. Specify the total time of powered flight, i.e  time-to-go and target position and 

velocity vectors. 

2. From the navigation system obtain current position, velocity and gravity 

acceleration vectors.  

3. Compute the altitude from the position vector or from navigation. Check 

whether the current altitude is equal to the specified terminal altitude. If equal, 

landing has occurred otherwise, proceed with the following steps. 

4. Set the current ‘time-to-go’ as the difference between the total time of powered 

flight and the time elapsed. 

5. Compute the coefficients  (Eqs. (5.3a) – (5.3b)). 

6. Compute the components of thrust acceleration vector (cf. Eqs. (5.1c) –(5.1e)) 

and magnitude. If the thrust magnitude is higher than the available maximum 

thrust, use the maximum thrust and the unit vector of the required thrust vector 

(cf. Eq.(5.3d)) to compute the components of acceleration. 

7. Repeat steps (2)- (6) until touchdown 
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5.2.2 CTVG (Constrained Terminal Velocity) Guidance Scheme 

This guidance scheme is proposed by Guo et al. (2011) and Hawkins et al. 

(2011) and it is based on two vectors Viz., ZEM and ZEV (Ebrahimi et.al (2008)).  The 

ZEM (Zero Effort Miss) vector at any time is defined as the deviation of the target 

location ( )  (at the end of mission) from the location achieved under zero thrust 

acceleration from that time until touchdown. At any time, the ZEV vector is defined as 

the deviation of the target velocity ( ) from the velocity vector achieved under zero 

thrust acceleration from that time until touchdown. This algorithm is derived based on 

the major assumption that the gravitational acceleration is constant. The equations of 

motion in vector form are given by Eq. (5.1a) and Eq. (5.1b).  The soft landing problem 

is formulated to minimize the integral of the square of acceleration such that ZEM and 

ZEV are zeroes at touch down and the details are as follows. 

Introduce co-state variables  corresponding to 

the state variables .  The control variables of the problem are 

given by     . 

                                 (5.4) 

The Hamiltonian for this optimal control problem is,  

                                                                        (5.5) 

Assuming that the lunar gravitational acceleration  is a constant vector, the co-state 

equations and the control law are derived. The co-state equations are  

                                                    (5.6a) 

                                                                 (5.6b) 

                                                                  (5.6c) 

                                                                  (5.6d) 

                                                               (5.6e) 
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                                                               (5.6f) 

                                                                (5.6g) 

The control law is given by the optimality condition 

                                                                                            (5.7a)                                

                                                                   (5.7b) 

According to corollary of Pontryagin’s principle, when fixed terminal conditions, the 

co-states at  are non-zero. Integrating the co-state equations  

                                                                             (5.8a) 

                                                                             (5.8b) 

                                                                              (5.8c) 

                                      (5.9a) 

                                     (5.9b) 

                                       (5.9c) 

The time-to-go is defined as  

                                                                              (5.10) 

The thrust acceleration can be found as 

                                          (5.11a) 

                                          (5.11b) 

                                           (5.11c) 

To find the required thrust acceleration with Eqs.(5.11a)-(5.11c),  the final co-states are 

required to be known and it can be found by integrating the state equations. With some 

algebraic manipulations and rearrangements (Guo et al. 2011), the state vector can be 

obtained as follows:  

     (5.12a) 

     (5.12b) 

       (5.12c) 
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                               (5.13a) 

                              (5.13b) 

                                (5.13c) 

 

In the above equations (Eqs. (5.12) and Eq.(5.13) ) all quantities are known except the 

co-states. The co-states are obtained (Guo et al. 2011) by combining Eqs.(5.12) and 

Eqs. (5.13) and rearranging the terms and they are as follows, 

                                  (5.14a) 

                                  (5.14b) 

                                    (5.14c) 

             (5.15a) 

              (5.15b) 

                (5.15c) 

The required thrust acceleration can be computed using Eq. (5.11) and Eqs.(5.15a)-

(5.15c) and it is,  

          (5.16a) 

         (5.16b) 

           (5.16c)     

Let 

 

Then Eq.(5.16) becomes 
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                  (5.17a) 

                  (5.17b) 

                    (5.17c)     

The steps of the CTVG algorithm can be summarized as follows, 

Steps (1) – (4) are same as in the previous section 5.2.1 

5. Compute the components of thrust acceleration vector (cf. Eqs. (5.17a) –(5.17c)) 

and magnitude. If thrust magnitude higher than the available maximum thrust, 

use the maximum thrust and the unit vector of required thrust vector (cf. 

Eq.(5.3d)) to find the components of acceleration.  

6. Repeat steps (2)- (5) until touchdown 

5.2.3 Polynomial Guidance Scheme 

The polynomial approximated acceleration vector  that passes through 

initial and target state is used for landing trajectory acceleration profile. This 

approximated acceleration profile is used to find the thrust acceleration vector. This 

scheme requires an acceleration profile which satisfies the initial and target states 

(position, velocity, acceleration). A quadratic acceleration profile is selected and it is of 

the form 

                                                              (5.18a) 

The thrust acceleration vector is given by  

                                                 (5.18b) 

Where , ,  are the coefficient (in  vector form)  to be determined and the details 

are provided by Wong et al. (2006) and Sostaric and Rea (2005).   is lunar 

gravitational acceleration vector. With integration the position and velocity equations 

become 

                                                   (5.19) 
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                                         (5.20) 

Solving for the coefficients they are found using the current state vector and the target 

state vector at final time (tf). 

                                       (5.20a) 

(5.20b) 

                             (5.20c)         

Where , ,  are target acceleration, velocity and position vector at final time to be 

pre-specified.  

The different steps of polynomial guidance algorithm can summarize as follows, 

1. Steps (1) – (4) are same as in the previous section 5.2.1 

5. Calculate the components of the thrust acceleration vector (cf. Eqs. (5.18), 

Eq.(5.20a)-(5.20c)) and its magnitude. If thrust magnitude higher than the 

available maximum thrust use the maximum thrust in the direction of the 

required thrust vector (cf. Eq.(5.3d))  

6. Repeat steps (2)- (5) until touch down. 

 5.3 Differential Transformation Based Guidance Scheme 

The proposed new guidance scheme uses Pontryagin’s principle of optimal 

control theory to derive the optimal control laws in which the acceleration vector is 

represented as a function of co-states. The formulation is the same as the one described 

in Chapter 3.  So, it is not repeated and those equations are referred in this chapter. For 

dynamics and formulation of the problem, the readers are directed to refer to sections 

3.2 and 3.3 respectively. The components of acceleration components and throttling 

parameter at a particular time instant are obtained for two objectives (i) energy-optimal 

(ii) fuel-optimal in sections 3.3.1 and 3.3.2 respectively. For completeness, the control 

laws are reproduced herein for both the objectives.  These controls laws are used as the 

guidance laws to compute the instantaneous acceleration vector. These acceleration 
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vectors can be obtained if the co-states at that time instant are known.  In the proposed 

scheme, the Differential Transformation technique is used to compute the co-states at 

each time instant using the time-to-go ( ) and the target state (landing location).  A 

simple strategy to compute the parameter is used.   

5.3.1 Energy-optimal Guidance Laws 

  When the thrust level is limited to , the thrust acceleration vector ( ) is given 

by (Eq.3.12), 

                                                           (3.12a) 

                                                          (3.12b) 

                                                           (3.12c) 

The quantities are acceleration components of thrust (T) and k is the 

throttling parameter. For computation purposes, the parameter ‘ ’ is set to equal to 1.  

The co-state velocity vector is    and  .   

5.3.2 Fuel-optimal Guidance Laws 

The optimal thrust acceleration components and magnitude are found using the 

optimality condition and they are as given (Eq. 3.16) below. 

                                                        (3.16a) 

                                                        (3.16b) 

                                                         (3.16c) 

                                                  (3.16d) 

where  is throttling parameter (cf. Eq.3.17-Eq.3.18),  
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Sfor
Sfor

k       and         

The parameters   are the mass of the lander module, maximum thrust, 

specific impulse and acceleration due to gravity of Earth (9.80665 ms-2) respectively. 

5.3.3 Strategy for Time-to-go 

Let the latitudes and longitudes of current and target points are given by 

. Convert the current vehicle velocity vector to local inertial frame on 

surface as 

                     (5.21) 

and find the velocity Azimuth                   (5.22) 

The cross-range and down-range angles  and  are given by (Brauer et.al., 1975)      

          (5.23) 

                      (5.24) 

Find the parameter                                                                (5.25) 

where   and  are the radius at the current and target points. The down-range (  and 

cross-range are (  given by 

                                                                          (5.26) 

                                                                           (5.27) 

The parameter is computed as the time taken to cover the linear distance between the 

current and end states if the lander travels with a mean velocity. The mean velocity 

(  is the average of current and end velocities.   

                                                                  (5.28a) 

The parameter   is given by 
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                                                            (5.28b) 

where,  is current altitude,  is down-range to go,  is cross-range to go,  

are current and target velocity magnitudes. The parameter  becomes indeterminate 

when both current and target velocities are zeros. The current velocity becoming zero is 

a very rare occurrence. However, if this occurs it is handled by discontinuing the  

computation within a small threshold value of current velocity. For this scenario, the 

value for   is taken as the latest value corresponding to non-zero current velocity. 

However, in all simulations of this study, this situation did not arise.  

5.3.4 Differential Transformation (DT) Based Guidance Algorithms  

The instantaneous co-states for a   value are computed using the Differential 

Transformation technique.  All equations related to finding the initial co-states are the 

same and hence it not repeated in this chapter.  For derivations, refer to section 3.4.2 of 

Chapter 3.   The time-to-go is computed using Eq. (5.28) and the relevant equations 

required to compute the initial co-states are repeated in the DT based guidance scheme. 

The steps of the DT based guidance algorithms are designated as Fuel-optimal and 

Energy-optimal DT guidance schemes, and are as follows: 

1. Fix Isp, maximum available thrust level of engine and target state vector 

(position and velocity vectors) and fix a positive value greater than 1 for the 

co-state of ‘m’. 

2. Obtain / compute the current vehicle state (position and velocity vectors) 

from navigation / numerical integration. 

3. Obtain / compute the vehicle altitude information from navigation / 

numerical integration. If it reaches the required terminal altitude, stop the 

guidance computation. 

4. Compute the parameter time-to-go using the Eq.(5.28) 

5. Compute the current co-states using the current vehicle state, target state and 

time-to-go using the following steps. 
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(i) Compute the matrix A (Eq. 5.29) using the Eq. (5.30) for the 

performance measure of energy-optimal or using the Eq. (5.31) for 

the performance measure of fuel-optimal. 

 

                                                                      (5.29) 

 

                                                                 (5.30) 

     (5.31) 

 

The matrix is set according to the performance measure. The B1 matrix for the 

energy-optimal is, 

 

                                                         (5.32) 

 

and for fuel-optimal case, the matrix  is 
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                                   (5.33) 

 

(ii) Compute the matrix [cf.Eq.(5.34)] and the sub matrices  

and . 

 

where  . It is represented as 

                                               (5.34) 

 

(iii) Compute the quantities R [cf. Eq. (5.36)] and Q [cf. Eq. (5.35)] by 

substituting the value of for .The number of terms in the 

series expansion is chosen based on an analysis on the determining 

the co-states by varying the number of terms. 

                                                (5.35) 

                                                          (5.36) 

(iv) Compute the co-states at the current time ( ), using Eq. (5.37) and 

replacing  with . 
                                                   (5.37) 

6. Compute the required thrust acceleration vector from the current co-states 

and the thrust magnitude using Eqs. (5.38a)-(5.38c) for the fuel-optimal and 

Eqs.(5.40a) – (5.40 c) for the energy-optimal formulations. 

For the fuel-optimal formulation, the thrust acceleration components and 

throttling parameter are the following, 

                                                        (5.38a) 
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                                                        (5.38b) 

                                                         (5.38c) 

                                                  (5.39) 

           where  is throttling parameter (cf. Eq.3.17-Eq.3.18),  

01
00

Sfor
Sfor

k       and         

For the energy-optimal formulation, the product of the acceleration component and the 

throttling parameter is considered as a single parameter. For computation purposes, the 

parameter ‘ ’ is set to equal to 1.   Therefore, the thrust acceleration components and 

throttling parameter are , 

                                                          (5.40a) 

                                                          (5.40b) 

                                              (5.40c)      

                                      (5.40d) 

The above energy-optimal control laws (Eq.(5.40) are valid for unbounded thrust. But, 

in actual missions the thrust available is limited. If the required thrust computed using 

the Eq.(5.40d) is higher than the available maximum thrust, the control laws are 

modified using Pontryagin’s principle. According to Pontryagin’s principle, the thrust 

must be chosen satisfying the constraint on the maximum thrust and still minimizing the 

Hamiltonian.  It can easily be verified by selecting the terms that contain control 

variables that H is minimum when the thrust is set to the maximum permissible value. 

The unit vector along the co-state of velocity vector, which is optimally computed using 

Eqs. (5.41a)-(5.41c), is used for thrust direction. Combining these strategies, to suit the 

limited thrust conditions, the maximum thrust acceleration is resolved along the unit 

vector of the co-state velocity vector. The energy-optimal control laws that provide the 

thrust acceleration components are  
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                                                           (5.41a) 

                                                          (5.41b) 

                                                           (5.41c) 

where 

 

To summarize, the Eqs. (5.40a) -(5.40c) are used as control laws if the required thrust is 

less than the maximum thrust. Otherwise the Eqs. (5.41a) -(5.41c) are used as control 

laws. 

7. Repeat the steps (2) to (6) until target altitude is achieved (corresponding to 

touchdown or until any interim target state is reached). 

In the above algorithm, there exist possibility of matrix R becoming singular 

(determinant becomes zero). However, the matrix inversion for the matrix R did not 

cause any problem in all simulations (including the Monte Carlo simulations) of this 

research work. When such situations occur in the simulations, a strategy to update the 

co-states is proposed. If the determinant of the matrix R is zero, then the co-states are 

updated linearly using the previous values using Eqs.(3.9a)-(3.9f). But the matrix 

becomes indeterminate (mathematically) in the following situations:  

 Time-to-go becomes zero  

If this occurs, the co-states can linearly be updated (Euler 

method) from previous values using Eqs.(3.9a)-(3.9f).  

 Position and velocity  becomes zero  

The position components expressed in lunar centred co-ordinate 

frame and therefore the possibility of zero position is not there.  

When the velocity becomes zero, the simulation will stop and 

therefore, there is no computation of matrix R. 
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5.4 Results and Discussion   

The performance of the proposed method is attempted for a lander with a 

propulsion system as given in Table 5.1. The lander mass is assumed to be 880 kg in a 

100 x 100 km lunar orbit and 874.4 kg in 15 x 100 km intermediate lunar orbit after an 

orbital transfer.  Two cases of intermediate orbits as given Table 5.1 have been 

considered (i) inclination = 90 deg. (ii) inclination = 45 deg. The descent for landing is 

assumed to occur in the ascending phase of the orbit in the near side.  For the guidance 

scheme, the coordinates of a target landing site are required.  The coordinates of landing 

site obtained in fuel-optimal trajectories with no constraint on the landing sites have 

been used for the performance assessment. The fuel-optimal trajectories and the 

resulting landing sites for the two cases are given in Table 5.2. Note that except the 

coordinates of the landing sites all other parameters are nearly same.  As reported in 

Chapter 3 (section 3.6.5 and 3.6.6), the optimal solutions and the landing site are nearly 

the same for the energy-optimal open-loop trajectory.   

 
Table 5.1 Input parameters 

Parameters Case1 Case 2 
Semi-major axis  (km) 1795.5 1795.5 

Eccentricity  0.023670287 0.023670287 
Inclination (deg) 90 45 

Argument of perilune (deg) 0 0 
Longitude of ascending node (deg) 0 0 

True anomaly (deg) 0 0 
Maximum Thrust (N) 2200 2200 
Specific Impulse (s) 315 315 
Mass at 100km  (kg) 880 880 
Mass at 15km  (kg) 874.4 874.4 
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Table 5.2 Optimal trajectory parameters and the resulting landing target 

 
Problem Definition for Guidance Analysis: A lander in orbits as given in Table 5.1 is 

to achieve the respective target sites as given Table 5.2. The thrust provided by the 

propulsion system is limited to 2200 N.  As described in section 3.6.2 of chapter 3, the 

DT parameters (i) DT step size and (ii) number of terms in the series expansion have 

fixed at 0.5 s and 15 respectively.   

5.4.1 Evaluation of Guidance Schemes 

Both the fuel-optimal and the energy-optimal DT guidance schemes have been 

evaluated for the two cases of orbits and are presented in Tables 5.3 and 5.4. The time-

to-go is computed and updated for each time step using the procedure given in section 

5.3.1. The fuel-optimal DT guidance achieves the target in 552.49 s of which for 7.3 s 

the thrust is zero. So, thrusting time is only 545.19 s (case 1) which is nearly same as 

the flight time obtained (cf. Table 5.2) in the open-loop optimal trajectory (544.96 s).  

The landing mass, for fuel-optimal guidance, is 486.2 kg whereas the energy-optimal 

guidance lands a mass of 485.8 kg. Although marginal, there is an advantage of 0.4 kg 

in the case of fuel-optimal DT guidance. The performance of energy-optimal DT 

guidance is marginally better than (i) CTVG (ii) E guidance schemes. The CTVG 

scheme is considered for comparison as the performance of the scheme was found to be 

similar to many other schemes. For CTVG and E guidance schemes,  is computed 

using the proposed time-to-go computation (cf. Eq. 5.28) which uses current states and 

target states.  An additional landing mass of 0.2 kg in a reduced flight time (less by 2.6 

s) is obtained for energy-optimal DT guidance. Note that the zero thrust duration does 

not occur for other guidance schemes except for the fuel-optimal DT guidance.   The 

behavior of the schemes are the same for case 2 (inclination = 45 deg.) also.   

Parameter Case 1 Case 2 
Latitude (deg, North) 16.1508 11.46113 

Longitude (deg) 0.0 11.46146 
Flight time to touch down (s) 543.96 543.98 

Landing mass (kg) 487.04 487.01 
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Table 5.3 Performance of DT Guidance scheme and Comparison with other schemes 

(Case 1) 
Parameter Fuel-optimal 

DT Guidance 
Energy-optimal  
DT Guidance 

CTVG E-guidance 

Flight time (s) ( touch down time) 552.49 554.96 557.56 557.55 
Landing Mass( kg) 486.16 485.79 485.5 485.5 

Deviation in target position at touchdown (m) 0.001 5.e-6 4e-5 5e-5 
Deviation in velocity at touchdown (m/s) 0.1 0.001 0.005 0.0049 

Zero thrust duration (s) 7.3 - - - 
 

 
Table 5.4 Performance of DT Guidance scheme and Comparison with other schemes 

(Case 2) 
Parameter Fuel-optimal 

DT Guidance 
Energy-optimal  
DT Guidance 

CTVG E-
guidance 

Flight time (s) ( touch down time) 552.62 555.09 557.68 557.68 
Landing Mass( kg) 486.13 485.75 485.45 485.495 

Deviation in target position at touchdown (m) 0.001 5.e-6 4e-5 5e-5 
Deviation in velocity at touchdown (m/s) 0.1 0.001 0.005 0.00493 

Zero thrust duration (s) 7.3 - - - 
 

It is observed that the polynomial guidance fails to converge when  is 

updated in real time and works only when a value for  is fixed at . This fixed time-

to-go is decremented linearly using the propagation/navigation step size. The 

performance of polynomial guidance is given in Table 5.5 for different  values 

varying between 545 s and 585 s. Polynomial guidance works for  values in the 

range of 548 s – 581 s for this test case (case 1).  This range is applicable only for the 

case considered in this study. However, it is observed that for any other case also there 

will be a range of values for  in which only polynomial guidance works. Note that 

the landing mass is less by about 1 kg for the 560 s of time-to-go case.  Also, it is 

observed that for all guidance schemes the initial  value must be more than the 

optimal flight time of open-loop optimal trajectory. 

The altitude profiles for the fuel-optimal and the energy-optimal DT schemes 

are depicted in Fig. 5.1. Figure 5.2 provides the track of the descent trajectory in terms 

of down-range and cross-range parameters. The thrust profiles for the fuel-optimal and 

the energy-optimal guidance schemes are depicted in Fig.5.3 and Fig.5.4 respectively. 
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Clearly, the fuel-optimal guidance demands either maximum thrust or zero thrust and 

the thrust demanded by the energy-optimal guidance tapers down in the latter part of the 

flight. The  profile with time is given in Fig. 5.5. Initially the value of   is 

computed as 581.85 s and later on the value gets reduced to meet the target. Further, the 

inadequacy of a strategy that fixes  at an initial time and then linearly decrements 

instead of updating real time is established  in Fig. 5.6(a) and Fig. 5.6(b). In these 

figures, the propagation step size is 0.5 s which is equivalent to the step size of 

navigation update.  The difference which is the difference between the two ’s 

determined at two successive propagation steps is plotted for fuel-optimal DT guidance 

in Fig. 5.6(a) and Fig. 5.6(b) (blown up version of Fig.5.6(a) during 0 s to 450 s). Note 

that the  difference is about 0.56 s initially and varies to 0.48 s before resulting in 

wild variations due to the variations in the demand for thrust between zero and full 

level. The non-linearity in the trend is clearly seen. 

 

Table 5.5 Performance of polynomial guidance with fixed time-to-go (Case 1) 

 

Parameter  = 
545 s 

 = 
548 s 

 = 
555 s 

 = 
560 s 

 = 
580 s 

 = 
585 s 

Touch down time (s) 531.6 548 555 560 580 578 
Landing Mass (kg) 497.04 486.1 485.7 485.03 481.5 489 

Deviation in target position at touchdown (m) 231.8 9E-10 8.E-7 9.E-7 3.E-9 60 
Deviation in velocity at touchdown (m/s) 53.9 3.E-7 5.E-9 7E-10 2.E-6 8 
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Fig. 5.1. Altitude profile for DT guidance schemes (Case 1). 

 
Fig. 5.2. Down-range vs cross-range - Case 1. 
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Fig. 5.3. Thrust profile- for fuel-optimal DT guidance (0 %- Case 1). 

 
Fig. 5.4. Thrust profile for energy-optimal DT guidance (Case 1). 
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Fig. 5.5. Time vs real time computed time-to-go. 
 

 

Fig. 5.6a. and Fig.5.6b. The time-to-go difference with propagation steps. 
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5.4.2 Fuel-optimal DT Guidance for Throttling Engine (40 % - 100 %) 

The fuel-optimal DT guidance for case 1 needs the propulsion system to operate 

with full thrust for a time duration of 545.3 s and with zero thrust for 7.3 s. Practically, 

it may be difficult to operate the main engine in the on-off mode. In general, the 

throttling engines operate with a lower limit on throttling.  A value of 40% is assumed 

for evaluating the fuel-optimal DT guidance. That means, during landing the engine is 

assumed to be operating either with maximum thrust (2200 N for this study) or with 

minimum thrust (880 N). The target site is kept as same as given Table 5.2. The 

performance of fuel-optimal guidance for this engine is presented in Table 5.6. The 

flight time and landing mass for this engine remains nearly same as in the 0% thrust 

case. But the target is achieved by increasing the time of operation with minimum thrust 

(40%) by about 4 s. However, the flight time remains the same implying that the total 

impulse in both the cases is same.  The profile of demanded thrust by this engine is 

provided in Fig. 5.7. 

 

 

Table 5.6 Performance of fuel-optimal DT guidance with minimum thrust 40 % 

Parameter 
Minimum 
thrust = 0%  

Minimum 
thrust = 
40%  

Target Latitude (deg, North) 16.1508 16.1508 
Target Longitude (deg) 0 0 

Flight time (s) ( touch down time) 552.49 552.52 
Landing Mass( kg) 486.16 486.15 

Deviation in target position at touch down (m) 0.001 0.001 
Deviation in velocity at touch down (m/s) 0.10 0.11 

Zero / minimum thrust duration (s) 7.3 11.0 
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Fig. 5.7. Profile of demanded thrust by fuel-optimal DT guidance (minimum thrust = 

40%). 

5.4.3 Evaluation of time-to-go Computation Strategy and Guidance Schemes 

The  strategy adapted herein is based on linearity assumption on the 

trajectory. So, the strategy is tested for various shapes of trajectory. Three thrust levels 

are considered for this analysis. The optimal landing trajectories are generated first to 

fix the target sites to be used for guidance schemes. These are tabulated in Table 5.7 for 

case 1. The first row of Table 5.7 is already reported in Table 5.2. 

 

The fuel-optimal trajectories are plotted in Fig. 5.8. For the thrust levels of 1800 

N and 1300 N, the altitude goes up initially and starts coming down compared to the 

case with thrust level of 2200 N. This type of non-linearity in the trajectory is tested 
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Table 5.8 and 5.9 for fuel-optimal and energy-optimal respectively. For all thrust levels, 

the fuel-optimal DT guidance achieves a landing mass very close to the optimal 

trajectory (cf. Table 5.7). For lower thrust levels the landing masses achieved with fuel-

optimal and energy-optimal guidance schemes are different.  The reduction in landing 

mass obtained using energy-optimal DT guidance scheme is about 3 kg.  The reduction 

in landing mass is about 7 kg if CTVG scheme (cf. Table 5.10) is used. The CTVG 

scheme leads to lower landing masses with lower thrust levels. The performance of E- 

guidance is same as that of CTVG scheme and so not included herein. The profiles of 

 differences are depicted in Fig.5.9 for different thrust levels for the energy-optimal 

DT guidance. Although the shapes of the trajectories are different, the  strategy 

makes the module to land precisely. The trend is same for fuel-optimal also and so not 

plotted.  It can be concluded that for very high thrust to mass ratios, the performance of 

the fuel-optimal and energy-optimal guidance scheme tends to be the same (in terms of 

landing masses) whereas for low thrust to mass ratios the reduction in landing masses 

occur for energy-optimal guidance scheme compared to fuel-optimal guidance scheme.  

 
Table 5.7 Optimal trajectory parameters – Fuel-optimal 

Thrust 
level (N) 

Landing 
mass (kg) 

Flight time (s) 
( Touch down 

time) 

Target 
Latitude 
(deg. N) 

Target 
Longitude 

(deg.) 
2200 487.04 543.96 16.1508 0.0 
1800 478 695 20.75 0.0 
1300 454.2 998.68 29.04764 0.0 

 

 
Table 5.8 Performance of the fuel-optimal DT guidance scheme 

Thrust 
level 
(N) 

Landing 
mass 
(kg) 

Target 
Latitude 
(deg.N) 

Target 
Longitude 

(deg.) 

Flight time 
(s) 

( Touch 
down time) 

Landing 
position 

deviation  
from target 

(m) 

Landing 
velocity  
deviation 

from target 
(m/s) 

2200 486.16 16.15080 0.0 552.49 0.001 0.1 
1800 475.24 20.75 0.0 723.3 1.E-5 0.0023 
1300 453.9 29.04764 0.0 1009.59 1.E-4 0.01 
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Fig. 5.8. Fuel-optimal trajectories for different thrust levels (case 1). 

Table 5.9 Performance of the energy-optimal DT guidance scheme 
Thrust 
level 
(N) 

Landing 
mass 
(kg) 

Target 
Latitude 
(deg.) 

Target 
Longitude 

(deg.)  

Flight time 
(s) 

( Touch 
down 
time) 

Landing 
position 

deviation  
from target 

(m) 

Landing 
velocity  
deviation 

from target 
(m/s) 

2200  485.79 16.15080 0 554.96 5.E-06 0.001 
1800 472 20.75 0 746.64 1.E-06 0.002 
1300 450.19 29.04764 0 1023.75 2.7E-05 0.005 

 
 

Table 5.10 Performance of  the CTVG scheme 
Thrust 
level 
(N) 

Landing 
mass 
(kg) 

Target 
Latitude 
(deg.) 

Target 
Longitude 

(deg.)  

Flight 
time (s) 
( Touch 
down 
time) 

Landing 
position 
deviation  

from target 
(m) 

Landing 
velocity  
deviation 

from target 
(m/s) 

2200  485.5 16.15080 0 557.56 4.E-5 0.005 
1800 470.45 20.75 0 751.5 3.E-5 0.011 
1300 446.5 29.04764 0 1051.6 2.E-5 0.012 
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Fig. 5.9. Profiles of time-to-go  differences under various thrust levels. 

5.4.3.1 Performance comparison of time-to-go computation methods- proposed vs 
standard method 
 

A standard way of computing time-to-go is as follows: 

 

The range vector is given by    and    where    is the current range 

vector,   is the current position vector and  is the  target position vector of landing 

site. 

For the comparative study, the minimum fuel case (Section.5.4.1, minimum fuel 

guidance case) is used. The use of standard method of time-to-go computation (using 

range and range rate) makes the module to touch down before the velocity braking ends 

and it results in large deviation in touch down position (2210 m ) and velocity (286 m/s) 

from the target. The main difference between the two schemes is that in the proposed 

scheme instantaneous average velocity is used for time-to-go computation whereas in 

the standard method current range rate (i.e close to current velocity) is used. Therefore, 

the effect of change in velocity as the module descends is not accounted in the 
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computation. If the standard scheme is adopted along with the average (mean) range 

rate, then the position and velocity deviation at touch down will reduce (2.2 m in 

position and 0.8 m/s in velocity).  

5.4.4 Nominal Landing Site with Higher Thrust 

Another scenario tested for  strategy is when the thrust level for guidance is 

higher than the thrust used to generate the nominal target site (Table 5.7).  That means 

with thrust higher than the nominal thrust (2200 N), achieving the same landing site is 

attempted. A thrust of 2500 N is used to achieve the landing site that was optimally 

achievable with a nominal thrust of 2200 N. This strategy is useful to provide margins 

for the guidance design. The fuel-optimal DT guidance achieves the target (cf. Table 

5.11) with an additional landing mass of 2 kg with higher zero thrust duration of 65.5 s 

(7.3 s for a thrust level of 2200N) whereas the energy-optimal DT guidance achieves 

the target with a reduction of about 7 kg in the landing mass. For fuel-optimal guidance, 

the landing mass is higher due to the higher duration of zero thrust to achieve the same 

target site. For energy-optimal guidance, zero thrust is not possible and the lander needs 

to cover higher down-range (energy-optimal trajectory with 2500 N will result in a 

target site with lesser down-range and higher landing mass)  to achieve the nominal 

target site of 2200 N and this results in more flight time with additional landing mass 

penalty. 

 
Table 5.11 Effect of higher thrust (2500 N) on guidance scheme and time-to-go 

strategy 

Parameter 
Fuel-optimal 
DT Guidance 

Energy-
optimal DT 
Guidance 

CTVG 

Flight time (s) ( touch down time) 543.6 593.55 597.5 
Landing Mass( kg) 487.4 480.5 479.99 

Deviation in target position at touch down (m) 0.001 4.e-6 5e-6 
Deviation in velocity at touch down (m/s) 0.11 0.002 0.003 

Zero thrust duration (s) 65.5 - - 
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5.5 Retargeting Capability 

5.5.1 Retargeting Before Start of Powered Braking 

If the landing site is changed for some reason, the guidance schemes must be capable of 

handling the new landing sites. In this section, a mission scenario in which the 

retargeting is planned before the start of powered braking phase. First, the capability of 

guidance schemes is evaluated for different sites along the orbit track.  For this purpose, 

instead of the nominal site (16.1508 deg. N , 0 deg.) two retarget sites (i) 18 deg N 

latitude and 0 deg. longitude (ii) 25 deg. N latitude and 0 deg. longitude are considered.  

Table 5.12 and Table 5.13 present the performance of guidance schemes. The fuel-

optimal DT guidance achieves the retargets without much loss in the landing mass by 

introducing longer zero thrust duration. The energy-optimal DT guidance achieves the 

retargeted sites with reduction in landing masses (i.e) 7 kg and 30 kg   respectively. The 

CTVG scheme achieves the retargeted sites with a reduction of 7.5 kg and 32 kg in 

landing mass respectively.  Even with 40% minimum thrust engine, the performance of 

fuel-optimal DT guidance is similar to zero thrust case.  

 

The cross-track capability for both guidance schemes are assessed and given in 

Tables 5.14 and 5.15. For this purpose, the longitude of the site is varied keeping 

latitude same. With the same thrust level, the guidance schemes are able to manage 

cross-ranges up to 0.8 deg. in longitude that is equivalent to 23 km. Any further change 

in the latitude becomes not achievable by the guidance schemes. But the cross-range 

capability increases if the down-range of target site is also increased. For example, for a 

latitude 16.5 deg., the cross-range capability increases to 2.5 deg.  A higher cross-range 

is achievable in the case of energy-optimal guidance when the more leverage is 

provided in the down-range.  For example, for a target latitude of 17.5 deg. N, the cross-

range achievable by fuel-optimal is 3.2 deg. whereas with energy-optimal it is about 5.9 

deg.  However, there is a heavy penalty (reduction of 35 kg) on landing mass.  
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Table 5.12 Assessment of retargeting capability (Retarget 1) 

Parameter 
Fuel-optimal DT guidance Energy- 

optimal DT 
Guidance 

CTVG 
Min. thrust = 
0% 

Min. thrust = 40% 

Flight time (s) 601.4 601.5 660.4 665.2 
Landing Mass( kg) 484.8 484.8 476.08 475.48 

Zero thrust duration (s) 54.44 90.75 - - 
Deviation in target position 

at touch down (m) 2.E-4 1.98E-4 8.2E-6 4E-5 

Deviation in velocity at 
touch down (m/s) 0.015 0.015 0.0016 0.012 

 
 
 

Table 5.13 Assessment of retargeting capability (Retarget 2) 

Parameter 
Fuel-optimal DT guidance  Energy-optimal 

DT Guidance 
CTVG 

Min. thrust = 
0% 

Min. thrust = 
40% 

Flight time (s) 730.8  731.5 931.2 948.5 
Landing Mass( kg) 484.79  484.9 453.45 451.3 

Minimum thrust duration (s) 183.6 315.24 - - 
Deviation in target position at 

touch down (m) 3.1E-4 2.01E-4 8e-7 3.9e-6 

Deviation in velocity at touch 
down (m/s) 0.017 0.015 0.001 0.003 

 
 
 
 
 

Table 5.14 Assessment of fuel-optimal DT guidance for cross-range deviation 
 

Target 
Latitude 

(deg., 
North) 

Target 
Longitude 

(deg.) 

Down-
range/ 

Cross- range 
(km) 

Flight 
time/ 

Touch 
down 
time 
(s) 

Pos.dev 
from 
target 
(m) 

Vel.dev 
from 
target 
(m/s) 

Zero 
thrust 

duration 
(s) 

Landing 
mass (kg) 

16.1508 0.0 492.07 / 0.0 552.49 0.001 0.1 7.3 486.16 
16.1508 0.8 492.07/ 23.4 546.1 0.005 0.2 2.41 486.01 

16.5 2.5 503.9 / 73.0 558 0.5 1.2 2.1 477.5 
17.5 3.2 533.0 / 87.2 605.4 0.63 0.84 43.6 473.6 
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Table 5.15 Assessment of energy-optimal DT guidance for cross-range deviation 

 
Target 

Latitude 
(deg., 
North) 

Target 
Longitude 

(deg.) 

Down-
range 

/Cross-
range (km) 

Flight 
time/Touch 
down time 

(s) 

Pos.dev. 
from 

target (m) 

Vel.dev 
from 
target 
(m/s) 

Landing 
mass 
(kg) 

16.1508 0.0 492.07/0.0 554.96 5.e-6 0.001 485.79 
16.1508 0.8 492.07/23.4 547.5 0.1 0.8 485.65 

16.5 2.5 503.0/73.0 559.5 0.23 0.91 477.1 
17.5 5.9 533.0/171.0 641.2 0.33 1.2 437.3 

 

5.5.2 Retargeting During Powered Braking Phase 

If the landing site is changed during the powered braking phase for some reason, 

the capability of the guidance schemes to handle the new landing sites is assessed. For 

the present study, the following conditions are considered. The nominal target 

conditions until 7 km altitude is 0.0 deg. longitude and 16.1508 deg. latitude. From 7 

km altitude the module is diverted to the new landing target, which is away from the 

nominal target. Different targets are listed in Table 5.16. For retargeting of 0.2 deg. 

deviation in both longitude and latitude at 7 km altitude, the landing mass penalty from 

nominal case of fuel-optimal case (cf. Table 5.16) is about 2 kg. In this case, the zero 

thrust duration increases to 17.7 s whereas it is 7.3 s for the nominal case.  For energy-

optimal case (cf. Table 5.17) the landing mass reduction is about 3.6 kg.  The profiles of 

latitude, longitude and altitude profile for nominal and for retarget deviations of 0.2 deg. 

on both target latitude and longitude for energy-optimal case are shown in Fig. 5.10 

(zoomed plot at terminal landing point also provided) and 5.11. 
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Table 5.16 Assessment of fuel-optimal DT guidance for  retargeting at 7km  
 

Target Latitude @ 
15km altitude 
16.1508 deg. 

Target Longitude 
@ 15km altitude : 
0.0 deg. 

Flight 
time/Touc

h down 
time (s) 

Zero 
thrust 
time 
(s) 

Pos.dev. 
from 
target 
(m) 

Vel.dev 
from 
target 
(m/s) 

Landing 
mass 
(kg) 

Target Latitude @ 
7km altitude (deg., 

North) 

Target Longitude 
Latitude @ 7km 
altitude (deg.) 

16.1508 0.0 554.49 7.3 0.001 0.1 486.16 
16.1508 0.2 552.3 5.6 0.002 0.05 485.1 
16.3508 0.0 564.5 17.8 0.005 0.13 485 
16.3508 0.2 565.6 17.7 0.003 0.03 484.2 

 
Table 5.17 Assessment of energy-optimal DT guidance for retargeting at 7km  

 
Target Latitude 
@ 15km altitude 

16.1508 deg. 

Target Longitude 
@ 15km altitude 
: 0.0 deg. 

Flight 
time/To

uch 
down 

time (s) 

Pos.dev
from 
target 
(m) 

Vel.dev 
from 
target 
(m/s) 

Landing 
mass 
(kg) 

Target Latitude 
@ 7km altitude 

(deg. North) 

Target Longitude 
Latitude @ 7km 
altitude (deg.) 

16.1508 0.0 554.96 5.E-6 0.001 485.79 
16.1508 0.2 554.4 2.E-4 0.02 484.7 
16.3508 0.0 574.6 4E-4 0.03 483.5 
16.3508 0.2 576.6 6E-4 0.1 482.3 

 

 

 

 

 

 

Fig. 5.10. Guided trajectories (latitude vs longitude) for nominal and with retargeting- 

energy-optimal  
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Fig. 5.11. Guided trajectories (altitude vs longitude) for nominal and with retargeting -

energy optimal  

5.6 Monte Carlo Simulations 

To evaluate the robustness of the schemes, Monte Carlo (MC) simulations have 

been carried out for the case 1 and are reported in Table 5.1.  The input parameters and 

their dispersions are given in Table 5.18. The dispersion on position (1km) is distributed 

to the components of position and it is 577.35 m in each direction and similarly the 

dispersion on velocity (10 m/s) on each component of velocity is 5.774 m/s. The results 

of one thousand MC simulations are presented in Tables 5.19 and 5.20 for the fuel-

optimal and the energy-optimal DT guidance schemes respectively.  The position and 

velocity deviation for various cases at touch down for fuel-optimal and energy-optimal 

simulations are shown in Fig. 5.12 to Fig. 5.15. The touch down time and landing mass 

for various cases are shown in Fig. 5.16 to Fig. 5.19. The variation in the landing mass 

is very small (less than 1 kg) for the fuel-optimal DT guidance because zero thrust 

duration is varied to achieve the landing site. The trend remains the same even with 

minimum thrust of 40% instead of zero thrust. For energy-optimal guidance, the 

variation in landing mass compared to the nominal mass is up to 5 kg. Further, the 

variation in the parameter time-to-go is larger (18.5 s) for energy-optimal guidance 
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whereas it is 13 s for fuel-optimal guidance. These trends are observed even when 

uniform distribution is adapted for the dispersions. The efficiency of fuel-optimal DT 

guidance over energy-optimal DT guidance is clear.  

The altitude, downrange and cross range profiles for energy-optimal cases are 

shown in Fig.5.20. Even when the initial cross range deviation of about 2000 m (cf. Fig. 

5.20), the guidance scheme is capable of bringing the vehicle to zero cross range and 

down range at touch down. For this case, the velocity components are reduced to zero at 

touch down and it is shown in Fig.5.21. 

Table 5.18 Dispersions for Monte Carlo simulation 
Parameter Distribution Dispersion 

(3 ) 
Position (m) Gaussian 1000 
Velocity (m/s) Gaussian 10 
Specific impulse, Isp (s) Gaussian 5 

 
 

Table 5.19 Summary of MC simulations for fuel-optimal DT guidance  
Parameter Landing 

mass 
(kg) 

Touch 
down time 

(s) 

Deviation in 
Target Position  

(m) 

Deviation in 
Target Velocity  

(m) 
Nominal 486.16 552.49 0.001 0.1 

Mean 486.23 552.88 0.0012 0.12 
Standard 

Deviation (1 ) 
0.119 2.31 0.00064 0.0363 

Minimum 485.9 545.31 1.8e-7 0.0013 
Maximum 486.81 558.27 0.0029 0.18 

 
 

Table 5.20 Summary of MC simulations for energy-optimal DT guidance 
Parameter  Landing 

mass 
(kg) 

Touch 
down time 

(s) 

Deviation in 
Target Position  

(m) 

Deviation in 
Target Velocity  

(m) 
Nominal 485.79 554.96 5e-6 0.001 

Mean 485.81 556.45 1.095e-5 0.0064 
Standard 

Deviation (1 ) 
1.67 2.92 1.027e-5 0.0041 

Minimum 480.16 546.33 1.97e-9 4.36e-7 
Maximum 492.27 564.8 3.56e-5 0.0148 
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Fig. 5.12. Position deviation from target at touch down (fuel-optimal) 

 

Fig. 5.13. Velocity deviation from target at touch down (fuel-optimal)  
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Fig. 5.14. Position deviation from target at touch down (energy-optimal) 

 

 

Fig. 5.15. Velocity deviation from target at touch down (energy-optimal)  
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Fig. 5.16. Touch down (flight) time vs number of fuel-optimal simulations  

 

Fig. 5.17. Landing mass vs number of fuel-optimal simulations 
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Fig. 5.18. Touch down time vs number of energy-optimal simulations  

 

Fig. 5.19. Landing mass vs number of energy-optimal simulations  

 

0

50

100

150

545 550 555 560 565

Touch down time(s)

N
um

be
r o

f C
as

es

0

50

100

150

200

250

480 484 488 492

Landing mass (kg)

N
um

be
r o

f c
as

es



146 
 

 
 

 

Fig. 5.20. Altitude, downrange and cross range profiles of energy-optimal simulations  

 

Fig. 5.21. Velocity components – energy-optimal simulations 
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5.7 Constraint on Lander Terminal Thrust Attitude 

In all the above analysis, the guidance schemes achieve the specified landing 

target point with null altitude and null velocity.  The attitude at touchdown is not 

targeted. In these cases, thrust attitude at the time of touchdown is found to be around 

140 deg. from local horizontal. To achieve vertical landing during touch down a 

strategy is introduced in this section. In this strategy, the horizontal velocity is nullified 

and an appropriate vertical velocity is achieved at a chosen altitude.  This strategy 

results in zero acceleration components (except vertical) at the chosen altitude ensuring 

vertical orientation for landing. The appropriate vertical velocity is computed from the 

one-dimensional kinematics equation . To demonstrate, an altitude of 30 

m is chosen at which zero horizontal velocity and vertical velocity of -13 m/s are to be 

achieved. The vertical velocity is computed by assuming 2200 N thrust and 493 kg 

mass of the module. The altitude can be chosen according to the mission needs. 

The input parameters provided in Table 5.1 are considered for this study. The 

target conditions to be achieved at 30 m altitude are given in Table 5.21. Because of the 

assumption of non- rotating Moon and vertical landing, the latitude and longitude are 

same at 30m altitude as that of target landing site.  Both the fuel-optimal and energy-

optimal DT guidance schemes have been evaluated with this strategy for vertical 

orientation and presented in Table 5.22. The flight time from 30 m altitude to touch 

down is about 4.6s and the landing mass is 485.6 kg for fuel-optimal and 485.2 kg for 

energy-optimal scheme. In both cases, the landing mass is about 0.6 kg less compared 

to the cases (cf. Table 5.3) without terminal thrust attitude constraint. The thrust attitude 

variation is shown in Fig. 5.22 for fuel-optimal and energy-optimal schemes and the 

required thrust attitude of 90 deg. is achieved for both cases during the terminal vertical 

landing phase. 
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Table 5.21 Target conditions 
Parameter Value 

Latitude (deg., North) 16.1508 
Longitude (deg.) 0.0 

Target Terminal altitude (m) 30 
Target Terminal velocity (m/s) -13m/s in radial direction 

 
 

Table 5.22 Performance of DT guidance schemes with terminal vertical thrust direction 
 

Parameter  Fuel-optimal 
DT guidance 

 Energy-optimal  
DT guidance 

Time to reach 30m altitude (s) 548.3 549.1 
Flight Time (s) ( touch down time) 552.85 553.65 

Landing Mass( kg) 485.6 485.2 
Zero thrust duration (s) 6.9 - 

Horizontal velocity @ 30m altitude (m/s) 1.5E-6 2.5E-6 
Vertical velocity @ 30m altitude (m/s) -13.03 -13.1 
Vertical velocity @  touchdown (m/s) 0.013 0.14 

Terminal thrust direction from local horizontal (deg.) 90 90 

 

Fig. 5.22. Thrust direction variation for fuel-optimal and energy-optimal guidance 

scheme. 
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5.8 Conclusions 

The fuel-optimal DT guidance scheme performs very well in different mission 

scenarios. The scheme is capable of introducing minimum thrust or no thrust duration 

during powered descent to achieve the target site. The landing mass difference between 

the DT energy-optimal guidance and open-loop optimal trajectory are within 1 to 1.5 kg 

only.  The difference between the landing masses achieved using open loop fuel-

optimal trajectory formulation and fuel-optimal DT guidance scheme is only marginal 

(less than 1 kg) for all nominal thrust levels. Reduction in landing masses is observed 

for lower nominal thrust levels when energy-optimal guidance is used. For a nominal 

thrust of 1800 N the achieved landing mass is less than the optimal mass by about 3 kg. 

The reduction in landing mass (about 7 kg) is more with other guidance schemes such 

as CTVG. The performance of  DT fuel-optimal guidance is independent of the thrust to 

mass ratios. The performance of the simple strategy for the computation of real time 

time-to-go is demonstrated for nonlinear shapes of trajectory. The insufficiency of 

linear decrement of the parameter time-to-go for guidance command generation is 

established. The decrement in time-to-go in the proposed simple strategy varies between 

0.47 s and 0.56 s instead of 0.5 s with linear decrement. The strategy works well for the 

cases with different thrust levels, retargeted sites etc. The advantage of this strategy is 

that the information of flight time prior to the mission is not necessary. When a nominal 

target site (obtained with some nominal thrust level) is targeted with higher thrust, the 

fuel-optimal DT guidance scheme achieves the target with higher landing mass by 

introducing higher zero-thrust duration. In the same scenario, the energy-optimal DT 

guidance achieves the target with reduced landing mass. The proposed guidance 

schemes are capable of realizing the retargeted target sites. When the retargeted sites are 

along the orbital track, the fuel-optimal DT guidance achieves the target with only 

marginal loss in landing mass whereas energy-optimal guidance schemes achieve the 

retargeted sites with heavy penalty on landing mass. The capability of both the guidance 

schemes in achieving the off-track retargeted sites is found to be limited. The variation 

in the landing mass with fuel-optimal guidance is less than 1 kg under Monte Carlo 
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dispersion studies. The use of energy-optimal guidance results in larger variation (5kg) 

in the landing mass. 
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Chapter 6 

Conclusions and Future Scope of Work 

 

The soft landing on the Moon is formulated as an optimal control problem and is 

transformed into a Two Point Boundary Value Problem (TPBVP). As a first step, planar 

motion for landing trajectory design is considered and this problem is evaluated using 

different solution scheme. Six direct and indirect schemes have been evaluated using 

two evolutionary optimization methods i.e Particle Swarm Optimization (PSO) and 

Differential Evolution (DE) along with MATLAB based gradient optimization method 

for soft landing trajectory optimization. Both the evolutionary optimization methods are 

found to be capable of locating the optimum solution even with very wide bounds. 

However, PSO requires more function evaluations compared to DE to arrive at the 

global optimum. Gradient-based optimization methods requires reasonable accurate 

initial guess of the solution. Apart from good initial guesses, the solution accuracy of 

the direct approach depends on the number of discrete thrust direction angular rates at 

different time intervals and their interpolation schemes. For a new problem, a prior 

information about nature of the solution is unknown. Therefore, the indirect approach 

using DE technique is followed for further research on design of optimal soft landing 

trajectory on the Moon. 

 

A novel computational scheme is developed for open loop lunar soft landing 

trajectory computation by combining Differential Transformation (DT) technique and 

Differential Evolution (DE). This computational scheme is called DT-DE scheme. The 

required thrust acceleration vector at every computational time interval is computed 

using DT scheme by determining the co-states. The single unknown variable in this 

formulation is flight time and it is selected using DE, which removes the complexity in 

the solution process to a large extent.  
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Three performance measures i) time-optimal ii) fuel-optimal iii) energy-optimal 

with and without thrust limit are considered for the formulation and their performances 

are compared with detailed analysis. The summary of findings and conclusions from the 

analysis studies is as follows: 

 The efficiency of the DT technique in achieving the target site precisely 

is demonstrated.  

 Differential Evolution technique obtains the solution very quickly using 

the initial co-states determined by DT technique and the guidelines on 

the flight time. The optimal landing trajectory is generated quickly 

without losing the advantages of the indirect scheme. The computational 

time (CPU time) to generate the optimal solution using the DT- DE 

scheme is about 35 to 40s and whereas using the DE technique alone, 

which uses bounds for initial co-states also, it is about 170s.  

 The computational time for DT-DE scheme is comparable with a 

gradient based optimizer (to select flight time) that uses the initial co-

states determined by DT technique.   

 The use of the DE technique along with the DT technique avoids non-

convergence and local convergence scenarios, which occur when 

gradient-based optimizer is used.  

 The robustness of the DT-DE scheme is demonstrated for different 

performance measures.  

 The ability of the proposed scheme to introduce coasting during descent 

is demonstrated. 

 
 The capability of the DT-DE schemes (fuel-optimal and energy-optimal) 

to find the initial conditions of the optimal trajectory for different 

mission scenarios is demonstrated.  
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 Usually for soft landing mission, the target location will be fixed and the 

initial state need to select optimally for powered braking initiation. When 

the target site is fixed, the soft landing can be achieved either by 

changing the initial true anomaly or the argument of perilune. The use of 

DE is demonstrated to find the appropriate initial true anomaly or 

argument of perilune to land at the selected target.  The fuel-optimal 

formulation adjusts the zero thrust duration to achieve the fixed target 

state. The energy-optimal formulation computes the required thrust 

acceleration by varying thrust profile and achieves the target landing 

conditions.  

 
 When descent phase is initiated at higher perilune altitudes, there is 

marginal advantage of landing mass for fuel-optimal over energy-

optimal strategies and it increases when altitude increases. 

 
 For fuel-optimal trajectories, higher flight times result in longer zero 

thrust duration and achieve nearly same landing mass for all flight times. 

But for energy-optimal formulation achieves soft landing with penalties 

on the landing mass.   

 

The DT based proposed guidance schemes help quantify the landing masses for fuel-

optimal and energy-optimal objectives. The important findings from the studies are 

summarized as follows, 

 

 The fuel-optimal DT guidance scheme performs very well in different 

mission scenarios. The scheme is capable of introducing minimum thrust 

or no thrust duration during powered descent to achieve the target site. 

The difference between the landing masses achieved using open-loop 

optimal trajectory formulation and the fuel-optimal DT guidance scheme 

is marginal (less than 1 kg) for all nominal thrust levels.  
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 There is reduction in landing masses for lower nominal thrust levels 

when energy-optimal guidance is used. For a nominal thrust of 1800 N 

the achieved landing mass is less than the optimal mass of open-loop 

trajectory by about 3 kg. The reduction in landing mass (about 7 kg) is 

more with other guidance schemes such as CTVG.  

 The performance of the simple strategy for the real-time computation of 

time-to-go is demonstrated even for nonlinear shapes of trajectory. The 

insufficiency of linear decrement of the parameter time-to-go for 

guidance command generation is established. The decrement in time-to-

go in the proposed simple strategy varies between 0.47 s and 0.56 s 

instead of 0.5 s with linear decrement. The strategy works well for the 

cases with different thrust levels, retargeted sites etc.  

 When a nominal target site (obtained with some nominal thrust level) is 

targeted with higher thrust, the fuel-optimal DT guidance achieves the 

target with higher landing mass by introducing higher zero-thrust 

duration. In the same scenario, the energy-optimal DT guidance scheme 

achieves the target with reduced landing mass.  

 When higher thrust ( 2500 N > nominal thrust 2200 N) is used the fuel-

optimal DT guidance achieves the nominal target  with an additional 

landing mass of 2 kg with higher zero thrust duration of 65.5 s (7.3 s for 

a thrust level of 2200 N) whereas the energy-optimal DT guidance 

achieves the target with a reduction of about 7 kg in the landing mass. 

 For very high thrust to mass ratios, the performance of the fuel-optimal 

and energy-optimal guidance schemes tends to be the same (in terms of 

landing masses) whereas for low thrust to mass ratios the reduction in 

landing masses occur for energy-optimal guidance scheme compared to 

the landing mass obtained using fuel-optimal guidance scheme. 

 The proposed guidance schemes are capable of realizing the retargeted 

target sites. When the retargeted sites are along the orbital track, the fuel-

optimal DT guidance achieves the target with only marginal loss in 
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landing mass whereas energy-optimal guidance schemes achieve the 

retargeted sites with heavy penalty on landing mass. The capability of 

both the guidance schemes in achieving the off-track retargeted sites is 

found to be limited.  

 The variation in the landing mass with fuel-optimal guidance is less than 

1 kg under Monte Carlo dispersion studies. The use of energy-optimal 

guidance results in variation of 5kg in the landing mass. 

Future Scope 

The compatibility of the thrust on/off switching frequency with the 

actual thrusters is not considered in this thesis. The limitations of the 

actual thrusters can be modeled as constraints and a feasible solution can 

be obtained.  This work is proposed for the future. 

 

The DT based scheme can be explored for Mars soft-landing scenario 

with appropriate aerodynamic force model for atmospheric phase of 

trajectory. 
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