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ABSTRACT

Simultaneous estimation of phase and its derivatives from a single record of in-

terference field gives significant insights about properties of an object in terms

of deformation, strain, curvature and twists. Current state-of-the-art methods

provide either phase or phase derivatives from the fringe pattern; moreover their

performance is greatly influenced by noise in the fringe pattern and the dynamic

range of the phase. Thus, there exist a strong need for development of a phase

estimation approach that can handle severely noisy fringe patterns and yet ca-

pable of estimating rapidly varying phase even when the phase is having larger

dynamic range. This serves us a motivation for our current research work. The

main objective of this thesis is to develop the unified, simple yet effective approach

for simultaneous estimation of phase and phase derivatives from single record of

reconstructed interference field that can handle different conditions present in the

interference field like rapidly varying phase, larger dynamic range of the phase and

extreme noise in the interference field.

This thesis proposes a novel approach, namely, signal tracking approach as an

elegant solution for the phase estimation from reconstructed interference fringes.

Signal tracking approach involves two important parts: state space model and

tracking algorithm. In this work, state space model for signal tracking approach

is derived using Taylor series approximation of the phase map as state model

and Polar to Cartesian conversion as measurement model. We have proposed,

tested and demonstrated the significance of our work through tracking algorithms

that use this state space model such as extended Kalman filter (EKF), unscented

Kalman filter (UKF), Particle filter (PF) and wrapped statistics based algorithm

(WKF) as tracking algorithms. In order to demonstrate the utility of proposed

algorithms, we performed different real-time experiments including digital holo-

graphic Interferometry (DHI) and fringe projection profilometry to measure out-off

plane displacement and 3D reconstruction of an object, respectively.

It was observed that the wrapped statistics based algorithm satisfies all of our
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goals providing the efficient solution of phase estimation problem when the in-

terference fringes are extremely noisy and when underlying phase map has larger

dynamic range and can be considered as better alternative for simultaneous esti-

mation of phase and phase derivatives.

Finally, we conclude our work by showing different applications of the proposed

signal tracking approach such as multi-component phase estimation in holographic

moiré, 3D reconstruction of an object using fringe projection methods. Moreover,

we also demonstrate that the proposed method is a suitable fringe analysis tech-

nique for practical purposes such as thermal expansion.
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CHAPTER 1

Introduction

In interferometric techniques, physical quantities are encoded into phase, and

hence reliable phase estimation becomes the major task. These techniques include

synthetic aperture radar for surface topography, magnetic resonance imaging for

mapping of internal structure of the body, digital holographic interferometry and

moiré for in-plane and out-off plane deformation assessment, fringe projection pro-

filometry for 3D reconstruction of the object, digital holographic microscopy for

study of microscopic biological objects, and many others. The term phase changes

from method to method, e.g., in fringe projection profilometry, the phase means

the phase of the sinusoids of the fringe pattern whereas in holography, phase means

the phase of the actual light wave. However, following equation represents most

general form for the interference field [Gorthi and Rastogi (2010a)].

Γ(m,n) = a(m,n)exp(jφ(m,n)) + η(m,n) (1.1)

where, Γ(m,n) represents the interference field, a(m,n) is the real amplitude and

φ(m,n) is the phase of the interference field. η(m,n) is the noise, and is assumed

to be white Gaussian with zero mean and variance σ2
η. Spatial indices m and n

denote the pixel location as a row and column number, respectively.

Several techniques have been proposed over last three decades for the anal-

ysis of these fringe patterns. These methods analyse the interference field via

various transform domain filters such as Fourier transform [Takeda et al. (1982);

Takeda and Mutoh (1983)], time-frequency analysis [Boashash (1992a,b)], local

adaptive transform domain filters [Yaroslavsky (2007)] and many others [Zhou

et al. (2012); Jiang et al. (2012); Paul Kumar et al. (2013); Kemao (2015)]. The

fringe analysis methods developed based on local transform domain filters includes

techniques such as windowed Fourier transform profilometry proposed by Kemao

(2004), wavelet transform profilometry by Watkins et al. (1999) and Zhong and

Weng (2004). The phase map generated by most of these methods is noisy and



wrapped. This requires careful selection of the combination of proper noise fil-

tering [Lee et al. (1998); Palacios et al. (2004)] and phase unwrapping algorithms

[Huang and Sheu (2005); Li et al. (2008); Goldstein et al. (1988); Schofield and

Zhu (2003)]. Therefore it is desirable to have unified fringe analysis technique

that does both the operations (noise filtering and unwrapping), simultaneously

and produces continuous and accurate phase map from the fringe pattern.

In deformation analysis, phase of the reconstructed interference field provide

the deformation measurement whereas first and second order derivatives of the

phase give residual strain and curvature/twist in the object, respectively. Hence,

estimation of phase derivatives helps in applications such as fault detection [Qian

et al. (2005)], quality assurance [Steinchen et al. (1995)], strain detection in bone

sections [Alvarez et al. (2014a,b)]. Phase derivatives can be calculated from the

estimated phase map, which is estimated using arctan and unwrapping methods,

by numerical differentiation. When the interference field becomes noisy, the esti-

mated phase by such approach becomes noisy too. In the numerical differentiation

of such noisy phase results in noisy phase derivatives. Thus accurate and simulta-

neous estimation of phase and its derivatives from the fringe pattern has become

highly sought after research field in recent years.

This thesis proposes a signal tracking approach for simultaneous estimation of

phase and derivatives of arbitrary order from the interference pattern. With simu-

lation and experimental analysis of each of the algorithm, we demonstrate the real

time applicability of the proposed approach in various scenarios. These scenarios

include extremely noisy fringe pattern, rapidly varying phase and the phase map

with larger dynamic range. Section (1.1) gives a brief review of literature in the

area of fringe analysis. Section (1.2) defines objectives of the research carried out

for this thesis, and finally outline of the thesis is summarized in Section (1.4).

1.1 State-of-the-art

Fringe analysis methods available in literature can be predominantly categorised

into three groups.
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1. Phase Unwrapping Methods

2. Piecewise Polynomial Phase Approximation Approach

3. Non-parametric Approaches

1.1.1 Phase Unwrapping Methods

The phase values retrieved by fringe analysis techniques are always limited to the

principal range (−π, π] and is known as wrapped phase. Continuous phase is ob-

tained from the wrapped phase by adding or subtracting the integer multiples of

2π at each pixel value to obtain the unwrapped phase map without any induced

discontinuities. This process is known as phase unwrapping. Many phase un-

wrapping algorithms have been developed over the past decades [Goldstein et al.

(1988); Huntley (1989); Bone (1991); Lim et al. (1995); Ghiglia and Pritt (1998);

Zappa and Busca (2008)]. Most of the phase unwrapping algorithms fall into

two groups, namely, path following algorithms and least-squares based approach.

In path following algorithms the path for unwrapping is chosen such that areas

of lesser inconsistencies are processed first followed by processing of higher in-

consistencies [Huntley (1989); Flynn (1996); Asundi and Wensen (1998); Xu and

Cumming (1999); Gutmann and Weber (2000); Baldi (2003); Huang and Sheu

(2005)]. While others use least squares based approach for phase unwrapping

[Hunt (1979); Ghiglia and Romero (1996); Flynn (1997)]. The main limitation of

the phase unwrapping algorithms is that their performance is influenced by the

noise present in the fringe pattern making them unreliable in noisy fringes.

1.1.2 Piecewise Polynomial Phase Approximation Approach

The piecewise polynomial phase approximation approach was proposed by Gor-

thi and Rastogi (2009c) for direct estimation of unwrapped and continuous phase

from reconstructed interference field. In this approach, each column (or row) of

phase map is divided into segments. Each segment is then approximated using

polynomial of sufficiently higher order. The coefficients of these phase polyno-

mials are then estimated by analysing the respective segment of the interference

3



field using signal processing techniques such as Maximum Likelihood Estimation

(MLE) [Gorthi and Rastogi (2009c)], Discrete Chirp-Fourier Transform (DCFT)

[Gorthi and Rastogi (2009a)], Cubic Phase Function (CPF) [O’Shea (2002); Gor-

thi and Rastogi (2010b)], High-order Ambiguity Function (HAF) [Barbarossa and

Petrone (1997); Gorthi and Rastogi (2009b)], Polynomial phase transform [Pe-

leg and Friedlander (1995)], State Space Based Approach (SSA) [Rajshekhar and

Rastogi (2013)] and others. These methods are useful in digital holographic inter-

ferometry provided that the phase maps can be approximated with piecewise low

order polynomials. If the order of polynomial increases, number of data points

required per segment also increases. This makes piecewise polynomial approxima-

tion approach less reliable for rapidly varying phase. In addition, as the phase map

generated by these methods is discontinuous at the end points of each segment,

phase stitching becomes an essential part of the algorithm.

1.1.3 Non-parametric Approaches

The non-parametric approaches are mostly based on time-frequency distributions

of the complex fringe pattern [Katkovnik (1997)]. This approach is generally ap-

plied for phase derivative estimation [Boashash (1992a,b)]. In this approach, each

column (or row) of the complex interference field is treated as arbitrary function.

This function is then analysed using different time-frequency resolution distri-

bution functions like 1D pseudo Wigner-Ville distribution [Barkat and Boashash

(1999); Rajshekhar et al. (2009)], 2D pseudoWigner-Ville distribution [Rajshekhar

et al. (2010a)]; complex-lag distributions [Rajshekhar and Rastogi (2011)]; dis-

crete energy separation algorithms [Kulkarni and Rastogi (2014)], adaptive win-

dow spectrogram [Rajshekhar et al. (2010b)], auto term window [Liu (2013)],

least square approach [Jakob2000], transport of intensity equations [Volkov et al.

(2002)], combination of enhanced phase gradient estimator and path-following

strategy [Xie and Li (2014)] and many others [Gorthi and Rastogi (2009d); Ra-

jshekhar et al. (2011a); Rajshekhar and Rastogi (2012)]. These methods provide

accurate phase derivatives as long as the phase derivative values are confined to

principal range of (−π, π]. In addition, to get the phase map, we need to integrate

the phase gradients, which is computationally expensive.
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We have identified discrete chirp-Fourier transform, improved high-order am-

biguity function and state space approach based phase estimation algorithms as

representative candidates of the piecewise polynomial approximation category,

whereas Pseudo Wigner-Ville distribution method as representative example of

the non-parametric phase derivative estimation approach. These methods are the

best known for their accuracy and computational complexity. We discuss each of

these methods, in brief, explaining the theoretical foundation which is used for

estimation of phase and/or phase gradient.

Discrete Chirp-Fourier Transform [Gorthi and Rastogi (2009a)]

In DCFT, the phase is approximated by second order polynomial. Thus the

complex interference field represented by equation (1.1), for arbitrary column,

is rewritten as:

Γ(n) = a(n)exp(j
2∑
q=0

aqn
q) + η(n)

For piecewise polynomial approximation, row/column of the phase is divided

into overlapping or non-overlapping segments of length Ns < N , where N is the

length of a row/column. Hence, the discrete chirp-Fourier transform for a given

segment is defined as [Xia (Nov 2000)]:

G(k1, k2) =
Ns−1∑
n=0

Γ(n)exp(−j(αk1n+ βk2n
2)) (1.2)

Where,

αk1 =
2π

Ns

k1 ∀ 0 ≤ k1 ≤ Ns − 1

βk2 =
2π

N2
s

k2 ∀ −Ns + 1 ≤ k2 ≤ Ns − 1

Location of the peak in DCFT-domain, in terms of αk1 and βk2 , indicates that

the values of αk1 and βk2 match with the actual coefficients of the second order

polynomial, which is used to approximate the phase function.

The DCFT based method produces accurate and unwrapped phase from ex-

tremely noisy interference field. However, It cannot handle rapidly varying phase
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map, because the phase is being approximated by quadratic function.

Improved High-order Ambiguity Function [Gorthi and Ras-

togi (2009b)]

In IHAF, the phase is approximated by polynomials upto order M . M th order

ambiguity function for the interference field is given by:

PTM(Γ, ω, τ) =
N∑

n=(M−1)τ

PM(Γ(n), τ)e−jωn

Where,

PM(Γ(n), τ) =
M−1∏
q=o

[Γ†q(n− qτq)]

M − 1

q



M − 1

q

 =
(M − 1)!

(M − 1− q)!q!

Γ†q(x) =

Γ(x) if q is even

Γ∗(x) if q is odd

∗ denotes the complex conjugation.

Highest order coefficient of the polynomials are computed as:

aM =
1

M !τM−1
argmax

ω
|PTM(Γ, ω, τ)|

Iterative frequency estimation by interpolation on Fourier coefficients (IFEIF)

is used to optimize the above function, that tremendously improves the computa-

tional time of this method. This process of estimating the highest-order coefficient

in each iteration and peeling off the signal to reduce its polynomial phase order is

repeated until all the coefficients are estimated.
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State Space based Approach [Rajshekhar and Rastogi (2013)]

The model of the variable amplitude M th order polynomial phase signal Γ(n)

embedded in additive white Gaussian noise w(n) can be written as

Γ(n) = a(n)exp(j
M∑
q=0

aqn
q) + w(n) (1.3)

where, n is the integer representing the pixel location along row/column

Taking, F =


1 0 0 · · · 0

0 1 1
1!
· · · 1

M !
...

...
... . . . ...

0 0 0 · · · 1

, and x(n) =
[
a φ φ(1) φ(2) · · · φ(M)

]T

the state model is written as:

x(n+ 1) = Fx(n) +Gω(n) (1.4)

The observation model is written as:

z(n) = h(x(n)) + ν(n) (1.5)

where, h(x(n)) =

x(1)cos(x(2))

x(1)sin(x(2))


With known state estimate at y − Ns, the coefficients of polynomial are then

computed using relation:


a0

a1
...

aM

 =



1 n n2 · · · nM

0 1 2n · · · MnM−1

0 0 2 · · · M(M − 1)nM−2

...
...

... . . . ...

0 0 0 · · · M !



−1 
x̂(2)

x̂(3)
...

x̂(M + 2)

 (1.6)
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Pseudo Wigner-Ville distribution [Rajshekhar et al. (2009)]

Wigner-Ville distribution of the time domain signal is given by

W(n, ω) =

∫ ∞
−∞

Γ(n+
u

2
)Γ∗(n− u

2
)e−jωudu (1.7)

replacing u
2
with τ ,

W(n, ω) = 2

∫ ∞
−∞

Γ(n+ τ)Γ∗(n− τ)e−jωτdτ (1.8)

The pseudo Wigner-Ville distribution is formed by introducing a windowed

function w(τ) in the original Wigner-Ville distribution and neglecting the constant

outside the integration, we get:

PW(n, ω) =

∫ ∞
−∞

w(τ)Γ(n+ τ)Γ∗(n− τ)e−jωτdτ (1.9)

suppose the function to be analysed, Γ(n), is of the form

Γ(n) = a(n)ejφ(n) + η(n) (1.10)

Neglecting the noise term and assuming the amplitude variations to be small, we

can represent the same function as

Γ(n) = a(n)ejφ(n) (1.11)

The pseudo Wigner-Ville distribution, then, becomes-

PW(n, ω) =

∫ ∞
−∞

w(τ)a(n)ejφ(n+τ)a(n)e−jφ(n−τ)e−jωτdτ (1.12)

= a2(n)

∫ ∞
−∞

w(τ)ej[φ(n+τ)−φ(n−τ)]e−jωτdτ (1.13)

Within the window region, the phase is assumed to be slowly varying. So using

second order Taylor series expansion
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φ(n+ τ) = φ(n) + τφ′(n) +
τ 2

2
φ′′(n) (1.14)

φ(n− τ) = φ(n)− τφ′(n) +
τ 2

2
φ′′(n) (1.15)

∴

φ(n+ τ)− φ(n− τ) = 2τφ′(n) (1.16)

Equation 1.13 then becomes

PW(n, ω) = a2(n)

∫ ∞
−∞

w(τ)ej2τφ
′(n)e−jωτdτ (1.17)

Using time shifting property of the Fourier transform,

PW(n, ω) = a2(n)F{w(2τ − 2φ′(n))} (1.18)

Since the window is chosen to have a low pass behaviour, PW(x, ω) is maxi-

mum for F{w(0)}. i.e., when τ = φ′(n)

∴ φ′(n) = arg max
ω

PW(n, ω) (1.19)

The pseudo Wigner-Ville distribution based method provides only first order

phase derivative. In order to estimate the phase map, numerical integration of

the phase gradient is essential. Moreover, for estimation of the higher order phase

derivatives, we need to form reconstructed interference field using estimated first

order phase derivatives and process it again.

1.2 Thesis objectives

We follow, from above discussion, that there exist a strong need of development

of novel phase estimation approach that can handle severely noisy fringe pattern

and yet capable of estimating rapidly varying phase even when the phase is having

larger dynamic range. Additionally, Estimation of phase derivatives from a single
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record of interference field gives significant insights about deformed object in terms

of strain, curvature and twists. This serves us a motivation for our current research

work.

The main objective of this thesis is to develop simple yet effective approach

for simultaneous estimation of phase and phase derivatives from single record of

reconstructed interference field that can handle different conditions present in the

interference field like:

• Larger dynamic range of the phase map to increase the dynamic range of

out-of-plane deformation,

• Rapidly varying phase map to meet the real time scenarios,

• Extreme noise in the interference field,

• Simultaneous estimation of phase and phase derivatives from interference

fringe patterns without additional computational load.

In other objectives, our research work is intended to aid as an efficient tool for

fringe analysis with following advantages.

• Deformation measurement at rough and diffusely reflecting surface, which

occurs frequently in engineering, in real-time environment without worrying

about noisy interference field.

• out-off plane measurement range with extended range from hundredth of

wavelength to several hundreds of wavelengths, e.g., displacement from about

0.001µm to 500µm

• Analysis of strain/stress, curvature, twists in the deformed objects via si-

multaneous estimation of phase and its derivatives.

• With proper fringe normalization algorithm, possible extension of the signal

tracking approach for fringe projection profilometry for accurate calculation

of 3D shape of the object.
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1.3 Contributions

Following are the contributions of our research work which makes the major part

of the thesis.

• We proposed a signal tracking based phase estimation from reconstructed

interference field in digital holographic interferometry. We developed Ex-

tended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) based

algorithms to estimate accurate, continuous and unwrapped phase maps

even from noisy interference field.

• We developed a novel weight calculation approach for particle filter through

which we extended the performance of signal tracking approach which en-

ables better performance even when the phase is rapidly varying and having

larger dynamic range.

• We proposed a wrapped dynamical system based approach for extending the

performance of signal tracking approach when the interference field is noisy

as well as the phase is rapidly varying.

• We compared and proved that the signal tracking approach provides accurate

estimates of phase derivatives, without additional computing requirement,

when compared with state-of-the-art phase derivative estimation approaches.

• We demonstrated the possibility and potential of signal tracking approach for

multicomponent phase estimation to provide an efficient tool in holographic

moiré.

• We demonstrated through experimental analysis of thermal expansion and

fringe projection profilometry that the developed signal tracking approach

is reliable for real time scenarios.

1.4 Outline of the Thesis

The outline of the thesis is as follows:
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Chapter 2 introduces basic mathematical preliminaries such that the reader can

get acquainted with the methods proposed in the thesis. This chpater summarizes

the numerical processing of digital holograms for the generation of reconstruction

interference field. We then briefly overview the generic Kalman filter and particle

filter framework followed by discussion.

Chapter 3 presents a signal tracking based phase estimation from reconstructed

interference field in digital holographic interferometry. We developed Extended

Kalman Filter (EKF) and Unscented Kalman Filter (UKF) based algorithms to

estimate accurate, continuous and unwrapped phase maps even from noisy inter-

ference field.

Chapter 4 presents a novel weight calculation approach for particle filter through

which we extended the performance of signal tracking approach which enables bet-

ter performance even when the phase is rapidly varying and having larger dynamic

range.

Chapter 5 proposes a wrapped dynamical system based approach for extending

the performance of signal tracking approach when the interference field is noisy as

well as the phase is rapidly varying.

Chapter 6 shows the possibility and potential of signal tracking approach for

accurate and simultaneous estimation of phase derivatives, when compared with

state-of-the-art phase derivative estimation approaches. We also discuss the mul-

ticomponent phase estimation to provide an efficient tool in holographic moiré and

fringe projection profilometry.

Chapter 7 summarizes the contributions of the thesis, followed by future scope

of our research work.

12



CHAPTER 2

Mathematical Preliminaries

In this chapter, we will discuss the background mathematical pre-requisites and

generic framework of the signal tracking algorithms. First the brief overview of the

numerical reconstruction of the digital hologram and formation of reconstructed

interference field is explained, followed by the discussion on Kalman filter and

particle filter framework in the subsequent sections. Numerical processing of the

digital hologram provides a brief idea about the setup used for digital holographic

interferometry experiment. In addition to this, brief review of generation of recon-

structed interference field from the extracted complex optical field of the object

wave is presented. This thesis deals with the signal tracking approach, where we

define the state space model for estimation of unobserved variable (unwrapped

phase) from the observed data (complex interference field). Two major state es-

timation algorithms, Kalman and particle filters, are available in literature that

provides hidden state estimation. Brief overview of them with their generic frame-

work is discussed in the consequent sections.

2.1 Numerical Processing of Digital Holograms

In this section, we provide a brief review of the process of hologram acquisition

and its numerical processing. Digital Holography is a technique where the inter-

ference pattern of the reference wave with object wave (light scattered from diffuse

object) is recorded by CCD sensors and then numerically processed so that the 3D

information can be extracted from the object wave [Sun (2009); Fan et al. (2009)].

The experimental setup used for recording the digital holographic interferograms

is shown in Figure 2.1. A Laser (HNL150L-HeNE laser, 632.8nm, 15mW, Thorlab

US) has been used as the light source. The beam is split into two equal halves

(BE1-object beam, BE2- reference beam) with the help of a non-polarizing beam

splitter cube (BS010 Thorlab). Digital holograms are recorded with a monochrome

CCD camera (DMK72BUC02 imaging source).



Figure 2.1: Experimental setup used for digital holographic interferometry

to record the hologram on the optical bench

The test specimen was made out of aluminum (0.5 mm thickness) and held on

the optical table by clamping the plate on all four sides with a custom-designed

mount. A threaded bore (M4 screw thread) was created at the center on the

backside of the mount, such that driving an M4-screw through this bore would

induce a deformation in the object (plate). Broadband dielectric mirrors (M1,

M2, M3) (BB1-E02 Thorlab) mounted onto adjustable precision kinematic mirror

mounts (KS1 Thorlab) were used to adjust the direction of beams. The two

beams reflected off the mirrors (M2, M3) were expanded using two concave lenses

(f-80mm). The beam of light scattered by the object interferes with the reference

beam in a 3D volume of space. The intensity record of the cross section of this

3D volume recorded using CCD sensor is termed as digital hologram.

let R be the reference wave, O be the object wave, then the intensity distribu-

tion due to interference of these two waves is given by

I = (R +O) · (R +O)∗

= R ·R∗ +R ·O∗ +O ·R∗ +O ·O∗

= |R|2 + |O|2 +R ·O∗ +O ·R∗ (2.1)
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where, ∗ denotes complex conjugate. Here, the indices (m,n), which represent the

location of the pixel along rows and columns, respectively, are removed for the

sake of brevity. The amplitude recorded by CCD sensors, h(m,n) can be written

in terms of intensity distribution I(m,n) as:

h(m,n) = βτI(m,n) (2.2)

where, β is constant, τ is the exposure time and the function h(m,n) is called as

hologram function.

For hologram reconstruction, recorded amplitude have to be multiplied with

reference (reconstruction) wave:

R · h = [βτI(m,n)] ·R

= [βτ(|R|2 + |O|2 +R ·O∗ +O ·R∗)] ·R

= βτ(|R|2 + |O|2) ·R︸ ︷︷ ︸+ βτ |R|2 ·O︸ ︷︷ ︸+ βτR2 ·O∗︸ ︷︷ ︸ (2.3)

In equation (2.3), the first term on the right side of this equation is the reference

wave, multiplied by a factor. It represents the un-diffracted wave passing through

the hologram, the second term is the reconstructed object wave, forming the virtual

image. The factor βτ |R|2 only influences the brightness of the image, while the

third term produces a distorted real image of the object. These terms are separated

in frequency domain, and can be separated by taking Fourier transform.

The virtual image is used for the further analysis of the object like deformation

analysis, vibration analysis etc., using digital holographic interferometry. In Digi-

tal Holographic Interferometry, usually, two holograms are recorded corresponding

to the object state before and after the deformation. Numerical reconstruction of

these holograms provides their respective reconstructed object wave-fields. Mul-

tiplication of one reconstructed object wave-field with that of complex conjugate

of the other, generates the reconstructed interference field. The phase of this re-

constructed interference field carries the information of the full-field deformation

undergone by the object. Step by step procedure is depicted in figure 2.2.

Let, the complex amplitude of object wave obtained using numerical recon-

15



Figure 2.2: Flowchart of digital holographic interferometry. (a) and (b)

represent the holograms recorded before and after the deforma-

tion. (c) and (d) represent corresponding reconstructed com-

plex object waves. (e) represents the amplitude and phase of

reconstructed interference field, while (f) shows the wrapped

(top) and unwrapped phase map (Bottom) corresponding to

analysis region.

struction is given by

O1(m,n) = o(m,n)eiϕ(m,n) (2.4)

where o(m,n) is amplitude and ϕ(m,n) is the phase of object wave. Optical path

changes due to deformations on object surface can be described by variations in

phase from ϕ(m,n) to ϕ(m,n) + φ(m,n). φ(m,n) is called as interference phase.

the complex amplitude of object wave after deformation is given by:

O2(m,n) = o(m,n)ei[ϕ(m,n)+φ(m,n)] (2.5)

The reconstructed interference field can then be obtained by multiplying two

object waves from equations (2.4) & (2.5) as:

Γ(m,n) = O2 ·O∗1 = o2(m,n)eiφ(m,n)

Let, a(m,n) = o2(m,n) represent the real valued amplitude of the recon-

structed interference field, Then the complex interference field is given by the
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equation

Γ(m,n) = a(m,n)eiφ(m,n) (2.6)

The relation between the measured interference phase and the displacement

of the object surface under investigation in z direction is given by the following

equation

dz =
λ

4π
φ (2.7)

where, λ is the wavelength of the laser source.

2.2 Kalman Filter Framework

R. E. Kalman’s paper [Kalman (1960)] describing a recursive solution of the

discrete-data linear filtering problem was published in 1960. With the Advances

in computing power and digital technology, implementation of such solution be-

come more simple and convenient. Here, we will consider a basic mathematical

derivation of various Kalman equations used in the filter implementation problem.

We start with the assumption that any random process, which follows auto-

regressive model, can be modelled as:

xn+1 = Fnxn + wn (2.8)

and the output of the process can occur as:

zn = Hnxn + vn (2.9)

The notations used in above equations are enumerated below

1. xn = (N × 1) vector as collection of state variables at time n

2. Fn = (N ×N) matrix relating xn and xn+1 in absence of forcing function

3. wn = (N × 1) vector of process noise, assumed to be white Gaussian with

known co-variance

4. zn = (M × 1) measurement or output vector at time n
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5. Hn = (M ×N) matrix relating the measurement to the state vector at time

n in noiseless condition.

6. vn = (M×1) vector corresponding to the measurement error, assumed to be

white gaussian noise with known covariance and having zero cross correlation

with the wn sequence.

The covariance matrices for the wn and vn vectors are given by

E[wkw
T
i ] =

Qn i = k

0 i 6= k
(2.10)

E[vkv
T
i ] =

Rn i = k

0 i 6= k
(2.11)

E[wkv
T
i ] = 0, ∀ k and i (2.12)

Now let’s assume that we have the initial estimate of the process at some point

in time n. We call this estimate as A priori estimate and denote by x̂−n . Also

let’s assume that we know the error covariance matrix associated with x̂−n . So,

let’s define the estimation error as:

e−n = xn − x̂−n (2.13)

and the associated error covariance matrix is:

P−n = E[e−n e−Tn ] = E[(xn − x̂−n )(xn − x̂−n )T ] (2.14)

where, E[·] is the expectation operator. With this assumption of xn − x̂−n , we

now try to utilize the measurement zn to improve the prior estimate in accordance

with the equation

x̂n = x̂−n + Kn(zn −Hnx̂
−
n ) (2.15)

where, x̂n = updated estimate, and Kn = Blending factor or Kalman Gain.
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To determine the particular blending factor Kn that yields an updated esti-

mate that is optimal in some sense. We use minimization of error covariance for

the estimation. Hence the error covariance matrix associated with the updated

estimate can be written as

Pn = E[ene
T
n ] = E[(xn − x̂n)(xn − x̂n)T ] (2.16)

Solving the above expectation value for Pn using matrix manipulation methods,

we get

Pn = E[ene
T
n ]

= E[(xn − x̂n)(· · · )T ]

= E[(xn − {x̂−n + Kn(zn −Hnx̂
−
n )})(· · · )T ]

= E[(xn − x̂−n −Kn(zn −Hnx̂
−
n ))(· · · )T ]

= E[(xn − x̂−n −Kn(Hnxn + vn −Hnx̂
−
n ))(· · · )T ]

= E[((xn − x̂−n )−KnHnxn −Knvn + KnHnx̂
−
n )(· · · )T ]

= E[(e−n −KnHnxn −Knvn + KnHnx̂
−
n )(· · · )T ]

= E[(e−n − (KnHnxn −KnHnx̂
−
n )−Knvn)(· · · )T ]

= E[(e−n −KnHn(xn − x̂−n )−Knvn)(· · · )T ]

= E[(e−n −KnHne
−
n −Knvn)(· · · )T ]

= E[((I −KnHn)e−n −Knvn)(· · · )T ]

= E[{((I −KnHn)e−n )− (Knvn)}{((I −KnHn)e−n )T − (Knvn)T}](2.17)

Here, (· · · ) is used to denote that the content of the parenthesis is same as that

of adjacent one. Let’s consider the error e−n and the measurement noise vn are

uncorrelated, hence E(e−nvn) = 0. hence we can write:

Pn = E[((I −KnHn)e−n )((I −KnHn)e−n )T ] + E[(Knvn)(Knvn)T ]

= (I −KnHn)P−n (I −KnHn)T + KnRnK
T
n (2.18)
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Optimization of Blending Factor

The above equation is a perfectly geveral expression for the updated error covari-

ance matrix, and it applies for any gain Kn.

But we wish to find out the particular Kn that minimizes the individual terms

along the major diagonal of Pn, because these terms represents the estimation

error variance for the element of the state vector being estimated. Let’s do the

optimization using differential calculus approach.

To do so, let’s rewrite the above equation in proper format, then

Pn = (I −KnHn)P−n (I −KnHn)T + KnRnK
T
n

= P−n −P−nHT
nKT

n −KnHnP
−
n + Kn(HnP

−
nHT

n + Rn)KT
n (2.19)

Now, differentiate tr(Pn) w.r.t. Kn and equating it with 0, we get

dtr(Pn)

dKn

= 0− 2(HnP
−
n )T + 2Kn(HnP

−
nHT

n + Rn) = 0

2Kn(HnP
−
nHT

n + Rn) = 2(HnP
−
n )T

Kn = (HnP
−
n )T (HnP

−
nHT

n + Rn)−1 (2.20)

This particular Kn minimizes the mean-square estimation error, is called the

Kalman Gain.

Using this, we can compute the optimized error covariance matrix as:

Pn = (I −KnHn)P−n (I −KnHn)T + KnRnK
T
n

= P−n −KnHnP
−
n −P−nHT

nKT
n + Kn(HnP

−
nHT

n + Rn)KT
n (2.21)

Rearranging eqn 2.20, we get:

(HnP
−
nHT

n + Rn) = K−1n (HnP
−
n )T = K−1n P−Tn HT

n (2.22)
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Substituting the value of optimum gain from eqn 2.22 into above equation to get:

Pn = P−n −KnHnP
−
n −P−nHT

nKT
n + KnK

−1
n P−nHT

nKT
n

= P−n −KnHnP
−
n −P−nHT

nKT
n + P−nHT

nKT
n

= P−n −KnHnP
−
n

= (I −KnHn)P−n (2.23)

To complete the system, yet we need to calculate x̂−n+1 and P−n+1. the updated

estimated x̂n is easily projected ahead via the transition matrix. Thus we have

x̂−n+1 = Fnx̂n (2.24)

and the error covariance matrix associated with x̂−k+1 is obtained by hfirst forming

the expression of the a priori error

e−n+1 = xn+1 − x̂−n+1

= (Fnxn + wn)− Fnx̂n

= Fnen + wn (2.25)

Now note that, wn and en are non-correlated, hence we can write the error co-

variance matrix as

P−n+1 = E[e−n+1e
−T
n+1]

= E[(Fnen + wn)(Fnen + wn)T ]

= FnPnF
T
n + Qn (2.26)

Finally, all the Kalman filter equations are summarized below:

1. State prediction

x̂−n+1 = Fnx̂n

2. Predicted state error covariance

P−n+1 = FnPnF
T
n + Qn
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3. State updates

x̂n = x̂−n + Kn(zn −Hnx̂
−
n )

4. Kalman gain

Kn = (HnP
−
n )T (HnP

−
nHT

n + Rn)−1

5. Updated state error covariance

Pn = (I −KnHn)P−n

2.3 Particle Filter Framework

Particle filter employs the sequential Bayesian estimator by Monte Carlo simu-

lation. It offers an alternative to Kalman filter and its variants for non-linear

transition functions. This section provides overview of the generic sampling im-

portance re-sampling (SIR) particle filter for state estimation from given state

space model.

There are many particle filter methods, and almost all of them follows the

three basic operations: 1) Particle propagation, 2) Weights calculations, and 3)

Re-sampling. Particle propagation and weights calculation helps in the genera-

tion of particle sets and assignment of the weights to them, whereas re-sampling

replaces one set of particle and weights with the another set. The main objective

of the particle filter is the representation of posterior density function by set of

particles and associated weights and estimation of state using these particles and

weights. As the number of samples becomes very large, this Monte Carlo charac-

terization becomes an equivalent representation to the usual functional description

of the posterior pdf, and the Particle filter approaches the optimal Bayesian esti-

mate. In this section, we briefly review the particle filter algorithm presented by

Arulampalam et al. (2002).

In order to formally introduce the particle filter, we need to start with the

non-linear state space model. Let’s denote the state space model by:
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xn = f(xn−1) + ωn−1 (2.27)

zn = h(xn) + νn (2.28)

where, n is the spatial index (e.g., pixel location in an arbitrary row/column.

for the sake of brevity, we use it as suffix), xn is the state vector hidden from the

observer, zn is the measurement vector observed by the sensors, ωn−1 and νn−1

are the process noise and measurement noise, respectively, and f(·), h(·) are the

non-linear state and measurement transition functions. We can represent the state

space model by the probability distributions of the state, P [xn|xn−1] and of the

measurements, P [zn|xn]. These probability distributions can be acquired using

equation (2.27), (2.28), and the probability distribution of the process and mea-

surement noises, ωn−1 and νn−1. We note here that the probability distributions

of the noise are not necessarily Gaussian.

Considering Markovian property and by Bayes rule, the pdf P (xn|z1:n) can be

obtained recursively from the pdf P (xn−1|z1:n−1) calculated from (n − 1)th pixel.

It is assumed that initial pdf P (x0|z0) = P (x0) is known. Next, at the current

pixel n, samples are updated according to the current observation zn.

The complete estimation problem can be divided in to two stages: prediction

and update. The other important step in PF approach is resampling step. The

prediction stage is accomplished by the propagating each particle through the state

transition model P (xn|xn−1) and generate a new set of samples. These samples

obtained represent the prediction of state variable xn without consideration of

observation at pixel n.

To consider the effect of the current observation zn, the update stage is per-

formed. The weights associated with each sample, ωin, i = 1, ..., Ns are obtained

from the observation model P (zn|xn). Let, {xin}, i = 1, · · · , Ns denote the Ns par-

ticles with their associated weights denoted by {ωin}, i = 1, · · · , Ns. The weights

are normalized such that
∑

iω
i
n = 1. The posterior density at n, then, can be
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approximately represented as:

P (x0:n|z1:n) =
Ns∑
i=1

ωinδ(x0:n − xi0:n) (2.29)

where δ(.) represents the dirac delta function, and (·)0:n denotes the prediction/observations

corresponding to pixel values from 0 through n.

Let xi, i = 1, ...., Ns be samples generated from a function Q(.) called as im-

portance density. The weights are chosen according to importance resampling

principle. Suppose that P (x) is a probability density function from which samples

can be drawn easily, then the weighted approximation to the density P (.) is given

by

P (x) ≈
Ns∑
i=1

ωiδ(x− xi) (2.30)

where

ωi ∝ P (xi)

Q(xi)
(2.31)

is the normalized weight of ith particle drawn from Q(.).

If the samples xi0:n are drawn from importance densityQ(x0:n|z1:n), then weights

are defined as

ωin ∝
P (xi0:n|z1:n)

Q(xi0:n|z1:n)
(2.32)

As shown by Arulampalam et al. (2002), importance density is chosen to fac-

torize such that

Q(x0:n|z1:n) = Q(xn|x0:n−1, z1:n)Q(x0:n−1|z1:n−1) (2.33)

then samples xi0:n ∼ Q(x0:n|z1:n) are obtained by augmenting each of the existing

samples xi0:n−1 ∼ Q(x0:n−1|z1:n−1) with the new state xin ∼ Q(xn|x0:n−1, z1:n) .

After a few simplifications, numerator of Eq.2.32 can be written as

P (x0:n|z1:n) ∝ P (zn|xn)P (xn|xn−1)P (x0:n−1|z1:n−1) (2.34)

Thus by substituting Eqs.2.33 and 2.34 into weight update equation Eq.2.32,

we obtain the weight update equation as
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ωin ∝
P (zn|xin)P (xin|xin−1)P (xi0:n−1|z1:n−1)

Q(xin|xi0:n−1, z1:n)Q(xi0:n−1|z1:n−1)

= ωin−1
P (zn|xin)P (xin|xin−1)
Q(xin|xi0:n−1, z1:n)

(2.35)

Furthermore, by considering Markovian property, Q(xn|x0:n−1, z1:n) = Q(xn|xn−1, zn)

the importance density becomes only dependent on xn−1 and zn and weights are

then given by

ωin ∝ ωin−1
P (zn|xin)P (xin|xin−1)
Q(xin|xin−1, zn)

(2.36)

The posterior filtered density P (xn|z1:n) is then given by

P (xn|z1:n) ≈
Ns∑
i=1

,ωinδ(xn − xin) (2.37)

where weights are found according to Eq.2.36. If Ns → ∞, the approximation in

Eq.2.37 approaches the true pdf.

Sequential Importance Resampling (SIR) particle filter is a variant of generic

particle filter in which proposal density is chosen to be same as state transition

density as

Q(xn|xin−1, zn) = P (xn|xn−1) (2.38)

then the weight equation simplifies to

ωin ∝ ωin−1P (zn|xin) (2.39)

Common problem encountered with particle filter approach is the degeneracy

of samples, where after a few iterations, all but one particle has negligible weight.

This implies that a considerable amount of computational work still needs to be

performed to update the particles whose contribution to the approximation of pos-

terior pdf P (xn|z1:n) is zero/negligible. Thus, for this reason, degeneracy should

be avoided. Degeneracy problem can be avoided in many ways like by consider-

ing a good choice of importance density, choosing larger number of samples Ns.
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However, choosing a large number of samples results in an inefficient solution. Re-

sampling the particles is one of the most widely used solution to avoid degeneracy.

There are many resampling strategies present in the literature such as Multinomial

Resampling, Systematic Resampling, Residual Resampling and Stratified Resam-

pling [Douc and Cappé (2005)]. The basic idea of resampling step is to eliminate

the particles which have smaller weights and concentrate on the particles which

have significantly larger weights. After resampling, all the particles have equal

weights ωin = 1/Ns.

In systematic resampling, the normalised weights ωin are incrementally added

to form a cumulative sum of ωiC =
∑i

j=1ω
j. A “comb" of Ns points spaced

at regular intervals of 1/Ns is defined and the complete comb is translated by

an offset chosen randomly from a uniform distribution over [0, 1/Ns]. The comb

is then compared with cumulative sum of weights ωiC . We select/resample a

particle more than once/delete the sample based on how many times comb values

fall within CDF of that particular sample. In this way resampling is carried for

Ns samples. The resampled weights of each particle is 1/Ns which is used in

calculation of posterior for next iteration.

2.4 Discussions

In summary, Kalman filter and its variants requires the assumptions that the

process and measurement noise are generated from Gaussian distribution. In

addition to this Kalman filter works optimal with linear state space model and

their performance gets affected by the non-linearity in the state space model. In

case of particle filters, their strength lies in the fact that there is no restriction

of state space model as well as on process and measurement noise. Throughout

our work, we have provided additional guidelines, whenever required, for further

understanding of the presented research work.
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CHAPTER 3

Kalman Filter based Phase Estimation

In this chapter, we propose a novel technique, namely, signal tracking approach for

simultaneous estimation of phase and its derivatives. This approach provides more

accurate, unwrapped, and continuous phase directly even if the phase is rapidly

varying, has a larger dynamic range, or the fringe pattern is corrupted by severe

noise. In this approach, each column (or row) of the 2D phase map is considered as

one dimensional arbitrary function. This function is approximated by using Taylor

series expansion. We derive the state model using this approximation, whereas

the measurement model is based on polar to Cartesian conversion of amplitude

and phase components of state vector to real and imaginary components of the

complex measurements of the reconstructed interference field.

Given a state space model for the system, estimation of the state depends

solemnly on the tracking algorithm used to process the system. The choice of

tracking/state estimation algorithm can be influenced by many parameters such

as computational complexity, ease of implementation, efficiency towards the noise

handling, etc. Our first choice of tracking algorithm was extended Kalman fil-

ter (EKF) owing to ease of implementation. It is observed that the EKF algo-

rithm works effectively, even outperforms the state-of-the-art phase estimation

algorithms, when the interference field is not corrupted by noise. It is capable

of handling rapidly varying phase with larger dynamic range. Since EKF uses

linearisation to linearise the non-linear measurement model, its performance gets

affected when the measurements become noisy.

To overcome this issue, we used UKF as estimation algorithm that uses a de-

terministic sampling technique called as Unscented Transform. This transform

picks a minimal set of sample points (called sigma points) around the mean such

that these points capture mean and covariance of a prior random variable exactly,

while approximating the mean and covariance of the transformed random variable

up to the third order in Taylor series [Julier and Uhlmann (2004)]. We demon-

strate, using simulation and experimental analysis, that the EKF and UKF make



suitable candidates for signal tracking algorithm to process the derived state space

model.

3.1 State Space Model

The reconstructed interference field of digital holographic interferometry given by

equation (2.6) with variable amplitude embedded in noise is:

Γ(m,n) = a(m,n)eiφ(m,n) + η(m,n) (3.1)

for any arbitrary row, we can express it as

f(n) = a(n)ejφ(n) + η(n) (3.2)

where a(n) is the amplitude and φ(n) is the interference phase and η(n) is the

zero mean complex Additive White Gaussian Noise (AWGN) corresponding to nth

pixel location of any arbitrary column of the M×N complex field.

In proposed method, phase is assumed to be continuous and differentiable

function. Hence, we use the Taylor series expansion for the phase function φ(n)

in equation 3.2 as:

φ(n+ 1) = φ(n) +
1

1!
φ(1)(n) +

1

2!
φ(2)(n) + · · ·+ 1

M !
φ(M)(n) + w(n) (3.3)

Here, we choose first M terms of the Taylor series for state modelling, while

considering the higher order terms as un-modelled process noise. The amplitude

is modelled as random walk such that we can express,

a(n+ 1) = a(n) + wa(n) (3.4)

Now, equations (3.3) & (3.4) can be written in following form as:

x(n+ 1) = Fx(n) + w(n) (3.5)
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where, the state vector x(n), state transition matrix F representing the relation

between the present and the next state of the field, and the process noise vector

w(n) are given as.

x(n) =
[
a(n) φ(n) φ(1)(n) · · · φ(M)(n)

]T
(3.6)

F =



1 0 0 0 · · · 0

0 1 1
1!

1
2!
· · · 1

M !

0 0 1 1
1!
· · · 1

(M−1)!
...

...
...

... . . . ...

0 0 0 0 · · · 1


w(n) =

[
wa(n) w0(n) w1(n) · · · wM(n)

]T

here, wa(n) & wi(n), i = 0, · · · ,M represents noise in amplitude and the higher

order terms of the Taylor series and assumed to be additive white Gaussian noise

(AWGN).

From equation (3.2), we can generate the measurement signal with the relation

<[f(n)] = a(n)cos(φ(n)) (3.7)

=[f(n)] = a(n)sin(φ(n)) (3.8)

Hence, from above equations, the non-linear function h(·) used for prediction of

observation from state vector x can be written as:

h(x) =

a(n)cos(φ(n))

a(n)sin(φ(n))

 =

x1cos(x2)
x1sin(x2)

 (3.9)

where a(n) and φ(n) are the elements of the state vector x. As the measurement

signal is a complex field, the noise is also considered to be in the complex form.

We assumed the measurement (observation) noise to be complex additive white

Gaussian noise with zero mean and variance of σ2
ν . the noise ν(n) has the following

form

ν(n) =

<[η(n)]

=[η(n)]

 (3.10)
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Hence observation model can be written as

z(n) = h(x(n)) + ν(n) (3.11)

3.2 Extended Kalman Filter

We consider EKF as our first choice of tracking algorithm, because EKF is known

for handling moderate non-linearity in the state space model through linearisation

of the state space model, nevertheless it’s well-known for its ease of implementa-

tion. In addition to this, the computational complexity if the EKF is almost equal

to that of the basic Kalman filter. The non-linear measurement function is lin-

earised using Jacobian of the measurement function h(·). The complete algorithm

of the estimation process using EKF is summarised as follows:

Let, x =
[
a(n) φ(n) φ(1)(n) · · · φ(M)(n)

]T
be a state vector describing the

phase map, Q be the process noise covariance matrix, and R be the measurement

noise covariance.

Initialize with:

x̂0 = E{x0}

P0 = E{(x0 − x̂0)(x0 − x̂0)
T}

here, E{·} is an expectation operator.

Now, ∀ k ∈ {1, 2, · · · , N}, where, N is the number of pixels in a column.

Process Update Equations:

x̂−k = Fx̂k−1

P−k = FPk−1F
T + Q

Here, x̂−k and P−k are the predicted state vector and the predicted state error

covariance matrix at kth pixel, respectively.
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Jacobian Matrix:

The non-linear observation function is linearised using Jacobian of the func-

tion h(·), which is partial differentiation of the function with respect to all the

independent variables (state vectors, in this case). The Jacobian of the function

h(·) is given by:

Hk =
∂h

∂x

∣∣∣∣
x=x̂−k

=

cos(x2) −x1sin(x2) 0 · · · 0

sin(x2) x1cos(x2) 0 · · · 0



where, xi is the ith element of the state vector x̂−k

Measurement Update Equations:

Kk = P−k Hk
T(P−k HkP

−T
k + R)−1

x̂k = x̂−k + Kk(yk − h(x̂−k ))

Pk = P−k −KHkP
−
k

Here, Kk is the Kalman gain, x̂k is the updated state vector, and Pk is the updates

state error covariance matrix.

Since the second element of state vector x̂k is a phase function itself, We

get the unwrapped phase explicitly from the state vector. Also the state vector

includes first and second derivatives of the phase, we get the direct access to phase

derivatives without additional efforts like numerical differentiation. It indeed is a

great advantage offered by this approach in non-destructive testing and evaluation

applications where calculation of displacement (phase) as well as strain/curvature

(its derivatives) are important.

3.2.1 Simulation Results

A complex interference field of size 512×512 was simulated in MATLAB. The

zero-mean AWGN was then added at Signal-to-Noise-Ratio (SNR) of 20 dB using

awgn function. For EKF, we took the process noise covariance matrix to be Q =
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diag[10−1, 10−1, 10−3, 10−5], measurement noise covariance matrix to be R = kR×

diag(
[
σ2
re σ2

im

]
) where, σ2

re and σ2
im are the variances estimated form uniform

region of the fringe pattern and kR is a scaling factor generally can be taken as 2.

We have compared the performance of proposed method with the state-of-

the-art methods available in literature such as Discrete Chirp-Fourier Transform

(DCFT) [Gorthi and Rastogi (2009a)], Improved High-order Ambiguity Function

(IHAF) [Gorthi and Rastogi (2009b)], and State Space Approach (SSA) [Ra-

jshekhar and Rastogi (2013)]. The EKF that reported in SSA based method per-

forms parameter estimation whereas our EKF based method performs signal/state

estimation. Since the state estimation involves only the ‘forward problem’ and pa-

rameter estimation requires the solution of an ‘inverse problem’ as well, proposed

EKF based method provides better estimates of the phase than that of SSA based

method. For the sake of distinction we are addressing the existing EKF based

method as SSA based method. For IHAF and SSA based methods, order of the

polynomial was taken as 4 while each column was divided into 8 segments (M = 4,

Nw = 8, Nw is the number of segments). For DCFT based method, each column

was divided into 8 segments (M = 2, Nw = 8).

(a) True phase map (b) Fringe pattern (c) Estimated phase map

(d) True phase map (e) Fringe pattern (f) Estimated phase map

Figure 3.1: 3D mesh plot of true phase maps and corresponding fringe

patterns at SNR of 20dB. (a) & (d) show the true phase map

with (b) & (e) showing their corresponding fringe patterns. (c)

& (f) show the estimated phase map using proposed method
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Figure 3.2: Estimated Phase Comparison along 86th column of a phase

map shown in figure 3.1(a) and middle column of a phase

map shown in figure 3.1(d) showing performance of proposed

method with different methods

In order to quantify the performance variations among different methods in

dealing with rapidly varying signals and signals having higher dynamic range, we

generated a phase maps as shown in figure 3.1(a), and 3.1(d) respectively. The

corresponding fringe patterns at 20 dB are shown in the figure 3.1(b) and 3.1(e).

The phase map shown in 3.1(a) exhibit rapid changes in phase around the vertex

points of triangles in the phase map. As the phase becomes rapidly varying,

parameter estimation based methods under-perform producing distortion in the

estimated phase, even at higher SNR values, which is evident from the figure

3.2(a). The phase map shown in 3.1(d) depicts the larger dynamic range of phase.

As the dynamic range of phase increases, small error in estimation of coefficients

of polynomials (parameters) leads to large change in estimated phase. This makes

polynomial approximation approach less reliable for estimation of phase signals

having larger dynamic range. The comparative performance of different methods

for middle column of the phase map is shown in figure 3.2(b). From figure 3.2,

it is observed that the parameter estimation based methods fail to estimate the

parameters accurately if the phase values change rapidly.

For the purpose of comparison, we have shown the 3D mesh plot of the error

in estimated phase at SNR of 20dB by different methods compared with proposed

method. In figure 3.3, first row shows the error at every pixel in estimation of

rapidly phase map, whereas second row shows phase map with larger dynamic
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(a) IHAF based Method (b) DCFT based Method

(c) SSA based Method (d) Proposed EKF Method

(e) IHAF based Method (f) DCFT based Method

(g) SSA based Method (h) Proposed EKF Method

Figure 3.3: Phase estimation error at each pixel for the phase map show-

ing relatively poor performance of polynomial approximation

based methods for rapidly varying phase map (first two rows)

and larger dynamic range of phase map (last 2 rows).
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range. We note here that if the phase is rapidly varying the parametric methods

proposed in literature fail to estimate the phase accurately, whereas EKF provides

comparatively better estimates.

3.2.2 Experimental Results

To validate the practical applicability of the proposed method, a DHI experiment

was conducted by subjecting a circularly clamped object to load, and two holo-

grams before and after deformation using a Coherent Verdi laser(532nm) were

recorded. A SONY XCL-U1000 CCD camera was used for recording the holo-

grams. The complex amplitudes of the object wave before and after deformation

were obtained by numerical reconstruction, performed using discrete Fresnel trans-

form. The reconstructed interference field is then obtained by multiplying those

two complex fields of object waves.

The real part of reconstructed interference field, which makes the fringe pat-

tern, shown in figure 3.4(a). The estimated phase patterns using SSA based

method and EKF based method are shown in figures 3.4(b) & 3.4(c), respectively.

Although the phase estimated by both methods is continuous and unwrapped,

fringes were generated and displayed for qualitative comparison. Figure 3.4(d)

shows the 3D mesh plot of the phase estimated by proposed approach. Median

filter of mask size 3× 3 was applied on the SSA [Rajshekhar and Rastogi (2013)]

and EKF based estimates of phase as a post processing step to eliminate few spu-

rious estimates. Phase map estimated by SSA based methods shows distortion

which corresponds to the divergence of EKF owing to inadequate process model.

Divergence of EKF is avoided by the introduction of process noise covariance in

the proposed state space model which is evident from figure 3.4(c). This analysis

shows that the EKF can be successfully applied for phase estimation using signal

tracking approach even for rapidly varying phase maps. However, its performance

degrades considerably in presence of noise, owing to severe non-linearity of the

measurement model. Hence, we require better approximation of the measurement

model, and robust tracking algorithm for handling noisy fringes.
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3.3 Unscented Kalman Filter

It is observed that the EKF algorithm works effectively, even outperforms the

state-of-the-art phase estimation algorithms. But since EKF uses Jacobian to

linearise the non-linear measurement model, it can handle moderate non-linearity.

Its performance gets affected when the measurements function becomes highly

non-linear (polar to Cartesian conversion), and when the measurements become

noisy. To overcome this issue, we approximate the non-linear measurement model

by using a deterministic sampling technique called Unscented Transform (UT)

proposed by Julier and Uhlmann (2004).

(a) Noisy fringe pattern (b) SSA based method

(c) Proposed Method (d) Est Phase by EKF

Figure 3.4: Qualitative comparison of phase estimation by SSA based

method and proposed method. Distortion seen in the phase

estimated by SSA based method corresponds to the divergence

of EKF
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3.3.1 Unscented Transformation

The UKF uses a deterministic sampling technique, Unscented Transform (UT) to

pick a minimal set of sample points (called sigma points) around the mean such

that these points capture mean and covariance of a prior random variable exactly,

while approximating the mean and covariance of the transformed random variable

up to the third order in Taylor series Julier and Uhlmann (2004). Consider,

propagation of a random variable x (of dimension L), a state vector in our case,

having mean x̄ and covariance Px, through a non-linear function z = h(x). To

calculate the first two moments of z, we form a matrix of sigma points as follows:

χ0 = x̄ (3.12)

χi = x̄ + (
√

(L+ λ)Px)i,∀i = 1, . . . , L (3.13)

χi = x̄− (
√

(L+ λ)Px)i,∀i = L+ 1, . . . , 2L

w
(µ)
0 =

λ

(L+ λ)
(3.14)

w
(c)
0 =

λ

(L+ λ)
+ (1− α2 + β) (3.15)

w
(µ)
i = w

(c)
i =

1

2(L+ λ)
,∀i = 1, . . . , 2L (3.16)

where, χi are the sigma points, w(µ)
i and w(c)

i are the weights to compute mean and

covariance respectively. λ = α2(L + k) − L, is a scaling factor, α determines the

spread of the sigma points around x̄ and is usually set to a small positive value.

β is used to incorporate the prior knowledge about distribution of x. The term

(
√

(L+ λ)Px)i is the ith row of the matrix square root of (L+ λ)Px.

These sigma vectors are then passed through transformation function to get

Zi = h(χi), ∀i = 0, 1, 2, · · · , 2L (3.17)

The mean and the covariance of the posterior sigma points Z are approximated
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as

z̄ =
2L∑
i=0

w
(µ)
i Zi (3.18)

Pz =
2L∑
i=0

w
(c)
i [(Zi − z̄)(Zi − z̄)T ] (3.19)

These estimates in the mean are accurate upto the third order in the Taylor

series, whereas the covariance estimates are accurate upto the fourth order in the

Taylor series expansion [Sai Subrahmanyam (2008)].

3.3.2 Algorithm

The UKF is a straightforward extension of the UT for the recursive estimation of

state vector from equations 3.5 and 3.11. The augmented state vector in UKF is

redefined as the concatenation of the original state and noise variables. The UT

sigma point selection scheme (Equations 3.12 through 3.16) is applied to this new

augmented state vector to calculate the prior sigma points. These sigma points are

then passed through state and observation functions to produce transformed sigma

points. The statistics (mean and covariance) for the Kalman update equations are

determined by using the transformed sigma points. Finally the Kalman updates

are employed.

Let, xa =
[
xT uT vT

]
be an augmented state vector, λ be the composite

scaling parameter, L be dimension of augmented state, Pu be the process noise

covariance, Pv be the measurement noise covariance and wi be the weights as cal-

culated in equations 3.12 through 3.16. The complete phase estimation algorithm

using UKF is as follows.
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Initialize with:

x̂0 = E{x0}

P0 = E{(x0 − x̂0)(x0 − x̂0)
T}

x̂a0 = E{xa} =
[
x̂T0 0 0

]T
Pa

0 = E{(xa0 − x̂a0)(x
a
0 − x̂a0)

T}

=


P0 0 0

0 Pu 0

0 0 Pv



here, E{·} is an expectation operator.

Now, ∀ k ∈ {1, 2, · · · , N}, where, N is the number of pixels in a column:

Calculate the Sigma Points:

χak−1 =
[
x̂ak−1 x̂ak−1 +

√
(L+ λ)Pa

k−1 x̂ak−1 −
√

(L+ λ)Pa
k−1

]

Process Update Equations:

χxk|k−1 = f(χxk−1, χ
u
k−1)

x̂−k =
2L∑
i=0

w
(µ)
i χxi,k|k−1

P−k =
2L∑
i=0

w
(c)
i [χxi,k|k−1 − x̂−k ][χxi,k|k−1 − x̂−k ]T

Zk|k−1 = h(χxk|k−1, χ
v
k−1)

ẑ−k =
2L∑
i=0

w
(µ)
i Zi,k|k−1

39



Measurement Update Equations:

Pzz =
2L∑
i=0

w
(c)
i [Zi,k|k−1 − ẑ−k ][Zi,k|k−1 − ẑ−k ]T

Pxz =
2L∑
i=0

w
(c)
i [χi,k|k−1 − x̂−k ][Zi,k|k−1 − ẑ−k ]T

K = PxzP
−1
zz

x̂k = x̂−k + K(zk − ẑ−k )

Pk = P−k −KPzzKT

We note that, unlike in EKF, no explicit calculation of Jacobian or Hessian of

the nonlinear function is necessary to implement this algorithm. Also, proposed

algorithm has the capability of providing directly the unwrapped phase from state

vector, as the second element of state vector is a phase function itself.

3.3.3 Simulation Results

A complex interference field signal of size 512×512 was simulated in MATLAB.

The zero-mean AWGN was then added at different SNRs using awgn function.

UKF algorithm was applied to each column with initial guess taken as arctan of

the first element of each column. With this strategy of initialization, we generate

the phase map which is unwrapped for a given column, but needs post processing

to avoid wrapping along the rows. Instead of this, we have used the phase value,

calculated for first element of previous column as initial guess of phase for current

column so that neither unwrapping nor phase stitching is required. The process

noise covariance matrix is taken to be Q = diag
([

10−1 10−1 10−5 10−5
])

and

measurement noise covariance matrix is taken as R = kRdiag
([
σ2
re σ2

im

])
where,

σ2
re and σ2

im are the variances estimated form uniform region of the fringe pattern

and kR is a scaling factor generally can be taken as 2.

To demonstrate the effectiveness of proposed approach, we have compared it

with many other popular methods such as

1. Discrete Chirp-Fourier Transform (DCFT) [Gorthi and Rastogi (2009a)]

40



2. Improved High-order Ambiguity Function (IHAF) [Gorthi and Rastogi (2009b)]

3. State Space Approach (SSA) [Rajshekhar and Rastogi (2013)]

The comparison is made at three different levels. At first level we modified our

signal tracking approach so that we can generate the polynomial coefficients and

then reconstruct the phase. This modification is just like the piece-wise polynomial

approximation approach, where we can fit second order polynomials for phase

approximation in each segment. We call the estimated phase by this method as

UKFPara. The comparison of UKFPara with different methods at slowly varying

and lower dynamic range of phase maps at various noise levels are depicted. Here

we have shown that the UKFPara performs very well as compared to different

methods. At second level, we have compared our direct signal estimation approach

with existing parameter estimation methods at larger dynamic range of the same

phase map. Here we have shown that the parameter estimation approach becomes

unreliable for such phase maps. Finally, we have tested our algorithm for rapidly

varying phase map. We compared proposed approach with the EKF based phase

estimation algorithm, which shows that the UKF based phase estimation approach

handles non-linearity of measurement model and noise effectively as compared to

that of EKF.

Parameter Estimation Approach

A phase map [figure 3.5(a)] is generated using peaks function in MATLAB. The

complex interference field is simulated using the generated phase map and zero

mean AWGN is added to it at SNR of 20 dB. The corresponding fringe pattern is

shown in figure 3.5(b).

Although the signal tracking approach is intended to estimate the phase signal

directly as compared to the parameter estimation, for the fair comparison with

the existing parameter estimation based methods, we have used following relation

[Gal et al. (2007, 2008)] to get the coefficients of polynomials [See Appendix A for

further details], which are then used to reconstruct the phase (UKFPara)

θ(n) := CF−nx(n) (3.20)
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where, θ(n)=[A(n), a0, a1, a2]
T is a parameter vector containing amplitude as it’s

first element and matrix C is a diagonal matrix with elements 1, 1, 1, 0.5. We

compared UKFPara with the well-known parameter estimation methods. While

the number of segments is taken as 16 (Nw = 16) for all the methods, the order

of polynomials for IHAF and SSA is taken as 4 (M = 4), whereas for DCFT, and

UKFPara based methods it is taken as 2 (M = 2).

Error in estimated phase at every pixel location for the simulated pattern

(figure 3.5) by different methods is shown in figure 3.6. As it can be seen from

figure 3.6(a) through 3.6(d), all the methods perform equally well at SNR of 20

dB, however different methods start failing as the noise increases in the fringe

pattern. Figure 3.7(a), shows the Root Mean Square Error (RMSE) produced by

different method as the SNR is varied from 0 to 30 dB.

As both EKF and UKF are the variants of Kalman filters, they have the

tendency to diverge due to noisy situations, inaccurate state space model, and

inaccurate initial conditions, we have compared the divergence rates of both the

methods in figure 3.7(b). The divergence rate is calculated as the ratio of number

of columns where the phase estimation algorithm diverged to the total number of

column. It can be seen from figure 3.7(b) that SSA quickly diverges below the

cut-off SNR of 19dB, while UKFPara does not diverge even at 0 dB. Divergence

in the SSA owes to the linearisation of the measurement model and absence of

process noise term in the process model. Whereas our process model is based on

(a) Original Phase (b) Fringe Pattern

Figure 3.5: 3D mesh plot of original phase and the corresponding fringe

pattern at SNR of 20 dB
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(a) IHAF based Method (b) SSA Method

(c) DCFT based Method (d) UKFPara Method

Figure 3.6: Error in phase estimation with different methods at SNR 20dB.

Taylor series expansion, with additional process noise parameter for taking care

of unmodelled higher order terms of the Taylor series, thus the UKFPara works

effectively even at very low SNR levels.
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Figure 3.7: Performance comparison of different methods. (a) RMSE vs

SNR and (b) divergence rate vs SNR
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(a) Original Phase (b) IHAF based Method (c) DCFT based Method

(d) Fringe Pattern (e) SSA Method (f) UKF Method

Figure 3.8: 3D mesh plot of original phase (20×peaks) and correspond-

ing fringe pattern at SNR of 20 dB. 3D mesh plots of phase

estimation error maps showing relatively poor performance of

polynomial approximation methods at larger dynamic range.

Table 3.1 gives the comparison of different methods based on computational

time. Each method is used to process the reconstructed interference field of size

512×512. These methods were evaluated on a Windows PC with Intel(R) Xeon(R)

CPU E3-1225 V2 at 3.20GHz, 16GB RAM and with MATLAB version 8.2.0.701

(R2013b).

Table 3.1: Comparison of Computational Time (in sec)

Method DCFT SSA IHAF UKF

Time 204.3605 27.0874 9.1061 38.1811

Comparison between Parameter and Signal tracking approaches

We have shown in the last section that when UKF based method applied for

parameter estimation approach (UKFPara), it outperforms the state-of-the-art pa-

rameter estimation methods under noisy conditions. In this section, we compared

the performance of the proposed signal tracking approach (UKF) with various
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parameter estimation methods. In order to quantify the performance variations

among different methods in dealing with signals having higher dynamic range, we

generated a phase map by using peaks function and up-scaled by a factor of 20,

at the same resolution of 512 × 512. The 3D mesh plot of the simulated phase

map is shown in figure 3.8(a), and the corresponding fringe pattern at SNR of 20

dB is shown in the figure 3.8(d).

Comparison for estimated phase with different methods along the middle col-

umn is shown in figure 3.9. As we increase the dynamic range (of values of the

phase map), keeping same resolution, the slope of the phase increases. Hence the

case of larger dynamic range can also be viewed as larger slope rate. In such cases,

the parameter estimation based methods under-perform, producing distortion in

the estimated phase, even at higher SNR values. The reason being, at increased

dynamic range of phase, even a small error in the estimation of parameters can

cause a larger variation in the overall estimated phase signal.

Figure 3.8(b,c,e,f) shows the 3D plots of error in estimated phase by IHAF,

DCFT, SSA and UKF based methods. It can be noticed from figure 3.8 that if

the phase has high dynamic range, the parametric methods fail to estimate the

overall phase map. It is observed that the computational time for both UKFPara

and proposed UKF based method are same.

0 100 200 300 400 500

−100

−50

0

50

100

150

Pixels

R
an

ge
 o

f P
ha

se
 (

ra
d)

 

 

True Phase
DCFT
IHAF
SSA
UKF

Figure 3.9: Estimated phase comparison along middle column of the phase

map at SNR of 20 dB
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Figure 3.10: Comparison of proposed EKF and UKF for signal tracking

based phase estimation for rapidly varying phase maps at 20

dB. (a) & (d) shows 3D mesh plot of the true phase map

and corresponding 2D image of fringe pattern. (b) & (e)

shows error in phase estimation using EKF and UKF. (c) &

(f) compares the performance of EKF and UKF for different

values of SNR in terms of RMSE and divergence rate.

Dealing with rapidly varying phase signals

While deriving state space model, we used Taylor series expansion of phase func-

tion which requires an assumption of continuity and differentiability at a given

point. However usually phase maps obtained in DHI may not always be well be-

haved functions. To verify the ability of the proposed approach in handling such

cases, we generated a phase map as shown in figure 3.10(a). This phase map con-

sists of multiple triangles in each row. As we traverse through columns, the angle

between two sides of the triangle and the slope of side changes. This provides

insights for the ability of the phase estimation technique to handle sudden change

at the vertexes of the triangles of different shapes.

Fringe pattern shown in figure 3.10(d) is analysed with the proposed (UKF),

and for the purpose of comparing its performance with already proposed EKF

based method, the error plots obtained with both the methods are shown in figure
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3.10(b), 3.10(e), respectively. It is found that both the filters work almost identical

above SNR value of 12 dB. But under noisy conditions, EKF based method starts

to diverge owing to linearisation of measurement model. Figure 3.10(c) and 3.10(f)

shows the plots of RMSE and divergence rate against SNR for EKF and UKF,

respectively. Figure 3.10 indicates that the UKF proves to be a better choice than

EKF, in the successful realization of the proposed signal tracking approach for

phase estimation in DHI. It is found that, though the process model follows Taylor

series expansion, which requires the function to be continuous and differentiable,

the approach works well with non-differentiable functions owing to signal tracking

nature of the algorithm and the use of recent observations in Kalman update.

3.3.4 Experimental Results

Proposed method based on UKF for fringe analysis is validated using digital holo-

graphic interferometry experiment. The fringe patterns obtained under two de-

formation experiments are shown in Figures 3.11(a) and 3.11(d), where 3.11(a)

is the representative case for rapidly varying phase signals and 3.11(d) is that of

the noisy data. SSA and UKF were applied to the reconstructed interference field

to estimate the phase. It is observed that SSA, by being piece-wise polynomial

approximation approach, performs poorly.

Figures 3.11(b) and 3.11(e) shows fringe patterns generated using the esti-

mated phase maps by SSA and figures 3.11(c) and 3.11(f) shows that by UKF.

Estimated phase by SSA shows distortion which is due to divergence of EKF in

noisy situation. Figure 3.12 shows the 3D mesh plots of the estimated phase sig-

nals by the proposed UKF method. The proposed approach is able to estimate

the phase even when it is non-differentiable and rapidly varying (Figure 3.12(a))

and when the fringe pattern is severely corrupted by noise (Figure 3.12(b)).

3.4 Summary

In this chapter, we discussed a new approach, namely, the signal tracking ap-

proach, for phase estimation in DHI. Simulation and experimental results demon-
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(a) (b) (c)

(d) (e) (f)

Figure 3.11: Comparison of SSA and UKF for experimental data. (a)

and (d) shows the noisy fringe pattern of the reconstructed

interference field. (b) and (e) are the fringes corresponding

to phase estimated by SSA whereas (c) and (f) are that of

proposed UKF.

(a) (b)

Figure 3.12: 3D mesh plot of estimated phase using proposed method

strate that the signal tracking approach, realized using UKF yields more accurate

phase estimates than that of the state-of-the-art approaches especially at lower

SNRs. It is also observed that the proposed method produces accurate estimates

even for complicated phase signals where the polynomial approximation approach

based methods may have difficulty in the estimation of parameters. The analysis

of the results indicate that the introduction of process noise covariance into state

space model and use of UKF to estimate the state provides a significant improve-
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ment in the accuracy of phase estimation, especially under noisy situation (SNR

0-20 dB). Also, since the derived state vector includes phase and derivatives of

phase, it may give wide applicability of this algorithm in situations where simulta-

neous estimation of displacement (phase) as well as strain/curvature (derivatives

of phase) are important.
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CHAPTER 4

Particle Filter based Phase Estimation

The main objective of this chapter is to study the applicability of the Particle

filter for continuous phase tracking under signal tracking framework. In chapter

3, we demonstrated that the signal tracking approach is a better substitute for its

contemporary phase estimation methods. In this chapter, we demonstrate that the

Particle filter, as against EKF and UKF, provides more accurate, unwrapped and

continuous phase even when the phase is rapidly varying with larger slope range

and when the fringes are corrupted by noise. Unlike Kalman filter and its variants,

Particle filter is not limited by any linearity and Gaussian constraints and this fact

motivates us to apply the particle filter in the present context. Here, we employ the

same state model to propagate each of the Particles/Samples ahead in time/space.

However, the weight updates in the Sequential Importance Re-sampling (SIR)

are based on the Gaussian likelihood. This is guided by the non-linear (Polar-

to-Cartesian) relationship between the state and observation and the Gaussian

measurement noise. The main contribution of the work lies in formulating the

likelihood based weight computations and algorithm design for phase estimation

by sequential importance sampling particle filter framework.

4.1 Theoretical Foundation

The state space model used for particle filter based algorithm is:

x(n) = Fx(n− 1) + ω(n− 1) (4.1)

z(n) = h(x(n)) + ν(n) (4.2)

where, state vector x(n), state transition matrix F and the non-linear function

h(x) of the measurement model are given as:



x(n) =
[
a(n) φ(n) φ(1)(n) · · · φ(M)(n)

]T

F =



1 0 0 0 · · · 0

0 1 1
1!

1
2!
· · · 1

M !

0 0 1 1
1!
· · · 1

(M−1)!
...

...
...

... . . . ...

0 0 0 0 · · · 1



h(x) =

a(n)cos(φ(n))

a(n)sin(φ(n))


where a(n) and φ(n) are the elements of the state vector x. ω(n) ∼ N (0,Q) is

the state noise to compensate for the higher order terms of Taylor series. M is the

number of terms of the Taylor series to be included into state vector, usually it can

be taken from 2 to 9 depending upon the variations in the phase. ν(n) ∼ N (0,R)

represents the measurement noise. Q and R are the state and measurement noise

covariance matrices, respectively. The stochastic representation of the used state

space model can be written as

x(n) ∼ N (Fx(n− 1),Q) (4.3)

z(n) ∼ N (h(x(n)),R) (4.4)

Based on this state space model, we propose a robust particle filter based ap-

proach best suited to the phase estimation in DHI. The particle filter is a technique

for recursive Bayesian estimation through Monte Carlo simulations. The key idea

in Particle filter is to approximate the required posterior density by a set of ran-

dom samples (particles) with associated weights and to calculate the estimates

based on these samples and weights. The complete estimation process takes place

into three steps: Particle Propagation, Weight Computation and Resampling. The

particles are propagated through the state model p(x(n)|x(n− 1)) (for the special

case N (Fx(n− 1),Q)) to generate a new set of predicted particles. The weights

associated with each sample, win; i = 1, ..., Ns (where, Ns is the total number of
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particles) are obtained based on the observation model. An weighted average of

these predicted samples using weights associated with each sample forms the final

updated estimate for the state vector. The complete map of phase and it’s deriva-

tives is then formed by selecting corresponding components of the final estimate

of the state vector.

The weight of each particle determines the accuracy of the state represented

by that particle towards final updated estimate. The deviation of predicted obser-

vation from the actual observed values provides the information about reliability

of the predicted state. As the noise present in the measurements is assumed to

be Gaussian, the likelihood of the measurement is expressed in terms of standard

Gaussian distribution. As the measurement taken for our experiment is in 2D, in

the form of real and imaginary parts, the joint likelihood with an assumption that

two components are independent is as follows:

wi = exp

[
−(ẑi1 − z1)2

2σ2

]
× exp

[
−(ẑi2 − z2)2

2σ2

]
= exp

[
−(ẑi1 − z1)2 + (ẑi2 − z2)2

2σ2

]
(4.5)

Where, ẑik, k = 1, 2 is the kth element of the predicted measurement vector

corresponding to ith particle whereas zk, k = 1, 2 is the kth element of the actual

measurement vector at that location n.

The common problem encountered with particle filter approach is the degen-

eracy of samples, where after a few iterations, all but one particle has negligible

weights. This implies that a considerable amount of computational work still needs

to be performed to update the particles whose contribution to the approximation

of posterior pdf p(xk|z1:k) is zero/negligible. Degeneracy problem can be avoided

in many ways like by considering a good choice of importance density, choosing

larger number of samples Ns. However, choosing a large number of samples results

in an inefficient solution. Resampling the particles is one of the most widely used

solution to avoid degeneracy [Li et al. (May 2015)].

The basic idea of resampling step is to eliminate the particles which have
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Algorithm 1 Phase Estimation using Particle Filter
1: Initialize with

x̂(0) = E{x(0)}

2: Generate Ns samples/particles from probability density function N (x̂(0), Q)

3: for n = 1:N do

4: for i = 1:Ns do

5: Propagate the particle through the state model

xi(n) = Fxi(n− 1) + ωi(n− 1)

6: Generate the predicted measurementsẑi1
ẑi2

 =

xi1cos(xi2)
xi1sin(xi2)


Here, x1 and x2 are the 1st and 2nd components of the state vector x(n).

Please note that the index (n) is dropped for the sake of brevity in step 6 and

7.

7: Compute weight for the particle

wi = exp

[
−(ẑi1 − z1)2 + (ẑi2 − z2)2

2σ2

]

8: end for

9: End For

10: Normalize the weights

11: Calculate the final updated state vector

x̂(n) =
Ns∑
i=1

wixi(n)

12: Perform Systematic Resampling & update the samples and weights for next

iteration

13: end for

14: End For
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smaller weights and concentrate on the particles which have significantly larger

weights. After resampling, all the particles have equal weights. We employed

the systematic re-sampling scheme proposed by Kitagawa (1996) for our work.

The normalised weights wi are incrementally added to form a cumulative sum

of wiC =
∑i

j=1w
j. A ‘comb’ of Ns points spaced at regular intervals of 1/Ns is

defined and the complete comb is translated by an offset chosen randomly from a

uniform distribution over [0, 1/Ns]. The comb is then compared with cumulative

sum of weights wiC . We select/re-sample a particle more than once/delete the

sample based on how many times comb values fall within CDF of that particu-

lar sample. In this way re-sampling is carried for Ns samples. The re-sampled

weights of each particle is 1/Ns which is used in calculation of posterior for next

iteration. Complete phase estimation process using particle filter is summarised

in the algorithm 1.

4.2 Simulation Results

A complex interference field of size 512× 512 was simulated in MATLAB (R2013b)

and the zero-mean additive white Gaussian noise was added at different Signal-

to-Noise-Ratio (SNR) values using awgn function. The particle filter algorithm

is then applied to individual column. The process noise covariance matrix Q is

taken to be Q=Kq× diag
[
10−1 10−1 10−2 · · · 10−M

]
whereKq is the tuning

parameter and takes value in range 0.1 to 10. The measurement noise covariance

(a) Original Phase (b) Fringe Pattern

Figure 4.1: Simulated phase map (2 × peaks) and corresponding fringe

pattern (SNR 5 dB).
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R is estimated from a uniform region of the fringe pattern by using fast noise

variance estimation method given in Immerkar (1996). Intuitively to estimate

phase and phase derivatives with higher accuracy the state is modelled to include

first M (usually 2 to 9) terms of the Taylor series.

Usually, initial guess of state vector is taken to be arctan of the first element

of each column. Although this initialization produces unwrapped columns, it does

not guarantee the unwrapping along the rows. In order to ensure unwrapping

along rows, additional post processing like phase stitching becomes essential. We

initialize the first element of the first column/row by using the values of amplitude

and the wrapped phase (from the observations), and setting higher order terms

of the state vector to zeros. This initialization is being refined by Particle filter

updates. For rest of the columns, we initialize the state vector using the refined

estimates (not the observations/wrapped phase) corresponding to the first element

of the previous columns, which are already unwrapped estimates. This is based

on the assumption that there will not be significant change in phase between the

adjacent pixels of the first row/column. This initialization strategy along with par-

ticle filter updates produce continuous and unwrapped phase map along columns

as well as rows without additional requirement of phase stitching or unwrapping.

The performance of the proposed method is compared with state-of-the-art

methods such as Cubic Phase Function (CPF), Discrete Chirp-Fourier Transform

(DCFT), Improved High-order Ambiguity Function(IHAF), UKF based signal

tracking approach and MATLAB’s (R2013b) unwrap function (version 5.14.4.4)

with median filtering as pre- and post-processing. We simulated a phase map

using peaks function and added moderate noise at 5 dB. The noisy fringe pat-

tern is then processed by the state-of-the-art phase estimation methods. The true

phase map along with corresponding fringe pattern at 5 dB are shown in figure

4.1 whereas error in estimation of phase by different methods are shown in figure

4.2.

It is observed that only DCFT and UKF based methods and MATLAB’s

unwrap function along with proposed approach performed well in presence of noise.

Among them, DCFT based method uses second order polynomial for approxima-

tion of the phase making it unsuitable for rapidly varying phase maps. The unwrap
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(a) CPF based method (b) DCFT based method (c) UKF based method

(d) IHAF based method (e) unwrap function (f) PF based method

Figure 4.2: Error in Phase estimation by state-of-the-art methods and the

proposed particle filter approach for the simulated phase map

(see fig. 4.1).

function of MATLAB R2013b performs unwrapping on the data column-wise. It

uses derivative of wrapped phase map to remove the discontinuities introduced by

wrapping and finally integrated them along columns to get the continuous phase

map. This method works well provided that the wrapped phase has low noise and

its derivative is unwrapped and continuous. This keep limitation on the perfor-

mance under two conditions: (1) when the signal is corrupted by extreme noise

and (2) when the underlying phase has very high dynamic range.

Table 4.1 compares the Root Mean Square Error (RMSE) values with different

approaches at SNR of 5 dB and it can be seen that Particle Filter based approach

outperforms all the state-of-the-art methods. Fig.4.3 shows the graph of RMS error

Table 4.1: Performance comparison in terms of RMSE in estimation of

phase from the fringe pattern shown in figure 4.1(b) among

proposed approach and the state-of-the-art approaches.

Approach CPF IHAF DCFT Unwrap UKF PF

RMSE (in radians) 1.6840 0.2226 0.1501 0.1656 0.0966 0.0797
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versus SNR in the range of 0-30 dB through various state-of-the-art approaches.

It can be observed that PF based approach is robust to noise and performs better

when compared to all other methods even at lower SNR values, especially in the

range of 0-5 dB.

Figure 4.3: RMSE versus SNR through various approaches.

(a) Original Phase (b) DCFT Method (c) unwrap function

(d) Fringe Pattern (e) UKF Method (f) Proposed method

Figure 4.4: Estimated phase maps by different approaches. Condition 1:

Extremely noisy fringe pattern. (SNR -5 dB).
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(a) Original Phase (b) DCFT Method (c) unwrap function

(d) Fringe Pattern (e) UKF Method (f) Proposed method

Figure 4.5: Estimated phase maps by different approaches. Condition 2:

Rapidly varying phase with extremely noisy fringe pattern

(SNR 2 dB).

We have tested the proposed approach under three conditions which validates

the reliability of the proposed approach.

1. extremely noisy fringe pattern (Fig. 4.4)

2. rapidly varying phase (Fig. 4.5)

3. phase map with larger dynamic range (Fig. 4.6)

For first condition, we generated a simple peak function as phase map and white

Gaussian noise is added to this fringe pattern at SNR of -5 dB. Second condition

represents sudden changes in phase values at the vertices of the pyramids. Finally

for the third condition shows we up-scaled the peaks function with a factor 20.

Figures 4.4, 4.5 and 4.6 show the comparison of estimated phase map by DCFT,

UKF and MATLAB’s unwrap function based methods with the proposed method.

For MATLAB’s unwrap function, we first unwrapped the phase map along column

and then rows. The resultant unwrapped phase was then filtered by 3× 3 median

filter to remove the noise. The table 4.2 given the comparison of state-of-the-art
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Table 4.2: Comparison of RMSE among state-of-the-art and the proposed

method for different types of conditions.

Method
Extreme Noise Rapidly Varying Phase High Dynamic Range

(SNR of −5 dB) (SNR of 2 dB) (SNR of 2 dB)

DCFT 16.4211 15.0154 16.6237

UKF 848.4214 349.2850 416.0399

unwrap 4.3355 20.3133 5.8828

Particle Filter 0.2251 0.7390 0.7530

with the proposed method in terms of root mean square error (RMSE) in the

estimation of phase.

It is observed, from figures 4.4–4.6 and table 4.2, that the phase estimation

becomes challenging in the presence of noise in the fringe pattern and higher

dynamic range of the phase simultaneously. In such situations, where even state-of-

the-art methods become unreliable, proposed method gives better estimates for the

phase. Even though the state model through Taylor series expansion assumes the

(a) Original Phase (b) DCFT Method (c) unwrap function

(d) Fringe Pattern (e) UKF Method (f) Proposed method

Figure 4.6: Estimated phase maps by different approaches. Condition

3: larger dynamic range with extremely noisy fringe pattern

(SNR 2dB).
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Table 4.3: Comparison of Computational Time through Particle filtering

approach by varying number of particles for phase estimation.

Number of particles 50 100 200 350 500 600 750

Time (s) 5.12 10.4 29.7 81 160 225 352

phase to continuous and differentiable at every point, the generalization capability

of particle filter based state estimation is reflected in terms of estimation of rapidly

varying phase.

The performance of proposed method can be further improved by fine tun-

ing of the parameters- scalar factor for measurement noise covariance matrix Kq,

Measurement noise variance σ2 and the number of particles. Table 4.3 summarizes

the computation time required for a 512 × 512 image at SNR of 5 dB by varying

the number of particles using Particle filtering approach. It can be seen that as

the number of particles for phase estimation increases, time for simulation also

increases.

In general, 100 particles are sufficient if phase estimation is performed at low

noisy conditions (i.e., at SNR of 0-30 dB). Number of particles should be increased

suitably if estimation is carried out under noisy conditions. In all the simulations

100 particles are used for phase estimation, except at SNR of -5 dB of the inter-

ference field, where 300 particles are used for phase estimation. Based on noise

statistics in the image, Kq should be tuned while number of particles required for

estimation is directly proportional to the noise in the underlying image. All the

simulations were performed on Windows PC with Intel(R) Xeon(R) CPU X5675 (2

Processors with total 12 cores) at 3.07 GHz, 24 GB RAM with MATLAB version

8.2.0.701 (R2013b) using Parallel Computing toolbox.

4.3 Experimental Results

The performance of the proposed approach was verified on reconstructed interfer-

ence field generated through real-time digital holography experiment.

The fringe pattern (real part of the complex interference field) is shown in
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(a) Noisy Fringes (b) Fringes with Est. Phase

c) Est. Phase (d) Est. phase Derivatives

Figure 4.7: Experimental results. Figure (a) shows the noisy fringes, figure

(b) shows the fringes generated by estimated phase for qualita-

tive analysis, (c) and (d) show 3D mesh plot of the estimated

phase and phase derivatives, respectively.

figure 4.7(a). This reconstructed interference field was then processed along indi-

vidual columns using the proposed approach. The state vector for the proposed

method was formed by taking 4 terms of the Taylor series (M = 4), which enables

the accurate and simultaneous estimation of phase and phase derivative with the

proposed algorithm. The estimated phase and its derivatives are shown in figure

4.7(c) & 4.7(d), respectively. We have generated the fringe pattern for qualitative

analysis using estimated phase and is shown in figure 4.7(b). From the simulation

and experimental results, it is evident that the proposed approach is suitable for

processing of severely corrupted reconstructed interference field.
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4.4 Summary

This work is a very first attempt to investigate the application of particle filter as

a signal tracking approach for phase estimation in digital holographic interferom-

etry. Simulation and experimental results demonstrate the fact that the proposed

particle filter based approach accomplishes the tasks, where EKF and UKF were

having trouble in estimation, especially at lower SNRs. The proposed method is

able to perform phase estimation even at SNR of -5 dB and to the best of our

knowledge, this is the only method which works at such lower SNR values. The

robustness of the proposed approach to noise is demonstrated from very low val-

ues of RMS error. One can also estimate the phase even under SNR of -5 dB by

properly tuning the parameters Q and number of particle Ns.
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CHAPTER 5

Wrapped Statistics based Phase Estimation

In previous chapters, we presented a signal tracking approach to deal with the

interferometric fringes corrupted severely by noise as well as for signals with larger

dynamic range. The use of rotating vector model as measurement model in signal

tracking approach leads to non-linear transformation of the state. Such systems

can be analysed either by EKF or UKF. In rotating vector model, the observations

are considered to be 2D vectors (i.e., real and imaginary parts of the measurement)

whereas the state is truly 1D (i.e., angle of measurement). We found that, this

introduces unnecessary non-linearity in the form of polar to Cartesian conversion

to the system that limits the tracking capabilities.

In order to resolve this issue, we are proposing to use wrapped dynamical sys-

tem [Traa and Smaragdis (2013)] as the measurement model. This, as against the

earlier work [Rajshekhar and Rastogi (2013)], bypasses the 2D non-linear rotating

vector model. Also, wrapped dynamical model accounts for the probability of

translation of the measurement by integer multiples of 2π, and corrects the pre-

dicted state accordingly. It is observed that the proposed method produces accu-

rate, continuous and unwrapped phase map directly even when the Signal-to-Noise

Ratio (SNR) of interference fringes is around 0 dB and the underlying phase has

very high dynamic range. The DCFT [Gorthi and Rastogi (2009a)] based method

(polynomial approximation approach) and UKF based method (signal tracking

approach) have this capability of handling noisy interference fringes provided that

the phase pattern is having lower dynamic range.

The simulation results substantiate the ability of the proposed method in deal-

ing with the complex signals, having phase maps with extended dynamic range

and when corrupted by high levels of noise, whereas the experimental results

demonstrates its applicability for the analysis of reconstructed interference fields

in digital holographic interferometry for phase estimation.



5.1 Theoretical Foundation

In digital holographic interferometry, usually, two holograms are recorded corre-

sponding to the object state prior to and post deformation. Numerical reconstruc-

tion of both the holograms provides their respective reconstructed object wave

fields. Multiplication of one reconstructed object wave field with that of com-

plex conjugate of the other, generates the reconstructed interference field. The

reconstructed interference field in DHI, given by equation (2.6), is represented as:

f(m,n) = a(m,n)ejφ(m,n) + ν(m,n) (5.1)

where a(m,n) and φ(m,n) are the amplitude and phase of the M × N com-

plex reconstructed interference field. m and n are the rows and columns, respec-

tively. ν(m,n) is the observation noise modelled as additive white Gaussian noise

(AWGN). For an arbitrary row, we can write:

fm(n) = am(n)ejφm(n) + νm(n) (5.2)

State Space Model

The phase pattern is approximated using Taylor series expansion-

φ(n+1) = φ(n)+
1

1!
φ(1)(n)+

1

2!
φ(2)(n)+

1

M !
φ(M)(n)+Higher Order Terms (5.3)

we can write this in matrix form as follows:

x(n+ 1) = Fx(n) + w(n) (5.4)

where,

x(n) =
[
φ(n) φ(1)(n) · · · φ(M)(n)

]T
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F =


1 1

1!
1
2!
· · · 1

M !

0 1 1
1!
· · · 1

(M−1)!
...

...
... . . . ...

0 0 0 · · · 1


Here, the vector x(n) denotes the state vector, the matrix F is the transition

matrix representing the relation between the present and the next state of the field

while w(n) ∼ N (0, Q) is the process noise that compensate the discarded higher

order terms.

The phase pattern obtained by taking arctan of the interference field, which is

a wrapped phase, is limited to the range (−π, π]. The wrapped statistics provides

a suitable tool to approximate the phenomenon of wrapping of the phase pattern.

The corresponding measurement vector y(n) for the phase [i.e., angle of the fm(n)],

which will help us for innovation correction process, is obtained by using state

vector x(n).

The state vector x(n) has the first element as φ(n), which is unwrapped phase

and belong to interval [−∞,∞], whereas the measurements are wrapped and

belong to the range (−π, π]. Given a distribution on the line, we can wrap it

inside an interval (just like wrapping around a circle of unit radius). That means,

if x is random variable on the line, the corresponding random variable xw of the

wrapped distribution is given by [Mardia and Jupp (1999)]:

xw = ψ(x) = mod(x+ π, 2π)− π (5.5)

Thus, the wrapped measurement model can be predicted from the predicted

state vector using the following relation:

y(n) = ψ[Hx(n) + ν(n)] (5.6)

Here, H =
[
1 0 · · · 0

]
is the measurement transition matrix. ν(n) ∼

N (0, R) is the measurement noise. The function ψ(·) is wrapping function that is

defined in equation (5.5).
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Wrapped Gaussian Distribution

According to Mardia and Jupp (1999), if x has distribution function F , then the

distribution function Fφ of the corresponding wrapped random variable xw is given

by:

Fw(θ) =
∞∑

k=−∞

{F (θ + 2πk)− F (θ + 2πk)}, 0 ≤ θ ≤ 2π (5.7)

and similarly we can write about probability density function as:

fw(θ) =
∞∑

k=−∞

f(θ + 2πk), 0 ≤ θ ≤ 2π (5.8)

Now, The function ψ(·) in equation (5.5) transforms the Gaussian distribution

to wrapped Gaussian distribution. Therefore the measurements y(n), which are

wrapped due to arctan function, can be approximated by the wrapped Gaussian

which is given by the following relation,

Pw(y(n);µ, σ2) =
∞∑

k=−∞

P(k)
l (y(n);µ, σ2) (5.9)

where,

P(k)
l (θ;µ, σ2) =

1√
2πσ2

e−((θ+2πk)−µ)2/2σ2

(5.10)
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Figure 5.1: Wrapped Gaussian distribution with µ = π
3
and varying σ2.
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Figure 5.1 shows the plot of the wrapped Gaussian distribution (Pw) at µ = π
3

and varying σ2. This can be interpreted as the addition of infinite Gaussian

distribution with variance σ2 and mean µ translated by integer multiple of 2π,

which is confined to the interval
[
−π π

]
.

5.1.1 Wrapped Kalman Filter

The wrapped Gaussian models the wrapping function ψ(·). The distribution of

the filtered state at pixel n− 1 becomes:

P (xn−1|y1:n−1) =
∞∑

k=−∞

Pk(xn−1|y1:n−1)

=
∞∑

k=−∞

N (xn−1;µx + 2πk, σ2
xn−1

) (5.11)

Here, for sake of brevity, we have used indices as subscripts such as xn for x(n)

and y1:n for y(1 : n). As the state model (equation 5.4) is linear, prediction of the

state is straightforward. The state distributions (mean and variance) is predicted

by applying the state transition matrix to the present state vector. At each step,

the distribution of the predicted state is given by

P (xn|y1:n−1) =

∫
P (xn|xn−1)P (xn−1|y1:n−1)dxn−1

=
∞∑

k=−∞

∫
P (xn|xn−1)Pk(xn−1|y1:n−1)dxn−1

=
∞∑

k=−∞

Pk(xn|y1:n−1)

After predicting the state distribution, we need to correct it through innovation

correction process. For that, we model the wrapping function ψ(·) in equation 5.6

using the wrapped Gaussian distribution. The corrected state vector is:

Pw(xn|y1:n) ∝ Pw(yn|xn)Pw(xn|y1:n−1)

∝

[
∞∑

m=−∞

P(m)
l (yn|xn)

][
∞∑

k=−∞

P(k)
l (xn|y1:n−1)

]
(5.12)
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As equation 5.12 is sum of infinite Gaussian components of predicted den-

sity translated by integer multiples of 2π. We approximate it by single term

of predicted density and replicating the observations at interval of 2π Traa and

Smaragdis (2013). The probability of the replication of the observations can be

interpreted as:

ηn,l =
P(l)
l (yn;xn, σ

2
w)∑∞

m=−∞P
(m)
l (yn;xn, σ2

w)
(5.13)

Using the probability of replication of yn, we form a weighted average of in-

novations due to copies of yn. As the characteristics of the Gaussian distribution

dictates that the probability value decreased exponentially as we move away from

the mean value, we can safely truncate the infinite sum to L terms of translation

on either side of the measurement value. The predicted state is then corrected

using the resultant innovations which is given by

gn =
L∑

l=−L

(yn + 2πl − xn)ηn,l (5.14)

Algorithm: Phase retrieval using wrapped Kalman filter

The following algorithm summarizes the wrapped Kalman filter application for

digital holographic interferometry

Initialize

x̂(0) = E(x(0))

P+(0) = E([x(0)− x̂(0)][x(0)− x̂(0)]T )

where, P+(0) is the state error covariance
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Predict

x̂−(n) = Fx̂(n− 1)

P−(n) = FP+(n− 1)FT + Q

where, Q being the state noise covariance.

Correct

K = P−(n)HT (HP−(n)HT + R)−1

P+(n) = (I−KH)P−(n)

gn =
L∑

l=−L

(yn + 2πl − xn)ηn,l

x̂(n) = x̂−(n) + Kgn

where, R being measurement noise covariance, which can be estimated as a vari-

ance of a uniform region of the fringe pattern. I represent the identity matrix of

appropriate order.

5.2 Simulation Results

MATLAB 2013b was used to validate the proposed method for phase estimation.

The phase map representing the larger dynamic range was generated using peaks

function. The complex reconstructed interference field was simulated using the

generated phase map and the constant amplitude via equation 2.6. The complex

additive white Gaussian noise with zero mean and variance σ2
ν was simulated using

randn function of MATLAB and added to the simulated interference field in order

to generate the noisy signal. Original phase map and the noisy fringes (real part

of the interference field) at σ2
η = 0.65 (SNR ≈ 0 dB) are shown in the figure 5.2.

The noisy complex field, shown in figure 5.2(b), was processed along individ-

ual rows/columns using proposed method to estimate the phase. The proposed

approach is compared with the state-of-the-art phase estimation methods such

as DCFT and UKF based method. The DCFT based method is a candidate

of piecewise polynomial approximation approach, where individual column (or
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(a) True phase map (b) Noisy fringe pattern

Figure 5.2: Simulated phase map and corresponding noisy fringes

row) is divided into segments and each segment is approximated by polynomial of

sufficient order. The parameters of polynomials are then estimated using signal

(a) DCFT approach (b) UKF approach

(c) WKF Approach (d) Derivatives by WKF

Figure 5.3: Comparison of phase estimation among DCFT and UKF based

methods and the proposed method. Phase estimated by (a)

DCFT (b) UKF and (c) proposed approach. Figure (d) shows

the phase derivatives estimated by proposed approach
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Figure 5.4: Comparison of proposed approach with state-of-the-art phase

estimation approaches at different SNR values

processing algorithms. In DCFT based method, we divided each column into 16

segments (Nw = 16). Each segment was then processed by DCFT to estimate the

coefficients of the second order polynomials (M = 2). The UKF based method

follows the signal tracking approach which uses the rotating vector model as the

measurement model.

The results of comparison for slowly varying phase are shown in figure 5.4.

Figure 5.4 shows the root mean square error (RMSE) in estimated phase for dif-

ferent methods at varying SNR values (0-30 dB). It is observed that the Unscented

Kalman filter, particle filter and wrapped statistics based filter outperforms the

state of the art methods especially at lower SNR values (0-10 dB).

The estimated phase maps by parametric approach (DCFT), signal tracking

approach (UKF) and the proposed method are shown in figure 5.3.

The Root Mean Square Error (RMSE) in the estimation of phase in different

scenario are shown in table 5.1. From table 5.1, it can be seen that the DCFT

and UKF based methods have the capability to process the noisy interference

73



Table 5.1: RMSE comparison of different methods

Approach DCFT UKF Proposed WKF Approach

peaks (30 dB) 0.0099 0.0057 0.0069

peaks (0 dB) 0.5549 0.1872 0.1385

20×peaks (0 dB) 167.1835 440.8541 0.8706

fields provided that the phase pattern is having smaller dynamic range. However,

these methods lacks the capability when the underlying phase pattern in having

larger dynamic range of phase and severe noise in interference fringes both at the

same time. DCFT under-performs because even a small error in the estimation of

parameters causes a larger change in the overall estimated phase signal. In case

of UKF the rotating state vector model limits the tracking capabilities when the

interference field has both, larger dynamic range and severe noise, simultaneously.

Since the state vector consists of phase and phase derivative terms, the pro-

posed approach enables the simultaneous estimation of the phase and phase deriva-

tives from the reconstructed interference field. Figure 5.3(d) shows the estimated

phase derivatives along columns using proposed approach. The errors in estima-

tion of phase and phase derivatives are shown figure 5.5.

Finally, The RMSE values for all the proposed methods for different scenarios

are summarised in the table 5.2. From the table, it is observed that the UKF and

PF based approach can estimate phase when the phase map is rapidly varying

Phase Phase Derivatives

Figure 5.5: Error in estimation of phase and phase derivatives by proposed

approach
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Table 5.2: Comparison of performance of different proposed approaches in

term of RMSE under different conditions

Phase Map EKF UKF PF WKF

Slowly Varying (30 dB) 0.0074 0.0077 0.0083 0.0071

Rapidly Varying Phase (30 dB) 0.1295 0.1295 0.4965 0.1399

Larger Dynamic Range (30 dB) 2.9235 0.1578 0.1517 0.0988

Rapidly Varying Phase (5 dB) NA 0.9504 0.4419 0.2076

Slowly Varying (0 dB) NA 0.1750 0.1442 0.1290

Larger Dynamic Range (0 dB) NA NA NA 0.8692

Computational Time (sec) 27 38 81 97

with larger dynamic range or having extreme noise in interference fringes, but are

unable to estimate phase when the interference field with larger dynamic range

phase is corrupted by extreme noise. Wrapped statistics based filter found to be

suitable for processing of severely corrupted reconstructed interference field even

when the underlying phase had larger dynamic range.

5.3 Experimental Results

The performance of the proposed approach was verified using the reconstructed

interference field, generated through real-time digital holography experiment.

The fringe pattern (real part of the complex interference field) is shown in

figure 5.6(a). This reconstructed interference field was then processed along in-

dividual columns using the proposed approach. Figure 5.6(b) shows the fringe

pattern generated by the estimated phase using proposed approach for qualitative

analysis. The 3D mesh plot of estimated phase map and its derivatives are shown

in figure 5.6(c) and 5.6(d), respectively. From the simulation and experimental

results, it is clear that the proposed approach is suitable for processing of severely

corrupted reconstructed interference field even when the underlying phase had

larger dynamic range.
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(a) Noisy Fringes (b) Fringes with Estimated Phase

(c) Estimated Phase (d) Estimated phase Derivatives

Figure 5.6: Experimental results. Figure (a) shows the noisy fringe pat-

tern (b) shows the fringe pattern generated from estimated

phase for qualitative and figure (c) shows the 3D mesh plot

of the estimated phase while (d) shows the estimated phase

derivative

5.4 Summary

The wrapped statistics based approach estimates an accurate and direct phase

from the interference fields especially when the field is having large dynamic range

of the phase or severely corrupted by noise or both. Our method provides superior

performance as compared to that of the existing piecewise polynomial approxima-

tion based approach and UKF based signal tracking approach in combined scenario

of severely noisy fringes and larger dynamic range of phase. Also, since the state

vector consists of phase and phase derivative terms, we have demonstrated that

the proposed approach provides accurate and simultaneous estimation of the phase

and phase derivatives from the interference field. We demonstrated, through sim-

ulation and experimental analysis, that the proposed approach is suitable for the

analysis of severely corrupted fringe pattern, even when the underlying phase has

a larger dynamic range.
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CHAPTER 6

Applications of Signal Tracking Approach

In the previous chapters, we presented and discussed different phase estimation

algorithms for the analysis of the interference fringe pattern. In this chapter, we

describe the additional aspect of these algorithms such as simultaneous estimation

of the phase derivatives along with phase estimation. We also discuss the potential

applications of the same in different optical techniques like holographic moiré,

fringe projection profilometry etc. Finally we discuss the possible fringe analysis

requirements in the thermal expansion of the test object using simple holographic

interferometry.

6.1 Simultaneous Estimation of Phase Derivatives

Simultaneous estimation of phase and its derivatives from the reconstructed inter-

ference field in DHI provides a vital information regarding the deformation and

strain/curvature of the deformed object. The phase of the reconstructed interfer-

ence field contains the information about deformation, whereas the derivatives of

the phase carries information about strain/curvature of the deformed object.

Estimation of phase derivatives can be predominantly categorised into three

groups. First approach uses numerical differentiation of the estimated phase map

using arctan and unwrapping methods. When the interference field becomes

noisy, the estimated phase by such approach becomes noisy too. In the numeri-

cal differentiation of such noisy phase results in noisy phase derivatives. Second

approach uses parametrization techniques for phase derivative estimation which

models the phase map as polynomial signals and estimation of polynomial coeffi-

cients by various signal processing techniques. Thus the problem of phase deriva-

tive estimation can be represented as parameter estimation where coefficients of

the phase polynomials are the parameters. In this approach, generally, the poly-

nomials of degree 2 to 4 are used to approximate the phase map. As the degree of



(a) Slowly varying phase (b) Larger dynamic range (c) Rapidly varying phase

Figure 6.1: Simulated phase maps (first row) along with their correspond-

ing fringe patterns (second row)

polynomial is small, it keeps limitations on the performance of these methods, es-

pecially when the phase is rapidly varying and having larger dynamic range. Third

approach is a non-parametric approach based on time-frequency distributions.

In previous chapters, we demonstrated that the signal tracking approach based

methods outperform the state-of-the-art for the estimation of phase. The state

vector used for signal tracking approach consists of first M terms of Taylor series,

which enables estimation of phase derivatives upto orderM . We now demonstrate

that the signal tracking approach based method can be extended to simultaneous

estimation of phase and phase derivatives by using the additional Taylor series

terms and further prove that it performs better than most of the state-of-the art

approaches used for phase derivative estimation, especially at low SNR levels. We

use the state model based on Taylor series expansion of phase function and po-

lar to Cartesian conversion based measurement model. Unscented Kalman filter

algorithm is used for the state estimation. As the state contains the phase and

derivatives terms; we can estimate the phase and derivatives of phase, simultane-

ously, without extra computational efforts. The estimated phase is observed to

have few local spurious estimates, which are eliminated by a 3× 3 median filter.
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6.1.1 Simulation Analysis

The signal tracking approach is validated and compared with the state-of-the-art

for three different phase maps representing slowly varying phase, rapidly varying

phase and phase with larger dynamic range. These phase patterns were generated

in MATLAB. The complex interference field is then generated and Additive White

Gaussian Noise (AWGN) is added to it at Signal-to-Noise-ratio (SNR) of 10dB.

The simulated phase maps and their corresponding fringe patterns are shown in

figure 6.1.

First order phase derivatives

Noisy interference field is then analysed along each column separately using signal

tracking approach. We used UKF as a signal tracking algorithm. The process

noise covariance (Q) is taken to be kQ diag
[
10−2 10−2 10−4 · · · 10−(2M+2)

]
.

The rational behind choice of such Q is that the dynamic range of map of mth

derivative of phase is generally larger by magnitude of order 2 than that of

(m + 1)th derivative. The measurement noise covariance matrix is taken to be

R = kR diag
([
σ2
re σ2

im

])
where, σ2

re and σ2
im are the variances estimated form

(a) True Phase derivatives (b) DCFT based method (c) CPF based method

(d) IHAF Based method (e) PSWVD based method (f) Proposed method (UKF)

Figure 6.2: Error in phase derivative estimation by various methods
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manually selected uniform region of the fringe pattern. This reduces the parameter

tuning problem to scalar parameter tuning.

We have compared our approach with different parametric and non-parametric

approaches. For class of parametric approaches we chose Discrete Chirp-Fourier

Transform (DCFT) [Gorthi and Rastogi (2009a)], High-order Ambiguity Func-

tion (HAF) [Gorthi and Rastogi (2009b)] and Cubic Phase Function (CPF) [Gor-

thi and Rastogi (2010b)] based methods whereas Pseudo Wigner-Ville distribu-

tion (PSWVD) based methods [Rajshekhar et al. (2009)] is considered for non-

parametric methods. For piecewise polynomial phase approximation based meth-

ods each column was divided into 16 segments (Nw = 16), whereas the order of

polynomials for approximation was taken as 2 for DCFT based method (M=2), 3

for CPF based method (M=3) and 4 for IHAF based method (M=4).

Error in estimated of phase derivatives at SNR of 10 dB by different meth-

ods and the proposed method (UKF) are shown in figure 6.2. The proposed

method (UKF) estimates the phase derivatives with almost same accuracy as that

of PSWVD, whereas it outperforms the other methods. The main advantage of

the proposed methods (UKF) is that it calculates phase and phase derivatives

simultaneously, in single run of the algorithm, whereas PSWVD based method

provides only first order phase derivative. In order to estimate the higher order
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Figure 6.3: RMSE comparison of different methods for different SNR val-

ues
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(a) True Phase derivatives (b) DCFT based method (c) CPF based method

(d) IHAF Based method (e) PSWVD based method (f) Proposed method (UKF)

Figure 6.4: Error in phase derivative estimation at larger dynamic range

by various methods

phase derivatives by PSWVD, we need to form reconstructed interference field

using estimated first order phase derivatives and analyse it.

From figure 6.3, which shows the plot of RMSE against SNR values, we can

(a) True Phase derivatives (b) DCFT based method (c) CPF based method

(d) IHAF Based method (e) PSWVD based method (f) Proposed method (UKF)

Figure 6.5: Error in phase derivative estimation at rapidly varying phase

by various methods
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infer that all these methods performs almost identical above 10 dB, but the per-

formance of proposed method (UKF) is superior when the SNR falls below 10 dB.

This can be mainly attributed to the ability of UKF to model and incorporate

measurement noise and more accurate estimation of state from the measurements.

Comparison of the proposed method (UKF) with state-of-the-art methods for

larger dynamic range of phase is shown in figure 6.4, whereas that of rapidly

varying phase is shown in figure 6.5. It is seen from figures 6.4 and 6.5, that

the parametric methods based on polynomial approximation approach provides

erroneous phase derivatives estimates owing to larger error in the estimated pa-

rameters. Whereas our method agrees with the non-parametric method based on

PSWVD for the interference fields with higher SNR. Our method outperforms

PSWVD at lower SNR values of the interference field. The measurement noise

covariance included in measurement model ensures the effective handling of noisy

data.

Second order phase derivatives

The proposed method (UKF), with state vector containing M terms of Taylor

series expansion, provides the second order phase derivatives, simultaneously. In

this section, we will be validating the estimated second order phase derivatives

by our method with that of the PSWVD method. In PSWVD based method,

second derivative of phase can be obtained by running the same algorithm twice.

First time, the algorithm estimates the first order derivative. Second time, the

complex reconstructed field is generated using the first order derivative map and

then PSWVD algorithm estimated the derivative of the first order derivative.

As we are processing rows/column independently, proposed method (UKF) es-

timates second order derivatives along rows (Pxx) and columns (Pyy) directly from

the state vector, while cross term derivatives (Pxy & Pyx) needs to be estimated

by the similar approach as that of PSWVD algorithm.
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(a) True derivatives (2nd) (b) PSWVD (c) Proposed method (UKF)

(d) True derivatives (2nd) (e) PSWVD (f) Proposed method (UKF)

Figure 6.6: Error in second order phase derivative estimation at slowly

varying (first row) and larger dynamic range (second row) by

various methods

6.1.2 Experimental Results

For experimental analysis we have used two phase patterns representing severely

corrupted by noisy (6.7(a)) and rapidly changing peak (6.7(b)). The estimated

phase derivative patterns for noisy data using PSWVD based method and pro-

posed method (UKF) are shown in figures 6.8(a), 6.8(c), respectively and that

(a) Noisy (b) Rapid Variations

Figure 6.7: Fringe patterns corresponding to noisy and rapidly varying

phase maps
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(a) PSWVD (b) First Order (c) Second Order

(d) PSWVD (e) First Order (f) Second Order

Figure 6.8: First order derivatives estimated by PSWVD based method,

and first and second order derivatives by proposed method

(UKF)

of rapidly varying phase are shown in figures 6.8(d), 6.8(e), respectively. Also

second order derivatives estimated using proposed approach (UKF) are shown in

figures 6.8(c) and 6.8(f). It is observed that the phase derivatives estimated by

proposed approach (UKF) are more accurate than PSWVD. This analysis shows

that the UKF based phase estimation algorithm can be successfully applied for

simultaneous estimation of phase derivatives in real noisy situations.

6.2 Digital Holographic Moiré

In this section, we augment state vectors for different phase components to form

a single state vector. With combined state vector, we show that the proposed

signal tracking approach has the capability of the successfully tracking multiple

phase maps, there by providing an aid to multi-component phase estimation. In

digital holographic interferometry, interference phase corresponds to phase of the

single object wave; whereas in digital holographic Moiré, multiple object beams

are used to illuminate the object at different angles, Thus the Moiré pattern has

phase components corresponding to each of the object wave. The intensity vari-
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ation generated due to interference of scattered object beams from the surface

of an object with single reference beam is recorded using CCD sensors. By nu-

merical reconstruction of these recorded holograms after and before deformation

of an object we get Moiré fringes which contains the information about multiple

interference phases corresponding to different object beams. These multiple phase

maps and application of sensitivity vector to there maps enables the in-plane and

out-of-plane measurement [Rajshekhar et al. (2012)].

6.2.1 Theory

To analyse illumination of the object using multiple object beams, consider a

figure (6.9) where the object is exposed to two object beams ŝ1 and ŝ2 at the same

angle but from either side of the observation direction to achieve the symmetry

[Rajshekhar et al. (2011b)]. A CCD sensor is used to record the interference

pattern at a distance d from the object. Only one reference beam is used to create

the interference pattern with the two object waves.

The interference pattern at CCD plane due to two object waves O1(x, y) &

Figure 6.9: Multi beam illumination of the object
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O2(x, y) and a reference wave R(x, y) can be given by

I = (R +O1 +O2)(R +O1 +O2)
∗

= I0 +R∗(O1 +O2) +R(O1 +O2)
∗

where I0 = |R|2+|O1|2+|O2|2+O1O
∗
2+O∗1O2 and ∗ denotes the complex conjugate.

Here the indices (x, y) are omitted just for sake of brevity.

The intensity distribution recorded using CCD sensor, called digital hologram.

The hologram function can be reconstructed numerically to get the complex ampli-

tude of object waves O1 and O2 [Schnars and Japtner (2002)]. The reconstructed

interference field can be given as

Γ(x, y) = a1e
iϕ1 + a2e

iϕ2 (6.1)

In digital holographic interferometry, two holograms are recorded correspond-

ing before and after the deformation. These holograms are reconstructed using

numerical reconstruction, and then multiplied to get the reconstructed interfer-

ence field. Let φ1 is the phase change of object wave O1, and φ2 is that of O2

due to deformation. The reconstructed moiré fields for these holograms can be

represented, according to Rajshekhar and Rastogi (2012), as:

Γ1(x, y) = a1e
iϕ1 + a2e

iϕ2 (6.2)

Γ2(x, y) = a1e
i(ϕ1+φ1) + a2e

i(ϕ2+φ2) (6.3)

The reconstructed interference moiré field is then calculated by

Γ(x, y) = Γ2Γ
∗
1 (6.4)

= a21(x, y)eiφ1(x,y) + a22(x, y)eiφ2(x,y)

+a1(x, y)a2(x, y)ei[φ1(x,y)+ϕ1(x,y)−ϕ2(x,y)]

+a1(x, y)a2(x, y)ei[φ2(x,y)+ϕ2(x,y)−ϕ1(x,y)]

Here, random nature of the phases ϕ1(x, y) and ϕ2(x, y) makes the last two terms

to behave as random noise and hence these two terms can be assumed as part of
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noise. Hence, the reconstructed moiré field can be represented as

Γ(x, y) = a21(x, y)eiφ1(x,y) + a22(x, y)eiφ2(x,y) + η(x, y) (6.5)

Hence the problem of digital holographic moiré boils down to the estimation

of phase maps from a multi-component complex signal.

State Space Model

The reconstructed interference moiré field of digital holographic Moiré with vari-

able amplitude embedded in noise can be expressed by equation (6.5) [Gorthi and

Rastogi (2009c)] as:

Γ(x, y) = α1(x, y)eiφ1(x,y) + α2(x, y)eiφ2(x,y) + η(x, y) (6.6)

where αi(x, y) are the real valued amplitude and φi(x, y) are the real valued inter-

ference phase of the complex signal and η(x, y) is the zero mean complex Additive

White Gaussian Noise (AWGN). Here x and y are the rows and columns of the

N×N complex field. For any arbitrary row, equation (6.6) can be written as

Γx(y) = a1x(y)eiφ1x(y) + a2x(y)eiφ2x(y) + ηx(y) (6.7)

In proposed method, both the phase components are assumed to be continuous

and differentiable functions. Hence we can define the Taylor series expansion of

the phase function φ1x(y) and φ2x(y) in equation (6.7) as:

φx(y + 1) = φx(y) +
1

1!
φ′x(y) +

1

2!
φ′′x(y) + w0(y) (6.8)

subsequently we can calculate the φ′x(y + 1) and φ′′x(y + 1) as

φ′x(y + 1) = φ′x(y) +
1

1!
φ′′x(y) + w1(y) (6.9)

φ′′x(y + 1) = φ′′x(y) + w2(y) (6.10)

Here, w0(y), w1(y), w2(y) are the Higher Order Terms which can be considered in
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process noise. The amplitude can be modelled as random walk and represented

as:

ax(y + 1) = ax(y) + wx(y) (6.11)

Now, above equations can be written in matrix form as:
ax(y + 1)

φx(y + 1)

φ′x(y + 1)

φ′′x(y + 1)

 =


1 0 0 0

0 1 1
1!

1
2!

0 0 1 1
1!

0 0 0 1




a(y)

φx(y)

φ′x(y)

φ′′x(y)

+


wx(y)

w0(y)

w1(y)

w2(y)

 (6.12)

Applying same analysis to both the phase components and augmenting the state

vector as in equation given below,

x =
[
a1x φ1x φ′1x φ′′1x a2x φ2x φ′2x φ′′2x

]T

F =



1 0 0 0 0 0 0 0

0 1 1
1!

1
2!

0 0 0 0

0 0 1 1
1!

0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 1
1!

1
2!

0 0 0 0 0 0 1 1
1!

0 0 0 0 0 0 0 1


w(y) =

[
w1x w10 w11 w12 w2x w20 w21 w22

]
So, in matrix form we can write:

x(y + 1) = Fx(y) + w(y) (6.13)

here, the vector x(y) denotes the state vector, the matrix F is the transition matrix

representing the relation between the present and the next state of the field and

w(y) denotes the process noise. This forms our process model.
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Using state vector we can generate the measurement signal with the relation

<[f(y)] = a1x(y)cos(φ1x(y)) + a2x(y)cos(φ2x(y))

=[f(y)] = a1x(y)sin(φ1x(y)) + a2x(y)sin(φ2x(y))

Hence from above equations, the function used for prediction of observation from

state vector h(·) can be written as:

h(x(n)) =

x1cos(x2) + x5cos(x6)

x1sin(x2) + x5sin(x6)

 (6.14)

where xi is the ith element in the state vector x. As the measurement signal is a

complex field, noise is also complex. We assume the measurement (observation)

noise to be additive white Gaussian noise with zero mean and variance of σ2
ν . The

noise ν(y) is given by

ν(y) =

<[η(y)]

=[η(y)]

 (6.15)

the noise covariance R can be estimated effectively from the measured signal as

R = kR
σ2
v

2
I (6.16)

where kR is a scaling constant used for tuning the filter and I is 2 × 2 identity

matrix. Hence observation model can be written as

z(y) = h(x(y)) + ν(y) (6.17)

6.2.2 Simulation Results

An reconstructed interference moiré field of size 512×512 was simulated in MAT-

LAB. The signal then corrupted by using AWGN at signal to noise ration (SNR)

of 20 dB using MATLAB’s awgn function.

With the state space model derived, UKF is used to estimate the state contain-

ing amplitude and phase maps corresponding to each component from the complex

measurement field. To analyse the performance of the proposed method, we sim-
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(a) Phase map I (b) Phase map II (c) Fringe Pattern

Figure 6.10: True phase maps and corresponding fringe pattern

ulated the reconstructed interference field using two phase maps shown in figure

6.10(a) and 6.10(b), respectively. AWGN was then added to the field at SNR of

20 dB. Corresponding fringe pattern in shown in figure 6.10(c). The reconstructed

interference field is then processed using unscented Kalman filter based phase esti-

mation algorithm. Estimated phase maps are shown in figure 6.11(a) and 6.11(b),

whereas error in phase estimation are shown in 6.11(c) and 6.11(d), respectively.

(a) Est. phase map I (b) Est. phase map II

(c) Error in phase map I (d) Error in phase map II

Figure 6.11: Simulation analysis of multi-component phase estimation
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As Kalman Filter and its variants are not an optimal estimator in non-linear

scenarios, hence sufficient care must be taken while initializing the Kalman filter

parameters like initial error covariance, process noise covariance and the mea-

surement noise covariance. We have successfully shown in the figure 6.11 that

the UKF based method efficiently tracks the phase components if the initializa-

tion done properly. Here, we have used true values of the phase components for

initialization which will not be accessible in real-time scenarios.

6.2.3 Summary

We provide insights on extending the signal tracking approach for tracking multiple

phases of a multi-component complex signal, embedded in AWGN noise. Proper

tuning of parameters and initialization can potentially turn this method into a

powerful tool that aids in performing simultaneous measurement of in-plane and

out-of-plane displacements from a single record in holographic moiré.

6.3 Fringe projection profilometry

The fringe projection profilometry, which are used for extracting the 3D features

of the object, is one of the active research area in the optical metrology. This

Figure 6.12: Fringe Projection Profilometry
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technique caters numerous applications in the fields like biomedical applications,

namely, 3D intra-oral dental measurement, [Chen and Huang (2005)], human body

shape measurement for shape guided radiotherapy treatment [Lilley et al. (2000);

Moore et al. (2006)]; industrial and scientific applications, namely, characteriza-

tion of MEMS components [Quan et al. (2002); He et al. (2006)], quality control

of printed circuit board manufacturing [Yen et al. (2006)]; 3D face recognition sys-

tems [Yagnik et al. (2007)] and many more. The major feature of the fringe pro-

jection technique is in their ability to generate the high resolution 3-dimensional

reconstruction of the object via non-contact and non-destructive process. This

feature has helped fringe projection methods to create their own space in new

areas like security systems, object scanning and virtual reality. Fringes or grating

analysis have been widely used in analysing the 3D shapes. The fringe projection

basically uses the non-interfering lighting and image processing technique to ob-

tain the 3D shape. A typical fringe projection profilometry setup is shown in the

figure 6.12.

This technique involves projecting the sinusoidal fringe patterns on the object

surface. The depth of the object is transformed into the phase changes of these

projected fringes i.e., initially projected zero phase fringes undergoes phase mod-

ulation due to the depth of the object. The phase of these modulated fringes are

estimated using various fringe analysis techniques like Fourier transform methods

[Takeda and Mutoh (1983)], windowed Fourier transform methods [Kemao (2004)],

phase shift grating projection [Fu and Luo (2011)], etc. The phase estimated by

most of these techniques is wrapped phase and noisy, and hence a phase unwrap-

ping algorithm is required to obtain the unwrapped and continuous phase which

is proportional to the depth distribution.

The major limitation of the phase unwrapping algorithms is that their per-

formance is influenced by noise present in the fringe pattern. We propose use

of signal tracking approach, which is realized using the wrapped statistics based

filter. This method provides accurate, unwrapped and continuous phase directly

without need of additional unwrapping procedure. In this technique, a complex

fringe is generated by projecting sine and cosine fringes separately on the object,

recording the deformed fringes and finally combine them by taking cosine fringes

as real and sine fringes as imaginary part of the complex fringes. The complex
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fringes are then analysed by signal tracking approach to get the unwrapped phase.

Once the complex field is generated, the direct phase estimation is also possi-

ble by piecewise polynomial approximation approach [Gorthi and Rastogi (2009c)].

These approaches are efficient, provided that the polynomials used for phase ap-

proximation is smaller; otherwise a small errors in the coefficients will lead to

larger errors in the phase estimation. Since interference fringe pattern has si-

nusoidal fringes, naturally phase map will have larger dynamic range, owing to

multiple cycles of sinusoidal fringes.

We propose a signal tracking approach to estimate the phase directly from the

noisy interference fringes. The UKF and particle filter based realizations of signal

tracking approach works when either the phase map is larger dynamic range and

fringe pattern is moderately noisy (SNR> 20 dB) or the slowly varying phase

with severely noisy fringe pattern. But when larger dynamic range of phase is

hidden in severely noisy fringe pattern, only wrapped statistics based realization

of the signal tracking approach produces accurate unwrapped phase. Thus, we

use wrapped statistics based phase estimation method for analysis of these fringe

patterns.

6.3.1 Theory

Generation of Complex Fringe

A deformed fringe pattern is represented in the mathematical form as

z(m,n) = a(m,n) + b(m,n) cos(2πfx+ ψ(m,n)) (6.18)

where a(m,n), b(m,n) and ψ(m,n) are respectively the background intensity,

the amplitude modulation of the fringes and the phase to be measured at the

location (m,n) in a fringe pattern. A complex fringe is generated by combining a

cosine and sinusoidal fringe as shown below,
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z1(m,n) = a(m,n) + b(m,n)cos(2πfx+ ψ(m,n)) (6.19)

z2(m,n) = a(m,n) + b(m,n)sin(2πfx+ ψ(m,n)) (6.20)

By combining equations 6.19 and 6.20, we can obtain the fringe in exponentials

forms as below,

Γ(m,n) = z1(m,n) + iz2(m,n) (6.21)

Generation of complex interference fringe pattern using the fringe projection

profilometry setup, is depicted in the figure 6.13.

With the assumption that the a(m,n) and b(m,n) are constant throughout

the complex field, we can represent equation 6.21, in polar form as

Γ(m,n) = b(m,n)expj(2πfx+ψ(m,n)) (6.22)

The phase of the complex fringe is estimated using the signal tracking ap-

proach by the wrapped Kalman filter followed by removal of the carrier frequency

component to obtain the actual depth of the object.

6.3.2 Simulation Results

To validate the performance of proposed method (WKF) for the 3D reconstruction

of the object using fringe projection, sine and cosine fringes were simulated using

MATLAB. The simulations were performed on Windows 7 OS based workstation

with intel(R) Xeon(R) CPU at 3.20GHz with 16GB of primary memory. The

complex fringe pattern was simulated using equations 6.19, 6.20 and 6.21. The

wrapped statistics based realization of signal tracking approach was then applied

on the complex field to get the complete phase map (i.e., along with phase corre-

sponding to carrier frequencies of the fringe pattern). Frequency of the deformed

fringe pattern is calculated by taking Fourier transform of the fringe pattern. This

frequency is used to generate the phase component corresponding to the carrier

frequency of the fringes. Final phase map, which directly corresponds to the 3D
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Figure 6.13: Flow Chart of Fringe Projection Profilometry

shape of the object, is produced by subtracting the carrier phase component. As

a part of simulation, the wrapped statistics based phase estimation algorithm

method was compared with Fourier transform profilometry and windowed Fourier

transform Profilometry.

In the Fourier transform profilometry, the idea is to extract the phase infor-

mation from the fringes by separating the side lobes (phase information) in the

frequency domain. When the phase map is rapidly varying, two side lobes get

mixed into each other making the separation of them difficult. This case is de-

picted in figure 6.14(b). A phase map with larger dynamic range was generated

using the peaks function. The complex fringes are then generated according to
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(a) True phase (b) Log of FT of fringes

(c) Sine fringes (d) Cosine fringes

Figure 6.14: Simulation of larger dynamic range phase map depicting non-

separability of the side lobes in Fourier Transform (FT) do-

main at SNR of 6 dB

equations 6.18. The complex white Gaussian noise was then added to it in order to

generate the noisy fringes. The original phase map and the noisy sine and cosine

fringe pattern are shown in the figure 6.14(a), 6.14(c) and 6.14(d), respectively.

The proposed method (WKF) was compared with Windowed Fourier Trans-

(a) WFT (b) With carrier fringes (c) Without carrier fringes

Figure 6.15: Estimated phase maps using different methods for larger dy-

namic range and SNR = 6dB
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form(WFT) and it was observed that the when the SNR is changed there is no

noticeable difference in the phase reconstructed for WFT while in the case of the

proposed method (WKF), the root mean square error (RMSE) of the estimated

phase reduces as SNR of the fringe pattern increases. It was also observed that

when the dynamic range of the phase increases, fringes corresponding to the part of

higher slope (where the phase is changing rapidly) produces densely spaced fringes.

Windowed Fourier transform based method discards those fringes assuming them

to be noise. This leads to the erroneous phase map generation. Estimated phase

maps generated using Fourier transform profilometry, windowed Fourier transform

profilometry, and the proposed method (WKF) are shown in figure 6.15.

We conducted fringe projection experiment which validates real-time applica-

bility of our proposed approach. In this experiment, Lab chair was used as an

object. Fringe pattern, which is showing deformation due to dents of the back

support of the chair, is shown in the figure 6.16

The complex fringe pattern was generated using deformed sine and cosine

fringes. This fringe pattern was then processed using wrapped statistics based

phase estimation algorithm to estimate the phase patter along with the phase

component corresponding to carrier frequency, as shown in figure 6.17(a). This

phase component is generated y finding the carrier frequency of the fringe pattern

using Fourier transform. Estimated phase map after removal of carrier frequency

is shown in figure 6.17(b), which shows the dents of the chair clearly. This analysis

substantiate the applicability of the proposed approach (WKF) in the real-time

experiments for estimation of phase and thereby 3D shape reconstruction of the

(a) Fringes projected on chair (b) sine fringes (c) cosine fringes

Figure 6.16: Experimental data. The fringe patterns (sine and cosine)

were projected in the lab chair [fig (a)] and deformed fringe

pattern recorded using camera are shown in (b) and (c).
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(a) Phase with Carrier (b) Phase without Carrier

Figure 6.17: Experimental results. (a) Estimated phase with carrier fre-

quency and (b) without carrier frequency

object.

In summary, we propose a novel approach for generation of complex inter-

ference field in fringe projection profilometry and use of wrapped statistics based

phase estimation algorithm for the estimation of phase from those complex fringes.

The proposed approach (WKF) can estimate the phase from the interference pat-

tern for a larger dynamic range. Our method gives better performances as com-

pared to the state-of-the-art fringe analysis techniques. Simulations and experi-

mental analysis advocates the possible application the proposed method in real-

time scenarios. This work can also be taken forward to generate whole field 3D

reconstruction by generating depth map of the object from different view points..

6.4 Thermal expansion study using DHI

Previous sections showed the application of signal tracking in different scenar-

ios such as simultaneous estimation of phase and derivatives of arbitrary order,

estimation of multiple components of phase using single record of reconstructed

interference field, 3D reconstruction of the object shape via fringe projection pro-

filometry. In this section, we discuss another application of the signal tracking

approach using digital holographic interferometry for thermal expansion analysis

of the surface. When the conducting material is heated at single point, the heat

disperses through the object and that causes non-uniform expansion on the surface
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of the object.

In present application, we used an Aluminium as the material for expansion

study. The test object made up of Aluminium (2 mm in thickness) was clamped

from four corners on the custom made mount at the optical table. The object

was then illuminated by object beam generated from a laser source (He-Ne laser,

632.8nm), and the interference of scattered beam from the object with the refer-

ence beam generated from the same laser source was recorded by a CMOS sensor

(DMK72BUC02 Imaging Source). The test object was heated using heating iron

from backside of the object and the holograms were recorded at every 30 seconds

during heating process. Recorded holograms were reconstructed to retrieve the

complex object wave corresponding to the holograms. Reconstructed interference

field was calculated, with first hologram as a reference state of the object, by multi-

plying current object wave-field with the complex conjugate of the reference object

wave-field. Figure 6.18 shows the noisy reconstructed interference field, whereas

figure 6.19 shows the 3D mesh plot of estimated phase map corresponding to one

instance of the hologram recording after 5 minutes of heating the object.

From the Figure 6.18, we understand that the major requirements of the fringe

analysis algorithm is to be able to handle severely corrupted fringe pattern, and at

the same time it should be capable of handling larger dynamic range. The noisy

interference field is processed using wrapped statistics based realisation of signal

tracking approach for phase estimation. Figure 6.19 shows the estimated phase

Figure 6.18: Experimental results for phase estimation using signal track-

ing approach
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Figure 6.19: Experimental results for phase estimation using signal track-

ing approach

map using signal tracking approach. This proves the applicability and credibility

of the proposed signal tracking approach as a fringe analysis in the real time envi-

ronment, especially when the fringe pattern is extremely noisy and the underlying

phase map is of larger dynamic range.
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CHAPTER 7

Conclusions and Future Scope

The research work carried out in this thesis is mainly motivated by the require-

ment of development of an approach with the capability of handling larger dy-

namic range of the phase and severe noise in the interference field, simultaneously.

The signal tracking approach proposed for fringe analysis has the potential to (1)

estimate phase and phase derivatives simultaneously from the single record of in-

terference field, and (2) handle extremely noisy fringes and produce an accurate,

unwrapped and continuous phase map. It involves two important parts: State

space model and Tracking algorithm. State space model is based on Taylor se-

ries expansion of phase map as state model and polar to Cartesian conversion as

measurement model.

We have proposed and tested different tracking algorithmic frameworks for es-

timation of phase based on the proposed state space model. Our first choice of

tracking algorithm was extended Kalman filter (EKF) owing to ease of implemen-

tation. It is observed that the EKF algorithm works effectively, even outperforms

the state-of-the-art phase estimation algorithms, when the interference field is not

corrupted by noise. It is capable of handling rapidly varying phase with larger dy-

namic range. Since EKF uses linearisation to linearise the non-linear measurement

model, its performance gets affected when the measurements become noisy.

To overcome this issue, we explored to approximate the measurement model

(non-linear polar to Cartesian conversion) by different techniques. We used sigma

points (UKF) and randomly generated particles (PF) to approximate the non-

linear transformation. It is observed that the UKF and PF framework based

methods can handle extreme noise and larger dynamic range but separately. When

the interference field is extremely noisy, and the underlying phase is rapidly varying

with larger dynamic range, aforementioned approximation becomes unreliable.

In order to resolve this issue, we extended our state space model using the

wrapped dynamical system as the measurement model instead of polar to Carte-



sian conversion based model. This, as against the our earlier work, bypasses the

2D non-linear rotating vector model and wrapped dynamical system are best ap-

proximated by wrapped Gaussian distribution. It was observed that the wrapped

statistics based filter satisfied all of our goals providing the efficient solution of

phase estimation problem when the interference fringes are extremely noisy and

at the same time underlying phase map is having larger dynamic range. Since

the state vector used for signal tracking approach consists of phase and phase

derivatives components, proposed algorithms can be used for simultaneous esti-

mation of phase and phase derivatives of arbitrary order from a single record of

the reconstructed interference field, which are helpful for analysis of stress/strain,

curvature and twist in the deformed objects.

Finally, we presented different applications of the proposed signal tracking ap-

proach such as multiple phase component estimation, 3D reconstruction of an

object via fringe projection profilometry and estimation of phase for thermal ex-

pansion study. We demonstrated through thermal expansion study that the pro-

posed approach makes the best suitable candidate for fringe analysis.

Further research needs to be focussed on applications of these algorithms for

real-time applications in different interferometric methods such as InSAR phase

unwrapping, demodulation of Radar echo, estimation of out-off plane and in plane

deformation etc. Also. one can look into the inherent issues of Kalman filtering

such as initialization of state vector, tuning of parameters etc., which keeps lim-

itations on the performance of the state estimation algorithm. There is further

need to model different parameters in the state space model such as object discon-

tinuities, speckle noise, missing or unrecorded observations, amplitude variations.

The research also can be diverted towards 360o 3D reconstruction of the object

using fringe projection profilometry, simultaneous surface topography and slope

estimation in SAR interferometry, etc.
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APPENDIX A

Parameter Estimation from the State Vector

In polynomial phase approximation approach (i.e., parameter estimators) used for

state-space based approach, the phase is approximated by second order polyno-

mial. The phase polynomial with a2, a1, a0 being coefficients of the polynomials

is represented as:

φ(n) = a2n
2 + a1n+ a0 (A.1)

By differentiating the phase polynomial shown in equation A.1, we get

φ′(n) = 2a2n+ a1 (A.2)

φ′′(n) = 2a2 (A.3)

Now, for state space based approaches, we combine these equations along with

the amplitude term A(n) to form the state vector x[n] =
[
A(n) φ(n) φ′(n) φ′′(n)

]
.

At the initial condition (or for first pixel of column/row), i.e., n=0, we get

φ(0) = a0

φ′(0) = a1

φ′′(0) = 2a2

Above equations along with amplitude A(n) of the interference field, above

equations can be represented in the matrix form as:
A(n)

φ(0)

φ′(0)

φ′′(0)

 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 2




A(n)

a0

a1

a2





i.e.,

x(0) = C−1θ(n)

where, θ(n) =
[
a0 a1 a2

]T
represents the parameter vector. Hence, we can

write the parameter vector in relation with initial state vector x(n) as:

θ(n) = Cx(0) (A.4)

where C =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0.5

, i.e. a diagonal matrix with elements 1, 1, 1, 0.5.

Now, current state (i.e., x(n) is back-propagated to initial condition using

inverse of state transition matrix. The process update equation x(n) = Fx(n− 1)

is written as:

x(n− 1) = F−1x(n) (A.5)

The initial state vector is, then, written as

x(0) = F−nx(n) (A.6)

Finally, we combine equations A.4 and A.6 that derives the relation between

current state vector and the parameters of the phase polynomial, which is then

used to reconstruct the phase map. The relation is represented as:

θ(n) = CF−nx(n) (A.7)
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