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ABSTRACT

The main objective of this thesis is to study the various geometric structures

on a statistical manifold and the geometry of parameter estimation. This study comes

under the area of Information Geometry which is the geometric study of a statistical

model of probability distributions. A statistical model equipped with a Riemannian

metric and a pair of dual affine connections is called a statistical manifold. Amari’s

α-geometry is an important geometric structure on a statistical manifold which plays a

major role in the asymptotic theory of estimation.

In Chapter 2 we introduce a generalized class of geometric structures on a

statistical manifold called the (F,G)-geometry using a general embedding function F

and a positive smooth function G. In Section 2.2 the Fisher information metric and the

α-connections are computed for a statistical manifold defined on finite sets. In Theorem

2.3.5 we prove a necessary and sufficient condition for two (F,G)-connections to be

dual with respect to the G-metric. In Theorem 2.3.6 we show that the α-geometry is a

special case of the (F,G)-geometry. Thus we obtain a generalized dualistic structure

on a statistical manifold which includes the α-geometry as a special case. Further the

G-metric and the (F,G)-connections are computed for statistical manifold defined on

finite sets in Section 2.3.

In Chapter 3 we study the invariance properties of various geometric struc-

tures on a statistical manifold and classify them into invariant and non-invariant classes.

The covariance under reparametrization of the (F,G)-geometric structures are shown in

Theorems 3.2.3 and 3.2.4. Then in Theorem 3.2.5 we prove that the (F,G)-geometry is

not invariant under smooth one to one transformations of the random variable in general.

In Corollary 3.2.6 we prove that the α-geometry is the only (F,G)-geometry which is

invariant under smooth one to one transformations of the random variable. In Theorems

3.2.7 and 3.2.8 we show that the (α, ρ, τ)-geometry is covariant under reparametrization

and is not invariant under smooth one to one transformations of the random variable in

general. Also the α-geometry is the only (α, ρ, τ)-geometry which is invariant under

smooth one to one transformations of the random variable. Further the relation between
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the (F,G) and (α, ρ, τ)-geometries are given in Theorem 3.2.11.

In Chapter 4 first we give the (±1)-conformal equivalence of the α-geometry

and the geometry induced from the conformal transformation of the α-divergence in

Propositions 4.2.3 and 4.2.4. In Corollary 4.2.6 we prove that the q-structure is the con-

formal flattening of the α-geometry. Then we discuss the importance of non-invariant

(F,G)-geometry in the study of the dually flat geometries of the deformed exponential

family. There are two dually flat geometries on a deformed exponential family, the U-

geometry and the χ-geometry. In Theorem 4.3.4 we show that the U-geometry is the

(F,G)-geometry for suitable choices of F and G. Further we prove that the χ-geometry

is the conformal flattening of the (F,G)-geometry for suitable choices of F and G in

Theorems 4.3.16, 4.3.17 and 4.3.18.

In Chapter 5 we consider the parameter estimation problem based on a mis-

matched model. In Theorems 5.3.1 and 5.3.2 we prove a necessary and sufficient condi-

tion for the estimator based on a mismatched model to be consistent and first order effi-

cient. Further a theoretical formulation of the maximum likelihood estimation problem

based on a mismatched model in an exponential family is given. We prove a necessary

and sufficient condition for an MLE based on a mismatched model to be consistent and

efficient in Theorems 5.3.8 and 5.3.9.

In Chapter 6 we define certain generalized notions likeF -product, F - indepen-

dence of random variables and maximum F -likelihood estimator (F -MLE) in Section

6.1. In Theorem 6.1.6 we show that the F -MLE is a MAP estimator with a prior. Then

using the F -escort probability distribution we define two generalized notions of MLE,

the xN -based F -escort MLE and the F -escort MLE based on the product of F -escort

distribution of the marginal probability density of single observations in Section 6.2.

In Theorem 6.2.3 we give a characterization of the q-escort MLE among the xN based

F -escort MLE as a Bayesian MAP estimator with a prior. Further an analytic proof

of the F -version of the maximum entropy theorem is given in Theorem 6.2.5. In The-

orem 6.3.2 a proof of the generalized Cramer-Rao bound defined by Naudts is given.

Further we show that the U-estimator for the dual coordinate in the U-geometry of the

deformed exponential family is optimal with respect to this bound in Theorem 6.3.3.

This chapter ends with an open problem regarding the properties of the F -MLE in a

deformed exponential family.
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