Indian Institute of Space Science and Technology

Thiruvananthapuram

B.Tech. Aerospace Engineering
Curriculum & Syllabus (For 2009 Admission)

DEPARTMENT OF AEROSPACE ENGINEERING

SEMESTER I

CODE	TITLE	L	Т	Р	С
MA111	Geometry and Calculus	3	1	0	4
PH111	Physics I	3	1	0	4
CH111	Chemistry I	3	1	0	4
AE111	Basic Mechanical Engineering	3	0	0	3
AV111	Basic Electrical Engineering	3	0	0	3
PH131	Physics Lab I	0	0	3	1
CH131	Chemistry Lab I	0	0	3	1
AE131	Basic Engineering Lab	0	0	3	1
HS131	Communication Skills Lab	1	0	3	2
	Total	16	3	12	23

SEMESTER II

CODE	TITLE	L	Т	Р	С
MA121	Linear Algebra and Differential Equations	3	1	0	4
PH121	Physics II	3	1	0	4
CH121	Engineering Materials	3	1	0	4
AE121	21 Engineering Mechanics				3
AV121	/121 Basic Electronics and Computer Engineering				3
MA141	Basic Programming Lab	0	0	3	1
AE141	E141 Engineering Graphics				2
AV141	Basic Electrical and Electronics Engineering Lab			3	1
	Total	16	3	9	22

SEMESTER III

TITLE	L	Т	Р	С
Complex Analysis and Integral Transforms	3	0	0	3
Engineering Thermodynamics	3	0	0	3
Mechanics of Solids	3	0	0	3
Fluid Mechanics	3	0	0	3
Manufacturing Technology I	3	0	0	3
Introduction to Economics	2	0	0	2
Machine Drawing	0	0	3	1
Strength of Materials Lab	0	0	3	1
Total	17	0	6	19
	Complex Analysis and Integral Transforms Engineering Thermodynamics Mechanics of Solids Fluid Mechanics Manufacturing Technology I Introduction to Economics Machine Drawing Strength of Materials Lab	Complex Analysis and Integral Transforms 3 Engineering Thermodynamics 3 Mechanics of Solids 3 Fluid Mechanics 3 Manufacturing Technology I 3 Introduction to Economics 2 Machine Drawing 0 Strength of Materials Lab 0	Complex Analysis and Integral Transforms 3 0 Engineering Thermodynamics 3 0 Mechanics of Solids 3 0 Fluid Mechanics 3 0 Manufacturing Technology I 3 0 Introduction to Economics 2 0 Machine Drawing 0 0 Strength of Materials Lab 0 0	Complex Analysis and Integral Transforms 3 0 0 Engineering Thermodynamics 3 0 0 Mechanics of Solids 3 0 0 Fluid Mechanics 3 0 0 Manufacturing Technology I 3 0 0 Introduction to Economics 2 0 0 Machine Drawing 0 0 3 Strength of Materials Lab 0 0 3

SEMESTER IV

CODE	TITLE	L	Т	Р	С
MA221	Numerical Methods, Partial Differential Equations, and Calculus of Variation	3	0	0	3
AE221	Gas Dynamics	3	0	0	3
AE222	Heat Transfer	3	0	0	3
AE223	E223 Kinematics and Dynamics of Mechanisms				4
AE224	Metrology and Computer Aided Inspection	3	0	0	3
HS221	Introduction to Social Science and Ethics	2	0	0	2
AE241	Thermal and Fluid Lab	0	0	6	2
	Total	17	1	6	20

SEMESTER V

CODE	TITLE		L	Т	Р	С
MA311	Probability and Statistics		3	0	0	З
AE311	Aerodynamics		3	0	0	3
AE312	Aerospace Structures I		3	1	0	4
AE313	Manufacturing Technology II		3	0	0	3
AV315	Instrumentation and Control Systems		3	0	0	3
CH311	Environmental Science and Engineering		2	0	0	2
AE331	Aerodynamics Lab		0	0	3	1
AE332	Metrology Lab		0	0	3	1
AV335	Instrumentation and Control Systems Lab		0	0	3	1
		Total	17	1	9	21

SEMESTER VI

CODE	TITLE	L	Т	Р	С
AE321	Atmospheric Flight Mechanics	3	0	0	3
AE322	Spaceflight Mechanics	3	0	0	3
AE323	3	0	0	3	
AE324	Aerospace Structures II	3	1	0	4
E01	Stream Elective I	3	0	0	3
HS321	Principles of Management Systems	3	0	0	3
AE341	Aerospace Structures Lab	0	0	3	1
AE342	Manufacturing Processes Lab	0	0	3	1
	Total	18	1	6	21

SEMESTER VII

CODE	TITLE	L	Т	Р	С
AE411	Rocket Propulsion	3	0	0	3
AE412	Aerospace Vehicle Design	3	0	0	3
E02	Stream Elective II	3	0	0	3
E03	Stream Elective III	3	0	0	3
E04	Department Elective	3	0	0	3
E05	Institute Elective	3	0	0	3
AE431	Modeling and Analysis Lab	0	0	3	1
AE432	Flight Mechanics and Propulsion Lab	0	0	3	1
AE451	Summer Internship and Training	0	0	0	3
AE452	Seminar	0	0	0	2
	Total	18	0	6	25

SEMESTER VIII

CODE	TITLE	L	Т	Р	С
AE453	Comprehensive Viva-Voce	0	0	0	3
AE454	Project Work	0	0	0	12
	Total	0	0	0	15

SEMESTER-WISE CREDITS

Semester	I	Ш	Ш	IV	٧	VI	VII	VIII	Total
Credits	23	22	19	20	21	21	25	15	166

LIST OF ELECTIVES

Stream I	Aerodynamics and Flight Mechanics
Stream II	Materials and Manufacturing
Stream III	Design and Structures
Stream IV	Thermal and Propulsion

CODE	TITLE	Stream I	Stream II	Stream III	Stream IV
AE461	Advanced Aerodynamics				
AE462	Advanced Aerospace Structures			$\sqrt{}$	
AE463	Advanced Fluid Mechanics				
AE464	Advanced Heat Transfer				$\sqrt{}$
AE465	Advanced Propulsion Systems				
AE466	Structural Dynamics and Aeroelasticity			$\sqrt{}$	
AE467	Analysis & Design of Composite Structures			$\sqrt{}$	
AE468	Computational Fluid Dynamics				
AE469	Computer Integrated Manufacturing				
AE470	Design of Aerospace Structures			$\sqrt{}$	
AE471	Convection Heat Transfer				
AE472	Experimental Aerodynamics				
AE473	Finite Element Method			$\sqrt{}$	
AE474	Fracture Mechanics				
AE475	Engineering Vibration			$\sqrt{}$	
AE476	Industrial Engineering				
AE477	Fundamentals of Combustion				
AE478	Supply Chain Management				
AE479	Introduction to Optimization				
AE480	Nontraditional Machining		$\sqrt{}$		
AE481	Operations Research		$\sqrt{}$		
AE482	Project Management		√		
AE483	Robot Mechanisms and Motion Planning		$\sqrt{}$	$\sqrt{}$	
AE484	Space Mission Design and Optimization				

CODE	TITLE	Stream I	Stream II	Stream III	Stream IV
AE485	Quality Engineering and Management				
AE486	Refrigeration and Cryogenics				√
AE487	Turbomachines				
AE488	Advanced Manufacturing and Automation		√		
AE489	Aerospace Materials and Processes		√		
AE490	Heat Transfer in Space Applications				
AE491	Structural Dynamics			√	
AE492	Tool Engineering and Design				

SEMESTER I

MA111 GEOMETRY AND CALCULUS

(3-1-0) 4 credits

Analytical Geometry: systems of circles, parabola, ellipse, hyperbola – polar equations – planes, sphere, cone, and cylinder.

Differential Calculus: Taylor's theorem – partial differentiation – maxima and minima by using Lagrange multipliers – concavity and convexity of a curve, points of inflexion, asymptotes, curvature – curve tracing.

Integral Calculus: lower and upper integral – Riemann integral and its properties – the fundamental theorem of integral calculus – mean value theorems – differentiation under integral sign – double and triple integrals – change of variable in double integrals – polar and spherical transforms, Jacobian of transformations.

Vector Calculus: scalar and vector fields – level surfaces – directional derivatives, gradient, curl, divergence – Laplacian – line and surface integrals – theorems of Green, Gauss, and Stokes.

Textbooks:

- 1. Stewart, J., Calculus: Early Transcendentals, 5th ed., Brooks/Cole (2007).
- 2. Kreyszig, E., *Advanced Engineering Mathematics*, 9th ed., John Wiley (2005).

References:

- 1. Greenberg, M. D., Advanced Engineering Mathematics, Pearson Education (2007).
- 2. James, G., Advanced Modern Engineering Mathematics, Pearson Education (2004).
- 3. Thomas, G. B. and Finney, R. L., *Calculus and Analytic Geometry*, 9th ed., Pearson Education (2003).
- 4. Jain, R. K. and Iyengar, S. R. K., Advanced Engineering Mathematics, Narosa (2005).

PH111 PHYSICS I (3-1-0) 4 credits

Newtonian Mechanics: Newton's laws of motion – Galilean invariance – concepts of inertia, momentum, force, work, and energy – conservation laws – solar system, planetary orbits, Kepler's laws – Newton's law of gravitation.

Optics: corpuscular and wave theories of light – concepts of reflection, refraction, interference, diffraction, polarization, and dispersion – optical instruments.

Oscillations and Waves: damped and forced oscillations – coupled oscillators – traveling waves, superposition of waves – wave energy, energy transfer by waves – sound waves, Doppler effect.

Quantum Mechanics: inadequacy of classical mechanics – Planck's law – photoelectric effect – wave particle duality, de Broglie hypothesis – formulation of quantum mechanics, probability interpretation – Heisenberg's uncertainty principle – Schrodinger's equation.

Relativity: constancy of speed of light – relativity principle, Lorentz contraction and time dilation – mass-energy relation.

Introduction to Remote Sensing: principles of the electromagnetic spectrum – platforms for RS – spatial, spectral, and radiometric resolution – optical, microwave remote sensing – radiometric and geometric errors and their correction – types of data products – image processing applied to RS – applications of RS.

Introduction to Atmospheric Physics: earth's atmosphere, structure, classification, constituents – greenhouse effect – radiation budget, differential heating, general circulation – cloud formation and classification – solar radiation – interaction with planetary atmospheres.

Textbooks:

- 1. Serway, R. A. and Jewett, J. W., *Principles of Physics: A Calculus Based Text*, 4th ed., Thomson Brooks/Cole (2006).
- 2. Halliday, D., Resnick, R., and Walker, J., *Fundamentals of Physics*, 6th ed., John Wiley (2001).
- 3. Lecture Notes on Remote Sensing.

- 1. Young, H. D., Freedman, R. A., Sundin, T. R., and Ford, A. L., *Sears and Zemansky's University Physics*, 11th ed., Pearson Education (2004).
- 2. Feynman, R. P., Leighton, R. B., and Sands, M., *The Feynman Lectures on Physics*, Narosa (2005).
- 3. Beiser, A., Concepts of Modern Physics, 6th ed., McGraw-Hill (2002).
- 4. Tipler, P. A., *Physics for Scientists and Engineers*, 4th ed., W. H. Freeman (1998).
- 5. Crawford, F. S., *Waves and Oscillations, Berkeley Physics Course*, Vol. 3, McGraw-Hill (1968).
- 6. Giancoli, D. C., *Physics: Principles with Applications*, 6th ed., Prentice Hall (2004).
- 7. Wallace, J. M. and Hobbs, P. V., *Atmospheric Science: An Introductory Survey*, 2nd ed., Academic Press (2006).
- 8. Houghton, J., *The Physics of Atmosphere*, 3rd ed., Cambridge Univ. Press (2001).
- 9. Goody, R. M. and Walker, J. C. G., *Atmospheres*, Prentice Hall (1972).
- 10. Jensen, J. R., *Remote Sensing of the Environment: An Earth Resource Perspective*, 2nd ed., Prentice Hall (2007).
- 11. Jensen, J. R., *Introductory Digital Image Processing: A Remote Sensing Perspective*, 3rd ed., Prentice Hall (2005).
- 12. Lillesand, T. M., Kiefer, R. W., and Chipman, J. W., *Remote Sensing and Image Interpretation*, 6th ed., John Wiley (2007).

Chemical Kinetics: basic concepts of chemical kinetics; reaction stoichiometry, empirical rate equations, elementary reactions, order and molecularity – composite reactions: reversible reactions, chain reactions, reaction mechanisms – effect of temperature on reaction rates: Arrhenius equation – catalysis; different types of catalysts, enzyme catalysis, inhibition – dynamics of chemical processes; theories of reaction rates.

Electrochemical Systems: introduction to electrochemical cells; EMF, applications of EMF measurements, thermodynamic data – electrolytic conductance; Kohlrausch's law, Arrhenius theory, Ostwald's dilution law, transport number, electrochemical series, concentration cell.

Polymer Chemistry: basic concepts; molecular weights and distributions, thermal transitions, morphology – classification of polymers: methods of polymerization – copolymers – polymers for space applications – polymer degradation.

Propellants and Explosives: basics of explosives and propellants; classification of explosives and propellants, initiators, detonators – explosion, detonation, RDX, HMX, plastic bonded explosives, explosive polymers – different types of propellants; calorific value, efficiency factor – composite propellants.

Textbooks:

- 1. Jain, P. C. and Jain, M., *Engineering Chemistry*, 15th ed., Dhanpat Rai Pub. Company (2007).
- 2. Krishnamurthy, N., Vallinayagam, P., and Madhavan, D., *Engineering Chemistry*, Prentice Hall of India (2007).

References:

- 1. Atkins, P. and de Paula, J., Atkins' Physical Chemistry, 8th ed., Oxford Univ. Press (2007).
- 2. Laidler, K. J., Chemical Kinetics, 3rd ed., Pearson Education (2005).
- 3. Young, R. J. and Lovell, P. A., *Introduction to Polymers*, 2nd ed., CRC Press (2000).
- 4. Dryden's Outlines of Chemical Technology, 3rd ed., Affiliated East-West Press (1997).
- 5. Urbenskey, T., *Chemistry and Technology of Explosives*, Vol. 2, Vol. 3 and Vol. 4, Pergamon Press (1988).
- 6. Bailey, A. and Murray, S. G., *Explosives, Propellants & Pyrotechnics*, 2nd ed., Brassey's (2001).

AE111 BASIC MECHANICAL ENGINEERING

(3 - 0 - 0) 3 credits

Introduction to mechanical engineering – role of mechanical engineers – engineering thermodynamics; basic laws and thermal engineering applications – introduction to engineering materials and manufacturing processes – introduction to mechanisms – introduction to measurement systems and data analysis.

Textbooks:

- 1. Agrawal, B. and Agrawal, C. M., Basic Mechanical Engineering, Wiley India (2008).
- 2. Lecture Notes.

References:

- 1. Shanmugham, G., Introduction to Mechanical Engineering, Tata McGraw-Hill (2007).
- 2. Çengel, Y. A. and Boles, M. A., *Thermodynamics An Engineering Approach*, 5th ed., Tata McGraw-Hill (2006).
- 3. Kalpakjian, S. and Schmidt, S. R., *Manufacturing Engineering and Technology*, 4th ed., Prentice Hall (2001).
- 4. Holman, J. P., Experimental Methods for Engineers, 7th ed., Tata McGraw-Hill (2004).

AV111

BASIC ELECTRICAL ENGINEERING

(3 - 0 - 0) 3 credits

Circuit analysis, Kirchoff's law, mesh and nodal methods – transient analysis for RLC circuit – alternating current theory – resonance, Q factor and power measurement by two wattmeter circuits – network theorems – magnetic circuit, principles of magnetic circuits – DC and AC excitation – hysteresis loop, BH curve – losses, energy, and force production – electrical machines – power electronics, SCR, TRIAC, DIAC, and UJT; application in DC-DC converter and inverter circuit – introduction to transducer – storage batteries, different technologies, specification, maintenance and usage in aerospace applications.

Textbooks:

- 1. Hughes, E., Electrical and Electronic Technology, Pearson Education (2002).
- 2. Del Toro, V., *Principles of Electrical Engineering*, 2nd ed., Prentice Hall (1986).

- 1. Hayt, W. H. and Kemmerley, J. E., *Engineering Circuit Analysis*, 4th ed., McGraw-Hill (1986).
- 2. Murthy, K. V. V. and Kamath, M. S., Basic Circuit Analysis, Jaico Publishing (1998).
- 3. Kothari, D. P. and Nagrath, I. J., *Theory and Problems of Basic Electrical Engineering*, Prentice Hall (2000).
- 4. Pal, M. A., *Introduction to Electrical Circuits and Machines*, Affiliated East-West Press (1975).
- 5. Kassakian, J. G., Schlecht, M. F., and Verghese, G. C., *Principles of Power Electronics*, Addison-Wesley Series in Electrical Engineering (1991).
- 6. Erickson, R. W., Fundamentals of Power Electronics, Chapman & Hall (1997).
- 7. Mohan, N., Undeland, T., and Robbins, W., *Power Electronics: Converters, Applications, and Design*, 2nd ed., John Wiley (1995).

- Properties of Matter and Thermal Physics
 - Determination of Young's modulus
 - Determination of rigidity modulus
 - Determination of viscosity of liquid constant and variable pressure head
 - Determination of surface tension capillary rise method
 - Thermal conductivity of a bad conductor Lee's disc method
 - Determination of specific heat of a liquid using steam
- Mechanics and Sound
 - Determination of moment of inertia flywheel
 - Determination of g using compound pendulum
 - Keter's pendulum precise setting and analysis
 - Frequency of tuning fork sonometer
- Optics
 - Focal length convex and concave lens
 - Refractive index spectrometer i-d curve
 - Refractive index small angle prism
 - Spectrometer grating wave length of spectral lines
 - Grating minimum deviation, oblique incidence

CH131 CHEMISTRY LAB I (0-0-3) 1 credit

- Inorganic Chemistry
 - Acidimetry and alkalimetry
 - Permanganometry
 - Dichrometry
 - lodometry and iodimetry
 - Physical Chemistry
 - Chemical kinetics
 - Viscosity of sugar solution
 - Potentiometry
 - Conductometry
 - Organic Chemistry
 - Determination of purity of phenol

- Preparation of simple organic compounds
- Synthesis of polymers

AE131

BASIC ENGINEERING LAB

(0 - 0 - 3) 1 credit

- Study of general purpose hand tools in workshop
- Assembly and disassembly practices of the following models
 - Gear box assembly
 - Centrifugal pump assembly along with shaft alignment practice
 - Cam and follower mechanisms assembly
 - Transducer (sensor) trainer
- Experiments on different basic machines
 - Turning exercise straight turning, taper turning, thread cutting practice
 - Milling exercise spur gear cutting practice
 - Welding practice arc welding
 - Fitting practice models with marking and drilling exercises

HS131

COMMUNICATION SKILLS LAB

(1 - 0 - 3) 2 credits

- Listening drills
- Pronunciation drills
- Practice special communication situations
- Vocabulary exercises and group discussions
- Functional grammar exercises
- Technical writing tips (engineering and scientific papers)
- Technical guide lines for seminar presentation
- Neuro-linguistic programming
- Passage comprehension
- Metronome practice with the help of mnemonics

Textbooks:

- 1. Huxley, A., Brave New World, Chatto and Windus (1932).
- 2. Padmanabhan, M., Harvest, Kali for Women (2008).

- 1. Baker, A. and Goldstein, S., Pronunciation Pairs, Cambridge Univ. Press (2002).
- 2. Brown S. and Smith, D., Active Listening, Cambridge Univ. Press (2004).
- 3. Buzan, T., Use Your Head, Guild Publishing (1974).
- 4. Maugur, G., *The English Language Laboratory Drills for Students of Science and Technology*, Oxford Univ. Press (2005).
- 5. Orwell, G., Nineteen Eighty Four, Secker and Warburg (1949).

SEMESTER II

MA121 LINEAR ALGEBRA AND DIFFERENTIAL EQUATIONS (3 – 1 – 0) 4 credits

Linear Algebra: matrices; solution space of system of equations Ax = b, eigenvalues and eigenvectors, Cayley-Hamilton theorem – group, ring, field – vector spaces: subspaces, linear dependence, independence, basis, dimension – inner product – Gram–Schmidt orthogonalization process – linear transformation; null space and nullity, range and rank of a linear transformation.

Differential Equations: first order ordinary differential equations – classification of differential equations – existence and uniqueness of solutions of initial value problem – higher order linear differential equations with constant coefficients – method of variation of parameters and method of undetermined coefficients – power series solutions – regular singular point – Frobenius method to solve variable coefficient differential equations – special functions: Legendre polynomials, Bessel's function, gamma function, and their properties – Sturm-Liouville problems – self-adjoint operators – Green's functions.

Sequences and Series: real sequences, complex sequences – sequences of functions – uniform convergence of series – test for convergence – uniform convergence for series of functions.

Textbook:

• Kreyszig, E., Advanced Engineering Mathematics, 9th ed., John Wiley (2005).

References:

- 1. Lay, D. C., *Linear Algebra and Its Applications*, Pearson Education (2007).
- 2. Ross, S. L., Differential Equations, Blaisedell (1995).
- 3. Stewart, J., Calculus: Early Transcendentals, 5th ed., Brooks/Cole (2007).
- 4. Jain, R. K. and Iyengar, S. R. K., Advanced Engineering Mathematics, Narosa (2005).
- 5. Greenberg, M. D., Advanced Engineering Mathematics, Pearson Education (2007).

PH121 PHYSICS II (3-1-0) 4 credits

Electromagnetic Theory: conservative vector fields and their potential functions, electrostatic examples – Gauss' theorem, Stokes' theorem – physical applications in electrostatics – electrostatic potential and field due to discrete and continuous charge distributions – dipole and quadrupole moments – energy density in an electric field – dielectric polarization – conductors and capacitors – electric displacement vector – dielectric susceptibility – Biot-Savart's law and Ampere's law in magnetostatics – magnetic induction due to configurations of current-carrying conductors – magnetization and surface currents – energy density in a magnetic field – magnetic permeability and susceptibility – force on a charged particle in electric and magnetic fields – electromotive force – Faradays' law of electromagnetic induction, self and mutual inductance – displacement current – Maxwell's equations in free space and in linear media – scalar and vector potentials, gauges – plane electromagnetic waves – electromagnetic energy density – Poynting vector.

Introduction to Astronomy: coordinate system – electromagnetic spectrum, flux, magnitude scale – interstellar reddening – telescopes, stellar spectrum, H-R diagram – star formation and evolution – solar system.

Introduction to Space Systems: basic of orbital mechanics, concepts of orbits – propulsion, aerodynamic, navigation, guidance and control systems – Indian space programme.

Textbooks:

- 1. Griffith, D. J., Introduction to Electrodynamics, 3rd ed., Prentice Hall (1999).
- 2. Sadiku, M. N. O., Elements of Electromagnetics, 8th ed., Oxford Univ. Press (2007).

References:

- 1. Purcell, E. M., *Electricity and Magnetism*, Berkeley Physics Course, Vol. 2, Tata McGraw-Hill (1981).
- 2. Feynman, R. P., Leighton, R. B., and Sands, M., *The Feynman Lectures on Physics*, Narosa (2005).
- 3. Reitz, J. R., Milford, F. J., and Christy, R. W., *Foundations of Electromagnetic Theory*, 3rd ed., Narosa (1998).
- 4. Wangsness, R. K., *Electromagnetic Fields*, 2nd ed., Wiley (1986).
- 5. Spiegel, M. R., Schaum's Outline of Vector Analysis, McGraw-Hill (1968).
- 6. Carroll, B. W. and Ostlie, D. A., *An Introduction to Modern Astrophysics*, 2nd ed., Pearson Addison-Wesley (2007).
- 7. Shu, F. H., *Physical Universe: An Introduction to Astronomy*, University Science Books (1982).
- 8. Palen, S., Schaum's Outline of Astronomy, McGraw-Hill (2001).
- 9. Curtis, H. D., Orbital Mechanics for Engineering Students, Butterworth-Heinemann (2004).
- 10. Hale, F. J., Introduction to Space Flight, Prentice Hall (1994).
- 11. Wertz, J. R. and Larson, W. J. (eds.), *Space Mission Analysis and Design*, Microcosm Press (2006).
- 12. Corliss, W. R., Propulsion Systems for Space Flight, McGraw-Hill (1960).

CH121

ENGINEERING MATERIALS

(3 - 1 - 0) 4 credits

Selection of materials – structure of solids, crystal structure - defects in crystals – properties of materials; mechanical, electrical, thermal, magnetic, and optical – semiconductor materials – aluminum, magnesium, titanium, and nickel alloys – failure and structure inspections – non-destructive evaluation – composites, ceramics, smart materials, and nanomaterials – material characterization.

Textbooks:

- 1. Callister Jr., W. D., *Materials Science and Engineering: An Introduction*, 7th ed., John Wiley (2007).
- 2. Lecture Notes.

References:

- 1. Cantor, B., Assender, H., and Grant, P. (edt.), *Aerospace Materials*, Taylor & Francis (2002).
- 2. Polmear, J. J., Light Alloys, Metallurgy of the Light Metals, Edward Arnold, London (1989).
- 3. Saxena, S., Antolovich, A., and Warner, S., *The Science and Design of Engineering Materials*, 2nd ed., McGraw-Hill (1999).
- 4. Askeland, D. R. and Phule, P. P., *The Science and Engineering of Materials*, 4th ed., Thompson-Engineering (2006).

AE121

ENGINEERING MECHANICS

(3 - 0 - 0) 3 credits

Basics of statics – fundamental principles and concepts – analysis of structures – trusses, frames, machines, beams, cables – friction – center of mass and area moments of inertia – mass moment of inertia – virtual work and energy method – applications of energy method for equilibrium – stability of equilibrium – review of particle dynamics – curvilinear motion – plane kinematics of rigid bodies, rotation – plane kinetics of rigid bodies.

Textbooks:

- 1. Meriam, J. L. and Kraige, L. G., *Engineering Mechanics: Statics* (Vol. 1), *Dynamics* (Vol. 2), 5th ed., Wiley (2002).
- 2. Beer, F. B. and Johnston, E. R., *Vector Mechanics for Engineers: Statics* (Vol. 1), *Dynamics* (Vol. 2), 8th ed., Tata McGraw-Hill (2007).

References:

- 1. Hibbeler, R. C., *Principles of Statics and Dynamics*, 10th ed., Prentice Hall (2006).
- 2. Bedford, A. M. and Fowler, W., *Engineering Mechanics: Statics and Dynamics*, 5th ed., Prentice Hall (2007).
- 3. Timoshenko, S. and Young, D. H., *Engineering Mechanics*, 4th ed., McGraw-Hill (2007).

AV121 BASIC ELECTRONICS AND COMPUTER ENGINEERING (3-0-0) 3 credits

Semiconductor Diodes: characteristics, applications in rectifiers and power supplies – BJT characteristics, biasing circuit – small signal and low frequency transistors – field effect devices: JFET/HFET, MOSFET operation, characteristics and small signal models – amplifiers and oscillators – operational amplifiers: parameters and characteristics, application-active filters – digital circuits: basic logic gates-combinational circuit, flip flops-applications, memories.

Principles of Communication: basic block diagram – modulation, types – overview of satellite communication.

Microprocessor and Computer Architecture: 8 bit microprocessor-architecture, assembly language program – functional block diagram of computer architecture – introduction to computers, microcomputers and its functional block diagram.

Textbooks:

- 1. Boylestad, R. L. and Nashelsky, L., *Electronic Devices and Circuit Theory*, Pearson Education (2003).
- 2. Floyd, T. L., *Electronic Devices*, Pearson Education, 8th ed. (2007).
- 3. Tomasi, W., *Electronic Communication Systems: Fundamentals Through Advanced*, 4th ed., Pearson Education (2005).

References:

- 1. Mottershed, A., *Electronic Devices and Circuits: An Introduction*, EEE Publication, 12th Indian ed. (1989).
- 2. Bapat, Y. N., *Electronic Devices and Circuits*, Tata McGraw-Hill, 9th ed. (1989).
- 3. Malvino, A. P., *Electronic Principles*, 12th ed., 3rd TMH ed., Tata McGraw-Hill (1989).
- 4. Jain, R. P., Modern Digital Electronics, McGraw-Hill (2004).
- 5. Mano, M. M., Digital Design, Prentice Hall (2002).
- 6. Gaonkar, R. S., *Microprocessor Architecture, Programming, and Applications with the 8085*, 5th ed., Penram International Pub. India Ltd. (2007).

MA141 BASIC PROGRAMMING LAB (0-0-3) 1 credit

AE141 ENGINEERING GRAPHICS (1-0-3) 2 credits

Geometrical construction of simple plane figures – free hand sketching – drawing scales – graphical communication through multiple projections – first angle and third angle projections – simple projection of points, lines and planes – projection of simple solids in simple positions (orthographic and isometric) – solid sections – intersection of solids – development of surfaces – introduction to CAD – creation of simple drawing – solid modeling – auxiliary projection – section views.

Textbook:

• Varghese, P. I., *Engineering Graphics*, VIP Publishers (2007).

- 1. Bethune, J. D., Engineering Graphics with AutoCAD, Prentice Hall (2007).
- 2. Venugopal, K., Engineering Drawing and Graphics, 2nd ed., New Age International (1994).
- 3. Luzadder, W. J. and Duff, J. M., *Fundamentals of Engineering Drawing*, 11th ed., Prentice Hall (1992).

AV141 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING LAB (0-0-3) 1 credit

- Electrical Engineering Lab
 - Magnetic measurements
 - Three phase power measurement
 - Verification of theorems
 - Characteristic of electrical machines (AC and DC)
- Electronics Engineering Lab
 - Implementation of digital circuits
 - Design of electronic system using operational amplifiers
 - Device characteristic
 - Power supply design
 - Wave shaping circuits: clippers and clampers
 - Biasing of transistor

SEMESTER III

MA211 COMPLEX ANALYSIS AND INTEGRAL TRANSFORMS

(3 - 0 - 0) 3 credits

Complex Variable: complex numbers and their geometrical representation – functions of complex variable – limit, continuity and derivative of functions of complex variable – analytical functions and applications – harmonic functions – transformations and conformal mappings – bilinear transformation – contour integration and Cauchy's theorem – convergent series of analytic functions – Laurent and Taylor series – zeroes and singularities – calculation of residues – residue theorem and applications.

Fourier Series: Fourier series expansion of periodic functions with period two – Fourier series of even and odd functions – half-range series – Fourier series of functions with arbitrary period – conditions of convergence of Fourier series.

Fourier Transform: Fourier integral – the Fourier transform pair – algebraic properties of Fourier transform – convolution, modulation, and translation – transforms of derivatives and derivatives of transform – inversion theory.

Laplace Transform: Laplace transforms of elementary functions – inverse Laplace transforms – linearity property – first and second shifting theorem – Laplace transforms of derivatives and integrals – Laplace transform of Dirac delta function – applications of Laplace transform in solving ordinary differential equations.

Textbook:

• Kreyszig, E., Advanced Engineering Mathematics, 9th ed., John Wiley (2005).

- 1. Churchill, R. V. and Brown, J. W., *Complex Variables and Applications*, 6th ed., McGraw-Hill (2004).
- 2. Mathews, J. H. and Howell, R., *Complex Analysis for Mathematics and Engineering*, Narosa (2005).
- 3. Wylie, C. R. and Barrett, L. C., Advanced Engineering Mathematics, McGraw-Hill (2002).
- 4. Jain, R. K. and Iyengar, S. R. K., Advanced Engineering Mathematics, Narosa (2005).
- 5. Greenberg, M. D., Advanced Engineering Mathematics, Pearson Education (2007).
- 6. James, G., Advanced Modern Engineering Mathematics, Pearson Education (2004).
- 7. Murray, D. A., Advanced Engineering Mathematics, Pearson Education (2007).

Introduction to applications – basic concepts and definitions – thermodynamic properties of pure substances – saturated and other states – work and heat, definition and applications – first law, internal energy and enthalpy, applications to non-flow and flow systems – second law, corollaries, Clasius inequality, entropy – availability, irreversibility and exergy – thermodynamic cycles – basics of gas-vapor mixtures and reacting systems – thermodynamic relations – combustion thermodynamics, stoichiometry, first, second, and third laws of thermodynamics applied to combustion.

Textbook:

• Çengel, Y. A. and Boles, M. A., *Thermodynamics: An Engineering Approach*, 5th ed., Tata McGraw-Hill (2006).

References:

- 1. Nag, P. K., Engineering Thermodynamics, 3rd ed., Tata McGraw-Hill (2005).
- 2. Moran, M. J. and Shapiro, H. N., *Fundamentals of Engineering Thermodynamics*, 6th ed., Wiley (2007).
- 3. Borgnakke, C. and Sonntag, R. E., *Fundamentals of Thermodynamics*, 7th ed., Wiley (2009).

AE212

MECHANICS OF SOLIDS

(3 - 0 - 0) 3 credits

Concepts of stress, strain – torsion – axial force, shear, and bending moment – pure bending – shear stress in beams – transformation of stresses and strains – deflection of beams – columns; Euler loads, beam-columns, eccentrically loaded columns – energy methods, virtual displacement method, virtual force method.

Textbook:

• Popov, E. P., Engineering Mechanics of Solids, 2nd ed., Prentice Hall (1998).

- 1. Hibbeler, R. C., *Mechanics of Materials*, 6th ed., Prentice Hall (2004).
- 2. Beer, F. P., Johnston, E. R., and DeWolf, J. T., *Mechanics of Materials*, 4th ed., McGraw-Hill (2005).
- 3. Srinath, L. S., Advanced Mechanics of Solids, 2nd ed., Tata McGraw-Hill (2003).

Fluid properties – fluid statics – integral control volume formulation – applications of Bernoulli equation – fluid kinematics – differential formulation, continuity and momentum equations – exact solutions of Navier–Stokes equation – dimensional analysis – pipe flow – potential flow – boundary layer theory.

Textbook:

• White, F. M., Fluid Mechanics, 7th ed., McGraw-Hill (2011).

References:

- 1. Fox, R. W. and McDonald, A. T., *Introduction to Fluid Mechanics*, 6th ed., John Wiley (2003).
- 2. Çengel, Y. A. and Cimbala, J. M., *Fluid Mechanics: Fundamental and Applications*, McGraw-Hill (2005).
- 3. Munson, B. R., Young, D. F., Okiishi, T. H., and Huebsch, W. W., *Fundamentals of Fluid Mechanics*, 6th ed., John Wiley (2009).

AE214

MANUFACTURING TECHNOLOGY I

(3 - 0 - 0) 3 credits

Metallurgy: phase rule, phase diagrams – iron-carbon diagram – heat treatment – steels (iron alloys) and nonferrous alloys.

Principles of Manufacturing: metal casting technology – principles of solidification – various metal forming techniques and their analysis – joining processes; welding, brazing, and soldering – inspection and NDT – plastics, ceramics, and composites manufacturing.

Textbooks:

- 1. Kalpakjian, S. and Schmidt, S. R., *Manufacturing Engineering and Technology*, Pearson Education (2009).
- 2. Ghosh, A. and Mallik, A. K., *Manufacturing Science*, 6th ed., Wiley Eastern (2003).
- 3. Rao, P. N., *Manufacturing Technology: Foundry, Forming and Welding*, 2nd ed., Tata McGraw-Hill (2007).

- 1. Singh, V., *Physical Metallurgy*, Standard Publishers, 1999.
- 2. Campbell, J. S., *Principles of Manufacturing Materials and Processes*, Tata McGraw-Hill (1995).
- 3. Degarmo, E. P., *Black, J. T., and Kohser, R. A., Materials and Processes in Manufacturing*, 10th ed., Prentice Hall of India (2007).
- 4. Linnert, G. E., Welding Metallurgy, AWS (1994).

5. Heine, R. W., Loper, C. R., and Rosenthal, P. C., *Principles of Metal Casting*, 2nd ed., Tata McGraw-Hill (1976).

HS211 INTRODUCTION TO ECONOMICS

(2 - 0 - 0) 2 credits

Exploring the Subject Matter of Economics: why we study economics – types - definitions – economic systems – economics as a science.

Principles and Concepts of Micro Economics: demand – supply – production – costs – markets – equilibrium.

Basics of Macro Economics: role of government – national income concepts – inflation concepts – classical vs. Keynesianism.

Economic Problems and Policies: meaning of development – problems of growth – population – agriculture and industry – balance of payments – planning – study report related to economics of space program.

Textbooks:

- 1. Samuelson, P. A. and Nordhaus, W. D., *Economics*, 18th ed., McGraw-Hill (2005).
- 2. Dewett, K. K., *Modern Economic Theory*, 22nd ed., S. Chand (2005).
- 3. Thirlwall, A. P., *Growth and Development with Special Reference to Developing Economies*, 7th ed., Palgrave Macmillan (2003).

References:

- 1. Gardner, A., Macroeconomic Theory, Surject Publications (1998).
- 2. Koutsoyiannis, A., *Modern Microeconomics*, 2nd ed., Palgrave Macmillan (2003).
- 3. Black, J., A Dictionary of Economics, Oxford Univ. Press (2003).
- 4. Meir, J. M. and Rauch, J. E., *Leading Issues in Economic Development*, 7th ed., Oxford Univ. Press (2005).
- 5. Todaro, M. P. and Smith, S. C., *Economic Development*, 8th ed., Pearson Education Ltd. (2008).
- 6. Economic Survey 2008, Government of India, Ministry of Finance.
- 7. O'Connor, D. E., The Basics of Economics, Greenwood Press (2004).

AE231

MACHINE DRAWING

(0 - 0 - 3) 1 credit

Threaded fasteners – nuts, joints – part drawing of machine elements – couplings, computer aided drafting of machine elements – assembly drawings using CAD for various engine parts – conventions in shop floor drawings – limits, fits, and tolerances, and their interpretations – creation of assembles in solid modeling packages and preparation of 2D drawings – a drawing project on reverse engineering.

Textbook:

• Bhatt, N. D. and Panchal, V. M., *Machine Drawing*, 41st ed., Charotar Publishing House (2006).

References:

- 1. Manuals of drafting and modeling packages.
- 2. Sidheswar, N., Kanniah, P., and Sastry, V. V. S., *Machine Drawing*, Tata McGraw-Hill (1983).
- 3. Luzadder, W. J. and Duff, J. M., *Fundamentals of Engineering Drawing*, 11th ed., Prentice Hall (1995).
- 4. John, K. C. and Varghese, P. I., Machine Drawing, VIP Publication (1995).

AE232

STRENGTH OF MATERIALS LAB

(0 - 0 - 3) 1 credit

- Tension tests: mild steel and aluminium alloy rods
- Hardness tests: Brinell hardness, Vickers hardness, Rockwell hardness
- Impact tests: Izod and Charpy tests
- Torsion test
- Double shear test
- Compression test
- Spring test
- Deflection of beams

SEMESTER IV

MA221 NUMERICAL METHODS, PARTIAL DIFFERENTIAL EQUATIONS, AND CALCULUS OF VARIATION (3-0-0) 3 credits

Numerical Methods: solution of algebraic and transcendental equations – solution of system of linear equations – numerical integration – interpolation and curve fitting – solution of ordinary differential equations – approximation of functions.

Partial Differential Equations: introduction to PDE – modeling problems related and general second order PDE – classification of PDE: hyperbolic, elliptic and parabolic PDE – canonical form – scalar first order partial differential equations – method of characteristics – Charpits method – quasi-linear first order equations – shocks and rarefactions – solution of heat, wave, and Laplace equations using separable variable techniques and Fourier series.

Calculus of Variations: optimization of functional – Euler–Lagrange equations – first variation – isoperimetric problems – Rayleigh–Ritz method.

Textbook:

• Kreyszig, E., Advanced Engineering Mathematics, 9th ed., John Wiley (2005).

References:

- 1. Jain, M. K., Iyengar, S. R. K., and Jain, R. K., *Numerical Methods for Scientific and Engineering Computation*, New Age International (2003).
- 2. Sneddon, I. N., Elements of Partial Differential Equations, McGraw-Hill (1986).
- 3. Renardy, M. and Rogers, R. C., *An Introduction to Partial Differential Equations*, 2nd ed., Springer-Verlag (2004).
- 4. Greenberg, M. D., Advanced Engineering Mathematics, Pearson Education (2007).
- 5. McOwen, R. C., *Partial Differential Equations Methods and Applications*, 2nd ed., Pearson Education (2003).

AE221

GAS DYNAMICS

(3 - 0 - 0) 3 credits

Governing equations – static and stagnation properties – speed of sound and Mach number – isentropic flow through variable area ducts – normal and oblique shocks – shock expansion – Fanno flow – Rayleigh flow – Prandtl-Meyer flow – small perturbations theory – unsteady wave motion.

Textbook:

• Anderson, J. D., *Modern Compressible Flow with Historical Perspective*, 3rd ed., McGraw-Hill (2004).

References:

- 1. Zucker, R. D. and Biblarz, O., Fundamentals of Gas Dynamics, 2nd ed., John Wiley (2002).
- 2. John, J. E. A. and Keith, T., Gas Dynamics, 3rd ed., Prentice Hall (2006).
- 3. Yahya, S. M., Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion, 3rd ed., New Age International Publishers (2003).

AE222

HEAT TRANSFER

(3 - 0 - 0) 3 credits

Introduction to heat transfer – steady state heat conduction – transient heat conduction – introduction to convective heat transfer – external forced convection – internal forced convection – natural/free convection – heat exchangers – black-body radiation and radiative properties – radiative exchange between surfaces.

Textbook:

• Incropera, F. P. and DeWitt, D. P., *Fundamentals of Heat and Mass Transfer*, 5th ed., John Wiley (2002).

References:

- 1. Holman, J. P., Heat Transfer, 9th ed., Tata McGraw-Hill (2007).
- 2. Çengel, Y. A., *Heat and Mass Transfer: A Practical Approach*, 3rd ed., Tata McGraw-Hill (2006).

AE223 KINEMATICS AND DYNAMICS OF MECHANISMS

(3-1-0) 4 credits

Review of joints and mobility, position, velocity and acceleration analysis of linkages – cams, gears, and gear trains – static and dynamic analysis of mechanisms – gyroscopes – balancing – single degree of freedom systems – free and forced vibration – multi degrees of freedom systems – natural frequencies, modes.

Textbook:

• Uicker, J. J., Pennock, G. R., and Shigley, J. E., *Theory of Machines and Mechanisms*, 3rd ed., Oxford Univ. Press (2003).

- 1. Rattan, S. S., *Theory of Machines*, 2nd ed., Tata McGraw-Hill (2005).
- 2. Myszka, D. H., *Machines and Mechanisms: Applied Kinematics Analysis*, 3rd ed., Prentice Hall (2004).

Introduction to metrology, fundamentals of dimensional measurements, length standards, application of light interference for precision measurements – fits and tolerances – concepts and practices of gauging – comparators and their applications – linear and angular measurements – thread and gear inspection – form, flatness, straightness, and alignment measurements – surface metrology – co-ordinate metrology – laser applications in metrology – vision inspection – micro- and nano-metrology.

Textbooks:

- 1. Shotbolt, C. S. and Galyer, J., *Metrology for Engineers*, 5th ed., Cassell Pub. (1990).
- 2. Jain, R. K., Engineering Metrology, Khanna Pub. (2008).
- 3. Busch, T., Fundamentals of Dimensional Metrology, Delmar Pub. (1988).

References:

- 1. Smith, G. T., Industrial Metrology: Surfaces and Roundness, Springer-Verlag (2002).
- 2. Whitehouse, D. J., Handbook of Surface Metrology, Taylor & Francis (1994).

HS221 INTRODUCTION TO SOCIAL SCIENCE AND ETHICS (2-0-0) 2 credits

Social Science: introduction to sociology, anthropology – social science research design and sampling.

Ethics: professional and personal ethics – values & norms and human rights.

Textbook:

Lecture Notes

References:

- 1. Perry, J. and Perry, E., *Contemporary Society: An Introduction to Social Science*, 11th ed., Allyn & Bacon (2005).
- 2. Giddens, A., Sociology, 5^{th} ed., Wiley (2006).
- 3. Flyvbjerg, B., Making Social Science Matter, Cambridge Univ. Press (2001).
- 4. Singer, P., A Companion to Ethics, Wiley-Blackwell (1993).

AE241

THERMAL AND FLUID LAB

(0 - 0 - 6) 2 credits

- Fluid Mechanics
 - Calibration of venturi and orifice meters

- Characterization of friction loss in pipe flow
- Performance test on centrifugal pump
- Performance test on Francis turbine
- Performance test on Pelton turbine
- Performance test on reciprocating pump
- Experiments on transition in pipe flows

Heat Transfer

- Evaluation of heat transfer coefficient and thermal conductivity of materials
- Experiments on forced and natural convection apparatus
- Performance test on plate heat exchanger
- Laws on radiant heat transfer and heat exchange
- Experiments on transient conduction
- Pin-fin apparatus

Thermal Engineering

- Performance test on reciprocation compressor
- Performance test on centrifugal blower
- Performance test on vapour compression refrigeration unit
- Load test on single cylinder diesel engine
- Performance test on a multi-cylinder MPFI gasoline engine
- Performance test on heat pump unit

SEMESTER V

PROBABILITY AND STATISTICS

(3 - 0 - 0) 3 credits

Probability Distributions: random Variable: discrete and continuous random variables – probability distributions: binomial distribution, hyper geometric distribution, Poisson approximation to the binomial, geometric distribution, normal distribution, normal approximation to the binomial distribution, uniform distribution, gamma distribution, beta distribution, and Weibull distribution – mathematical expectation and moments: mean, variance, moment generating function, and characteristic function.

Sampling Distributions and Inference Concerning Means: population and samples – central limit theorem – sampling distributions of mean and variance – point estimation – confidence interval for mean, variance and proportions – tests of hypotheses: the null hypotheses and the significance tests – control charts for variables and attributes – acceptance sampling by attributes – simple, double and sequential sampling plans – design of experiments.

Correlation and Regression Analysis: curve fitting by the method of least squares – Chi-square test of goodness of fit – contingency tables – inference based on the least square estimators – regression – correlation – inference concerning correlation coefficient.

Markov Chains: stochastic processes – Markov chains with finite and countable state space, classification of states, limiting behavior of n-step transition probabilities, continuous Markov process, and hidden Markov chain with applications.

Textbooks:

MA311

- 1. Johnson, R. A., *Miller & Freund's Probability and Statistics for Engineers*, 6th ed., Prentice Hall (2000).
- 2. Medhi, J., Stochastic Processes, Wiley Eastern Ltd. (1982).

- 1. Levin, R. I. and Rubin, D. S., Statistics for Management, 7th ed., Prentice Hall (1998).
- 2. Milton, J. S. and Arnold, J. C., *Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences*, McGraw-Hill (2002).
- 3. Ross, S. M., *Introduction to Probability and Statistics for Engineers and Scientists*, 3rd ed., Academic Press (2004).
- 4. Feller, W., *An Introduction to Probability Theory and Its Applications*, Vol. 1 & Vol. 2, John Wiley (1968).
- 5. Hogg, R. V., Craig, T., and McKean, J. W., *Introduction to Mathematical Statistics*, 6th ed., Prentice Hall (2004)
- 6. Hogg, R. V. and Tanis, E. A., *Probability and Statistical Inference*, 7th ed., Prentice Hall (2005).

- 7. Larsen, R. J. and Marx, M. L., *An Introduction to Mathematical Statistics and Its Applications*, 4th ed., Prentice Hall (2005).
- 8. Mendenhall, W., Wackerly, D., and Scheaffer, R. L., *Mathematical Statistics with Applications*, 7th ed., Duxbury Press (2007).
- 9. Chung, K. L. and AitSahlia, F., *Elementary Probability Theory with Stochastic Processes and an Introduction to Mathematical Finance*, 4th ed., Springer (2006).
- 10. Gorden, S. P. and Gorden, F. S., *Contemporary Statistics, A Computer Approach*, McGraw-Hill (1994).

AE311

AERODYNAMICS

(3 - 0 - 0) 3 credits

Fundamental aerodynamic variables – inviscid, incompressible flows – elementary flows – non-lifting and lifting flows over cylinders – Kutta–Joukowski theorem – airfoil nomenclature and characteristics – incompressible flow past airfoils – starting vortex – classical thin airfoil theory – symmetrical and cambered airfoils – incompressible flow past finite wings – vortex filament and sheet – Biot–Savart law – Prandtls lifting line theory – elements of vortex panel method – viscous flow over wings – rocket aerodynamics.

Textbook:

• Anderson, J. D., Fundamentals of Aerodynamics, 4th ed., McGraw-Hill (2006).

References:

- 1. Bertin, J. J. and Cummings, R. M., *Aerodynamics for Engineers*, 5th ed., Prentice Hall (2008).
- 2. Kuethe, A. M. and Chow, C.-Y., Foundations of Aerodynamics, 5th ed., John Wiley (1997).
- 3. Clancy, L. J., Aerodynamics, Reprint ed., Himalayan Books (2006).
- 4. Nielsen, J. N., Missile Aerodynamics, AIAA (1988).

AE312

AEROSPACE STRUCTURES I

(3-1-0) 4 credits

Introduction to theory of elasticity – linear and nonlinear strain descriptions – stress-strain relations – thermal stresses – isotropic and orthotropic materials – introduction to laminated composites – stress functions – torsion of solid sections – theory of thin plates and axisymmetric shells – structural instability – virtual work, energy and matrix methods – introduction to finite element method.

Textbook:

• Megson, T. H. G., *Aircraft Structures for Engineering Students*, 4th ed., Butterworth-Heinemann (2007).

References:

- 1. Timoshenko, S. P. and Goodier, J. N., *Theory of Elasticity*, 3rd ed., McGraw-Hill (1970).
- 2. Timoshenko, S. P. and Woinowsky-Krieger, S., *Theory of Plates and Shells*, 2nd ed., McGraw-Hill (1964).
- 3. Osgood, C. C., Spacecraft Structures, Prentice Hall (1966).

AE313 MANUFACTURING TECHNOLOGY II

(3 - 0 - 0) 3 credits

Principles of Metal Cutting: mechanics of metal cutting – cutting tools – cutting processes – process variables – tool life.

Abrasive Machining Processes: Grinding – fine finishing process.

Machine Tools: conventional machine tool configuration – CNC technology – CNC machine tools and programming.

Nontraditional Machining: principles, equipment, process variables and applications – surface engineering – concept of CIM and FMS – additive manufacturing – advanced manufacturing techniques.

Textbooks:

- 1. Groover, M. P., Fundamentals of Modern Manufacturing: Materials, Processes, and Systems, 4th ed., Wiley India (2010).
- 2. Kalpakjian, S. and Schmidt, S. R., *Manufacturing Engineering and Technology*, Pearson Education (2009).

References:

- 1. Pandey, P. C. and Shah, H. S., Modern Machining Processes, Tata McGraw-Hill, 1988.
- 2. Juneja, B. L., Sekhon, G. S., and Seth, N., *Fundamentals of Metal Cutting and Machine Tools*, New Age International (2008).

AV315 INSTRUMENTATION AND CONTROL SYSTEMS

(3 - 0 - 0) 3 credits

Instrumentation: sensitivity, linearity, and resolution of instruments – uncertainty of measurements – signal conditioners - bridge circuits, amplifiers, and filters – measurement of displacement, velocity, acceleration, force, torque, pressure, flow, temperature, and level.

Control Systems: classification of control systems – block diagram representation and reductions – mathematical background and mathematical model of physical systems – time domain analysis, transient response, and stability – frequency response methods, polar plot, bode diagrams, Nyquist stability criteria.

Controllers: types of controllers – types of control action; proportional, integral, derivative, on-off controls – hydraulic, electronic, and pneumatic controllers.

Textbooks:

- 1. D'Azzo, H., Feedback Control System Analaysis and Synthesis, CRC Press (2007).
- 2. Rangan, C. S., Sharma, G. R., and Mani, V. S. V., *Instrumentation: Devices and Systems*, 2nd ed., Tata McGraw-Hill (2006).

References:

- 1. Astrom, K. J. and Murray, R. M., *Feedback Systems: An Introduction for Scientists and Engineers*, Princeton Univ. Press (2008).
- 2. Nise, N. S., *Control Systems Engineering*, 4th ed., Wiley India (2003).
- 3. Xue, D., Chen, YQ., and Atherton, D. P., *Linear Feedback Control Analysis and Design with MATLAB*, SIAM (2007).
- 4. Gopal, M., Control Systems: Principles and Design, 3rd ed., Tata McGraw-Hill (2008).
- 5. Doebelin, E. O., *Measurement Systems: Application and Design*, 5th ed., McGraw-Hill (2003).

CH311 ENVIRONMENTAL SCIENCE AND ENGINEERING (2-0-0) 2 credits

Awareness of the impact of environment on quality of life – natural resources – biological systems – bio-geo chemical cycles – chemical processes; water treatment operations, water sampling, storage, quality measurement – oxygen demand – detection of pollutants – current environmental issues; pollutants, global warming, causes and consequences, air pollution, organic and inorganic air pollutants, smog-acid mine drainage, accumulation of salts in water – soil formation; micro and macro nutrients in soil, pollutants in soil – green chemistry- an alternative tool for reducing pollution – engineering interventions; flow sheets, waste minimization, e-waste management, ASP, reverse osmosis, trickling filter – environmental management; solid, liquid waste management, hazardous wastes, ISO standards – Kyoto protocol, Montreal protocol, Euro norms.

Textbook:

• Rao, V., Textbook of Environmental Engineering, Prentice Hall of India (2002).

- 1. Baird, C. and Cann, M., *Environmental Chemistry*, 3rd ed., W. H. Freeman and Company (2005).
- 2. Manual on Water Supply and Treatment, CPHEEO, Ministry of Urban Development, GOI (1999).
- 3. Manual on Sewerage and Sewage Development, CPHEEO, Ministry of Urban Development, GOI (1993).

- 4. Hauser, B. A., Practical Hydraulics Hand Book, Lewis Pub. (1991).
- 5. Hammer, M. J., Water and Wastewater Technology, Regents/Prentice Hall (1991).
- 6. Sharma, J. P., Comprehensive Environmental Studies, Laxmi Pub. (2004).
- 7. Garg, S. K., Environmental Engineering (Vol. 1 & Vol. 2), Khanna Pub. (2004).
- 8. Kiely, G., Environmental Engineering, McGraw-Hill (1997).
- 9. Bharucha, E., Textbook of Environmental Studies, University Grants Commission (2004).
- 10. Vanloon, G. W. and Duffy, S. J., *Environmental Chemistry: A Global Perspective*, Oxford Univ. Press (2000).

AE331

AERODYNAMICS LAB

(0 - 0 - 3) 1 credit

- Calibration of wind tunnel
- Boundary layer measurements
- Flow visualization over a cambered aerofoil
- Pressure distribution over a symmetric aerofoil
- Wake survey over a cylinder
- Flow through a bent tube
- Oil flow and tuft flow visualization
- Drag measurements on a cylinder using strain gauge balance
- Interference study between two cylinders

AE332

METROLOGY LAB

(0 - 0 - 3) 1 credit

- Dimensional measurement using minor measuring instruments
- Measurement of angle using Sine bar and digital angle protractor
- Dimensional measurement using profile projector
- Measurement of screw thread parameters using tool maker's microscope
- Measurement of pitch diameter of thread plug gauge and diameter of plain plug gauges on universal length measuring machine.
- Experiment to study the relationship between pressure and gap thickness on the air gauge system and demonstration of diameter measurement of the given specimen
- Dimensional measurement using digital height gauge
- Determination of calibration uncertainty of micrometer/dial indicator/electronic probes using slip gauges/universal length measuring machine
- Experiment on statistical quality control (\overline{X} and R chart) and process capability analysis
- · Straightness error measurement using autocollimator

- Flatness measurement of surface plate using electronic levels
- Roughness measurement on specimens machined by various operations
- Measurement of dimensions using vision inspection system
- Study of alignment telescope

AV335 INSTRUMENTATION AND CONTROL SYSTEMS LAB

(0 - 0 - 3) 1 credit

- Familiarization with MATLAB and SIMULINK
- Compensator design for a typical electromechanical engine gimbal control (EGC) system and linear system performance assessment using MATLAB/SIMULINK
- Evaluation of step response, frequency response and disturbance response of the nonlinear model of electromechanical engine gimbal control (EGC) system using MATLAB/SIMULINK
- Nonlinear model simulation of an aircraft elevon surface actuation system

SEMESTER VI

AE321

ATMOSPHERIC FLIGHT MECHANICS

(3 - 0 - 0) 3 credits

Overview of aerodynamics, propulsion, atmosphere and aircraft instrumentation – frames of reference – body axis, wind axis, earth centric, inertial – equations of motion in non-rotating earth and flat-earth frames of reference – aircraft performance – gliding, cruise and climbing flight, optimal cruise trajectories, take-off and landing – V-n diagrams – static longitudinal, directional, and lateral stability and control – stick fixed and stick free stability, hinge moments, trim-tabs, aerodynamic balancing – effect of manoeuvres – aerodynamic modelling, simulation, concept of steady states, linearisation, decoupling of longitudinal and lateral/directional motion – dynamic stability, longitudinal motion and short period and phugoid modes, lateral/directional motion, spiral, divergence, roll subsidence and dutch roll modes – stability, control and performance characteristics of sounding rockets and launch vehicles.

Textbooks:

- 1. Hull, D. G., Fundamentals of Airplane Flight Mechanics, Springer (2007).
- 2. Perkins, C. D. And Hage, R. E., *Airplane Performance Stability & Control*, John Wiley (1949).

References:

- 1. Etkin, B., Dynamics of Flight, John Wiley (1989).
- 2. McCormick, B. W., *Aerodynamics, Aeronautics, and Flight Dynamics*, 2nd ed., John Wiley (1994).
- 3. Pamadi, B. N., *Performance, Stability, Dynamics, and Control of Airplanes*, 2nd ed., AIAA Edu. Series (2004).
- 4. Smetana, F. O., *Flight Vehicle Performance and Aerodynamic Control*, AIAA Edu. Series (2001).

AE322

SPACEFLIGHT MECHANICS

(3 - 0 - 0) 3 credits

Dynamics of particle: reference frames and rotations, energy, angular momentum – two body motion: equations of motion, Kepler's laws, solution to two-body problem, conics and relations, vis-viva equation, Kepler equation, orbital elements, orbit determination, Lambert problem, satellite tracking – earth satellite operations: orbit maneuvers, Hohmann transfer, inclination change maneuvers, combined maneuvers, bi-elliptic maneuvers, effects due to atmospheric drag, earth oblateness effects, orbit maintenance – rocket performance: rocket equation, multi-staging – rigid body dynamics, satellite attitude dynamics, attitude control of spinning and non-spinning spacecrafts, re-entry trajectories, aerobraking – interplanetary trajectories: n-body problem, sphere of influence, synodic period, launch opportunity, methods of trajectory design, restricted three-body problem, Lagrangian points.

Textbooks:

- 1. Wiesel, W. E., Spaceflight Dynamics, 2nd ed., McGraw-Hill (1996).
- 2. Tewari, A., Atmospheric and Space Flight Dynamics: Modeling and Simulation with MAT-LAB and Simulink, Birkhuser (2007).

References:

- 1. Hale, F. J., *Introduction to Space Flight*, Prentice Hall (1994).
- 2. Cornelisse, J. W., Schoyer, H. F. R., and Wakker, K. F., *Rocket Propulsion and Spaceflight Dynamics*, Pitman Publishing (1979).

AE323

AIR-BREATHING PROPULSION

(3 - 0 - 0) 3 credits

Review of combustion and flames – introduction to air breathing propulsion systems – review of basic gas dynamics equations – types of nozzles – design and operating characteristics – aircraft engine types – performance measures – fundamentals of aircraft gas turbine engine cycles – engine components and configurations – working performance evaluation – design and off design performance – basics of turbomachinery– compressor and turbine blade flow path analysis (centrifugal and axial types) – hypersonic air breathing engines – ramjet and scramjet – combustion systems.

Textbooks:

- 1. Hill, P. G. and Peterson, C. R., *Mechanics and Thermodynamics of Propulsion*, 2nd ed., Addison-Wesley (1992).
- 2. Mattingly, J. D., *Elements of Propulsion: Gas Turbines and Rockets*, AIAA Edu. Series, 2006.

References:

- 1. Flack, R. D., Fundamentals of Jet Propulsion with Applications, Cambridge Univ. Press (2005).
- 2. Mattingly, J. D., Elements of Gas Turbine Propulsion, AIAA Edu. Series (2005).
- 3. Heiser, W. H. and Pratt, D. T., *Hypersonic Air Breathing Propulsion*, AIAA Edu. Series (1994).

AE324

AEROSPACE STRUCTURES II

(3-1-0) 4 credits

Description of essential features of aircraft, rocket and spacecraft structures – type of loads on flight structures – bending, shear and torsion of open and closed thin-walled beams – monocoque, stiffened plate, isogrid and sandwich constructions – idealization and stress analysis of typical aerospace structural components – pressurized structures – stress discontinuities – effects of cut-outs – effects of boundary conditions in open and closed section beams – structural fatigue.

Textbook:

• Megson, T. H. G., *Aircraft Structures for Engineering Students*, 4th ed., Butterworth-Heinemann (2007).

References:

- 1. Timoshenko, S. P. and Goodier, J. N., *Theory of Elasticity*, 3rd ed., McGraw-Hill (1970).
- 2. Timoshenko, S. P. and Woinowsky-Krieger, S., *Theory of Plates and Shells*, 2nd ed., McGraw-Hill (1964).
- 3. Bruhn, E. F., *Analysis and Design of Flight Vehicle Structures*, 2nd ed., Jacobs Publishing Inc. (1973).

E01 ELECTIVE I (3-0-0) 3 credits

HS321 PRINCIPLES OF MANAGEMENT SYSTEMS (3-0-0) 3 credits

Personnel Management: introduction – changing role of personnel manager – new people management – manpower planning – recruitment and selection – performance appraisal – workers participation in management – grievance handling.

Industrial Management: management functions – organization – principles of planning – management by objectives – organization structures – principles of organizing – span of control – delegation, leadership, directing, and controlling.

Project Management: development of project network – project representation – project scheduling – linear time-cost trade-offs in projects: a heuristic approach – project monitoring and control with PERT.

- 1. Koontz H., ODonnel, C., and Weihrich, H., Essentials of Management, McGraw-Hill (1990).
- 2. Venkataratnam, C. S. and Srivastava, B. K., *Personnel Management and Human Resources*, Tata McGraw-Hill (1991).
- 3. Mazda F., *Engineering Management*, Prentice Hall (1997)
- 4. Gido, J. and Clements, J. P., *Successful Project Management*, 2nd ed., South-Western College Publishing (2003)
- 5. Khanna, O. P., *Industrial Engineering and Management*, Dhanpat Rai Publications (P) Ltd. (2003).
- 6. Memoria, C. B. and Gankar, S. V., *Personnel Management Text and Cases*, Himalaya Publishing House (2007).

- Buckling of struts
- Experiments on thin-walled pressure vessel
- Unsymmetrical bending and shear center measurements
- measurement of strain using strain gauges
- Shear force in a beam
- Deflection of beams and cantilevers
- Continuous and indeterminate beams
- Uniaxial tension test with loading/unloading

AE342

MANUFACTURING PROCESSES LAB

(0 - 0 - 3) 1 credit

- Study and simulation practices of CNC turning and milling experiments using Fanuc system
- Experiments in CNC turning machine
- Experiments in CNC milling machine
- Assessment of surface finish on surface grinding
- Metallographic study near the weld zone of the TIG weld piece
- Assessment of surface finish on cylindrical grinding
- Electric discharge machining process material removal rate and over cut measurement
- Demonstration of rapid prototyping machine
- Demonstration of Turn Mill centre
- Demonstration of cutting force measurements during machining process using dynamometer
- Demonstration of different robots and flexible manufacturing system

SEMESTER VII

AE411

ROCKET PROPULSION

(3 - 0 - 0) 3 credits

Introduction to rocket propulsion systems – rocket propulsion engines – types of rocket nozzles and thrust vector control – propellants – combustion in rocket engines – parameters for chemical rockets – elements of liquid propulsion systems – thrust chambers – turbo pumps – nonconventional propulsion techniques – solid rocket motors – grain configuration – hybrid rockets – rocket testing and performance evaluation – selection of rocket motors.

Textbook:

• Sutton, G. P. and Biblarz, O., Rocket Propulsion Elements, 7th ed., John Wiley (2000).

References:

• Hill, P. G. and Peterson, C. R., *Mechanics and Thermodynamics of Propulsion*, 2nd ed., Addison-Wesley (1992).

AE412

AEROSPACE VEHICLE DESIGN

(3 - 0 - 0) 3 credits

Aircraft Design: introduction – weight estimation – airfoil and geometry selection – thrust to weight ratio and wing loading – initial sizing – propulsion – landing gear and subsystems – aerodynamics – stability, control, and handling qualities – flight mechanics and performance issues.

Space Vehicle Design: mission design – basic orbital mechanics – range safety – rocket propulsion options – attitude determination and control – configuration and structural design – thermal control – power systems – design for re-entry – vehicle integration and recovery – introduction to multi-disciplinary design optimization.

Textbooks:

- 1. Raymer, D. P., Aircraft Design: A Conceptual Approach, 4th ed., AIAA Edu. Series (2006).
- 2. Griffin, M. D. and French, J. R., Space Vehicle Design, 2nd ed., AIAA Edu. Series (2004).

References:

- 1. Anderson, J. D., Aircraft Design, McGraw-Hill (1999).
- 2. Corke, T. C., Design of Aircraft, Prentice Hall (2002).
- 3. Fielding, J. P., Introduction to Aircraft Design, Cambridge Univ. Press (1999).

E02

ELECTIVE II

(3 - 0 - 0) 3 credits

E03	ELECTIVE III	(3-0-0) 3 credits
E04	ELECTIVE IV	(3-0-0) 3 credits
E05	INSTITUTE ELECTIVE	(3-0-0) 3 credits
AE431	MODELING AND ANALYSIS LAB	(0 - 0 - 3) 1 credit

- Modeling using Catia and Inventor
 - Create assembly of different mechanisms and components like slider crank mechanism, double riveted lap joint, protected flanged coupling using Catia
 - Conduct dynamic simulation of different mechanisms like slider crank mechanism, double pendulum, simple robotic mechanism, cam & follower mechanism using Inventor
- Modeling and analysis using FEM
 - Geometric modeling and finite element meshing of beam, plate, and solid structures
 - Stress analysis of plate and beam structures
 - Free vibration analysis of plate and beam structures
- Modeling and simulation of multi-rigid body systems using Scilab/MATLAB

AE432 FLIGHT MECHANICS AND PROPULSION LAB (0-0-3) 1 credit

- Flight Mechanics
 - Study of pull up pull down manoeuvres and steady level turn
 - Study of RC helicopter
 - Simulation of model RC aircraft using flight 5.5
- Propulsion Engineering
 - Study and analysis of gas turbine cycle
 - Performance analysis of turbojet engine
 - Experiments on axial flow fan
 - Experimental impulse turbine module
 - Experimental reaction turbine module

- Experiments on ramjet engine

AE451	SUMMER INTERNSHIP AND TRAINING	3 credits
AE452	SEMINAR	2 credits

SEMESTER VIII

AE453	COMPREHENSIVE VIVA-VOCE	3 credits
AE454	PROJECT WORK	12 credits

ELECTIVES

AE461

ADVANCED AERODYNAMICS

(3 - 0 - 0) 3 credits

Introduction to experimental aerodynamic facilities – classification of experimental facilities – continuous, blow-down and impulse facilities – wind tunnel instrumentation – special testing techniques.

Introduction to computational aerodynamics – various levels of approximations – grid generation – boundary conditions.

Introduction to hypersonic flows – analytical and computational methods – hypersonic boundary layer theory – aerodynamic heating – viscous-inviscid interactions.

Re-entry vehicle aerodynamics – earth and Martian atmosphere models – continuum and free molecular flows.

Introduction to aerothermodynamics – real and perfect gases – chemical equilibrium and non-equilibrium – solutions for stagnation point flow.

Introduction to kinetic theory of gases – introduction to turbulence – use of turbulent models for external flows.

Textbooks:

- 1. Anderson Jr, J. D., *Hypersonic and High-Temperature Gas Dynamics*, 2nd ed., AIAA Edu. Series (2006).
- 2. Barlow, J. B., Rae Jr, W. H., and Pope, A., *Low-Speed Wind Tunnel Testing*, 3rd ed., Wiley (1999).
- 3. Versteeg, H. K., Malalasekera, W., *An Introduction to Computational Fluid Dynamics: The Finite Volume Method*, 2nd ed., Prentice Hall (2007).

- 1. Pope, A. and Goin K. L., *High-Speed Wind Tunnel Testing*, Krieger Pub. Co. (1978).
- 2. Goethert, B. H., Transonic Wind Tunnel Testing, Dover (2007).
- 3. Hirschel, E. H. and Weiland, C., *Selected Aerothermodynamic Design Problems of Hypersonic Flight Vehicles*, AIAA/Springer (2009).
- 4. Toro, E. F., *Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction*, 2nd ed., Springer-Verlag (1999).

Description of essential features of aircraft, rocket and spacecraft structures – type of loads on flight structures – bending, shear and torsion of open and closed thin-walled beams – monocoque, stiffened plate, isogrid and sandwich constructions – idealization and stress analysis of typical aerospace structural components – pressurized structures – stress discontinuities – effects of cut-outs – effects of boundary conditions in open and closed section beams – structural fatigue.

Textbook:

• Megson, T. H. G., *Aircraft Structures for Engineering Students*, 4th ed., Butterworth-Heinemann (2007).

References:

- 1. Timoshenko, S. P. and Goodier, J. N., *Theory of Elasticity*, 3rd ed., McGraw-Hill (1970).
- 2. Timoshenko, S. P. and Woinowsky-Krieger, S., *Theory of Plates and Shells*, 2nd ed., McGraw-Hill (1964).
- 3. Bruhn, E. F., *Analysis and Design of Flight Vehicle Structures*, 2nd ed., Jacobs Publishing Inc. (1973).

AE463

ADVANCED FLUID MECHANICS

(3 - 0 - 0) 3 credits

Fluid kinematics – physical conservation laws – review of integral and differential formulations – Navier–Stokes and energy equations – solution of Navier–Stokes equations; steady and unsteady flows – waves in fluids (potential flow formulation) – boundary layer theory; Blasius solution, Falkner–Skan solutions, momentum integral approach – introduction to turbulent flows.

References:

- 1. White, F. M., Viscous Fluid Flow, 3rd ed., McGraw-Hill (2006).
- 2. Panton, R. L., *Incompressible Flow*, 3rd ed., John Wiley (2005).
- 3. Kundu, P. K. and Cohen, I. M., *Fluid Mechanics*, 4th ed., Academic Press (2007).
- 4. Leal, L. G., Advanced Transport Phenomena, Cambridge Univ. Press (2007).
- 5. Schlichting, H. and Gersten, K., Boundary Layer Theory, 8th ed., McGraw-Hill (2001).

AE464

ADVANCED HEAT TRANSFER

(3 - 0 - 0) 3 credits

Radiation Heat Transfer: fundamentals – view factors – network method and enclosure analysis for gray – diffuse enclosures containing transparent media – engineering treatment of gas radiation.

Two Phase Flow: fundamentals – flow patterns – basic equations for homogeneous flow and the separated-flow model.

Boiling Heat Transfer: pool boiling – forced convective – cross flow – multicomponent boiling – correlations for boiling coefficient – critical heat flux.

Condensation: modes of condensation – film-wise condensation on vertical surfaces – horizontal tube systems – condensation in multicomponent systems.

Enhancement of Heat Transfer: active, passive, and compound techniques.

Textbooks:

- 1. Incroprera, F. P. and Dewitt, D. P., *Heat and Mass Transfer*, 5th ed., Wiley (2002).
- 2. Hewitt, G. F., Shires, G. L., and Bott, T. R., Process Heat Transfer, CRC Press (1994).

References:

- 1. Çengel, Y. A., Heat and Mass Transfer, 3rd ed., Tata McGraw-Hill (2007).
- 2. Das, S. K., Process Heat Transfer, Narosa (2006).
- 3. Sparrow, E. M. and Cess, R. D., *Radiation Heat Transfer*, CRC Press (1978).

AE466 STRUCTURAL DYNAMICS AND AEROELASTICITY (3-0-0) 3 credits

Fundamental aspects of structural dynamics – free vibration and modal representation of flexible structures – application to beam extension, shear, bending and torsion dynamics – static aeroelasticity – wind tunnel models – divergence and aileron reversal – Lifting surfaces: torsional divergence and load redistribution, aeroelastic tailoring – aeroelastic flutter – stability characteristics – Flutter analysis: wind tunnel models – flexible wings.

Textbook:

• Hodges, H., *Introduction to Structural Dynamics and Aeroelasticity*, Cambridge Univ. Press (2002).

AE467 ANALYSIS AND DESIGN OF COMPOSITE STRUCTURES (3-0-0) 3 credits

Introduction – classification and applications of composites – fiber-reinforced composites – micro and macro-mechanical analysis – analysis of simple laminated composite structural elements – failure and fracture of composite lamina – bending and vibration of composite and sandwich structural elements – design of aerospace composite and sandwich structures.

Textbook:

• Jones, R. M., *Mechanics of Composite Materials*, 2nd ed., Taylor & Francis (1999).

References:

- 1. Gibson, R. F., *Principles of Composite Materials Mechanics*, 2nd ed., McGraw-Hill (1994).
- 2. Daniel, I. M. and Ishai, O., *Engineering Mechanics of Composite Materials*, 2nd ed., Oxford Univ. Press (2005).
- 3. Hong, T. H. and Tsai, S. W., *Introduction to Composite Materials*, Technomic Pub. Co. (1980).
- 4. Vasiliev, V. V. and Morozov, E. V., *Advanced Mechanics of Composite Materials*, 3rd ed., Elsevier (2007).

AE468

COMPUTATIONAL FLUID DYNAMICS

(3 - 0 - 0) 3 credits

Mathematical models for fluid dynamics – classification of partial differential equations – discretization methods – finite difference formulation – numerical solution of elliptic equations – linear system of algebraic equations – numerical solution of parabolic equations – stability analysis – numerical solution of hyperbolic equations – Burgers equation – incompressible Navier-Stokes equations and their solution algorithms – finite volume method.

Textbook:

• Hirsch, C., *Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics*, Vol. I, 2nd ed., Butterworth-Heinemann (2007).

References:

- 1. Tannehill, J. C., Anderson, D. A., and Pletcher, R. H., *Computational Fluid Mechanics and Heat Transfer*, 2nd ed., Taylor & Francis (1997).
- 2. Hoffmann, K. A. and Chiang, S. T., *Computational Fluid Dynamics for Engineers*, 4th ed., Engineering Education Systems (2000).
- 3. Anderson, J. D., *Computational Fluid Dynamics: The Basics with Applications*, McGraw-Hill (1995).
- 4. Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere (1980).
- 5. Ferziger, J. H. and Perić, M., *Computational Methods for Fluid Dynamics*, 3rd ed., Springer (2002).

AE469

COMPUTER INTEGRATED MANUFACTURING

(3 - 0 - 0) 3 credits

Manufacturing Systems: computer integrated manufacturing – computer aided design (CAD) and engineering (CAE) – computer aided manufacturing (CAM) and concurrent engineering.

NC, CNC and DNC; CNC Machines: general concepts, design features, drives and controls, programming – adaptive control – machining centres.

Shop Floor Automation: automated material handling – assembly and inspection – computer aided process planning (CAPP) – computer integrated production management system – group technology and cellular manufacturing – flexible manufacturing system – automatic storage/retrieval systems (AS/RS) – Just In Time (JIT) – lean manufacturing.

Textbook:

• Groover, M. P., *Automation, Production Systems and Computer Integrated Manufacturing*, 3rd ed., Prentice Hall of India (2007).

References:

- 1. Kant Vajpayee, S., *Principles of Computer Integrated Manufacturing*, Prentice Hall of India (1995).
- 2. Rehg, J. A. and Kraebber, H. W., *Computer Integrated Manufacturing*, 3rd ed., Pearson Prentice Hall (2004).
- 3. Venkateswaran, N. and Alavudeen, A., *Computer Integrated Manufacturing*, Prentice Hall of India (2008).
- 4. Groover, M. P. and Zimmers, E. W., *CAD/CAM: Computer-Aided Design and Manufacturing*, Prentice Hall of India (1984).

AE470 DESIGN OF AEROSPACE STRUCTURES

(3 - 0 - 0) 3 credits

Design considerations – codes and standards – aerospace materials and their properties – selection of materials – failure theories – design criteria – strength, stiffness, fatigue, damage tolerance – fail safe and safe life designs – design aspects typical aerospace structural constructions: monocoque, stiffened plate, isogrid, sandwich and laminated composites – weight control – design of pressurized systems – configuration, design calculations and checks applied to typical aerospace structures – structural connections and joints – fasteners – design project.

- 1. Shigley, J. E., Mischke, C., and Budynas, R., *Mechanical Engineering Design*, 7th ed., McGraw-Hill (2003).
- 2. Bruhn, E. F., *Analysis and Design of Flight Vehicle Structures*, 2nd ed., Jacobs Publishing Inc. (1973).
- 3. Niu, M. C.Y., Airframe Structural Design, 2nd ed., Hongkong Conmilit Press Ltd. (2002).
- 4. Harvey, J. F., *Theory and Design of Modern Pressure Vessels*, 2nd ed., Van Nostrand (1974).

Introduction transport properties for viscous, conducting fluids – kinematic properties – fundamental conservation equations; Navier-Stokes equations and energy equation – dimensionless parameters – solution of Newtonian viscous flows – laminar shear layers momentum, thermal – laminar heat transfer in ducts – incompressible turbulent mean flows – free convection flows – mass transfer coupled flows convection with phase change – convection in porous media.

Textbooks:

- 1. Bejan, A., Convection Heat Transfer, Wiley, 3rd ed., Wiley (2004).
- 2. Burmeister, L. C., Convective Heat Transfer, 2nd ed., Wiley (1993).

AE472

EXPERIMENTAL AERODYNAMICS

(3 - 0 - 0) 3 credits

Introduction to aerodynamic test facilities in various Mach number regimes: low speed, transonic, supersonic, hypersonic, and high enthalpy – design of subsonic, transonic, and supersonic wind tunnels – wind tunnel calibration – low speed flow visualisation techniques – dynamic stability derivatives – design of hypersonic wind tunnels – design of shock tube / shock tunnels – calibration of various wind tunnels – Flow visualisation techniques: Schlieren, shadowgraph, interferometry – introduction to laser diagnostic techniques – RTD, thermocouples, thermography, etc. – force measurement techniques in shock tunnel – introduction to wind tunnel instrumentation – Measurements techniques in wind tunnels: forces and moments, pressure, velocity, temperature, aeroacoustic measurements – error analysis – Instrumentation / data acquisition: steady and unsteady, shock tunnel data acquisition – virtual instrumentation – PLCs – measurement of steady and unsteady pressure, velocity, temperature, turbulence intensity, hot-wire, skin friction, forces and moments – Model design and fabrication: RP, FRP, metal, actuators – calibration of force, pressure and acoustic sensors.

- 1. Barlow, J. B., Rae Jr, W. H., and Pope, A., *Low-Speed Wind Tunnel Testing*, 3rd ed., Wiley (1999).
- 2. Pope, A. and Goin K., High-Speed Wind Tunnel Testing, Krieger Pub. Co. (1972).
- 3. Goethert, B. H., Transonic Wind Tunnel Testing, Dover Publications (2007).
- 4. Pavian H. C., Experimental Aerodynamics, Pitman Publishing (1940).
- 5. Mueller, T. J., Allen, C. S., Blake, W. K., Dougherty, R. P., Lynch, D., Soderman, P. T., and Underbrink, J. R., *Aeroacoustic Measurements*, Springer (2010).
- 6. Langley, S. P., Experiments in Aerodynamics, Nabu Press (2010).

Introduction – weighted residual methods – Galerkin's method – variational approach – Rayleigh-Ritz method – one-dimensional finite element analysis; types of elements, shape functions – heat transfer problems – numerical integration – applications to structural mechanics – fluid flow problems.

Textbook:

• Segerlind, L. J., *Applied Finite Element Analysis*, 2nd ed., John Wiley (1984).

References:

- 1. Henwood, D. and Bonet, J., Finite Elements: A Gentle Introduction, Macmillan (1996).
- 2. Reddy, J. N., Introduction to the Finite Element Method, 3rd ed., McGraw-Hill (2006).
- 3. Zienkiewicz, O. C., Taylor, R. L., and Nithiarasu, P., *Finite Element Method for Fluid Dynamics*, 6th ed., Elsevier Butterworth-Heinemann (2005).

AE474

FRACTURE MECHANICS

(3 - 0 - 0) 3 credits

Introduction and history of fracture mechanics – linear elastic fracture mechanics; energy release rate, stress intensity factor (SIF), relation between SIF and energy release rate, anelastic deformation at the crack tip – crack growth and fracture mechanisms – elastic-plastic analysis through J-integral – finite element analysis of cracks – fracture toughness testing – fatigue failure.

Textbook:

• Prashant Kumar, *Elements of Fracture Mechanics*, Tata McGraw-Hill (2009).

References:

- 1. Broek, D., *Elementary Engineering Fracture Mechanics*, 4th ed., Kluwer Academic (1986).
- 2. Anderson, T. L., *Fracture Mechanics: Fundamentals and Applications*, 3rd ed., CRC Press (2004).

AE475

ENGINEERING VIBRATION

(3 - 0 - 0) 3 credits

Introduction to vibration – single degree of freedom systems: free, undamped, damped, and forced vibrations – two-degree of freedom systems: principal modes of vibration, undamped vibration, forced vibration, forced damped vibrations – vibration isolation – multi-degree Freedom systems: eigenvalue problem – orthogonality of mode shapes, modal analysis for free, damped, and forced vibration systems – approximate methods for fundamental frequency – introduction to transient vibrations and non-linear vibrations.

Textbook:

• Rao, S. S., *Mechanical Vibrations*, 4th ed., Pearson Education (2004).

References:

- 1. Thomson, W. T. and Daleh, M. D., *Theory of Vibration with Applications*, 5th ed., Prentice Hall (1997).
- 2. Rao, J. S. and Gupta, K., *Introductory Course on Theory and Practice of Mechanical Vibrations*, 2nd ed., New Age International (1999).
- 3. Meirovitch, L., *Elements of Vibration Analysis*, 2nd ed., McGraw-Hill (1986).
- 4. Seto W. W., Schaum's Outline of Theory and Problems of Mechanical Vibrations, McGraw-Hill (1964).

AE476

INDUSTRIAL ENGINEERING

(3 - 0 - 0) 3 credits

Introduction, production planning and control – product design – value analysis and value engineering – plant location and layout – equipment selection – maintenance planning – job, batch, and flow production methods – group technology – work study – time and motion study – work/job evaluation – inventory control – manufacturing planning – total quality management – Taguchi's quality engineering – network models.

Textbooks:

- 1. Narasimhan, S. L., McLeavey D. W., and Billington, P. J., *Production, Planning and Inventory Control*, Prentice Hall (1977).
- 2. Riggs, J. L., *Production Systems: Planning, Analysis and Control*, 3rd ed., Wiley (1981).

References:

- 1. Muhlemann, A., Oakland, J. O., and Lockyer, K., *Productions and Operations Management*, Macmillan (1992).
- 2. Taha, H. A., Operations Research: An Introduction, Prentice Hall of India (1997).
- 3. Sharma, J. K., *Operations Research*, Macmillan (1997).

AE477

FUNDAMENTALS OF COMBUSTION

(3 - 0 - 0) 3 credits

Combustion and thermochemistry – chemical kinetics and mechanisms – reacting flows-premixed flames – detonation and explosion – diffusion flames.

Textbook:

• Turns, S. R., An Introduction to Combustion, 2nd ed., McGraw-Hill (2000).

References:

- 1. Glassman, I. and Yetter, R. A., Combustion, 4th ed., Elsevier (2008).
- 2. Kuo, K. K., *Principles of Combustion*, 2nd ed., John Wiley (2005).
- 3. Warnatz, J., Maas, U., and Dibble, R. W., Combustion 4th ed., Springer (2006).
- 4. Law C. K., Combustion Physics, Cambridge Univ. Press (2006).

AE478

SUPPLY CHAIN MANAGEMENT

(3 - 0 - 0) 3 credits

Introduction and a strategic view of supply chains – evolution of supply chain management (SCM) – decision phases in a supply chain – enablers of supply chain performance – supply chain strategy and performance measures – achieving strategic fit – network design in the supply chain – supply chain drivers and obstacles – operations decisions in supply chains – forecasting, aggregate planning – inventory control in supply chain – sourcing decisions in supply chain – supplier selection – transportation in supply chain – routing and scheduling using savings matrix method – coordination in supply chain – bullwhip effect – enabling supply chain management through information technology.

Textbook:

• Chopra, S. and Meindl, P., *Supply Chain Management: Strategy, Planning, and Operation*, Pearson Prentice Hall of India (2007).

References:

- 1. Levi, D. S., Kaminsky, P., Levi, E. S., and Shankar, R., *Designing and Managing the Supply Chain: Concepts, Strategies, and Case Studies*, Tata McGraw-Hill (2008).
- 2. Stadtler, H. and Kilger, C., *Supply Chain Management and Advanced Planning: Concepts, Models, Software and Case Studies*, 3rd ed., Springer-Verlag (2003).
- 3. Shapiro, J. F., Modeling the Supply Chain, Thomson Learning (2007).
- 4. Vollmann, T. E., Berry, W. L., Whybark, D. C., and Jacobs, F. R., *Manufacturing Planning and Control for Supply Chain Management*, Tata McGraw-Hill (2006).

AE479

INTRODUCTION TO OPTIMIZATION

(3 - 0 - 0) 3 credits

Optimization in science and engineering – general and special classes of problems – characterization of unconstrained and constrained minima – Lagrange multipliers – KKT conditions – linear programming – simplex tableau – duality – one dimensional optimization – elimination and interpolation techniques – multidimensional unconstrained minimization – steepest descent – Newton's and quasi-Newton techniques – randomized searches – genetic algorithm and simulated annealing – introduction to constrained minimization – large scale problems – multi-disciplinary optimization – applications in design, analysis, and control.

Textbook:

 Deb, K., Optimization for Engineering Design: Algorithms and Examples, Prentice Hall of India (2004).

References:

1. Rao, S. S., Engineering Optimization: Theory and Practice, Wiley Eastern (1996).

AE480

NONTRADITIONAL MACHINING

(3 - 0 - 0) 3 credits

Nontraditional machining – thermal, chemical, and abrasives techniques; need, principle, process mechanics and variables, equipments, performance characteristics – application and recent trends of electrical discharge machining (EDM), wire EDM, wire EDG, electro-chemical machining (ECM), ECG, ultrasonic, laser beam, electron beam, abrasive and water jet machining, and hybrid processes – nontraditional micromachining.

Textbooks:

- 1. Jain, V. K., Advanced Machining Processes, Allied Pub. (2002).
- 2. Mishra, P. K., *Nonconventional Machining*, Narosa (2006).

References:

- 1. Sharma, P. C., A Textbook of Production Engineering, S. Chand & Co. (2005).
- 2. Benedict, G. F., Non-Traditional Machining Processes, Marcel Dekker (1987).
- 3. Pandey, P. C. and Shan, H. S., *Modern Machining Process*, Tata McGraw-Hill (2004).

AE483

ROBOT MECHANISMS AND MOTION PLANNING

(3 - 0 - 0) 3 credits

Overview of robotics – different types of robots – manipulators and mobile robots – mechanisms used in robots – serial and parallel chains – degrees of freedom – means of mobility, rovers.

Rigid body displacements – homogenous transformation – mechanism parameters – Denavit–Hartenberg notation – forward and inverse kinematic problems – velocity and static analysis.

Higher level control – motion planning, obstacle avoidance – road map and potential field methods – higher level sensors – vision, laser and ultrasonic range finders – localization and mapping.

- 1. Ghosal, A., Robotics: Fundamental Concepts and Analysis, Oxford Univ. Press (2006).
- 2. Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L. E., and Thrun, S., *Principles of Robot Motion: Theory, Algorithms, and Implementations*, MIT Press, Prentice Hall of India (2005).

3. Craig, J. J., *Introduction to Robotics: Mechanics and Control*, 2nd ed., Pearson Education (2001).

AE484 SPACE MISSION DESIGN AND OPTIMIZATION (3-0-0) 3 credits

Launch vehicle ascent trajectory design – reentry trajectory design – low thrust trajectory design – satellite constellation design – rendezvous mission design – ballistic lunar and interplanetary trajectory design – basics of optimal control theory – mission design elements for various missions – space flight trajectory optimization – direct and indirect optimization techniques – restricted 3-body problem – Lagrangian points – mission design to Lagrangian point.

Textbooks:

- 1. Osborne, G. F. and Ball, K. J., Space Vehicle Dynamics, Oxford Univ. Press (1967).
- 2. Hale, F. J., Introduction to Space Flight, Prentice Hall (1994).
- 3. Naidu, D. S., Optimal Control Systems, CRC Press (2003).

References:

- 1. Chobotov, V., Orbital Mechanics, AIAA Edu. Series (2002).
- 2. Griffin, M. D. and French, J. R., Space Vehicle Design, 2nd ed., AIAA (2004).
- 3. Newcomb, R. W. and Kirk, D. E., *Optimal Control Theory: An Introduction*, Prentice Hall (1990).
- 4. Bulirsch, R., Miele, A., Stoer, J., and Well, K. H. (Ed.), *Optimal Control: Calculus of Variations, Optimal Control Theory and Numerical Methods*, Birkhauser Verlag (1993).

AE486 REFRIGERATION AND CRYOGENICS (3-0-0) 3 credits

Refrigeration: introduction – analysis of VCR cycles – multistage, multi-evaporator, cascade systems – properties and selection of pure and mixed refrigerants – properties of binary mixtures – analysis of vapor absorption cycles – aqua ammonia and LiBr water cycles – air cycle refrigeration, vortex tube, thermoelectric refrigeration.

Cryogenic Engineering: historical background and applications – gas liquefaction systems – gas separation and gas purification systems – cryogenic refrigeration systems – storage and handling of cryogens – cryogenic insulations – liquefied natural – gas-properties of materials of low temperatures – material of construction and techniques of fabrication – instrumentation – ultra-low temperature techniques – application.

Textbooks:

1. Stoecker, W. F. and Jones, J. W., *Refrigeration & Air Conditioning*, Tata McGraw-Hill (1986).

2. Barron, R. F., *Cryogenic Systems*, 2nd ed., Oxford Univ. Press (1985).

References:

- 1. Gosney W. B, Principles of Refrigeration, Cambridge Univ. Press (1982).
- 2. Weisend, J. G., The Handbook of Cryogenic Engineering, Taylor & Francis (1998).

AE487 TURBOMACHINES (3-0-0) 3 credits

Classification – specific work – representation of specific work in T-s and h-s diagrams – Internal and external losses – Euler's equation of turbomachinery – ideal and actual velocity triangles – slip and its estimation – impulse and reaction type machines – degree of reaction – effect of outlet blade angle on blade shape – model laws, specific speed and shape number – special features of steam and gas turbines – performance characteristics of turbomachines – cavitation, surge and stall – thin aerofoil theory – cascade mechanics.

Textbook:

• Dixon, S. L., *Fluid Mechanics and Thermodynamics of Turbomachinery*, 5th ed., Butterworth-Heinemann (2005).

References:

- 1. Baskharone, E. A., *Principles of Turbomachinery and in Air-Breathing Engines*, Cambridge Univ. Press (2006).
- 2. Wright, T., Fluid Machinery: Performance, Analysis, and Design, CRC Press (1999).

AE488 ADVANCED MANUFACTURING AND AUTOMATION (3-0-0) 3 credits

Precision Engineering: concepts, materials, processes – high speed machining; CNC machine tools and machining centres, adaptive systems, multi axis CNC programming – micro/nano scale manufacturing – recent development in nontraditional machining.

Automation: introduction to automated manufacturing, basic concepts, automated work piece handling, orientation, positioning – flexible automation – assembly automation, product design for automation – automated inspection – sensors and actuators for automation – PLC programming and applications in automation.

Textbooks:

- 1. Groover, M. P., *Automation, Production Systems, and Computer-Integrated Manufacturing*, 3rd ed., Prentice Hall (2007).
- 2. Boothroyd, G., Assembly Automation and Product Design, 2nd ed., CRC Press (2005).

Properties of materials: strength, hardness, fatigue, and creep – Ferrous alloys: stainless steels, maraging steel, aging treatments – Aluminum alloys: alloy designation and tempers, Al-Cu alloys, principles of age hardening, hardening mechanisms, Al-Li alloys, Al-Mg alloys, nanocrystalline aluminum alloys – Titanium alloys: α - β alloys, superplasticity, structural titanium alloys, intermetallics – Magnesium alloys: Mg-Al and Mg-Al-Zn alloys – Superalloys: processing and properties of superalloys, single-crystal superalloys, environmental degradation and protective coatings – Composites: metal matrix composites, polymer based composites, ceramic based composites, carbon carbon composites.

Textbooks:

- 1. Polmear, I. J., Light Alloys: From Traditional Alloys to Nanocrystals, 4th ed., Elsevier (2005).
- 2. Reed, R. C., *The Superalloys: Fundamentals and Applications*, Cambridge Univ. Press (2006).

References:

- 1. Cantor, B., Assender, H., and Grant, P. (Ed.), Aerospace Materials, CRC Press (2001).
- 2. ASM Speciality Handbook: Heat Resistant Materials, ASM International (1997).
- 3. Campbell, F. C., *Manufacturing Technology for Aerospace Structural Materials*, Elsevier (2006).
- 4. Kainer, K. U. (Ed.), Metal Matrix Composites, Wiley-VCH (2006).

AE490 HEAT TRANSFER IN SPACE APPLICATIONS

(3 - 0 - 0) 3 credits

Space Craft Thermal Environments: launch and ascent environments – environment of earth orbit – environments of interplanetary missions.

Thermal Control Techniques: passive thermal control techniques: thermal coating materials, thermal insulation, heat sinks, phase change materials – Active thermal control techniques: electrical heaters, thermal louvers, HPR fluid systems, heat pipes, spaceborne cooling systems.

Insulation-Blanket Design: materials-attachment – high temperature blankets – insulation for in-atmosphere applications.

Phase change materials – when to use a PCM-PCM design.

Heat Pipes-Types-Analysis-Testing: heat pipe applications and performances.

Thermal Contact Resistance and Its Calculation: parameters influencing thermal joint resistance-effect of oxidation and interstitial effects.

Ablative Heat Transfer: physical process and calculation of ablation rates – hypersonic ablation of graphite – heat transfer at high velocities – heat transfer in rarefied gases-transpiration and film cooling.

Textbook:

• Gilmore, D. G., Spacecraft Thermal Control Handbook, Volume I: Fundamental Technologies, 2nd ed., The Aerospace Press, American Institute of Aeronautics and Astronautics (2002).

References:

- 1. Fortescue, P., Swinerd, G., and Stark, J. (Ed.), *Spacecraft Systems Engineering*, 4th ed., John Wiley & Sons (2011).
- 2. Mayer, R. X., *Elements of Space Technology for Aerospace Engineers*, Academic Press (1999).
- 3. NASA SP 8105.

AE491

STRUCTURAL DYNAMICS

(3 - 0 - 0) 3 credits

Review of vibration of SDOF systems – response to transient loading – response to general dynamic loading – multi degree of freedom systems – vibration of continuous systems; strings, rods, shafts, beams, and plates – natural modes of vibration; exact solutions and approximate methods – introduction to random vibrations.

Textbook:

• Meirovitch, L., *Elements of Vibration Analysis*, 2nd ed., Tata McGraw-Hill (2006).

References:

- 1. Meirovitch, L., Analytical Methods in Vibrations, Macmillan (1967).
- 2. Clough, R. W., and Penzien, J., *Dynamics of Structures*, 2nd ed., McGraw-Hill (1993).
- 3. Craig, R. R., Structural Dynamics: An Introduction to Computer Methods, John Wiley (1982).
- 4. Thomson, W. T. and Daleh, M. D., *Theory of Vibration with Applications*, 5th ed., Prentice Hall (1997).

AE492

TOOL ENGINEERING AND DESIGN

(3 - 0 - 0) 3 credits

Cutting Tool: materials, geometry and nomenclature – single point and multi point cutting tools – grinding wheels – effect of tool geometry on machining characteristics – tool wear – tool life and economics of machining.

Inserts: geometry, nomenclature and materials – design concepts – coatings – selection and applications of cutting tools and inserts – design of tool holders – boring, broaching, surface finishing operations.

Tooling for CNC Machining: work holding – modular and automated tool handling – tooling for micro machining – conventional micro tools and electrodes for EDM & ECM – mechanism of ductile cutting, nanometric cutting, and chip formation – job examples and case study.

Design of Jigs and Fixtures: standard work holding devices and clamping elements – fixtures for milling – jigs for drilling and reaming – fixtures for welding – indexing jigs – design and sketching of jigs and fixtures – simple job examples and case study.

- 1. Spitler, D., Lantrip, J., Nee, J., and Smith, D. A., *Fundamentals of Tool Design*, 5th ed., Society of Manufacturing Engineers (2003).
- 2. Donaldson, C., LeCain, G. H., and Goold, V. C., Tool Design, Tata McGraw-Hill (1998).
- 3. Hoffman, E., Jig and Fixture Design, 5th ed., Delmar Thomson Learning (2004).
- 4. Hindustan Machine Tools, Production Technology, Tata McGraw-Hill (1986).
- 5. Bhattacharyya A., Metal Cutting Theory and Practice, New Central Book Agency (2000).
- 6. Wilson F. W., Hand Book of Fixture Design, McGraw-Hill (1962).
- 7. Benedict, G. F., Non-Traditional Machining Processes, Marcel Dekker Inc. (1987).
- 8. Mishra, P. K., Nonconventional Machining, Narosa (2006).