Indian Institute of Space Science and Technology

Thiruvananthapuram

B.Tech. Aerospace Engineering Curriculum & Syllabus (For 2007 Admission)

DEPARTMENT OF AEROSPACE ENGINEERING

CODE	TITLE	L	Т	Ρ	С
MA111	Mathematics I	3	1	0	4
PH111	Physics I	2	1	0	3
CH111	Chemistry I	2	1	0	3
AE111	Basic Mechanical Engineering I	2	0	0	2
AV111	Basic Electrical and Electronics Engineering I	2	1	0	3
HS111	Communication Skills and Humanities	2	0	2	3
PH131	Physics Lab I	0	0	3	1
CH131	Chemistry Lab I	0	0	3	1
AE131	Mechanical Engineering Lab I	0	0	3	1
AE132	Engineering Drawing	1	0	3	2
AV131	Electrical and Electronics Engineering Lab I	0	0	3	1
	Total	14	4	17	24

SEMESTER I

SEMESTER II

CODE	TITLE	L	Т	Ρ	С
MA121	Mathematics II	4	1	0	5
PH121	PH121 Physics II				5
CH121	H121 Chemistry II				3
AE121	AE121 Basic Mechanical Engineering II			0	3
AV121	AV121 Basic Electrical and Electronics Engineering II			0	3
MA141	Programming Lab	0	0	2	1
AE141	Mechanical Engineering Lab II A	0	0	6	2
AV141	AV141 Electrical and Electronics Engineering Lab II		0	3	1
	Total	16	3	11	23

SEMESTER III

CODE	TITLE		L	Т	Ρ	С
MA211	Mathematics III	Mathematics III				
AE211	Engineering Thermodynamics		3	1	0	4
AE212	Mechanics of Solids		3	1	0	4
AE213	Fluid Mechanics		3	1	0	4
AE214	Metallurgy and Materials Science		3	0	0	3
AE215	Engineering Mechanics		3	0	0	3
AE231	Machine Drawing		0	0	3	1
		Total	18	4	3	23

SEMESTER IV

CODE	TITLE		L	Т	Ρ	С
MA221	Mathematics IV	3	1	0	4	
AE221	Aerodynamics	3	1	0	4	
AE222	Heat Transfer		3	1	0	4
AE223	223 Mechanisms and Machine Theory				0	4
AE224	224 Manufacturing Technology I				0	3
CH221	CH221 Environmental Science and Engineering				0	2
AE241	1 Thermal and Fluid Lab				3	1
		Total	17	4	3	22

SEMESTER V

CODE	TITLE	L	Т	Ρ	С
MA311	Mathematics V	3	0	0	3
AE311	Gas Dynamics	3	0	0	3
AE312	Aerospace Structures	3	0	0	3
AE313	Metrology and Computer Aided Inspection	3	0	0	3
AV316	Instrumentation and Control Systems	3	0	0	3
HS311	Introduction to Social Science and Ethics	2	0	0	2
AE331	Modeling and Analysis Lab	0	0	3	1
AV335	Instrumentation and Control Systems Lab		0	3	1
	Tota	l 17	0	6	19

SEMESTER VI

CODE	TITLE				Ρ	С
AE321	Flight Mechanics	Flight Mechanics				
AE322	Spaceflight Mechanics		3	0	0	3
AE323	E323 Air-Breathing Propulsion					3
AE324	E324 Manufacturing Technology II				0	3
E01	Stream Elective I				0	3
HS321	821 Principles of Management Systems				0	3
AE341	41 Aerodynamics and Flight Mechanics Lab				3	1
AE342	Manufacturing Processes Lab	0	0	3	1	
		Total	18	0	6	20

CODE	TITLE		L	Т	Ρ	С
AE411	Rocket Propulsion		3	0	0	3
AE412	Aerospace Vehicle Design		3	0	0	3
E02	Stream Elective II		3	0	0	3
E03	Stream Elective III		3	0	0	3
E04	Department Elective		3	0	0	3
E05	Institute Elective		3	0	0	3
AE431	Aerospace Structures Lab		0	0	3	1
AE432	Metrology Lab		0	0	3	1
AE451	Summer Internship and Training		0	0	0	3
AE452	Seminar		0	0	0	2
		Total	18	0	6	25

SEMESTER VII

SEMESTER VIII

CODE	TITLE		L	Т	Ρ	С
AE453	Comprehensive Viva-Voce		0	0	0	3
AE454	Project Work		0	0	0	12
		Total	0	0	0	15

SEMESTER-WISE CREDITS

Semester	I	II	III	IV	V	VI	VII	VIII	Total
Credits	24	23	23	22	19	20	25	15	171

LIST OF ELECTIVES

Stream I	Aerodynamics and Flight Mechanics
Stream II	Materials and Manufacturing
Stream III	Design and Structures
Stream IV	Thermal and Propulsion

CODE	TITLE	Stream I	Stream II	Stream III	Stream IV
AE461	Advanced Aerodynamics	\checkmark			
AE462	Advanced Aerospace Structures			\checkmark	
AE463	Advanced Fluid Mechanics	\checkmark			\checkmark
AE464	Advanced Heat Transfer				\checkmark
AE465	Advanced Propulsion Systems				\checkmark
AE466	Aeroelasticity	\checkmark		\checkmark	
AE467	Analysis and Design of Composite Structures			\checkmark	
AE468	Computational Fluid Dynamics	\checkmark			\checkmark
AE469	Computer Integrated Manufacturing		\checkmark		
AE470	Design of Aerospace Structures			\checkmark	
AE471	Convection Heat Transfer				\checkmark
AE472	Experimental Aerodynamics	\checkmark			
AE473	Finite Element Method	\checkmark	\checkmark	\checkmark	\checkmark
AE474	Fracture Mechanics			\checkmark	
AE475	Engineering Vibration			\checkmark	
AE476	Industrial Engineering		\checkmark		
AE477	Fundamentals of Combustion				\checkmark
AE478	Supply Chain Management		\checkmark		
AE479	Introduction to Optimization	\checkmark	\checkmark	\checkmark	\checkmark
AE480	Nontraditional Machining		\checkmark		
AE481	Operations Research		\checkmark		
AE482	Project Management		\checkmark		
AE483	Robot Mechanisms and Motion Planning		\checkmark	\checkmark	
AE484	Space Mission Design and Optimization	\checkmark			\checkmark

CODE	TITLE	Stream I	Stream II	Stream III	Stream IV
AE485	Quality Engineering and Management		\checkmark		
AE486	Refrigeration and Cryogenics				\checkmark
AE487	Turbomachines				\checkmark
AE488	Advanced Manufacturing and Automation		\checkmark		
AE489	Aerospace Materials and Processes		\checkmark		
AE490	Heat Transfer in Space Applications				\checkmark
AE491	Structural Dynamics				
AE492	Tool Engineering and Design		\checkmark		

SEMESTER I

MA111

MATHEMATICS I

Calculus and Differential Equations:

Calculus: Taylor's theorem, partial differentiation, maxima and minima by using Lagrangian multipliers – improper integrals – applications of differentiation and integration, concavity and convexity of a curve, points of inflection, asymptotes, curvature, curve tracing – lower and upper integrals, the Riemann integral and its properties – the fundamental theorem of calculus, disorientation, mean-value theorems – double and triple integrals – change of variables in integrals, polar and spherical transforms, Jacobians of transformations – differentiation under integral sign.

Differential Equations: introduction to mathematical modelling and simulation – first order differential equations – classification of differential equations, linear, nonlinear, homogeneous and nonhomogeneous, constant coefficient and variable coefficient equations – Hadamard's problem, existence and uniqueness of solution of y' = f(x, y) – higher order linear differential equations with constant coefficients – solutions of second order system with forcing terms – method of variation of parameters and method of undetermined coefficients.

Series Solutions to Differential Equations: real numbers, sequence of real numbers – limits, series, convergence of series – power series solutions to differential equations – regular singular points – Frobeneous method to solve variable coefficient differential equations – special functions of mathematical physics, Legendre polynomials, Bessel's functions, Gamma function and their properties – Sturm–Liouville problems – self adjoint operators – Green's functions.

Textbooks:

- 1. Kreyszig, E., Advanced Engineering Mathematics, 9th ed., John Wiley, 2005.
- 2. Stewart, J., *Calculus: Early Transcendentals*, 5th ed., Brooks/Cole, 2007.

- 1. Simmons, G. G., Differential Equations with Historical Notes, Tata McGraw-Hill, 1972.
- 2. Thomas, G. B. and Finney, R. L., *Calculus and Analytic Geometry*, 9th ed., Pearson Education, 2003.
- 3. Jain, R. K. and Iyengar, S. R. K., Advanced Engineering Mathematics, Narosa, 2005.
- 4. Borelli, R. L., *Differential Equations: A Modelling Perspective*, 2nd ed., Wiley, 2004.
- 5. Hildebrand, F. B., Advanced Calculus for Applications, Prentice Hall, 1962.
- 6. Bear, H. S. Understanding Calculus, 2nd ed., John Wiley, 2003.
- 7. Murray, D. A., Advanced Engineering Mathematics, Pearson Education, 2007.
- 8. Protter, M. H., Basic Elements of Real Analysis, Spriger-Verlag, 1998.
- 9. Apostol, T. M., *Calculus*, Vol. I, 2nd ed., John Wiley, 1967.

Essentials of Physics:

Physics as Natural Philosophy: making observations, accuracy of observation, making measurements – creation of hypothesis and verification – units and dimensions – error analysis.

Mechanics and Gravitation: solar system – geocentric and heliocentric theories – planetary orbits – Kepler's laws Newton's laws of motion – Galilean invariance – concepts of inertia – momentum, force, work and energy – conservation laws – gravitation – Newton's inverse square law.

Optics: understanding of light phenomenon – corpuscular and wave theories of light – reflection, refraction, interference, diffraction, polarization, dispersion – lenses and mirrors – telescope, microscope, human eye, lasers.

Oscillations and Waves: damped and forced oscillations – coupled oscillators – travelling waves – superposition of waves – wave energy, energy transfer by waves – sound waves, Doppler effect.

Heat and Temperature: heat transfer – laws of thermodynamics – connection between heat and statistical behavior of molecules – kinetic theory – disorder and concept of entropy.

Electricity and Magnetism: electric and magnetic properties of materials – relationship between electricity and magnetism – electromagnetic waves.

Relativity: constancy of speed of light – relativity, relativity principle – Lorentz contraction and time dilation – mass-energy relation.

Quantum Mechanics: black-body radiation – inadequacy of classical mechanics, quantum theory – Planck's law – light quantum – photoelectric effect – wave particle duality, de Broglie hypothesis – formulation of quantum mechanics, probability interpretation, Heisenberg's uncertainty principle, Schrodinger's equation.

Textbooks:

- 1. Serway, R. A. and Jewett, J. W., *Principles of Physics: A Calculus Based Text*, 4th ed., Thomson Brooks/Cole, 2006.
- 2. Halliday, D., Resnick, R., and Walker, J., *Fundamentals of Physics*, 6th ed., John Wiley, 2001.

- 1. Young, H. D. and Freedman, R. A., *Sears and Zemansky's University Physics*, 11th ed., Pearson Education, 2004.
- 2. Feynman, R. P., Leighton, R. B., and Sands, M., *The Feynman Lectures on Physics*, Narosa Publishing House, 1986.
- 3. Beiser, A., *Concepts of Modern Physics*, 6th ed., Tata McGraw-Hill, 2003.

- 4. Ghatak, A., *Optics*, 3rd ed., Tata McGraw-Hill, 2005.
- 5. Tipler, P. A., *Physics for Scientists and Engineers*, 4th ed., W. H. Freeman, 1998.
- 6. Leighton, R. B., *Principles of Modern Physics*, International Series of Pure and Applied Physics, 1959.
- 7. Giancoli, D. C., *Physics: Principles with Applications*, 6th ed., Prentice Hall, 2004.

(2-1-0) 3 credits

Basic Concepts of Chemical Bonding: different types of bonds (structure and boding-hybridization - VSEPR etc. VB and MO).

Organic Chemistry: classification of compounds – aliphatic and aromatic synthesis and reactions of saturated and unsaturated compounds – isomerism – functional groups and types of reactions.

Spectroscopy: general features – fundamentals of UV-VIS and IR spectroscopy – Beer–Lambert's law – electronic absorption and emission spectroscopy – introduction to important spectroscopic techniques.

Thermodynamics: laws of thermodynamics – concept of internal energy and entropy – thermodynamics of chemical reactions.

Electrochemical Systems: electrochemical cells and EMF, applications of EMF measurements – thermodynamic data, activity coefficients, solubility product and PH.

Polymer Chemistry: monomers, polymeriozability – degree of polymerization, molecular weights, thermal transitions – classification of polymers – method of polymerization – step growth and addition (free radical, ionic) – introduction to copolymers, block and graft copolymers – polymers for space applications.

Chemical Engineering: laboratory and industrial manufacture of chemicals – unit process and unit operations – technical and economic feasibility – block diagrams and process flow diagrams – material and energy balances – industrial reactors – manufacture of ammonia – petroleum refining.

Propellants and Explosives: primary and secondary explosives, RDX, HMX, plastic bonded explosives, initiators, detonators – explosion, detonation – classification of propellants – solid, liquid and hybrid propellants.

Textbooks:

- 1. Jain, P. C. and Jain, M., *Engineering Chemistry*, 15th ed., Dhanpat Rai, 2007.
- 2. Krishnamurthy, N., Vallinayagam, P., and Madhavan, D., *Engineering Chemistry*, Prentice Hall of India, 2007.

References:

- 1. Atkins, P. and de Paula, J., *Atkins' Physical Chemistry*, 8th ed., Oxford Univ. Press, 2007.
- 2. Kuriakose, J. C. and Rajaram, J., *Chemistry in Engineering & Technology*, Vol. I, Tata McGraw-Hill, 1984.
- 3. Bruice, P. Y., Organic Chemistry, Pearson Education, 2006.
- 4. Lee, J. D., *Concise Inorganic Chemistry*, 5th ed., Blackwell Science, 2007.
- 5. Young, R. J. and Lovell, P. A., *Introduction to Polymers*, 2nd ed., Chapman & Hall, London, 1991.
- 6. McCabe, W. L. Smith, J. C., and Harriott, P., *Unit Operations of Chemical Engineering*, 7th ed., McGraw-Hill, 2005.
- 7. Urbenskey, T., *Chemistry and Technology of Explosives*, Vol. 2, Vol. 3 and Vol. 4, Pergamon Press, 1988.

AE111 BASIC MECHANICAL ENGINEERING I (2 – 0 – 0) 2 credits

Introduction to Mechanical Engineering: mechanical systems, examples – role of mechanical engineering in industry with emphasis on aerospace industry – a historical overview of evolution of mechanical systems.

Materials: introduction engineering materials – different types of metals, alloys and composites – basic mechanical properties.

Manufacturing Processes: basics of conventional design and manufacturing processes – concept of concurrent engineering.

Engineering Measurements and Control: uses, functions of an instrument – performance characteristics – zero and first order instruments – errors – control systems.

Metrology: standards; line, end and wavelength standards – geometric dimensioning and tolerancing – Indian standards – metrology in quality assurance.

Prime mover Technologies.

Textbook:

• Lecture Notes.

- 1. Shanmugham, G., Introduction to Mechanical Engineering, Tata McGraw-Hill, 2007.
- 2. Sawhney, G. S. and Schmidt, S. R., *Fundamentals of Mechanical Engineering: Thermodynamics, Mechanics and Strength of Materials*, Prentice Hall of India, 2001.
- 3. Doebelin, E. D., *Measurement Systems: Applications and Design*, 5th ed., Tata McGraw-Hill, 2007.

- 4. Murthy, V. S. R., *Structure and Properties of Engineering Materials*, Tata McGraw-Hill, 2007.
- 5. Rao, P. N., Manufacturing Technology, Tata McGraw-Hill, 2007.
- 6. Çengel, Y. A. and Boles, M. A., *Thermodynamics*, 5th ed., Tata McGraw-Hill, 2007.

AV111 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING I (2 – 1 – 0) 3 credits

Elementary DC Circuite: Kirchhoff's current law and voltage law – basic circuits elements; resistors, capacitors, inductors.

Basic Circuits Analysis Methods: nodal, mesh, and modified nodal-analysis – network theorems; Tellegen's theorem, superposition theorem, Thevenin's theorem and Norton's theorems, substitution theorems, reciprocity theorem, maximum power-transfer theorem.

Analysis of Simple AC Circuits: phasors, phasor diagrams – impedance and admittance concepts – power measurement in 1 and 3 phase AC circuits – active and reactive power – power factor – series and parallel resonance, Q factor – step response and transient analysis of RL, RC, and RLC circuits.

Basic Electronics: semiconductor diode characteristics and applications in rectifiers and power suppliers – transistor characteristics – biasing circuit – small signal and low frequency transistor model – field effect devises – JFET/HEFT MOSFET operation.

Textbooks:

- 1. Hughes, E., *Electrical and Electronic Technology*, Pearson Education, 2002.
- 2. Boylestad, R. L. and Nashelsky, L., *Electronic Devices and Circuit Theory*, Pearson Education, 2003.

- 1. Hayt, W. H. and Kemmerley, J. E., *Engineering Circuit Analysis*, 4th International Student Edition, McGraw-Hill, 1986.
- 2. Murthy, K. V. V. and Kamath, M. S., *Basic Circuit Analysis*, Reprinted, Jaico Publishing, 1998.
- 3. Del Toro, V., *Principles of Electrical Engineering*, 2nd ed., Prentice Hall, 1986.
- 4. Kothari, D. P. and Nagrath, I. J., *Theory and Problems of Basic Electrical Engineering*, Prentice Hall, 2000.
- 5. Mottershed, A., *Electronics Devices and Circuits An Introduction*, 12th ed., Reprint, EEE Publication, 1989.
- 6. Bapat, Y. N., *Electronic Device and Circuits*, 9th Reprint, Tata McGraw-Hill, 1989.
- 7. Malvino, A. P., *Electronics Principles*, 3rd TMH ed., Tata McGraw-Hill, 1989.
- 8. Floyd, T. L., *Electronic Device*, Pearson Education, 1996.

Economics for a Developing World

Principles and Concepts:

Economics: definitions, importance, schools of thought, resource allocation, its nature and importance for developing countries.

Economic Systems: basics of capitalism, socialism, mixed economy, market economy and third world economies.

Basic Concepts and Principles: micro and macro economics – demand and supply – elasticity, production- factors of production and production function, costs- TC, AC, MC and OC, VC, FC – short run and long run costs – market- basics of perfect competition, monopoly, monophony and oligopoly – concept of equilibrium – consumer surplus – national income and BOP.

Economic Problems and Policies:

Developing countries and developed countries, differences, characteristics, LDCs.

Meaning of Development: development Vs growth – Measuring development – problems of growth – lessons and controversies – Indian situation.

Poverty and Inequality: vicious circle of poverty.

Population and Development: demographic transition theory, optimum population, importance of population, problems of population growth.

Agriculture and Rural Development: importance, problems, agrarian conditions in India.

Development Planning: theory and practice:

Meaning of planning – importance, types, case for and against planning – objectives and strategies of planning – methodology of planning – India's planning experience – planning commission, NDC – brief review of five year plans – achievements and problems.

Textbooks:

- 1. Dewett K. K., Modern Economic Theory, S. Chand, 1966.
- 2. Sowell, T., *Basic Economics: A Citizen's Guide to Economy*, Blackstone Audiobooks, 2006.
- 3. Lipsey, R. and Alec, C. K., *Economics*, 10th ed., Oxford Univ. Press, 2003.
- 4. Thirlwall A. P., *Growth and Development with Special References to Developing Economics*, Macmillan, 2003.
- 5. Sundaram K. P. M. and Dutt, R., Indian Economy, S. Chand, 1967.
- 6. Lekhi, R. K., *Economics of Development and Planning*, Kalyani Publishers, 2002.

References:

- 1. Meir, G. M. and Rauch, J. E., *Leading issues in Economic Development*, Oxford Univ. Press, 2005.
- 2. Todao, M. P. and Smith, S. C., *Economic Development*, Addison-Wesley, 2005.
- 3. Aggarwal A. N., *Indian Economy, Problems of Development and Planning*, Wiley Eastern, 1992.
- 4. Pearce, D. W., McMillan Dictionary of Modern Economics, Palgrave Macmillan, 1992.
- 5. O'Connor, D. E., The Basics of Economics, Greenwood, 2004.
- 6. Kapila, U., Indian Economy Science Independence, Academic Foundation, 2004.
- 7. Misra, S. K. and Puri, V. K., *Indian Economy: Its Development Experience*, Himalaya Publishing House, 1989.

Communications Skills

Introduction to phonetics and organs of speech – phonetic script – practice of sounds in the language lab – pronunciation drills with emphasis on stress, rhythm and intonation – learning skills, conservational skills, reading skills along with interactive and interpersonal skills.

Basics of grammar – vocabulary exercises – group discussion – teaching language through visual aids like photographs – audio-video clippings or movies and exercises in augmenting conversational skills.

Textbooks:

- 1. Brown, S. and Smith, D., Active Listening with Speaking, Cambridge Univ. Press, 2007.
- 2. Carter, R. and McCarthy, M., *Cambridge Grammar of English*, Cambridge Univ. Press, 2006.

- 1. Baker, A. and Goldstein, S., *Pronunciation Pairs: An Introductory Course for Students of English*, Cambridge Univ. Press, 1990.
- 2. Ladousse, G. P., Speaking Personally, Cambridge Univ. Press, 1983.
- 3. Murphy, R., *Essential Grammar in Use*, 3rd ed., Cambridge Univ. Press, 2004.
- 4. Baker, A., *Ship or Sheep: An Intermediate Pronunciation Course*, 3rd ed., Cambridge Univ. Press, 2006.
- 5. Hewings, M., Advanced Grammar in Use, 2nd ed., Cambridge Univ. Press, 2005.

PH131	PHYSICS LAB I	(0 – 0 – 3) 1 credit
-------	---------------	----------------------

CHEMISTRY LAB I

AE131	MECHANICAL ENGINEERING LAB I	(0-0-3) 1 credit

AE132 ENGINEERING DRAWING (1 - 0 - 3) 2 credits

Introduction to Engineering Drawing and Graphics: lettering, paper sizes, types of pencils, drawing conventions, scales – dimensioning principles and conventions – construction of plane curves, cycloid, hypocycloid, involutes, ellipses, parabola, hyperbola.

Projection of Points and Lines: projection of points, lines, and planes – projection of solids (orthographic, isometric) – sections of solids – intersection of solids – development of solids.

Introduction to CAD: model and paper spaces – local and global co-ordinate systems – views – creation of simple 2D drawings – introduction to GD & T – creation of dimensions and tolerances in CAD – creation of simple drawing – detailing – plotting solid modeling of simple components – auxiliary projections – sectional views.

Textbooks:

- 1. Siddiquee, A. N., Khan, Z. A., and Ahmad, M., *Engineering Drawing with a Primer on AutoCAD*, Prentice Hall of India, 2004.
- 2. Varghese, P. I., Engineering Graphics, VIP Publishers, 2007.

References:

- 1. Gill, P. S., *Engineering Graphics and Drafting*, S.K. Kataria & Sons, 2006.
- 2. Bethune, J. D., *Engineering Graphics with AutoCAD*, Prentice Hall, 2007.
- 3. Maguire, D., *Engineering Drawing from First Principles using AutoCAD*, Butterworth-Heinemann, 1998.

AV131 ELECTRICAL AND ELECTRONICS ENGINEERING LAB I (0 – 0 – 3) 1 credit

SEMESTER II

MA121

MATHEMATICS II

Vector Calculus, Linear Algebra and Numerical Analysis:

Vector Calculus: scalar and vector fields – level surfaces – directional derivatives, gradient, curl, divergence – Laplacian – line and surface integrals – theorems of Green, Gauss and Stokes – orthogonal curvilinear coordinates – operators in cylindrical and spherical coordinates.

Vector Spaces and Linear Transformation on R^n : group, ring and field – vector spaces, subspaces – linear dependence and independence – basis, dimension, inner product – Gram– Schmidst orthogonalization process – linear transformations – null-space and nullity – range space and rank of linear transformation.

Matrix Representation of Linear Transformation: solution space of system of equation Ax = b – inverse of linear operators – similar matrices – eigenvalues and eigenvectors – Cayley–Hamilton theorem – bounds on eigenvalues – Hermitian, skew-Hermitian – unitory and normal matrices (including symmetric, skew-symmetric, and orthogonal matrices) – positive/negative definite and semi-definite matrices – quadratic form.

Numerical Solution of Algebraic and Transcendental Equations: iterative method – bisection method and Newton–Raphson method.

Solution of System of Linear Equations: direct method – Gauss elimination method – iterative methods – Jacobi and Gauss–Seidel methods.

Numerical Integration: trapezoidal method – Simpson's 1/3 rule, Simpson's 3/8 rule.

Solution of Ordinary Differential Equations: predictor-corrector method – Runge–Kutta method for first order and higher order equations.

Interpolation and Curve Fitting: finite differences, Forward, Backward and Central Differences, Newton's forward difference, backward difference and central difference interpolation polynomials, Lagrange polynomials, Linear interpolation, Least square curve, cubic splines, etc.

Textbooks:

- 1. Kreyszig, E., Advanced Engineering Mathematics, 9th ed., John Wiley, 2005.
- 2. Jain, R. K. and Iyengar, S. R. K., Advanced Engineering Mathematics, Narosa, 2005.

- 1. Stewart, J., Calculus: Early Transcendentals, Brooks/Cole Pub. Co., 2007.
- 2. Herstein, I. N., Topics in Algebra, Wiley Eastern, 2003.
- 3. Lang, S., *Linear Algebra*, 3rd ed., Springer, 1987.
- 4. Sastry, S. S., Introductory Methods of Numerical Analysis, Prentice Hall India, 2002.
- 5. Atkinson, K., Numerical Analysis, Prentice Hall, 2005.

- 6. Conte, S. D. and deBoor, C., *Numerical Analysis*, McGraw-Hills, 1994.
- 7. Gerald, C. F. and Wheatley, P. O., Applied Numerical Analysis, Pearson, 2004.
- 8. Bronson, R., Schaums Outlines on Matrix Operations, 1988.
- 9. Gantmacher, F. R., Applications of the Theory of Matrices, Chelsea, 2005.
- 10. Krishnamurthy V., Introduction to Linear Algebra, East-West Press, 1976.

PH121

PHYSICS II

(4 - 1 - 0) 5 credits

Part I

Vector Calculus: use of vectors in practical mechanics – unit vectors in spherical and cylindrical polar coordinates – conservative vector fields and their potential functions – gravitational and electrostatic examples – gradient of a scalar field – equipotentials, states of equilibrium – work and energy, conservation of energy – motion in a central force and conservation of angular momentum – physics concepts in vector fields – continuity equations and conservation principles for matter – energy and molecular charge – flux, divergence of a vector – Gauss' theorem, physical applications in gravitation and electrostatics – irrotational versus rotational vector fields – physical significance of circulation, curl of a field – Stokes' theorem, physical applications – group velocity and dispersion – shallow water waves – wave equation in three dimensions – spherical waves.

Electromagnetic Theory: electrostatic potential and field due to discrete and continuous charge distributions – dipole and quadrupole moments – energy density in an electric field – dielectric polarization – conductors and capacitors – electric displacement vector, dielectric susceptibility – Biot–Savart's law and Ampere's law in magnetostatics – magnetic induction due to configuration of current-carrying conductors – magnetization and surface currents – energy density in a magnetic field – magnetic permeability and susceptibility – force on a charge particle in electric and magnetic fields – time-varying fields – Faraday's law of electromagnetic induction – self and mutual inductance – resonance and oscillation in electric circuits – displacement current – Maxwell's equations in free space and in linear media – scalar and vector potentials, gauges – plane electromagnetic waves – electromagnetic energy density – Pointing vector – wave guides.

Textbooks:

- 1. Griffith, D. J., Introduction to Electrodynamics, 3rd ed., Prentice Hall, 1999.
- 2. Kleppner, D. and Kolenkow, R. J., An Introduction to Mechanics, McGraw-Hill, 1973.

- Kittel, C., Knight, W. D., and Ruderman, M. A., *Mechanics Berkeley Physics Course*, Vol. 1, McGraw-Hill, 1965.
- 2. Purcell, E. M., *Electricity and Magnetism, Berkeley Physics Course*, Vol. 2, Tata McGraw-Hill, 1981.

- 3. Crawford, F. S., *Waves and Oscillations, Berkeley Physics Course*, Vol. 3, McGraw-Hill, 1968.
- 4. Feynman, R. P., Leighton, R. B., and Sands, M., *The Feynman Lectures on Physics*, 3rd ed., Narosa, 1986.
- 5. Reitz, J. R., Milford, F. J., and Christy, R. W., *Foundations of Electromagnetic Theory*, Narosa, 1998.
- 6. Wangsness, R. K., *Electromagnetic Fields*, 2nd ed., Wiley, 1986.
- 7. Spiegel, M. R., Schaum's Outline of Vector Analysis, McGraw-Hill, 1968.

Part II

Introduction to Astronomy: coordinate system – electromagnetic spectrum, flux – magnitude scale – interstellar reddening – telescopes – stellar spectrum, H-R diagram – interstellar medium – star formation and evolution – solar system – cosmology.

Introduction to Atmospheric Physics: earth's atmosphere, structure, classification, constituents – greenhouse effect – radiation budget – differential heating – general circulation – cloud formation and classification – sun and solar radiation – interaction with planetary atmosphere.

Introduction to Space Technology: basic of orbital mechanics – conic sections – orbital elements – types of orbits – motion of planets and satellites – launch of a space vehicle – position in an elliptical orbit – orbit perturbation – orbit maneuvers.

- 1. Carroll, B. W. and Ostlie, D. A., *An Introduction to Modern Astrophysics*, Addison-Wesley, 1996.
- 2. Shu, F. H., *The Physical Universe: An Introduction to Astronomy*, University Science Books, 1982.
- 3. Palen, S., Schaum's Outline Series on Astronomy, McGraw-Hill, 2001.
- 4. Narlikar, J. V., Introduction to Cosmology, 3rd ed., Cambridge Univ. Press, 2002.
- 5. Wallace, J. M. and Hobbs, P. V., *Atmospheric Science: An Introductory Survey*, Academic Press, 2006.
- 6. Houghton, J. T., *The Physics of Atmosphere*, 3rd ed., Cambridge Univ. Press, 2002.
- 7. Goody, R. M., Walker, J. C. G., and Lee, M. A., Atmospheres, Prentice Hall, 1972.
- 8. Iqbal, M., Introduction to Solar Radiation, Academic Press, 1983.
- 9. Das, P. K., The Monsoons, World Meteorological Organization, 1986.
- 10. Rishbeth, H. and Garriott, O. K., *Introduction to Ionospheric Physics*, Academic Press, 1969.
- 11. Curtis, H. D., Orbital Mechanics for Engineering Students, Butterworth-Heinemann, 2004.

Chemical Kinetics: basic concepts of chemical kinetics – reaction stoichiometry – rates of consumption and formation – extent of reaction – rate of reaction – volume change during reaction – empirical rate equations – elementary, composite and chain reactions – catalysis and inhibition – first order reactions, second order reactions, reactions of n^{th} order – half life – influence of temperature on reaction rates – Arrhenius equation.

Dynamics of Chemical Processes: basic concepts – composite reactions – opposing, parallel, and consecutive reactions – reaction mechanisms – chain reactions (stationary and nonstationary) – enzyme kinetics – theories of reaction rates (collision theory and classical transition state theory) – unimolecular reactions.

Electrochemistry: weak and strong electrolytes – specific conductance, equivalent conductance – activity – ionic strength – ionic atmosphere – Kohlrausch law – Arrhenius theory of electrolyte dissociation – Ostwald's dilution law – determination of degree of dissociation – transport number – Hittorf method, moving boundary method – electrochemical series – thermodynamic quantities of cell, conservation cell – determination of K_a, K_{sp} – conductometric titration – potentiometric titration – determination of pH.

Corrosion: theories of corrosion – chemical corrosion, electrochemical corrosion, galvanic cell corrosion, pitting corrosion, inter granular corrosion, water line corrosion, stress corrosion – factors influencing corrosion – testing and measurement of corrosion – protection against corrosion, protective coatings- metallic, nonmetallic and organic coatings.

Spectroscopic Techniques: NMR spectroscopy and Mass spectroscopy.

Thermal Characterization Techniques: Thermo-Gravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Differential Thermal Analysis (DTA).

Surface Characterization: Electron Spectroscopy for Chemical Analysis (ESCA), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), and Transmission Electron Microscopy (TEM).

Advanced Composite Materials: general characteristics and applications of composite materials – classifications of composites – metal- matrix composites, ceramic- matrix composites, nano-composites – factors influencing composite properties – Fiber Reinforced Polymer (FRP) – types of fibers – composite processing techniques like bag moulding, compression moulding, pulrtusion, hand lay-up, and spray lay-up.

Composite Propellants: binder systems – polysulfides, polyurethanes and polybutadiens – highenergy composite propellants.

Textbooks:

- 1. Jain, P. C. and Jain, M., *Engineering Chemistry*, 15th ed., Dhanpat Rai, 2007.
- 2. Krishnamurthy, N., Vallinayagam, P., and Madhavan, D., *Engineering Chemistry*, Prentice-Hall of India, 2007.

References:

- 1. Laidler, K. J., *Chemical Kinetics*, 3rd ed., Pearson Education, 2005.
- 2. Atkins, P., and De Paula, J., Atkins' Physical Chemistry, 8th ed., Oxford Univ. Press, 2007.
- 3. Kemp, W., Organic Spectroscopy, 3rd ed., Palgrave Macmillan, 2007.
- 4. Hull, D., An Introduction to Composite Materials, Cambridge Univ. Press, 1981.
- 5. Hong T. H. and Tsai, S. W., *Introduction to Composite Materials*, Technomic Publishing Co., 1980.
- 6. Skoog, D. A., West, D. M., and Holler, F. J., *Fundamentals of Analytical Chemistry*, 8th ed., Thompson Brooks/Cole, 2004.
- 7. Crow, D. R., *Principles and Applications of Electrochemistry*, 3rd ed., Chapman & Hall, 1988.
- 8. Sharma, B. K., *Instrumental Methods for Chemical Analysis*, 16th ed., Goel Publishing House, 1997.
- 9. Dodd, J. W. and Tonge, K. H., *Thermal Methods*, John Wiley, 1987.

AE121 BASIC MECHANICAL ENGINEERING II (3-0-0) 3 credits

Testing of Materials: properties – methods to evaluate mechanical properties of metallic materials.

Advanced Manufacturing Processes: automation of manufacturing process – robotics – mechatronics.

Mechanisms: mechanism and their role – introduction to simulation and analysis in design and manufacturing.

Combustion: combustion thermodynamic - fundamentals of combustion kinetics.

Heat Transfer: steady and unsteady state conduction in one-dimensional systems – convection and radiation heat transfer.

Analysis of Experimental Data: uncertainty analysis – probability distribution of errors – regression analysis.

Introduction to Space Systems: history – classification – subdivisions of aerospace engineering – Indian aerospace activities.

Textbook:

• Lecture Notes

- 1. Çengel, Y. A., *Heat and Mass Transfer*, 3rd ed., Tata McGraw-Hill, 2007.
- 2. Kalpakjian, S. and Schmid, S. R., *Manufacturing Engineering and Technology*, 4th ed., Prentice Hall, 2001.

- 3. Çengel, Y. A. and Boles, M. A., *Thermodynamics*, 3rd ed., Tata McGraw-Hill, 2007.
- 4. Rattan, S. S., *Theory of Machines*, 2nd ed., Tata McGraw-Hill, 2007.
- 5. Nayar, A., Testing of Metals, Tata McGraw-Hill, 2007.
- 6. Holman, J. P., *Experimental Methods for Engineers*, 7th ed., Tata McGraw-Hill, 2004.
- 7. Anderson Jr., J. D., Introduction to Flight, 5th ed., Tata McGraw-Hill, 2007.

AV121 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING II (3 – 0 – 0) 3 credits

Magnetic Circuits: properties of magnetic circuits – dc excitation – hysteresis loop, B-H curve, reluctance – air gap – iterative design – ac excitation – eddy current losses – energy in magnetic field – production of force, EMF – relays.

Transformer: equivalent circuits – auto transformer – efficiency and voltage regulation – SC and OC test.

Electro-Mechanical Energy Conversion: principles of rotating machines – DC motors and generators, principle of operation, speed torque characteristics, speed control – alternators and induction motors, operating principle, equivalent circuit, speed torque characteristics – no-load test.

Operational Amplifiers: introduction, parameters and characteristics – differential amplifier – differential and common mode operation common mode rejection ratio (CMRR) – inverting and inverting mode and its operation – typical applications of op-amps in analog computations – adder, subtractor, comparator, differentiator, integrator – active filters, first order and second order low pass and high pass filter.

Digital Circuits: introduction – Boolean algebra – basic logic gates – implementation of basic gates using universal gates – combinational circuits – half adder, full adder – sequential circuits – flip-flops.

Introduction to Microprocessors: architecture of 8 bit microprocessor (8085) – introduction to assembly language programming – computer architecture – functional block diagram.

Power Semiconductor Devises: SCR, TRIAC, DIAC, UJT, working characteristics – typical applications in DC/Dc convertors, invertors, UPS.

Transducers: working principle – applications in aerospace – use of thermistors.

Storage Batteries: different technologies – characteristics, specifications, maintenance – usage in aerospace applications.

Principles of Communication: need for modulation, types of modulation (AM, FM, PM) – basic block diagram of a communication system – overview of satellite communication.

Textbooks:

- 1. Del Toro, V., *Principles of Electrical Engineering*, 2nd ed., Prentice Hall, 1986.
- 2. Floyd, T. L., *Digital Fundamentals*, 8th ed., Pearson Education, 2005.

- 1. Pal, M. A., *Introduction to Electrical Circuits and Machines*, Affiliated East-West Press, 1975.
- 2. Say, M. G., Performance and Design of AC Machines, CBS Publishers, 2005.
- 3. Langsdorf, A. S., *The Theory of Alternating Current Machinery*, Tata McGraw-Hill, 1999.
- 4. Milman, J. and Halkias, C. C., *Integrated Electronics Analog and Digital Systems*, McGraw-Hill, 1972.
- 5. Taub, H. and Schilling, D. L., *Digital Integrated Electronics*, McGraw-Hill, 1977.
- 6. Hodges, D. A. and Jackson, H. G., *Analysis and Design of Digital Integrated Circuits*, McGraw-Hill, 1983.
- 7. Kassakian, J. G., Schlecht, M. F., and Verghese, G. C., *Principles of Power Electronics*, Prentice Hall, 1991.
- 8. Erickson, R. W., Fundamentals of Power Electronics, Chapman & Hall, 1997.
- 9. Mohan, N., Undeland, T., and Robbins, W., *Power Electronics: Convertors, Applications and Design*, 2nd ed., John Wiley, 1995.
- 10. Jain, R. P., *Modern Digital Electronics*, Tata McGraw-Hill, 2003.
- 11. Mano, M. M., Digital Design, Prentice Hall, 2002.
- 12. Gaonkar, R. S., *Microprocessor Architecture Programming, and Applications with the 8085*, Prentice Hall, 2002.
- 13. Hughes, E., *Electrical and Electronic Technology*, Pearson Education, 2002.
- 14. Gayakward, R. A., Op-Amps and Linear Integrated Circuits, Prentice Hall, 1992.
- 15. Kennedy, G., *Electronic Communication Systems*, McGraw-Hill, 1977.

MA141	PROGRAMMING LAB	(0-0-2) 1 credit
AE141	MECHANICAL ENGINEERING LAB II A	(0 – 0 – 6) 2 credits
AV141	ELECTRICAL AND ELECTRONICS ENGINEERING LAB II	(0 – 0 – 3) 1 credit

SEMESTER III

MA211

MATHEMATICS III

Complex Analysis, Fourier Series and Integral Transforms:

Complex Variable: complex numbers and their geometrical representation – functions of complex variable – limit, continuity and derivative of functions of complex variable – analytical functions and applications – harmonic functions – transformations and conformal mappings – bilinear transformation – contour integration and Cauchy's theorem – convergent series of analytic functions – Laurent and Taylor series – zeroes and singularities – calculation of residues – residue theorem and applications.

Fourier Series: Fourier series expansion of periodic functions with period two – Fourier series of even and odd functions – half-range series – Fourier series of functions with arbitrary period – conditions of convergence of Fourier series.

Laplace Transform: Laplace transforms of elementary functions – inverse Laplace transforms – linearity property – first and second shifting theorem – Laplace transforms of derivatives and integrals – Laplace transform of Dirac delta function – applications of Laplace transform in solving ordinary differential equations.

Fourier Transform: Fourier integral – the Fourier transform pair – algebraic properties of Fourier transform – convolution, modulation, and translation – transforms of derivatives and derivatives of transform – inversion theory.

Textbook:

• Kreyszig, E., Advanced Engineering Mathematics, 9th ed., John Wiley, 2005.

- 1. Churchill, R. V. and Brown, J. W., *Complex Variables and Applications*, 6th ed., McGraw-Hill, 2004.
- 2. Mathews, J. H. and Howell, R., *Complex Analysis for Mathematics and Engineering*, Narosa, 2005.
- 3. Wylie, C. R. and Barrett, L. C., Advanced Engineering Mathematics, McGraw-Hill, 2002.
- 4. Jain, R. K. and Iyengar, S. R. K., Advanced Engineering Mathematics, Narosa, 2005.
- 5. Greenberg, M. D., Advanced Engineering Mathematics, Pearson Education, 2007.
- 6. James, G., Advanced Modern Engineering Mathematics, Pearson Education, 2004.

AE211 ENGINEERING THERMODYNAMICS (3 – 1 – 0) 4 credits

Basic concepts of thermodynamics – properties of pure substances – energy transfer by heat, work, and mass – first law of thermodynamics – second law of thermodynamics – entropy and exergy – gas power, vapor power, and combined cycles – refrigeration cycle – thermodynamics property relations – gas mixtures, gas-vapor mixture – air conditioning – applications in thermal engineering.

Textbook:

 Çengel, Y. A. and Boles, M. A., *Thermodynamics – An Engineering Approach*, 5th ed., Tata McGraw-Hill, 2006.

References:

- 1. Nag, P. K., *Engineering Thermodynamics*, 3rd ed., Tata McGraw-Hill, 2005.
- 2. Moran, M. J. and Shapiro, H. N., *Fundamentals of Engineering Thermodynamics*, 6th ed., Wiley, 2007.

AE212 MECHANICS OF SOLIDS (3-1-0) 4 credits

Concepts of stress, strain – compatibility – generalized Hooke's law – torsion – axial force, shear, and bending moment – pure bending – shear stress in beams – transformation of stresses and strains – deflection of beams – stability – energy methods.

Textbook:

• Popov, E. P., *Engineering Mechanics of Solids*, 2nd ed., Prentice Hall, 1998.

References:

- 1. Hibbeler, R. C., *Mechanics of Materials*, 6th ed., Prentice Hall, 2004.
- 2. Beer, F. P., Johnston, E. R., and DeWolf, J. T., *Mechanics of Materials*, 4th ed., McGraw-Hill, 2005.
- 3. Srinath, L. S., Advanced Mechanics of Solids, 2nd ed., Tata McGraw-Hill, 2003.

AE213 FLUID MECHANICS (3 – 1 – 0) 4 credits

Fluid properties – fluid statics – fluid kinematics – control volume equations (integral formulation) – differential formulation – continuity and Navier–Stokes equations – exact solutions – dimensional analysis – pipe flow – potential flow – boundary layer flow – turbulence.

Textbook:

• Fox, R. W. and McDonald, A. T., Introduction to Fluid Mechanics, 6th ed., John Wiley, 2003.

References:

- 1. Çengel, Y. A. and Cimbala, J. M., *Fluid Mechanics: Fundamental and Applications*, McGraw-Hill, 2005.
- 2. White, F. M., *Fluid Mechanics*, 5th ed., McGraw-Hill, 2003.
- 3. Kundu, P. K. and Cohen, I. M., *Fluid Mechanics*, 3rd ed., Academic Press, 2004.

AE214 METALLURGY AND MATERIALS SCIENCE (3 - 0 - 0) 3 credits

Introduction to engineering materials – structure of crystalline solids – imperfections in solids – mechanical properties of materials – plastic deformation and strengthening mechanism in materials – phase diagrams and phase transformations – fracture, fatigue, and creep – classifications and applications of selected engineering materials.

Textbooks:

- 1. Callister Jr., W. D., *Materials Science and Engineering An Introduction*, 7th ed., John Wiley, 2007.
- 2. Dieter, G. E., *Mechanical Metallurgy*, 3rd ed., McGraw-Hill, 1988.
- 3. Askeland, D. R. and Phule, P. P., *The Science and Engineering of Materials*, 4th ed., Thompson-Engineering, 2006.

References:

- 1. Raghavan, V., *Materials Science and Engineering*, 5th ed., Prentice Hall of India, 2004.
- 2. Smith, W. F., *Principles of Materials Science and Engineering*, McGraw-Hill, 1990.
- 3. Thelning, K.-E., Steel and Its Heat Treatment, 2nd ed., Butterworth-Heinemann, 1984.
- 4. Singh, V., Physical Metallurgy, Standard Publishers, 1999.
- 5. Rajan, T. V., Sharma, C. P., and Sharma, A., *Heat Treatment: Principles and Techniques*, 2nd ed., Prentice Hall of India, 2006.
- 6. Van Vlack, L. H., *Elements of Materials Science and Engineering*, 6th ed., Pearson Education, 1989.

AE215 ENGINEERING MECHANICS (3 - 0 - 0) 3 credits

Basics of statics – fundamental principles and concepts – analysis of structures – trusses, frames, machines, beams, cables – friction – center of mass and area moments of inertia – mass moment of inertia – virtual work and energy method – applications of energy method for equilibrium – stability of equilibrium – review of particle dynamics – plane kinematics of rigid bodies, rotation – plane kinetics of rigid bodies – introduction to vibration.

Textbooks:

- 1. Timoshenko, S. P. and Young, D. H., *Engineering Mechanics*, 4th ed., Tata McGraw-Hill, 2007.
- 2. Beer, F. B. and Johnston, E. R., *Vector Mechanics for Engineers: Statics* (Vol. 1), *Dynamics* (Vol. 2), 8th ed., Tata McGraw-Hill, 2007.

References:

- Meriam, J. L. and Kraige, L. G., *Engineering Mechanics: Statics* (Vol. 1), *Dynamics* (Vol. 2), 5th ed., Wiley, 2002.
- 2. Shames, I. H., *Engineering Mechanics: Statics and Dynamics*, 4th ed., Prentice Hall, 1996.
- 3. Hibbeler, R. C., *Principles of Statics and Dynamics*, 10th ed., Prentice Hall, 2006.

AE231 MACHINE DRAWING $(0-0-3)$	1 credit
---------------------------------	----------

Threaded fasteners – nuts, joints – part drawing of machine elements – couplings, computer aided drafting of machine elements – assembly drawings using CAD for various engine parts – conventions in shop floor drawings – limits, fits, and tolerances, and their interpretations – creation of assembles in solid modeling packages and preparation of 2D drawings – a drawing project on reverse engineering.

Textbook:

• Bhatt, N. D. and Panchal, V. M., *Machine Drawing*, 41st ed., Charotar Publishing House, 2006.

- 1. Sidheswar, N., Kanniah, P., and Sastry, V. V. S., *Machine Drawing*, Tata McGraw-Hill, 1983.
- 2. Luzadder, W. J. and Duff, J. M., *Fundamentals of Engineering Drawing*, 11th ed., Prentice Hall, 1995.
- 3. John, K. C. and Varghese, P. I., *Machine Drawing*, VIP Publication, 1995.

SEMESTER IV

MA221

MATHEMATICS IV

Probability and Statistics:

Probability Distributions: random Variable, discrete and continuous random variables – probability distributions – binomial distribution, hyper geometric distribution – Poisson approximation to the binomial, geometric distribution, normal distribution – normal approximation to the binomial distribution, uniform distribution, gamma distribution, beta distribution, and Weibull distribution – mathematical expectation and moments, mean, variance, moment generating function, and characteristic function.

Sampling Distributions and Inference Concerning Means: population and samples – central limit theorem – sampling distributions of mean and variance – point estimation – confidence interval for mean, variance and proportions – tests of hypotheses, the null hypotheses and the significance tests – control charts for variables and attributes – acceptance sampling by attributes – simple, double and sequential sampling plans – design of experiments.

Correlation and Regression Analysis: curve fitting by the method of least squares – Chi-square test of goodness of fit – contingency tables – inference based on the least square estimators – regression – correlation – inference concerning correlation coefficient.

Markov Chains: stochastic processes – Markov chains with finite and countable state space – classification of states – limiting behavior of n-step transition probabilities – continuous Markov process, and hidden Markov chain with applications.

Textbooks:

- 1. Gorden, S. P. and Gorden, F. S., *Contemporary Statistics, A Computer Approach*, McGraw-Hill, 1994.
- 2. Medhi, J., Stochastic Processes, Wiley Eastern, 1982.
- 3. Johnson, R. A., *Miller & Freund's Probability and Statistics for Engineers*, 6th ed., Prentice Hall, 2000.

- 1. Levin, R. I. and Rubin, D. S., *Statistics for Management*, 7th ed., Prentice Hall, 1998.
- 2. Milton, J. S. and Arnold, J. C., *Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences*, McGraw-Hill, 2002.
- 3. Ross, S. M., *Introduction to Probability and Statistics for Engineers and Scientists*, 3rd ed., Academic Press, 2004.
- 4. Feller, W., *An Introduction to Probability Theory and Its Applications*, Vol. 1 & Vol. 2, John Wiley, 1968.

- 5. Hogg, R. V., Craig, T., and McKean, J. W., *Introduction to Mathematical Statistics*, 6th ed., Prentice Hall, 2004.
- 6. Hogg, R. V. and Tanis, E. A., *Probability and Statistical Inference*, 7th ed., Prentice Hall, 2005.
- 7. Larsen, R. J. and Marx, M. L., *An Introduction to Mathematical Statistics and Its Applications*, 4th ed., Prentice Hall, 2005.
- 8. Mendenhall, W., Wackerly, D., and Scheaffer, R. L., *Mathematical Statistics with Applications*, 7th ed., Duxbury Press, 2007.
- 9. Chung, K. L. and AitSahlia, F., *Elementary Probability Theory With Stochastic Processes and an Introduction to Mathematical Finance*, 4th ed., Springer, 2003.

AE221	AERODYNAMICS	(3 – 1 – 0) 4 credits
-------	--------------	-----------------------

Inviscid, incompressible flows – point vortex, vortex sheet – Biot–Savart law – airfoil nomenclature and characteristics – incompressible flow past airfoils – elements of panel method – flow over finite wings – calculation of lift and drag for aircraft – analysis of aerodynamic performance.

Textbook:

• Anderson Jr., , J. D., Fundamentals of Aerodynamics, 4th ed., McGraw-Hill, 2006.

References:

- 1. Bertin, J. J. and Smith, M. L., Aerodynamics for Engineers, 5th ed., Prentice Hall, 2008.
- 2. McCormick, B. W., *Aerodynamics, Aeronautics, and Flight Dynamics*, 2nd ed., John Wiley, 1995.
- 3. Kuethe, A. M. and Chow, C.-Y., Foundations of Aerodynamics, 5th ed., John Wiley, 1997.

AE222	HEAT TRANSFER	(3-0-1) 4 credits

Introduction to heat transfer – steady state heat conduction (1-D, 2-D, 3-D) – transient heat conduction (lumped capacitance, 1-D, 3-D) – introduction to convective heat transfer – external forced convection – internal forced convection – natural/free convection – boiling and condensation – heat exchanger analysis and design – blackbody radiation and radiative properties – radiative exchange between surfaces.

Textbook:

Incropera, F. P. and DeWitt, D. P., Fundamentals of Heat and Mass Transfer, 5th ed., John Wiley, 2002.

References:

- 1. Holman, J. P., *Heat Transfer*, 9th ed., Tata McGraw-Hill, 2007.
- 2. Çengel, Y. A., *Heat and Mass Transfer: A Practical Approach*, 3rd ed., Tata McGraw-Hill, 2006.

AE223 MECHANISMS AND MACHINE THEORY (3 – 1 – 0) 4 credits

Kinematics of machinery, definition – condition of constrained motion – inversion – velocity and acceleration diagrams of machines – instantaneous center – theory of cams – theory of gears and gear trains – static and dynamic force analysis of mechanisms – gyroscopes – balancing.

Textbook:

• Uicker, J. J., Pennock, G. R., and Shigley, J. E., *Theory of Machines and Mechanisms*, 3rd ed., Oxford Univ. Press, 2003.

References:

- 1. Rattan, S. S., *Theory of Machines*, 2nd ed., Tata McGraw-Hill, 2005.
- 2. Myszka, D. H., *Machines and Mechanisms: Applied Kinematics Analysis*, 3rd ed., Prentice Hall, 2004.

AE224 MANUFACTURING TECHNOLOGY I (3 - 0 - 0) 3 credits

Introduction, basic concepts and principles of manufacturing – metal casting technology – principles of solidification – various metal forming techniques and their analysis – joining processes like welding, brazing, and soldering – inspection – defects in manufacturing and their remedies.

Textbooks:

- 1. Ghosh, A. and Mallik, A. K., Manufacturing Science, 6th ed., Wiley Eastern, 2003.
- 2. Rao, P. N., *Manufacturing Technology: Foundry, Forming and Welding*, 2nd ed., Tata McGraw-Hill, 2007.
- 3. Dieter, G. E., *Mechanical Metallurgy*, 3rd ed., McGraw-Hill, 1988.

- 1. Campbell, J. S., *Principles of Manufacturing Materials and Processes*, Tata McGraw-Hill, 1995.
- 2. Degarmo, E. P., Black, J. T., and Kohser, R. A., *Materials and Processes in Manufacturing*, 10th ed., Prentice Hall of India, 2007.
- 3. Linnert, G. E., Welding Metallurgy, AWS, 1994.

4. Heine, R. W., Loper, C. R., and Rosenthal, P. C., *Principles of Metal Casting*, 2nd ed., Tata McGraw-Hill, 1976.

CH221 ENVIRONMENTAL SCIENCE AND ENGINEERING (2 - 0 - 0) 2 credits

Awareness of the impact of environment on quality of life – natural resources – biological systems – bio-geo chemical cycles – chemical processes; water treatment operations, water sampling, storage, quality measurement – oxygen demand – detection of pollutants – current environmental issues; pollutants, global warming, causes and consequences, air pollution, organic and inorganic air pollutants, smog-acid mine drainage, accumulation of salts in water – soil formation; micro and macro nutrients in soil, pollutants in soil – green chemistry: an alternative tool for reducing pollution – engineering interventions; flow sheets, waste minimization, e-waste management, ASP, reverse osmosis, trickling filter – environmental management; solid, liquid waste management, hazardous wastes, ISO standards – Kyoto protocol, Montreal protocol, Euro norms.

Textbook:

• Rao, V., Textbook of Environmental Engineering, Prentice Hall of India, 2002.

- 1. Baird, C. and Cann, M., *Environmental Chemistry*, 3rd ed., W. H. Freeman and Company, 2005.
- 2. *Manual on Water Supply and Treatment*, CPHEEO, Ministry of Urban Development, GOI, 1999.
- 3. *Manual on Sewerage and Sewage Development*, CPHEEO, Ministry of Urban Development, GOI, 1993.
- 4. Hauser, B. A., Practical Hydraulics Hand Book, Lewis Publishers, 1991.
- 5. Hammer, M. J., Water and Wastewater Technology, Regents/Prentice Hall, 1991.
- 6. Sharma, J. P., *Comprehensive Environmental Studies*, Laxmi Publications, 2004.
- 7. Garg, S. K., *Environmental Engineering* (Vol. 1 & Vol. 2), Khanna Publishers, 2004.
- 8. Kiely, G., *Environmental Engineering*, McGraw-Hill, 1997.
- 9. Bharucha, E., *Textbook of Environmental Studies*, University Grants Commission, 2004.
- 10. Vanloon, G. W. and Duffy, S. J., *Environmental Chemistry: A Global Perspective*, Oxford Univ. Press, 2000.

AE241	THERMAL AND FLUID LAB	(0 – 0 – 3) 1 credit

SEMESTER V

MA311

MATHEMATICS V

Partial Differential Equations: introduction to PDE – modeling problems related and general second order PDE – classification of PDE, hyperbolic, elliptic and parabolic PDE – canonical form – scalar first order partial differential equations – method of characteristics – Charpits method – quasi-linear first order equations – shocks and rarefactions – solution of heat, wave, and Laplace equations using separable variable techniques and Fourier series.

Numerical Methods: solution of algebraic and transcendental equations – solution of system of linear equations – numerical integration – interpolation and curve fitting – solution of ordinary differential equations – approximation of functions.

Textbook:

• Kreyszig, E., Advanced Engineering Mathematics, 9th ed., John Wiley, 2005.

References:

- 1. Jain, M. K., Iyengar, S. R. K., and Jain, R. K., *Numerical Methods for Scientific and Engineering Computation*, New Age International Publishers, 2003.
- 2. Sneddon, I. N., *Elements of Partial Differential Equations*, McGraw-Hill, 1986.
- 3. Renardy, M. and Rogers, R. C., *An Introduction to Partial Differential Equations*, 2nd ed., Springer-Verlag, 2004.
- 4. Greenberg, M. D., Advanced Engineering Mathematics, Pearson Education, 2007.
- 5. McOwen, R. C., *Partial Differential Equations: Methods and Applications*, 2nd ed., Pearson Education, 2003.

AE311	GAS DYNAMICS	(3 - 0 - 0) 3 credits

Governing equations – static and stagnation properties – speed of sound and Mach number – isentropic flow through variable area ducts – normal and oblique shocks – Fanno flow – Rayleigh flow – Prandtl–Meyer flow – small perturbations theory – unsteady wave motion.

Textbook:

• Anderson, J. D., *Modern Compressible Flow with Historical Perspective*, 3rd ed., McGraw-Hill, 2004.

- 1. Zucker, R. D. and Biblarz, O., *Fundamentals of Gas Dynamics*, 2nd ed., John Wiley, 2002.
- 2. John, J. E. A. and Keith, T., Gas Dynamics, 3rd ed., Prentice Hall, 2006.

3. Yahya, S. M., *Fundamentals of Compressible Flow with Aircraft and Rocket Propulsion*, 3rd ed., New Age International Publishers, 2003.

AE312 AEROSPACE STRUCTURES (3-0-0) 3 credits

Description of essential features of aircraft, rocket and spacecraft structures – introduction to theory of elasticity – linear and nonlinear strain descriptions – stress-strain relations – thermal stresses – isotropic and orthotropic materials – introduction to laminated composites – stress functions – torsion of solid sections – theory of thin plates and axisymmetric shells – structural instability – virtual work, energy and matrix methods – introduction to finite element method.

Textbook:

• Megson, T. H. G., *Aircraft Structures for Engineering Students*, 4th ed., Butterworth-Heinemann, 2007.

References:

- 1. Timoshenko, S. P. and Goodier, J. N., *Theory of Elasticity*, 3rd ed., McGraw-Hill, 1970.
- 2. Timoshenko, S. P. and Woinowsky-Krieger, S., *Theory of Plates and Shells*, 2nd ed., McGraw-Hill, 1964.
- 3. Osgood, C. C., *Spacecraft Structures*, Prentice Hall, 1966.

AE313 METROLOGY AND COMPUTER AIDED INSPECTION (3 - 0 - 0) 3 credits

Introduction to metrology, fundamentals of dimensional measurements, length standards, application of light interference for precision measurements – fits and tolerances – concepts and practices of gauging – comparators and their applications – linear and angular measurements – thread and gear inspection – form, flatness, straightness, and alignment measurements – surface metrology – co-ordinate metrology – laser applications in metrology – vision inspection – micro and nano metrology.

Textbooks:

- 1. Shotbolt, C. S. and Galyer. J., *Metrology for Engineers*, 5th ed., Cassell Publ., 1990.
- 2. Jain, R. K., *Engineering Metrology*, Khanna Pub., 2008. Busch, T., Fundamentals of Dimensional Metrology, Delmar Pub., 1988.

- 1. Smith, G. T., Industrial Metrology: Surfaces and Roundness, Springer-Verlag, 2002.
- 2. Whitehouse, D. J., Handbook of Surface Metrology, Taylor & Francis, 1994.

AV316 INSTRUMENTATION AND CONTROL SYSTEMS (3 - 0 - 0) 3 credits

Instrumentation: sensitivity, linearity, and resolution of instruments – uncertainty of measurements – signal conditioners - bridge circuits, amplifiers, and filters – measurement of displacement, velocity, acceleration, force, torque, pressure, flow, temperature, and level.

Control Systems: classification of control systems – block diagram representation and reductions – mathematical background and mathematical model of physical systems – time domain analysis, transient response, and stability – frequency response methods, polar plot, bode diagrams, Nyquist stability criteria.

Controllers: types of controllers – types of control action; proportional, integral, derivative, on-off controls – hydraulic, electronic, and pneumatic controllers.

Textbooks:

- 1. Doebelin, E. O., *Measurement Systems: Application and Design*, 5th ed., McGraw-Hill, 2003.
- 2. Nise, N. S., *Control Systems Engineering*, 4th ed., Wiley India, 2003.

References:

- 1. Beckwith, T. G., Lewis Buck, N., and Marangoni, R. D., *Mechanical Measurements*, 3rd ed., Addison-Wesley, 1982.
- 2. Holman, J. P., *Experimental Methods for Engineers*, 7th ed., Tata McGraw-Hill, 2004.
- 3. Raman, R., Principles of Mechanical Measurements, Oxford & IBH, 1997.
- 4. D'Azzo, H., Feedback Control System Analaysis and Synthesis, CRC Press, 2007.
- 5. Mutambara, A. G. O., *Design and Analysis of Control Systems*, CRC Press, 2008.
- 6. Qiu, L. and Zhou, K., Introduction to Feedback Control, Prentice Hall, 2009.

HS311 INTRODUCTION TO SOCIAL SCIENCE AND ETHICS (2 – 0 – 0) 2 credits

Social science: introduction to sociology, anthropology – social science research design and sampling.

Ethics: professional and personal ethics – values and norms and human rights.

Textbook:

• Lecture Notes

- 1. Perry, J. and Perry, E., *Contemporary Society: An Introduction to Social Science*, 11th ed., Allyn & Bacon, 2005.
- 2. Giddens, A., *Sociology*, 5th ed., Wiley, 2006.

- 3. Flyvbjerg, B., Making Social Science Matter, Cambridge Univ. Press, 2001.
- 4. Singer, P., A Companion to Ethics, Wiley-Blackwell, 1993.

AE331	MODELING AND ANALYSIS LAB	(0-0-3) 1 credit
AV335	INSTRUMENTATION AND CONTROL SYSTEMS LAB	(0 – 0 – 3) 1 credit
AV335	INSTRUMENTATION AND CONTROL SYSTEMS LAB	(0 – 0 – 3) 1 credit

SEMESTER VI

AE321

FLIGHT MECHANICS

Overview of aerodynamics, propulsion, atmosphere and aircraft instrumentation – frames of reference – body axis, wind axis, earth centric, inertial – equations of motion in non-rotating earth and flat-earth frames of reference – aircraft performance – gliding, cruise and climbing flight, optimal cruise trajectories, take-off and landing – V-n diagrams – static longitudinal, directional, and lateral stability and control – stick fixed and stick free stability, hinge moments, trim-tabs, aerodynamic balancing – effect of manoeuvres – aerodynamic modelling, simulation, concept of steady states, linearisation, decoupling of longitudinal and lateral/directional motion – dynamic stability, longitudinal motion and short period and phugoid modes, lateral/directional motion, spiral, divergence, roll subsidence and dutch roll modes – stability, control and performance characteristics of sounding rockets and launch vehicles.

Textbooks:

- 1. Hull, D. G., Fundamentals of Airplane Flight Mechanics, Springer, 2007.
- 2. Perkins, C. D. And Hage, R. E., *Airplane Performance Stability & Control*, John Wiley, 1949.

References:

- 1. Etkin, B., *Dynamics of Flight*, John Wiley, 1989.
- 2. McCormick, B. W., *Aerodynamics, Aeronautics, and Flight Dynamics*, 2nd ed., John Wiley, 1994.
- 3. Pamadi, B. N., *Performance, Stability, Dynamics, and Control of Airplanes*, 2nd ed., AIAA Edu. Series, 2004.
- 4. Smetana, F. O., *Flight Vehicle Performance and Aerodynamic Control*, AIAA Edu. Series, 2001.

AE322

SPACEFLIGHT MECHANICS

(3 - 0 - 0) 3 credits

Dynamics of particle: reference frames and rotations, energy, angular momentum – two body motion: equations of motion, Kepler's laws, solution to two-body problem, conics and relations, vis-viva equation, Kepler equation, orbital elements, orbit determination, Lambert problem, satellite tracking – earth satellite operations: orbit maneuvers, Hohmann transfer, inclination change maneuvers, combined maneuvers, bi-elliptic maneuvers, effects due to atmospheric drag, earth oblateness effects, orbit maintenance – rocket performance: rocket equation, multi-staging – rigid body dynamics, satellite attitude dynamics, attitude control of spinning and non-spinning spacecrafts, re-entry trajectories, aerobraking – interplanetary trajectories: n-body problem, sphere of influence, synodic period, launch opportunity, methods of trajectory design, restricted three-body problem, Lagrangian points.

Textbooks:

- 1. Wiesel, W. E., Spaceflight Dynamics, 2nd ed., McGraw-Hill, 1996.
- 2. Tewari, A., Atmospheric and Space Flight Dynamics: Modeling and Simulation with MAT-LAB and Simulink, Birkhuser, 2007.

References:

- 1. Hale, F. J., Introduction to Space Flight, Prentice Hall, 1994.
- 2. Cornelisse, J. W., Schoyer, H. F. R., and Wakker, K. F., *Rocket Propulsion and Spaceflight Dynamics*, Pitman Publishing, 1979.

AE323	AIR-BREATHING PROPULSION	(3 - 0 - 0) 3 credits
-------	--------------------------	-----------------------

Review of combustion and flames – introduction to air breathing propulsion systems – review of basic gas dynamics equations – types of nozzles – design and operating characteristics – aircraft engine types – performance measures – fundamentals of aircraft gas turbine engine cycles – engine components and configurations – working performance evaluation – design and off design performance – basics of turbomachinery– compressor and turbine blade flow path analysis (centrifugal and axial types) – hypersonic air breathing engines – ramjet and scramjet – combustion systems.

Textbooks:

- 1. Hill, P. G. and Peterson, C. R., *Mechanics and Thermodynamics of Propulsion*, 2nd ed., Addison-Wesley, 1992.
- 2. Mattingly, J. D., *Elements of Propulsion: Gas Turbines and Rockets*, AIAA Edu. Series, 2006.

References:

- 1. Flack, R. D., *Fundamentals of Jet Propulsion with Applications*, Cambridge Univ. Press, 2005.
- 2. Mattingly, J. D., *Elements of Gas Turbine Propulsion*, AIAA Edu. Series, 2005.
- 3. Heiser, W. H. and Pratt, D. T., *Hypersonic Air Breathing Propulsion*, AIAA Edu. Series, 1994.

AE324	MANUFACTURING TECHNOLOGY II	(3 – 0 – 0) 3 credits
-------	-----------------------------	-----------------------

Principles of metal cutting – mechanics of metal cutting – cutting tools – cutting processes – process variables – tool life.

Abrasive machining processes: grinding and fine finishing processes.

Machine tools: conventional machine tool configuration – CNC technology – CNC machine tools and programming.

Nontraditional machining: principles, equipment, process variables and applications – surface engineering – concept of CIM and FMS – additive manufacturing – advanced manufacturing technologies.

Textbooks:

- 1. Groover, M. P., Fundamentals of Modern Manufacturing: Materials, Processes, and Systems, Wiley India, 2007.
- 2. Kalpakjian, S. and Schmidt, S. R., *Manufacturing Engineering and Technology*, Pearson Education, 2009.

References:

- 1. Pandey, P. C. and Shah, H. S., Modern Machining Processes, Tata McGraw-Hill, 1988.
- 2. Juneja, B. L., Sekhon, G. S., and Seth, N., *Fundamentals of Metal Cutting and Machine Tools*, New Age International, 2008.

E01	STREAM ELECTIVE I	(3 - 0 - 0) 3 credits

HS321 PRINCIPLES OF MANAGEMENT SYSTEMS (3 – 0 – 0) 3 credits

Personnel Management: introduction – changing role of personnel manager – new people management – manpower planning – recruitment and selection – performance appraisal – workers participation in management – grievance handling.

Industrial Management: management functions – organization – principles of planning – management by objectives – organization structures – principles of organizing – span of control – delegation, leadership, directing, and controlling.

Project Management: development of project network – project representation – project scheduling – linear time-cost trade-offs in projects: a heuristic approach – project monitoring and control with PERT.

- 1. Koontz H., ODonnel, C., and Weihrich, H., *Essentials of Management*, McGraw-Hill, 1990.
- 2. Venkataratnam, C. S. and Srivastava, B. K., *Personnel Management and Human Resources*, Tata McGraw-Hill, 1991.
- 3. Mazda F., *Engineering Management*, Prentice Hall, 1997.
- 4. Gido, J. and Clements, J. P., *Successful Project Management*, 2nd ed., South-Western College Publishing, 2003.

- 5. Khanna, O. P., *Industrial Engineering and Management*, Dhanpat Rai Publications (P) Ltd., 2003.
- 6. Memoria, C. B. and Gankar, S. V., *Personnel Management Text and Cases*, Himalaya Publishing House, 2007.

AE341	AERODYNAMICS AND FLIGHT MECHANICS LAB	(0-0-3) 1 credit
AE342	MANUFACTURING PROCESSES LAB	(0-0-3) 1 credit

SEMESTER VII

AE411

ROCKET PROPULSION

Introduction to rocket propulsion systems – rocket propulsion engines – types of rocket nozzles and thrust vector control – propellants – combustion in rocket engines – parameters for chemical rockets – elements of liquid propulsion systems – thrust chambers – turbo pumps – nonconventional propulsion techniques – solid rocket motors – grain configuration – hybrid rockets – rocket testing and performance evaluation – selection of rocket motors.

Textbook:

• Sutton, G. P. and Biblarz, O., *Rocket Propulsion Elements*, 7th ed., John Wiley, 2000.

References:

1. Hill, P. G. and Peterson, C. R., *Mechanics and Thermodynamics of Propulsion*, 2nd ed., Addison-Wesley, 1992.

AE412 AEROSPACE VEHICLE DESIGN (3-0-0) 3 credits

Aircraft Design: introduction – weight estimation – airfoil and geometry selection – thrust to weight ratio and wing loading – initial sizing – propulsion – landing gear and subsystems – aerodynamics – stability, control, and handling qualities – flight mechanics and performance issues.

Space Vehicle Design: mission design – basic orbital mechanics – range safety – rocket propulsion options – attitude determination and control – configuration and structural design – thermal control – power systems – design for re-entry – vehicle integration and recovery – introduction to multi-disciplinary design optimization.

Textbooks:

- 1. Raymer, D. P., Aircraft Design: A Conceptual Approach, 4th ed., AIAA Edu. Series, 2006.
- 2. Griffin, M. D. and French, J. R., *Space Vehicle Design*, 2nd ed., AIAA Edu. Series, 2004.

References:

- 1. Anderson, J. D., Aircraft Design, McGraw-Hill, 1999.
- 2. Corke, T. C., *Design of Aircraft*, Prentice Hall, 2002.
- 3. Fielding, J. P., Introduction to Aircraft Design, Cambridge Univ. Press, 1999.

STREAM ELECTIVE II

E03	STREAM ELECTIVE III	(3 – 0 – 0) 3 credits
E04	DEPARTMENT ELECTIVE	(3-0-0) 3 credits
E05	INSTITUTE ELECTIVE	(3-0-0) 3 credits
AE431	AEROSPACE STRUCTURES LAB	(0 – 0 – 3) 1 credit
AE432	METROLOGY LAB	(0 – 0 – 3) 1 credit
AE451	SUMMER INTERNSHIP AND TRAINING	3 credits
AE452	SEMINAR	2 credits

SEMESTER VIII

AE453	COMPREHENSIVE VIVA-VOCE	3 credits
AE454	PROJECT WORK	12 credits

ELECTIVES

AE461

ADVANCED AERODYNAMICS

Introduction to experimental aerodynamic facilities – classification of experimental facilities – continuous, blow-down and impulse facilities – wind tunnel instrumentation – special testing techniques.

Introduction to computational aerodynamics – various levels of approximations – grid generation – boundary conditions.

Introduction to hypersonic flows – analytical and computational methods – hypersonic boundary layer theory – aerodynamic heating – viscous-inviscid interactions.

Re-entry vehicle aerodynamics – earth and Martian atmosphere models – continuum and free molecular flows.

Introduction to aerothermodynamics – real and perfect gases – chemical equilibrium and nonequilibrium – solutions for stagnation point flow.

Introduction to kinetic theory of gases – introduction to turbulence – use of turbulent models for external flows.

Textbooks:

- 1. Anderson Jr, J. D., *Hypersonic and High-Temperature Gas Dynamics*, 2nd ed., AIAA Edu. Series, 2006.
- 2. Barlow, J. B., Rae Jr, W. H., and Pope, A., *Low-Speed Wind Tunnel Testing*, 3rd ed., Wiley, 1999.
- 3. Versteeg, H. K., Malalasekera, W., *An Introduction to Computational Fluid Dynamics: The Finite Volume Method*, 2nd ed., Prentice Hall, 2007.

- 1. Pope, A. and Goin K. L., *High-Speed Wind Tunnel Testing*, Krieger Pub. Co., 1978.
- 2. Goethert, B. H., *Transonic Wind Tunnel Testing*, Dover, 2007.
- 3. Hirschel, E. H. and Weiland, C., *Selected Aerothermodynamic Design Problems of Hypersonic Flight Vehicles*, AIAA/Springer, 2009.
- 4. Toro, E. F., *Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction*, 2nd ed., Springer-Verlag, 1999.

AE462 ADVANCED AEROSPACE STRUCTURES

Description of essential features of aircraft, rocket and spacecraft structures – type of loads on flight structures – bending, shear and torsion of open and closed thin-walled beams – mono-coque, stiffened plate, isogrid and sandwich constructions – idealization and stress analysis of typical aerospace structural components – pressurized structures – stress discontinuities – effects of cut-outs – effects of boundary conditions in open and closed section beams – structural fatigue.

Textbook:

• Megson, T. H. G., *Aircraft Structures for Engineering Students*, 4th ed., Butterworth-Heinemann, 2007.

References:

- 1. Timoshenko, S. P. and Goodier, J. N., *Theory of Elasticity*, 3rd ed., McGraw-Hill, 1970.
- 2. Timoshenko, S. P. and Woinowsky-Krieger, S., *Theory of Plates and Shells*, 2nd ed., McGraw-Hill, 1964.
- 3. Bruhn, E. F., *Analysis and Design of Flight Vehicle Structures*, 2nd ed., Jacobs Publishing Inc., 1973.

AE463 ADVANCED FLUID MECHANICS	(3 - 0 - 0) 3 credits
--------------------------------	-----------------------

Fluid kinematics – physical conservation laws – review of integral and differential formulations – Navier–Stokes and energy equations – solution of Navier–Stokes equations; steady and unsteady flows – waves in fluids (potential flow formulation) – boundary layer theory; Blasius solution, Falkner–Skan solutions, momentum integral approach – introduction to turbulent flows.

References:

- 1. White, F. M., Viscous Fluid Flow, 3rd ed., McGraw-Hill, 2006.
- 2. Panton, R. L., Incompressible Flow, 3rd ed., John Wiley, 2005.
- 3. Kundu, P. K. and Cohen, I. M., *Fluid Mechanics*, 4th ed., Academic Press, 2007.
- 4. Leal, L. G., Advanced Transport Phenomena, Cambridge Univ. Press, 2007.
- 5. Schlichting, H. and Gersten, K., *Boundary Layer Theory*, 8th ed., McGraw-Hill, 2001.

AE464	ADVANCED HEAT TRANSFER	(3 - 0 - 0) 3 credits
-------	------------------------	-----------------------

Radiation Heat Transfer: fundamentals – view factors – network method and enclosure analysis for gray – diffuse enclosures containing transparent media – engineering treatment of gas radiation. Two Phase Flow: fundamentals – flow patterns – basic equations for homogeneous flow and the separated-flow model.

Boiling Heat Transfer: pool boiling – forced convective – cross flow – multicomponent boiling – correlations for boiling coefficient – critical heat flux.

Condensation: modes of condensation – film-wise condensation on vertical surfaces – horizontal tube systems – condensation in multicomponent systems.

Enhancement of Heat Transfer: active, passive, and compound techniques.

Textbooks:

- 1. Incroprera, F. P. and Dewitt, D. P., *Heat and Mass Transfer*, 5th ed., Wiley, 2002.
- 2. Hewitt, G. F., Shires, G. L., and Bott, T. R., Process Heat Transfer, CRC Press, 1994.

References:

- 1. Çengel, Y. A., *Heat and Mass Transfer*, 3rd ed., Tata McGraw-Hill, 2007.
- 2. Das, S. K., Process Heat Transfer, Narosa, 2006.
- 3. Sparrow, E. M. and Cess, R. D., Radiation Heat Transfer, CRC Press, 1978.

AE466 AEROELASTICITY (3-0-0) 3 credits

Fundamental aspects of structural dynamics – free vibration and modal representation of flexible structures – application to beam extension, shear, bending and torsion dynamics – static aeroelasticity – wind tunnel models – divergence and aileron reversal – Lifting surfaces: torsional divergence and load redistribution, aeroelastic tailoring – aeroelastic flutter – stability characteristics – Flutter analysis: wind tunnel models – flexible wings.

Textbook:

• Hodges, H., *Introduction to Structural Dynamics and Aeroelasticity*, Cambridge Univ. Press, 2002.

AE467 ANALYSIS AND DESIGN OF COMPOSITE STRUCTURES (3 - 0 - 0) 3 credits

Introduction – classification and applications of composites – fiber-reinforced composites – micro and macro-mechanical analysis – analysis of simple laminated composite structural elements – failure and fracture of composite lamina – bending and vibration of composite and sandwich structural elements – design of aerospace composite and sandwich structures.

Textbook:

• Jones, R. M., *Mechanics of Composite Materials*, 2nd ed., Taylor & Francis, 1999.

- 1. Gibson, R. F., *Principles of Composite Materials Mechanics*, 2nd ed., McGraw-Hill, 1994.
- 2. Daniel, I. M. and Ishai, O., *Engineering Mechanics of Composite Materials*, 2nd ed., Oxford Univ. Press, 2005.
- 3. Hong, T. H. and Tsai, S. W., *Introduction to Composite Materials*, Technomic Pub. Co., 1980.
- 4. Vasiliev, V. V. and Morozov, E. V., *Advanced Mechanics of Composite Materials*, 3rd ed., Elsevier, 2007.

AE468 COMPUTATIONAL FLUID DYNAMICS (3 – 0 – 0) 3 credits

Mathematical models for fluid dynamics – classification of partial differential equations – discretization methods – finite difference formulation – numerical solution of elliptic equations – linear system of algebraic equations – numerical solution of parabolic equations – stability analysis – numerical solution of hyperbolic equations – Burgers equation – incompressible Navier-Stokes equations and their solution algorithms – finite volume method.

Textbook:

• Hirsch, C., *Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics*, Vol. I, 2nd ed., Butterworth-Heinemann, 2007.

References:

- 1. Tannehill, J. C., Anderson, D. A., and Pletcher, R. H., *Computational Fluid Mechanics and Heat Transfer*, 2nd ed., Taylor & Francis, 1997.
- 2. Hoffmann, K. A. and Chiang, S. T., *Computational Fluid Dynamics for Engineers*, 4th ed., Engineering Education Systems, 2000.
- 3. Anderson, J. D., *Computational Fluid Dynamics: The Basics with Applications*, McGraw-Hill, 1995.
- 4. Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere, 1980.
- 5. Ferziger, J. H. and Perić, M., *Computational Methods for Fluid Dynamics*, 3rd ed., Springer, 2002.

AE469 COMPUTER INTEGRATED MANUFACTURING (3 – 0 – 0) 3 credits

Manufacturing Systems: computer integrated manufacturing – computer aided design (CAD) and engineering (CAE) – computer aided manufacturing (CAM) and concurrent engineering.

NC, CNC and DNC; CNC Machines: general concepts, design features, drives and controls, programming – adaptive control – machining centres.

Shop Floor Automation: automated material handling – assembly and inspection – computer aided process planning (CAPP) – computer integrated production management system – group technology and cellular manufacturing – flexible manufacturing system – automatic storage/retrieval systems (AS/RS) – Just In Time (JIT) – lean manufacturing.

Textbook:

• Groover, M. P., *Automation, Production Systems and Computer Integrated Manufacturing*, 3rd ed., Prentice Hall of India, 2007.

References:

- 1. Kant Vajpayee, S., *Principles of Computer Integrated Manufacturing*, Prentice Hall of India, 1995.
- 2. Rehg, J. A. and Kraebber, H. W., *Computer Integrated Manufacturing*, 3rd ed., Pearson Prentice Hall, 2004.
- 3. Venkateswaran, N. and Alavudeen, A., *Computer Integrated Manufacturing*, Prentice Hall of India, 2008.
- 4. Groover, M. P. and Zimmers, E. W., *CAD/CAM: Computer-Aided Design and Manufacturing*, Prentice Hall of India, 1984.

AE470 DESIGN OF AEROSPACE STRUCTURES (3 - 0 - 0) 3 credits

Design considerations – codes and standards – aerospace materials and their properties – selection of materials – failure theories – design criteria – strength, stiffness, fatigue, damage tolerance – fail safe and safe life designs – design aspects typical aerospace structural constructions: monocoque, stiffened plate, isogrid, sandwich and laminated composites – weight control – design of pressurized systems – configuration, design calculations and checks applied to typical aerospace structures – structural connections and joints – fasteners – design project.

- 1. Shigley, J. E., Mischke, C., and Budynas, R., *Mechanical Engineering Design*, 7th ed., McGraw-Hill, 2003.
- 2. Bruhn, E. F., *Analysis and Design of Flight Vehicle Structures*, 2nd ed., Jacobs Publishing Inc., 1973.
- 3. Niu, M. C.Y., *Airframe Structural Design*, 2nd ed., Hongkong Conmilit Press Ltd., 2002.
- 4. Harvey, J. F., *Theory and Design of Modern Pressure Vessels*, 2nd ed., Van Nostrand, 1974.

AE471 CONVECTION HEAT TRANSFER

Introduction transport properties for viscous, conducting fluids – kinematic properties – fundamental conservation equations; Navier-Stokes equations and energy equation – dimensionless parameters – solution of Newtonian viscous flows – laminar shear layers momentum, thermal – laminar heat transfer in ducts – incompressible turbulent mean flows – free convection flows – mass transfer coupled flows convection with phase change – convection in porous media.

Textbooks:

- 1. Bejan, A., *Convection Heat Transfer*, Wiley, 3rd ed., Wiley, 2004.
- 2. Burmeister, L. C., *Convective Heat Transfer*, 2nd ed., Wiley, 1993.

AE472 EXPERIMENTAL AERODYNAMICS (3-0-0) 3 credits

Introduction to aerodynamic test facilities in various Mach number regimes: low speed, transonic, supersonic, hypersonic, and high enthalpy – design of subsonic, transonic, and supersonic wind tunnels – wind tunnel calibration – low speed flow visualisation techniques – dynamic stability derivatives – design of hypersonic wind tunnels – design of shock tube / shock tunnels – calibration of various wind tunnels – Flow visualisation techniques: Schlieren, shadowgraph, interferometry – introduction to laser diagnostic techniques – RTD, thermocouples, thermography, etc. – force measurement techniques in shock tunnel – introduction to wind tunnel instrumentation – Measurements techniques in wind tunnels: forces and moments, pressure, velocity, temperature, aeroacoustic measurements – error analysis – Instrumentation / data acquisition: steady and unsteady, shock tunnel data acquisition – virtual instrumentation – PLCs – measurement of steady and unsteady pressure, velocity, temperature, turbulence intensity, hot-wire, skin friction, forces and moments – Model design and fabrication: RP, FRP, metal, actuators – calibration of force, pressure and acoustic sensors.

- 1. Barlow, J. B., Rae Jr, W. H., and Pope, A., *Low-Speed Wind Tunnel Testing*, 3rd ed., Wiley, 1999.
- 2. Pope, A. and Goin K., High-Speed Wind Tunnel Testing, Krieger Pub. Co., 1972.
- 3. Goethert, B. H., Transonic Wind Tunnel Testing, Dover Publications, 2007.
- 4. Pavian H. C., *Experimental Aerodynamics*, Pitman Publishing, 1940.
- 5. Mueller, T. J., Allen, C. S., Blake, W. K., Dougherty, R. P., Lynch, D., Soderman, P. T., and Underbrink, J. R., *Aeroacoustic Measurements*, Springer, 2010.
- 6. Langley, S. P., *Experiments in Aerodynamics*, Nabu Press, 2010.

AE473 FINITE ELEMENT METHOD

Introduction – weighted residual methods – Galerkin's method – variational approach – Rayleigh-Ritz method – one-dimensional finite element analysis; types of elements, shape functions – heat transfer problems – numerical integration – applications to structural mechanics – fluid flow problems.

Textbook:

• Segerlind, L. J., *Applied Finite Element Analysis*, 2nd ed., John Wiley, 1984.

References:

- 1. Henwood, D. and Bonet, J., *Finite Elements A Gentle Introduction*, Macmillan, 1996.
- 2. Reddy, J. N., Introduction to the Finite Element Method, 3rd ed., McGraw-Hill, 2006.
- 3. Zienkiewicz, O. C., Taylor, R. L., and Nithiarasu, P., *Finite Element Method for Fluid Dynamics*, 6th ed., Elsevier Butterworth-Heinemann, 2005.

AE474 FRACTURE MECHANICS (3-0-0) 3 credits

Introduction and history of fracture mechanics – linear elastic fracture mechanics; energy release rate, stress intensity factor (SIF), relation between SIF and energy release rate, anelastic deformation at the crack tip – crack growth and fracture mechanisms – elastic-plastic analysis through J-integral – finite element analysis of cracks – fracture toughness testing – fatigue failure.

Textbook:

• Prashant Kumar, Elements of Fracture Mechanics, Tata McGraw-Hill, 2009.

References:

- 1. Broek, D., *Elementary Engineering Fracture Mechanics*, 4th ed., Kluwer Academic, 1986.
- 2. Anderson, T. L., *Fracture Mechanics: Fundamentals and Applications*, 3rd ed., CRC Press, 2004.

AE475

ENGINEERING VIBRATION

(3 - 0 - 0) 3 credits

Introduction to vibration – single degree of freedom systems: free, undamped, damped, and forced vibrations – two-degree of freedom systems: principal modes of vibration, undamped vibration, forced vibration, forced damped vibrations – vibration isolation – multi-degree Freedom systems: eigenvalue problem – orthogonality of mode shapes, modal analysis for free, damped, and forced vibration systems – approximate methods for fundamental frequency – introduction to transient vibrations and non-linear vibrations.

Textbook:

• Rao, S. S., *Mechanical Vibrations*, 4th ed., Pearson Education, 2004.

- 1. Thomson, W. T. and Daleh, M. D., *Theory of Vibration with Applications*, 5th ed., Prentice Hall, 1997.
- 2. Rao, J. S. and Gupta, K., *Introductory Course on Theory and Practice of Mechanical Vibrations*, 2nd ed., New Age International, 1999.
- 3. Meirovitch, L., *Elements of Vibration Analysis*, 2nd ed., McGraw-Hill, 1986.
- 4. Seto W. W., *Schaum's Outline of Theory and Problems of Mechanical Vibrations*, McGraw-Hill, 1964.

AE476 INDUSTRIAL ENGINEERING (3 - 0 - 0) 3 credits

Introduction, production planning and control – product design – value analysis and value engineering – plant location and layout – equipment selection – maintenance planning – job, batch, and flow production methods – group technology – work study – time and motion study – work/job evaluation – inventory control – manufacturing planning – total quality management – Taguchi's quality engineering – network models.

Textbooks:

- 1. Narasimhan, S. L., McLeavey D. W., and Billington, P. J., *Production, Planning and Inventory Control*, Prentice Hall, 1977.
- 2. Riggs, J. L., Production Systems: Planning, Analysis and Control, 3rd ed., Wiley, 1981.

References:

- 1. Muhlemann, A., Oakland, J. O., and Lockyer, K., *Productions and Operations Management*, Macmillan, 1992.
- 2. Taha, H. A., Operations Research: An Introduction, Prentice Hall of India, 1997.
- 3. Sharma, J. K., *Operations Research*, Macmillan, 1997.

AE477	FUNDAMENTALS OF COMBUSTION	(3 – 0 – 0) 3 credits
-------	----------------------------	-----------------------

Combustion and thermochemistry – chemical kinetics and mechanisms – reacting flows-premixed flames – detonation and explosion – diffusion flames.

Textbook:

• Turns, S. R., An Introduction to Combustion, 2nd ed., McGraw-Hill, 2000.

- 1. Glassman, I. and Yetter, R. A., *Combustion*, 4th ed., Elsevier, 2008.
- 2. Kuo, K. K., *Principles of Combustion*, 2nd ed., John Wiley, 2005.
- 3. Warnatz, J., Maas, U., and Dibble, R. W., *Combustion* 4th ed., Springer, 2006.
- 4. Law C. K., Combustion Physics, Cambridge Univ. Press, 2006.

Introduction and a strategic view of supply chains – evolution of supply chain management (SCM) – decision phases in a supply chain – enablers of supply chain performance – supply chain strategy and performance measures – achieving strategic fit – network design in the supply chain – supply chain drivers and obstacles – operations decisions in supply chains – forecasting, aggregate planning – inventory control in supply chain – sourcing decisions in supply chain – supplier selection – transportation in supply chain – routing and scheduling using savings matrix method – coordination in supply chain – bullwhip effect – enabling supply chain management through information technology.

Textbook:

• Chopra, S. and Meindl, P., *Supply Chain Management: Strategy, Planning, and Operation*, Pearson Prentice Hall of India, 2007.

References:

- 1. Levi, D. S., Kaminsky, P., Levi, E. S., and Shankar, R., *Designing and Managing the Supply Chain: Concepts, Strategies, and Case Studies*, Tata McGraw-Hill, 2008.
- 2. Stadtler, H. and Kilger, C., *Supply Chain Management and Advanced Planning: Concepts, Models, Software and Case Studies*, 3rd ed., Springer-Verlag, 2003.
- 3. Shapiro, J. F., *Modeling the Supply Chain*, Thomson Learning, 2007.
- 4. Vollmann, T. E., Berry, W. L., Whybark, D. C., and Jacobs, F. R., *Manufacturing Planning and Control for Supply Chain Management*, Tata McGraw-Hill, 2006.

AE479 INTRODUCTION TO OPTIMIZATION (3 - 0 - 0) 3 credits

Optimization in science and engineering – general and special classes of problems – characterization of unconstrained and constrained minima – Lagrange multipliers – KKT conditions – linear programming – simplex tableau – duality – one dimensional optimization – elimination and interpolation techniques – multidimensional unconstrained minimization – steepest descent – Newton's and quasi-Newton techniques – randomized searches – genetic algorithm and simulated annealing – introduction to constrained minimization – large scale problems – multi-disciplinary optimization – applications in design, analysis, and control.

Textbook:

• Deb, K., *Optimization for Engineering Design: Algorithms and Examples*, Prentice Hall of India, 2004.

References:

1. Rao, S. S., *Engineering Optimization: Theory and Practice*, Wiley Eastern, 1996.

AE480 NONTRADITIONAL MACHINING

Nontraditional machining – thermal, chemical, and abrasives techniques; need, principle, process mechanics and variables, equipments, performance characteristics – application and recent trends of electrical discharge machining (EDM), wire EDM, wire EDG, electro-chemical machining (ECM), ECG, ultrasonic, laser beam, electron beam, abrasive and water jet machining, and hybrid processes – nontraditional micromachining.

Textbooks:

- 1. Jain, V. K., Advanced Machining Processes, Allied Pub., 2002.
- 2. Mishra, P. K., Nonconventional Machining, Narosa, 2006.

References:

- 1. Sharma, P. C., A Textbook of Production Engineering, S. Chand & Co., 2005.
- 2. Benedict, G. F., Non-Traditional Machining Processes, Marcel Dekker, 1987.
- 3. Pandey, P. C. and Shan, H. S., *Modern Machining Process*, Tata McGraw-Hill, 2004.

AE483 ROBOT MECHANISMS AND MOTION PLANNING (3 – 0 – 0) 3 credits

Overview of robotics – different types of robots – manipulators and mobile robots – mechanisms used in robots – serial and parallel chains – degrees of freedom – means of mobility, rovers.

Rigid body displacements – homogenous transformation – mechanism parameters – Denavit– Hartenberg notation – forward and inverse kinematic problems – velocity and static analysis.

Higher level control – motion planning, obstacle avoidance – road map and potential field methods – higher level sensors – vision, laser and ultrasonic range finders – localization and mapping.

- 1. Ghosal, A., Robotics: Fundamental Concepts and Analysis, Oxford Univ. Press, 2006.
- Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L. E., and Thrun, S., *Principles of Robot Motion: Theory, Algorithms, and Implementations*, MIT Press, Prentice Hall of India, 2005.
- 3. Craig, J. J., *Introduction to Robotics: Mechanics and Control*, 2nd ed., Pearson Education, 2001.

AE484 SPACE MISSION DESIGN AND OPTIMIZATION (3 - 0 - 0) 3 credits

Launch vehicle ascent trajectory design – reentry trajectory design – low thrust trajectory design – satellite constellation design – rendezvous mission design – ballistic lunar and interplanetary trajectory design – basics of optimal control theory – mission design elements for various missions – space flight trajectory optimization – direct and indirect optimization techniques – restricted 3-body problem – Lagrangian points – mission design to Lagrangian point.

Textbooks:

- 1. Osborne, G. F. and Ball, K. J., Space Vehicle Dynamics, Oxford Univ. Press, 1967.
- 2. Hale, F. J., Introduction to Space Flight, Prentice Hall, 1994.
- 3. Naidu, D. S., Optimal Control Systems, CRC Press, 2003.

References:

- 1. Chobotov, V., Orbital Mechanics, AIAA Education Series, 2002.
- 2. Griffin, M. D. and French, J. R., *Space Vehicle Design*, 2nd ed., AIAA, 2004.
- 3. Newcomb, R. W. and Kirk, D. E., *Optimal Control Theory: An Introduction*, Prentice Hall, 1990.
- 4. Bulirsch, R., Miele, A., Stoer, J., and Well, K. H. (Ed.), *Optimal Control: Calculus of Variations, Optimal Control Theory and Numerical Methods*, Birkhauser Verlag, 1993.

AE486 REFRIGERATION AND CRYOGENICS (3-0-0) 3 credits

Refrigeration: introduction – analysis of VCR cycles – multistage, multi-evaporator, cascade systems – properties and selection of pure and mixed refrigerants – properties of binary mixtures – analysis of vapor absorption cycles – aqua ammonia and LiBr water cycles – air cycle refrigeration, vortex tube, thermoelectric refrigeration.

Cryogenic Engineering: historical background and applications – gas liquefaction systems – gas separation and gas purification systems – cryogenic refrigeration systems – storage and handling of cryogens – cryogenic insulations – liquefied natural – gas-properties of materials of low temperatures – material of construction and techniques of fabrication – instrumentation – ultra-low temperature techniques – application.

Textbooks:

- 1. Stoecker, W. F. and Jones, J. W., *Refrigeration & Air Conditioning*, Tata McGraw-Hill, 1986.
- 2. Barron, R. F., *Cryogenic Systems*, 2nd ed., Oxford Univ. Press, 1985.

- 1. Gosney W. B, *Principles of Refrigeration*, Cambridge Univ. Press, 1982.
- 2. Weisend, J. G., *The Handbook of Cryogenic Engineering*, Taylor & Francis, 1998.

AE487 TURBOMACHINES (3-0-0) 3 credits

Classification – specific work – representation of specific work in T-s and h-s diagrams – Internal and external losses – Euler's equation of turbomachinery – ideal and actual velocity triangles – slip and its estimation – impulse and reaction type machines – degree of reaction – effect of outlet blade angle on blade shape – model laws, specific speed and shape number – special features of steam and gas turbines – performance characteristics of turbomachines – cavitation, surge and stall – thin aerofoil theory – cascade mechanics.

Textbook:

• Dixon, S. L., *Fluid Mechanics and Thermodynamics of Turbomachinery*, 5th ed., Butterworth-Heinemann, 2005.

References:

- 1. Baskharone, E. A., *Principles of Turbomachinery and in Air-Breathing Engines*, Cambridge Univ. Press, 2006.
- 2. Wright, T., Fluid Machinery: Performance, Analysis, and Design, CRC Press, 1999.

AE488 ADVANCED MANUFACTURING AND AUTOMATION (3 - 0 - 0) 3 credits

Precision Engineering: concepts, materials, processes – high speed machining; CNC machine tools and machining centres, adaptive systems, multi axis CNC programming – micro/nano scale manufacturing – recent development in nontraditional machining.

Automation: introduction to automated manufacturing, basic concepts, automated work piece handling, orientation, positioning – flexible automation – assembly automation, product design for automation – automated inspection – sensors and actuators for automation – PLC programming and applications in automation.

Textbooks:

- 1. Groover, M. P., *Automation, Production Systems, and Computer-Integrated Manufacturing*, 3rd ed., Prentice Hall, 2007.
- 2. Boothroyd, G., Assembly Automation and Product Design, 2nd ed., CRC Press, 2005.

AE489 AEROSPACE MATERIALS AND PROCESSES (3 - 0 - 0) 3 credits

Properties of materials: strength, hardness, fatigue, and creep – Ferrous alloys: stainless steels, maraging steel, aging treatments – Aluminum alloys: alloy designation and tempers, Al-Cu alloys, principles of age hardening, hardening mechanisms, Al-Li alloys, Al-Mg alloys, nanocrystalline aluminum alloys – Titanium alloys: α - β alloys, superplasticity, structural titanium alloys, intermetallics – Magnesium alloys: Mg-Al and Mg-Al-Zn alloys – Superalloys: processing and properties of superalloys, single-crystal superalloys, environmental degradation and protective coatings – Composites: metal matrix composites, polymer based composites, ceramic based composites, carbon carbon composites.

Textbooks:

- 1. Polmear, I. J., Light Alloys: From Traditional Alloys to Nanocrystals, 4th ed., Elsevier, 2005.
- 2. Reed, R. C., *The Superalloys: Fundamentals and Applications*, Cambridge Univ. Press, 2006.

- 1. Cantor, B., Assender, H., and Grant, P. (Ed.), Aerospace Materials, CRC Press, 2001.
- 2. ASM Speciality Handbook: Heat Resistant Materials, ASM International, 1997.
- 3. Campbell, F. C., *Manufacturing Technology for Aerospace Structural Materials*, Elsevier, 2006.
- 4. Kainer, K. U. (Ed.), *Metal Matrix Composites*, Wiley-VCH, 2006.

AE490 HEAT TRANSFER IN SPACE APPLICATIONS (3 – 0 – 0) 3 credits

Space Craft Thermal Environments: launch and ascent environments – environment of earth orbit – environments of interplanetary missions.

Thermal Control Techniques: passive thermal control techniques: thermal coating materials, thermal insulation, heat sinks, phase change materials – Active thermal control techniques: electrical heaters, thermal louvers, HPR fluid systems, heat pipes, spaceborne cooling systems.

Insulation-Blanket Design: materials-attachment – high temperature blankets – insulation for in-atmosphere applications.

Phase change materials – when to use a PCM-PCM design.

Heat Pipes-Types-Analysis-Testing: heat pipe applications and performances.

Thermal Contact Resistance and Its Calculation: parameters influencing thermal joint resistanceeffect of oxidation and interstitial effects.

Ablative Heat Transfer: physical process and calculation of ablation rates – hypersonic ablation of graphite – heat transfer at high velocities – heat transfer in rarefied gases-transpiration and film cooling.

Textbook:

 Gilmore, D. G., Spacecraft Thermal Control Handbook, Volume I: Fundamental Technologies, 2nd ed., The Aerospace Press, American Institute of Aeronautics and Astronautics, 2002.

References:

- 1. Fortescue, P., Swinerd, G., and Stark, J. (Ed.), *Spacecraft Systems Engineering*, 4th ed., John Wiley & Sons, 2011.
- 2. Mayer, R. X., *Elements of Space Technology for Aerospace Engineers*, Academic Press, 1999.
- 3. NASA SP 8105.

AE491

STRUCTURAL DYNAMICS

Review of vibration of SDOF systems – response to transient loading – response to general dynamic loading – multi degree of freedom systems – vibration of continuous systems; strings, rods, shafts, beams, and plates – natural modes of vibration; exact solutions and approximate methods – introduction to random vibrations.

Textbook:

• Meirovitch, L., *Elements of Vibration Analysis*, 2nd ed., Tata McGraw-Hill, 2006.

References:

- 1. Meirovitch, L., Analytical Methods in Vibrations, Macmillan, 1967.
- 2. Clough, R. W., and Penzien, J., *Dynamics of Structures*, 2nd ed., McGraw-Hill, 1993.
- 3. Craig, R. R., *Structural Dynamics: An Introduction to Computer Methods*, John Wiley, 1982.
- 4. Thomson, W. T. and Daleh, M. D., *Theory of Vibration with Applications*, 5th ed., Prentice Hall, 1997.

AE492 TOOL ENGINEERING AND DESIGN (3-0-0) 3 credits

Cutting Tool: materials, geometry and nomenclature – single point and multi point cutting tools – grinding wheels – effect of tool geometry on machining characteristics – tool wear – tool life and economics of machining.

Inserts: geometry, nomenclature and materials – design concepts – coatings – selection and applications of cutting tools and inserts – design of tool holders – boring, broaching, surface finishing operations.

Tooling for CNC Machining: work holding – modular and automated tool handling – tooling for micro machining – conventional micro tools and electrodes for EDM & ECM – mechanism of ductile cutting, nanometric cutting, and chip formation – job examples and case study.

Design of Jigs and Fixtures: standard work holding devices and clamping elements – fixtures for milling – jigs for drilling and reaming – fixtures for welding – indexing jigs – design and sketching of jigs and fixtures – simple job examples and case study.

- 1. Spitler, D., Lantrip, J., Nee, J., and Smith, D. A., *Fundamentals of Tool Design*, 5th ed., Society of Manufacturing Engineers, 2003.
- 2. Donaldson, C., LeCain, G. H., and Goold, V. C., *Tool Design*, Tata McGraw-Hill, 1998.
- 3. Hoffman, E., *Jig and Fixture Design*, 5th ed., Delmar Thomson Learning, 2004.
- 4. Hindustan Machine Tools, Production Technology, Tata McGraw-Hill, 1986.
- 5. Bhattacharyya A., *Metal Cutting Theory and Practice*, New Central Book Agency, 2000.
- 6. Wilson F. W., Hand Book of Fixture Design, McGraw-Hill, 1962.
- 7. Benedict, G. F., Non-Traditional Machining Processes, Marcel Dekker Inc., 1987.
- 8. Mishra, P. K., Nonconventional Machining, Narosa, 2006.